II.1 Analytic continuation

Definition. By a function element we mean an ordered pair (f, D), where $D \subset \mathbb{C}$ is an open disc and f is a holomorphic function on D. By the center of the element (f, D) we mean the center of the disc D.

Remark. A function element is sometimes defined in different ways – as an ordered pair (f, D), where D is an open disc, $f \in H(D)$ and, moreover, D is the disc of convergence of the Taylor series of f (centered at the center of the disc D); or as an ordered pair (f, z), where $z \in \mathbb{C}$ and f is a function holomorphic on a neighborhood of z. All the three aproaches are equivalent, but the followind definitions and statements would require a reformulation. We will use the above definition.

Definition.

- A function element (f_2, D_2) is said to be a **direct continuation** of the element (f_1, D_1) if $D_1 \cap D_2 \neq \emptyset$ and $f_1(z) = f_2(z)$ for each $z \in D_1 \cap D_2$. If the discs D_1 and D_2 have in addition the same center, we say that the elements (f_1, D_1) and (f_2, D_2) are the same.
- Let $\Omega \subset \mathbb{C}$ be a domain. A function element (f, D) is said to be an **analytic continuation of the element** (f_0, D_0) in the domain Ω if there are function elements $(f_1, D_1), \ldots, (f_n, D_n)$ such that the following conditions are satisfied:
 - $\circ D = D_n$ and $f = f_n$,
 - (f_k, D_k) is a direct continuation of (f_{k-1}, D_{k-1}) for each $k \in \{1, \ldots, n\}$,
 - $D_k \subset \Omega$ for each $k \in \{0, \ldots, n\}$.

Remarks:

- (1) Two function elements are 'the same' if they are they are indentical in one of the above-mentioned alternative points of view. This terminology is a bit misleading but we will need it several times.
- (2) The relation "to be a direct continuation of" is symmetric but not transitive. More precisely: Let (f_2, D_2) be a direct continuation of (f_1, D_1) and (f_3, D_3) be a direct continuation of (f_2, D_2) . The following possibilities may occur:
 - $D_1 \cap D_3 = \emptyset$. Then (f_3, D_3) is not a direct continuation of (f_1, D_1) .
 - Even if $D_1 \cap D_3 \neq \emptyset$, (f_3, D_3) need not be a direct continuation of (f_1, D_1) . The functions f_1 and f_3 may differ on $D_1 \cap D_3$.
 - If $D_1 \cap D_2 \cap D_3 \neq \emptyset$, then (f_3, D_3) is a direct continuation of (f_1, D_1) .
- (3) The relation "to be analytic continuation in the domain Ω " is an equivalence relation.

Definition. Let (f_0, D_0) be a function element and $\gamma : [0, 1] \to \mathbb{C}$ be a continuous curve such that $\gamma(0)$ is the center of the disc D_0 . Let $\Omega \subset \mathbb{C}$ be a domain.

• A function element (f, D) is said to be an analytic continuation of (f_0, D_0) along γ in the domain Ω if $\gamma(1)$ is the center of D and, moreover, there exist function elements $(f_1, D_1), \ldots, (f_n, D_n)$ and a partion

 $0 = s_0 < s_1 < \cdots < s_n = 1$ of the interval [0, 1] such that the following conditions are satisfied:

- $\circ D = D_n \text{ and } f = f_n,$
- (f_k, D_k) is a direct continuation of (f_{k-1}, D_{k-1}) for each $k \in \{1, \ldots, n\}$,
- $\circ D_k \subset \Omega \text{ for each } k \in \{0, \ldots, n\},\$
- $\gamma([s_k, s_{k+1}]) \subset D_k$ for each $k \in \{0, \dots, n-1\}$.
- We say that the function element (f_0, D_0) admits an analytic continuation along γ in the domain Ω , if there is a function element (f, D) which is an analytic continuation of (f_0, D_0) along γ in the domain Ω .

Theorem 1. Let $\Omega \subset \mathbb{C}$ be a domain, (f_0, D_0) be a function element and $\gamma : [0,1] \to \Omega$ be a continuous curve such that $\gamma(0)$ is the center of D_0 . Then there exists at most one analytic continuation of (f_0, D_0) along γ in Ω . More precisely: If (f_1, D_1) and (f_2, D_2) are two such continuation, these two elements are the same.

Definition. By an analytic multifunction in the domain Ω we mean an equivalence class of function elements with respect to the equivalence relation "to be analytic continuation in the domain Ω ".

Definition. Let f be an analytic multifunction in a domain Ω .

- By the domain of f we mean the union of all the open discs D, for which there exists $f \in H(D)$ such that $(f, D) \in f$. The domain of f will be denoted by dom(f).
- Let $a \in \text{dom}(f)$. By the set of values of f at the point a we mean the set

 $\boldsymbol{f}(a) = \{ z \in \mathbb{C} : \exists (f, D) \in \boldsymbol{f} : a \in D \& f(a) = z \}.$

• Let $G \subset \text{dom}(f)$ be a domain. By a branch of f in the domain G we mean any analytic multifunction g in the domain G which is a subset of f.

Theorem 2 (Poincaré-Volterra). Let f be an analytic multifunction in the domain Ω and $a \in \text{dom}(f)$. Then there are at most countably many function elements with center a which belong to f such that no two of them are the same. In particular, the set f(a) is at most countable.

Definition. Let f be an analytic multifunction in the domain Ω and $p \in \mathbb{N} \cup \{\infty\}$.

- Let $a \in \text{dom}(f)$. We says that f is p-valued at the point a, if there are exactly p function elements with center a which belong to f such that no two of them are the same (i.e., there are p such elements and in case $p \in \mathbb{N}$, there do not exist p + 1 such elements).
- f is said to be precisely *p*-valued, if it is *p*-valued at each point $a \in \text{dom}(f)$.
- f is said to be p-valued if

 $p = \sup\{q \in \mathbb{N} \cup \{\infty\} : \exists a \in \operatorname{dom}(f), f \text{ is } q \text{-valued at the point } a\}.$

• 1-valued multifunctions are called **singlevalued**.

Remark. If f is *p*-valued at the point a, the set f(a) has at most p elements. It may have strictly less than p elements.

Remark. In case $\Omega = \mathbb{C}$, we say only analytic continuation instead of "analytic continuation in \mathbb{C} ". Similarly we use the terms analytic continuation along γ or analytic multifunction.