II. 1 Analytic continuation

Definition. By a function element we mean an ordered pair (f, D), where $D \subset \mathbb{C}$ is an open disc and f is a holomorphic function on D. By the center of the element (f, D) we mean the center of the disc D.
Remark. A function element is sometimes defined in different ways - as an ordered pair (f, D), where D is an open disc, $f \in H(D)$ and, moreover, D is the disc of convergence of the Taylor series of f (centered at the center of the disc $D)$; or as an ordered pair (f, z), where $z \in \mathbb{C}$ and f is a function holomorphic on a neighborhood of z. All the three aproaches are equivalent, but the followind definitions and statements would require a reformulation. We will use the above definition.

Definition.

- A function element $\left(f_{2}, D_{2}\right)$ is said to be a direct continuation of the element $\left(f_{1}, D_{1}\right)$ if $D_{1} \cap D_{2} \neq \emptyset$ and $f_{1}(z)=f_{2}(z)$ for each $z \in D_{1} \cap D_{2}$. If the discs D_{1} and D_{2} have in addition the same center, we say that the elements $\left(f_{1}, D_{1}\right)$ and $\left(f_{2}, D_{2}\right)$ are the same.
- Let $\Omega \subset \mathbb{C}$ be a domain. A function element (f, D) is said to be an analytic continuation of the element $\left(f_{0}, D_{0}\right)$ in the domain Ω if there are function elements $\left(f_{1}, D_{1}\right), \ldots,\left(f_{n}, D_{n}\right)$ such that the following conditions are satisfied:

$$
\begin{aligned}
& \circ D=D_{n} \text { and } f=f_{n}, \\
& \circ\left(f_{k}, D_{k}\right) \text { is a direct continuation of }\left(f_{k-1}, D_{k-1}\right) \text { for each } k \in\{1, \ldots, n\}, \\
& \circ D_{k} \subset \Omega \text { for each } k \in\{0, \ldots, n\} .
\end{aligned}
$$

Remarks:

(1) Two function elements are 'the same' if they are they are indentical in one of the above-mentioned alternative points of view. This terminology is a bit misleading but we will need it several times.
(2) The relation "to be a direct continuation of" is symmetric but not transitive. More precisely: Let $\left(f_{2}, D_{2}\right)$ be a direct continuation of $\left(f_{1}, D_{1}\right)$ and $\left(f_{3}, D_{3}\right)$ be a direct continuation of $\left(f_{2}, D_{2}\right)$. The following possibilities may occur:

- $D_{1} \cap D_{3}=\emptyset$. Then $\left(f_{3}, D_{3}\right)$ is not a direct continuation of $\left(f_{1}, D_{1}\right)$.
- Even if $D_{1} \cap D_{3} \neq \emptyset,\left(f_{3}, D_{3}\right)$ need not be a direct continuation of $\left(f_{1}, D_{1}\right)$. The functions f_{1} and f_{3} may differ on $D_{1} \cap D_{3}$.
- If $D_{1} \cap D_{2} \cap D_{3} \neq \emptyset$, then $\left(f_{3}, D_{3}\right)$ is a direct continuation of $\left(f_{1}, D_{1}\right)$.
(3) The relation "to be analytic continuation in the domain Ω " is an equivalence relation.

Definition. Let $\left(f_{0}, D_{0}\right)$ be a function element and $\gamma:[0,1] \rightarrow \mathbb{C}$ be a continuous curve such that $\gamma(0)$ is the center of the disc D_{0}. Let $\Omega \subset \mathbb{C}$ be a domain.

- A function element (f, D) is said to be an analytic continuation of $\left(f_{0}, D_{0}\right)$ along γ in the domain Ω if $\gamma(1)$ is the center of D and, moreover, there exist function elements $\left(f_{1}, D_{1}\right), \ldots,\left(f_{n}, D_{n}\right)$ and a partion $0=s_{0}<s_{1}<\cdots<s_{n}=1$ of the interval $[0,1]$ such that the following conditions are satisfied:
- $D=D_{n}$ and $f=f_{n}$,
- $\left(f_{k}, D_{k}\right)$ is a direct continuation of $\left(f_{k-1}, D_{k-1}\right)$ for each $k \in\{1, \ldots, n\}$,
- $D_{k} \subset \Omega$ for each $k \in\{0, \ldots, n\}$,
- $\gamma\left(\left[s_{k}, s_{k+1}\right]\right) \subset D_{k}$ for each $k \in\{0, \ldots, n-1\}$.
- We say that the function element $\left(f_{0}, D_{0}\right)$ admits an analytic continuation along γ in the domain Ω, if there is a function element (f, D) which is an analytic continuation of $\left(f_{0}, D_{0}\right)$ along γ in the domain Ω.

Theorem 1. Let $\Omega \subset \mathbb{C}$ be a domain, $\left(f_{0}, D_{0}\right)$ be a function element and $\gamma:[0,1] \rightarrow \Omega$ be a continuous curve such that $\gamma(0)$ is the center of D_{0}. Then there exists at most one analytic continuation of $\left(f_{0}, D_{0}\right)$ along γ in Ω. More precisely: If $\left(f_{1}, D_{1}\right)$ and $\left(f_{2}, D_{2}\right)$ are two such continuation, these two elements are the same.
Definition. By an analytic multifunction in the domain Ω we mean an equivalence class of function elements with respect to the equivalence relation "to be analytic continuation in the domain Ω ".
Definition. Let \boldsymbol{f} be an analytic multifunction in a domain Ω.

- By the domain of \boldsymbol{f} we mean the union of all the open discs D, for which there exists $f \in H(D)$ such that $(f, D) \in \boldsymbol{f}$. The domain of \boldsymbol{f} will be denoted by $\operatorname{dom}(\boldsymbol{f})$.
- Let $a \in \operatorname{dom}(\boldsymbol{f})$. By the set of values of \boldsymbol{f} at the point a we mean the set

$$
\boldsymbol{f}(a)=\{z \in \mathbb{C}: \exists(f, D) \in \boldsymbol{f}: a \in D \& f(a)=z\}
$$

- Let $G \subset \operatorname{dom}(\boldsymbol{f})$ be a domain. By a branch of \boldsymbol{f} in the domain G we mean any analytic multifunction \boldsymbol{g} in the domain G which is a subset of \boldsymbol{f}.

Theorem 2 (Poincaré-Volterra). Let \boldsymbol{f} be an analytic multifunction in the domain Ω and $a \in \operatorname{dom}(\boldsymbol{f})$. Then there are at most countably many function elements with center a which belong to f such that no two of them are the same. In particular, the set $\boldsymbol{f}(a)$ is at most countable.
Definition. Let \boldsymbol{f} be an analytic multifunction in the domain Ω and $p \in \mathbb{N} \cup$ $\{\infty\}$.

- Let $a \in \operatorname{dom}(\boldsymbol{f})$. We says that \boldsymbol{f} is p-valued at the point a, if there are exactly p function elements with center a which belong to \boldsymbol{f} such that no two of them are the same (i.e., there are p such elements and in case $p \in \mathbb{N}$, there do not exist $p+1$ such elements).
- \boldsymbol{f} is said to be precisely p-valued, if it is p-valued at each point $a \in \operatorname{dom}(\boldsymbol{f})$.
- \boldsymbol{f} is said to be p-valued if

$$
p=\sup \{q \in \mathbb{N} \cup\{\infty\}: \exists a \in \operatorname{dom}(\boldsymbol{f}), \boldsymbol{f} \text { is } q \text {-valued at the point } a\}
$$

- 1-valued multifunctions are called singlevalued.

Remark. If \boldsymbol{f} is p-valued at the point a, the set $\boldsymbol{f}(a)$ has at most p elements. It may have strictly less than p elements.
Remark. In case $\Omega=\mathbb{C}$, we say only analytic continuation instead of "analytic continuation in $\mathbb{C} "$. Similarly we use the terms analytic continuation along γ or analytic multifunction.

