II.2 Multifunctions admitting unrestricted continuation

Definition. Let f be an analytic multifunction in a domain Ω .

- Let $G \subset \Omega$ be a domain. We say that f admits unrestricted continuation in G if whenever $(f, D) \in f$ satisfies $D \subset G$ and $\gamma : [0, 1] \to G$ is a continuous curve such that $\gamma(0)$ is the center of D, then (f, D)admits an analytic continuation along γ in G.
- If f admits unrestricted continuation in Ω , we say just that f admits unrestricted continuation.

Theorem 3. Let f be an analytic multifunction in a domain Ω , which admits unrestricted continuation. Then there exists $p \in \mathbb{N} \cup \{\infty\}$, such that f is precisely p-valued.

Theorem 4. Nechť f be a singlevalued analytic multifunction in a domain Ω . Then

• there is $f \in H(\operatorname{dom}(f))$ such that

 $f = \{(f, D) : D \text{ is a disc such that } D \subset \operatorname{dom}(f)\},\$

and

• f admits unrestricted continuation in dom(f).

Lemma 5. Let \mathbf{f} be an analytic multifunction in a domain Ω , which admits unrestricted continuation in a domain $G \subset \Omega$. Let $(f, D) \in \mathbf{f}$ satisfy $D \subset G$ and let γ_1, γ_2 be continuous curves defined on [0, 1] with values in G such that $\gamma_1(0) = \gamma_2(0)$ is the center of D and $\gamma_1(1) = \gamma_2(1)$. Further suppose that there is a continuous mapping $H : [0, 1] \times [0, 1] \to G$ such that

 $\begin{array}{l} \circ \ H(s,0) = \gamma_1(s) \ \text{for} \ s \in [0,1], \\ \circ \ H(s,1) = \gamma_2(s) \ \text{for} \ s \in [0,1], \\ \circ \ H(0,t) = \gamma_1(0) \ \text{for} \ t \in [0,1], \\ \circ \ H(1,t) = \gamma_1(1) \ \text{for} \ t \in [0,1]. \end{array}$

Then the function elements which are analytic continuation of (f, D)along γ_1 in G are the same as the function elements which are analytic continuation of (f, D) along γ_2 in G.

Theorem 6 (monodromy theorem). Let Ω be a simply connected domain. Then any analytic multifunction in Ω which admits unrestricted continuation is singlevalued.