II.3 Few facts on Riemann surfaces

Definition. By a **Riemann surface** we mean a connected holomorphic manifold of dimension 1, i.e., a connected Hausdorff topological space X, endowed with a **holomorphic atlas**, which is a family $(U_{\lambda}, \varphi_{\lambda})_{\lambda \in \Lambda}$ with the following properties:

- U_{λ} is an open subset of X for each $\lambda \in \Lambda$;
- $\bigcup_{\lambda \in \Lambda} U_{\lambda} = X;$
- φ_{λ} is a homeomorphism of U_{λ} onto an open subset of \mathbb{C} for $\lambda \in \Lambda$;
- if $\lambda, \mu \in \Lambda$ are such that $U_{\lambda} \cap U_{\mu} \neq \emptyset$, then the function $\varphi_{\mu} \circ \varphi_{\lambda}^{-1}$ is holomorphic on $\varphi_{\lambda}(U_{\lambda} \cap U_{\mu})$.

The pairs $(U_{\lambda}, \varphi_{\lambda})$ which are elements of the atlas are called **charts**. (This term is sometimes used for the maps φ_{λ} .)

Remarks.

- (1) Any domain in \mathbb{C} is a Riemann surface. (The atlas contains a single chart, the respective mapping is the identity.)
- (2) $\overline{\mathbb{C}}$ is a Riemann surface. An atlas is formed by two charts $(\mathbb{C}, z \mapsto z)$ and $(\overline{\mathbb{C}} \setminus \{0\}, z \mapsto \frac{1}{z})$.
- (3) Any open connected subset of a Riemann surface is again a Riemann surface (with the canonical atlas).
- (4) Without loss of generality one can suppose that $\varphi(U)$ is an open disc for each chart (U, φ) .

Definition. Let X and Y be Riemann surfaces and $\Omega \subset X$ be an open subset.

- A mapping $f: \Omega \to \mathbb{C}$ is said to be **holomorphic** if for any chart (U, φ) such that $U \cap \Omega \neq \emptyset$ the function $f \circ \varphi^{-1}$ is holomorphic on $\varphi(U \cap \Omega)$.
- A mapping $f: \Omega \to Y$ is said to be **holomorphic** if it is continuous and for each chart (U, φ) on X and each chart (V, ψ) on Y the mapping $\psi \circ f \circ \varphi^{-1}$ is holomorphic on $\varphi(U \cap f^{-1}(V))$ (whenever this set is nonempty).
- A mapping $f: \Omega \to \overline{\mathbb{C}}$ is said to be **meromorphic** if for any chart (U, φ) such that $U \cap \Omega \neq \emptyset$ the function $f \circ \varphi^{-1}$ is meromorphic on $\varphi(U \cap \Omega)$.

Theorem 7 (properties of holomorphic mappings between Riemann surfaces).

- (1) Let X be a Riemann surface and f, g be holomorphic mappings of X to \mathbb{C} . Then the functions f + g and fg are holomorphic as well. If g does not attain zero, the function f/g is holomorphic as well.
- (2) Let X, Y and Z be Riemann surfaces, $f: X \to Y$ and $g: Y \to Z$ be holomorphic mappings. Then $g \circ f$ is holomorphic as well.
- (3) Let X and Y be Riemann surfaces. Let $f : X \to Y$ and $g : X \to Y$ be holomorphic mappings. If the set $\{x \in X : f(x) = g(x)\}$ has an accumulation point in X, then f = g on X.
- (4) Let X be a Riemann surface and $f: X \to \mathbb{C}$ be a non-constant holomorphic mapping. Then |f| does not attain local maximum at any point of X.

Corollary. Let X be a compact Riemann surface. Then any holomorphic function $f: X \to \mathbb{C}$ is constant.

Remark:

- (1) Any Riemann surface admits a nonconstant meromorphic function.
- (2) Any noncompact Riemann surface admits a nonconstant holomorphic function.

Riemann surface of an analytic multifunction

Let f be an analytic multifunction in the domain Ω . Then there is a Riemann surface and a holomorphic function corresponding to f. It can be described as follows:

- The set X is the set of all the equivalence classes with respect to the equivalence relation "to be the same element as" defined on f.
- The topology of X: Let $x \in X$. Let $(f, D) \in x$ and z_0 is the center of D. For any r > 0 set

$$\begin{split} U(\boldsymbol{x},r) &= \{ \boldsymbol{y} \in X : \exists (g,U(z,\delta)) \in \boldsymbol{y} : |z-z_0| < r \\ & \& \ (g,U(z,\delta)) \text{ is a direct continuation of } (f,D) \}. \end{split}$$

The family $U(\boldsymbol{x}, r), r > 0$ then forms a neighborhood basis of \boldsymbol{x} in X.

• The atlas on X consists of charts $(U(\boldsymbol{x},r),\varphi)$ for $\boldsymbol{x} \in X$ and r > 0, where

 $\varphi: \boldsymbol{y} \mapsto \text{ the center of } D \text{ where } (D, f) \in \boldsymbol{y}.$

Further, let us define a function $F: X \to \mathbb{C}$ by the formula:

 $F(\mathbf{x}) = f(z)$, if $(f, D) \in \mathbf{x}$ and z is the center of D.

Then F is holomorphic on X.