III.3 Hartogs extension theorem and domains of holomorphy

Proposition 11. Let $n \in \mathbb{N}$, $n \geq 2$. Let $G \subset \mathbb{C}^{n-1}$ be a domain, $z \in \mathbb{C}$ and r > 0. Set $\Omega = G \times U(z, r)$. Let $V \subset \Omega$ be a domain satisfying the following two conditions:

- There exists $s \in (0, r)$ such that $\Omega \setminus V \subset G \times U(z, s)$.
- There exists a nonempty open set $H \subset G$ such that $H \times U(z,r) \subset V$.

Then any holomorphic function on V can be extended to a holomorphic function on Ω .

Lemma 12. Let $n \in \mathbb{N}$, $n \geq 2$, and let $\Omega \subset \mathbb{C}^n$ be a domain. Denote by p the projection of \mathbb{C}^n onto \mathbb{C}^{n-1} defined by deleting the last coordinate. Then for any compact set $K \subset \Omega$ and any $x \in p(\Omega)$ there exists a cycle Γ in \mathbb{C} and a polydisc $\mathbb{P}(x, r) \subset p(\Omega)$ satisfying the following properties:

- (i) $\forall \boldsymbol{y} \in \mathbb{P}(\boldsymbol{x}, \boldsymbol{r}) \; \forall z \in \mathbb{C} : (\boldsymbol{y}, z) \in \mathbb{C}^n \setminus \Omega \Rightarrow \operatorname{ind}_{\Gamma} z = 0.$
- (ii) $\forall \boldsymbol{y} \in \mathbb{P}(\boldsymbol{x}, \boldsymbol{r}) \; \forall z \in \mathbb{C} : (\boldsymbol{y}, z) \in K \Rightarrow \operatorname{ind}_{\Gamma} z = 1.$

Theorem 13 (Hartogs extension theorem). Let $n \in \mathbb{N}$, $n \geq 2$. Let $\Omega \subset \mathbb{C}^n$ be a domain and $K \subset \Omega$ be a compact set such that $\Omega \setminus K$ is connected. Then any holomorphic function on $\Omega \setminus K$ can be extended to a holomorphic function on Ω .

Definition. A domain $\Omega \subset \mathbb{C}^n$ is said to be a **domain of holomorphy**, provided there exists a function f holomorphic on Ω such that whenever \boldsymbol{x} is a boundary point of Ω and $\mathbb{P}(\boldsymbol{x}, \boldsymbol{r})$ is an arbitrary polydisc centered at \boldsymbol{x} , then there does not exist any function g holomorphic on $\mathbb{P}(\boldsymbol{x}, \boldsymbol{r})$, which agrees with f on at least one component of $\Omega \cap \mathbb{P}(\boldsymbol{x}, \boldsymbol{r})$.

Remark: Any nonempty domain in \mathbb{C} is a domain of holomorphy.

Theorem 14. A domain $\Omega \subset \mathbb{C}^n$ is a domain of holomorphy if and only if for any compact set $K \subset \Omega$ the set

$$\hat{K} = \{oldsymbol{x} \in \Omega: orall f: \Omega
ightarrow \mathbb{C} \ holomorphic \ |f(oldsymbol{x})| \leq \sup_{oldsymbol{y} \in K} |f(oldsymbol{y})| \}$$

is again compact.

Corollary. Any nonempty convex open set in \mathbb{C}^n is a domain of holomorphy.