4. FUNCTIONS OF SEVERAL VARIABLES

4.1. \mathbf{R}^n as a metric and linear space.

Definition. The set \mathbb{R}^n , $n \in \mathbb{N}$, is the set of all ordered *n*-tuples of real numbers, i.e.

$$\mathbf{R}^n = \{ [x_1, \dots, x_n] : x_1, \dots, x_n \in \mathbf{R} \}.$$

For $\boldsymbol{x} = [x_1, \dots, x_n] \in \mathbf{R}^n$, $\boldsymbol{y} = [y_1, \dots, y_n] \in \mathbf{R}^n$ and $\alpha \in \mathbf{R}$ we set

$$\boldsymbol{x} + \boldsymbol{y} = [x_1 + y_1, \dots, x_n + y_n], \qquad \alpha \boldsymbol{x} = [\alpha x_1, \dots, \alpha x_n].$$

Further, we denote o = 0 = [0, ..., 0] – the origin.

Definition. Euclidean metric on \mathbb{R}^n is the function $\rho \colon \mathbb{R}^n \times \mathbb{R}^n \to [0, +\infty)$ defined by

$$\rho(\boldsymbol{x}, \boldsymbol{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}.$$

The number $\rho(x, y)$ is called *distance of the point* x *from the point* y.

Theorem 4.1 (properties of Euclidean metric). *Euclidean metric* ρ *has the following properties:*

 $\begin{array}{ll} (i) \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n} \colon \rho(\boldsymbol{x}, \boldsymbol{y}) = 0 \Leftrightarrow \boldsymbol{x} = \boldsymbol{y}, \\ (ii) \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n} \colon \rho(\boldsymbol{x}, \boldsymbol{y}) = \rho(\boldsymbol{y}, \boldsymbol{x}), \\ (iii) \ \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n} \colon \rho(\boldsymbol{x}, \boldsymbol{y}) \leq \rho(\boldsymbol{x}, \boldsymbol{z}) + \rho(\boldsymbol{z}, \boldsymbol{y}), \\ (iv) \ \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}, \forall \lambda \in \mathbf{R} \colon \rho(\lambda \boldsymbol{x}, \lambda \boldsymbol{y}) = |\lambda| \ \rho(\boldsymbol{x}, \boldsymbol{y}), \\ (v) \ \forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n} \colon \rho(\boldsymbol{x} + \boldsymbol{z}, \boldsymbol{y} + \boldsymbol{z}) = \rho(\boldsymbol{x}, \boldsymbol{y}). \end{array}$ (triangle inequality) (translation invariance)

Definition. Let $x \in \mathbb{R}^n$, $r \in \mathbb{R}$, r > 0. The set B(x, r) defined by

$$B(\boldsymbol{x},r) = \{ \boldsymbol{y} \in \mathbf{R}^n; \ \rho(\boldsymbol{x},\boldsymbol{y}) < r \}$$

is called open ball with radius r centered at x.

Definition. Let $M \subset \mathbb{R}^n$. We say that $x \in \mathbb{R}^n$ is an *interior point of* M, if there exists r > 0 such that $B(x, r) \subset M$. The set of all interior points of M is called the *interior of* M and is denoted by Int M. The set $M \subset \mathbb{R}^n$ is *open in* \mathbb{R}^n , if each point of M is an interior point of M, i.e., if M = Int M.

Theorem 4.2 (properties of open sets).

- (i) The empty set and \mathbf{R}^n are open in \mathbf{R}^n .
- (ii) Let sets $G_{\alpha} \subset \mathbf{R}^n$, $\alpha \in A \neq \emptyset$, be open in \mathbf{R}^n . Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbf{R}^n .

(iii) Let sets G_i , i = 1, ..., m, be open in \mathbb{R}^n . Then $\bigcap_{i=1}^m G_i$ is open in \mathbb{R}^n .

Definition. Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. We say that a sequence $\{x^j\}_{j=1}^{\infty}$ converges to x, if $\lim_{j\to\infty} \rho(x, x^j) = 0$. The vector x is called *limit of the sequence* $\{x^j\}_{j=1}^{\infty}$.

Theorem 4.3 (convergence is coordinatewise). Let $x^j \in \mathbb{R}^n$ for each $j \in \mathbb{N}$ and $x \in \mathbb{R}^n$. The sequence $\{x^j\}_{j=1}^{\infty}$ converges to x if and only if for each $i \in \{1, \ldots, n\}$ the sequence of real numbers $\{x_i^j\}_{i=1}^{\infty}$ converges to the real number x_i .

Definition. Let $M \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. We say that x is a *boundary point of* M, if for each r > 0 we have $B(x, r) \cap M \neq \emptyset$ and $B(x, r) \cap (\mathbb{R}^n \setminus M) \neq \emptyset$.

Boundary of M is the set of all boundary points of M (notation $\operatorname{bd} M$). *Closure* of M is the set $M \cup \operatorname{bd} M$ (notation \overline{M}).

A set $M \subset \mathbb{R}^n$ is said to be *closed* if it contains all its boundary points, i.e., if $\mathrm{bd} M \subset M$, i.e., if $\overline{M} = M$.

Theorem 4.4 (characterization of closed sets). Let $M \subset \mathbb{R}^n$. Then the following assertions are equivalent:

(1) M is closed.

(2) $\mathbf{R}^n \setminus M$ is open.

(3) Any $x \in \mathbb{R}^n$ which is a limit of a sequence from M belongs to M.

Theorem 4.5 (properties of closed sets).

(i) The empty set and \mathbf{R}^n are closed in \mathbf{R}^n .

(ii) Let sets $F_{\alpha} \subset \mathbf{R}^{n}$, $\alpha \in A \neq \emptyset$, be closed in \mathbf{R}^{n} . Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbf{R}^{n} .

(iii) Let sets F_i , i = 1, ..., m, be closed in \mathbb{R}^n . Then $\bigcup_{i=1}^m F_i$ is closed in \mathbb{R}^n .