4. FUNCTIONS OF SEVERAL VARIABLES

4.1. \mathbf{R}^{n} as a metric and linear space.

Definition. The set $\mathbf{R}^{n}, n \in \mathbf{N}$, is the set of all ordered n-tuples of real numbers, i.e.

$$
\mathbf{R}^{n}=\left\{\left[x_{1}, \ldots, x_{n}\right]: x_{1}, \ldots, x_{n} \in \mathbf{R}\right\} .
$$

For $\boldsymbol{x}=\left[x_{1}, \ldots, x_{n}\right] \in \mathbf{R}^{n}, \boldsymbol{y}=\left[y_{1}, \ldots, y_{n}\right] \in \mathbf{R}^{n}$ and $\alpha \in \mathbf{R}$ we set

$$
\boldsymbol{x}+\boldsymbol{y}=\left[x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right], \quad \alpha \boldsymbol{x}=\left[\alpha x_{1}, \ldots, \alpha x_{n}\right] .
$$

Further, we denote $\boldsymbol{o}=\mathbf{0}=[0, \ldots, 0]-$ the origin.
Definition. Euclidean metric on \mathbf{R}^{n} is the function ρ : $\mathbf{R}^{n} \times \mathbf{R}^{n} \rightarrow[0,+\infty)$ defined by

$$
\rho(\boldsymbol{x}, \boldsymbol{y})=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}
$$

The number $\rho(\boldsymbol{x}, \boldsymbol{y})$ is called distance of the point \boldsymbol{x} from the point \boldsymbol{y}.
Theorem 4.1 (properties of Euclidean metric). Euclidean metric ρ has the following properties:
(i) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=0 \Leftrightarrow \boldsymbol{x}=\boldsymbol{y}$,
(ii) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y})=\rho(\boldsymbol{y}, \boldsymbol{x})$,
(symmetry)
(iii) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}, \boldsymbol{y}) \leq \rho(\boldsymbol{x}, \boldsymbol{z})+\rho(\boldsymbol{z}, \boldsymbol{y})$, (triangle inequality)
(iv) $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbf{R}^{n}, \forall \lambda \in \mathbf{R}: \rho(\lambda \boldsymbol{x}, \lambda \boldsymbol{y})=|\lambda| \rho(\boldsymbol{x}, \boldsymbol{y})$,
(homogeneity)
(v) $\forall \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbf{R}^{n}: \rho(\boldsymbol{x}+\boldsymbol{z}, \boldsymbol{y}+\boldsymbol{z})=\rho(\boldsymbol{x}, \boldsymbol{y})$.
(translation invariance)
Definition. Let $\boldsymbol{x} \in \mathbf{R}^{n}, r \in \mathbf{R}, r>0$. The set $B(\boldsymbol{x}, r)$ defined by

$$
B(\boldsymbol{x}, r)=\left\{\boldsymbol{y} \in \mathbf{R}^{n} ; \rho(\boldsymbol{x}, \boldsymbol{y})<r\right\}
$$

is called open ball with radius r centered at \boldsymbol{x}.
Definition. Let $M \subset \mathbf{R}^{n}$. We say that $\boldsymbol{x} \in \mathbf{R}^{n}$ is an interior point of M, if there exists $r>0$ such that $B(\boldsymbol{x}, r) \subset M$. The set of all interior points of M is called the interior of M and is denoted by $\operatorname{Int} M$. The set $M \subset \mathbf{R}^{n}$ is open in \mathbf{R}^{n}, if each point of M is an interior point of M, i.e., if $M=\operatorname{Int} M$.

Theorem 4.2 (properties of open sets).
(i) The empty set and \mathbf{R}^{n} are open in \mathbf{R}^{n}.
(ii) Let sets $G_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be open in \mathbf{R}^{n}. Then $\bigcup_{\alpha \in A} G_{\alpha}$ is open in \mathbf{R}^{n}.
(iii) Let sets $G_{i}, i=1, \ldots, m$, be open in \mathbf{R}^{n}. Then $\bigcap_{i=1}^{m} G_{i}$ is open in \mathbf{R}^{n}.

Definition. Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that a sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to \boldsymbol{x}, if $\lim _{j \rightarrow \infty} \rho\left(\boldsymbol{x}, \boldsymbol{x}^{j}\right)=0$. The vector \boldsymbol{x} is called limit of the sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$.
Theorem 4.3 (convergence is coordinatewise). Let $\boldsymbol{x}^{j} \in \mathbf{R}^{n}$ for each $j \in \mathbf{N}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. The sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ converges to \boldsymbol{x} if and only if for each $i \in\{1, \ldots, n\}$ the sequence of real numbers $\left\{x_{i}^{j}\right\}_{j=1}^{\infty}$ converges to the real number x_{i}.

Definition. Let $M \subset \mathbf{R}^{n}$ and $\boldsymbol{x} \in \mathbf{R}^{n}$. We say that \boldsymbol{x} is a boundary point of M, if for each $r>0$ we have $B(\boldsymbol{x}, r) \cap M \neq \emptyset$ and $B(\boldsymbol{x}, r) \cap\left(\mathbf{R}^{n} \backslash M\right) \neq \emptyset$.

Boundary of M is the set of all boundary points of M (notation bd M).
Closure of M is the set $M \cup \operatorname{bd} M$ (notation \bar{M}).
A set $M \subset \mathbf{R}^{n}$ is said to be closed if it contains all its boundary points, i.e., if bd $M \subset M$, i.e., if $\bar{M}=M$.

Theorem 4.4 (characterization of closed sets). Let $M \subset \mathbf{R}^{n}$. Then the following assertions are equivalent:
(1) M is closed.
(2) $\mathbf{R}^{n} \backslash M$ is open.
(3) Any $\boldsymbol{x} \in \mathbf{R}^{n}$ which is a limit of a sequence from M belongs to M.

Theorem 4.5 (properties of closed sets).
(i) The empty set and \mathbf{R}^{n} are closed in \mathbf{R}^{n}.
(ii) Let sets $F_{\alpha} \subset \mathbf{R}^{n}, \alpha \in A \neq \emptyset$, be closed in \mathbf{R}^{n}. Then $\bigcap_{\alpha \in A} F_{\alpha}$ is closed in \mathbf{R}^{n}.
(iii) Let sets $F_{i}, i=1, \ldots, m$, be closed in \mathbf{R}^{n}. Then $\bigcup_{i=1}^{m} F_{i}$ is closed in \mathbf{R}^{n}.

