5.4. Systems of linear equations.

System of m equations with n unknowns:

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{S}
\end{align*}
$$

$$
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
$$

Matrix notation

$$
\mathbb{A} \boldsymbol{x}=\boldsymbol{b}
$$

where $\mathbb{A}=\left(\begin{array}{cccc}a_{11} & \cdots & a_{1 n} \\ \vdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n}\end{array}\right) \in M(m \times n), \boldsymbol{b}=\left(\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right) \in M(m \times 1)$ a $\boldsymbol{x}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in M(n \times 1)$.
Theorem 5.17 (on systems with square matrix). Let $\mathbb{A} \in M(n \times n)$. Then the following are equivalent.
(i) The matrix \mathbb{A} is invertible.
(ii) The system (S) has for each \boldsymbol{b} a unique solution.
(iii) The system (S) has for each \boldsymbol{b} at least one solution.

Remark. The previous theorem says the following:

- If \mathbb{A} is invertible, then for each \boldsymbol{b} the system (S) has a unique solution.
- If \mathbb{A} is not invertible, then for some \boldsymbol{b} the system (S) has no solution.

It can be moreover shown, that, provided \mathbb{A} is not invertible, then for some \boldsymbol{b} the system (S) has infinitely many solutions ($\boldsymbol{b}=\boldsymbol{o}$ works). This follows from the next section.

Theorem 5.18 (Cramer's rule). Let $\mathbb{A} \in M(n \times n)$ be an invertible matrix, $\boldsymbol{b} \in M(n \times 1)$, $\boldsymbol{x} \in M(n \times 1)$, and $\mathbb{A} \boldsymbol{x}=\boldsymbol{b}$. Then

$$
x_{j}=\frac{\left|\begin{array}{ccccccc}
a_{11} & \ldots & a_{1, j-1} & b_{1} & a_{1, j+1} & \ldots & a_{1 n} \\
\vdots & & & \vdots & & & \vdots \\
a_{n 1} & \ldots & a_{n, j-1} & b_{n} & a_{n, j+1} & \ldots & a_{n n}
\end{array}\right|}{\operatorname{det} \mathbb{A}}
$$

for $j=1, \ldots, n$.
Definition. The matrix

$$
(\mathbb{A} \mid \boldsymbol{b})=\left(\begin{array}{ccc|c}
a_{11} & \ldots & a_{1 n} & b_{1} \\
\vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \ldots & a_{m n} & b_{m}
\end{array}\right)
$$

is called augmented matrix of the system (S).
Gauss elimination method. Consider the system (S).

- Let T be a transformation of matrices with m rows. Suppose that $\mathbb{A} \xrightarrow[\rightsquigarrow]{T} \mathbb{A}^{\prime}$ and $\boldsymbol{b} \xrightarrow{T} \boldsymbol{b}^{\prime}$. Then the system $\mathbb{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$ has the same set of solutions as the system (S).
- The augmented matrix of the system (S) can be transformed to a row echelon matrix $\left(\mathbb{A}^{\prime} \mid \boldsymbol{b}^{\prime}\right)$. Thus solving the system (S) can be reduced to solving the system $\mathbb{A}^{\prime} \boldsymbol{x}=\boldsymbol{b}^{\prime}$, which is much simpler.
- One can use only the original version of the transformation, i.e., a finite sequence of elementary row transformations.

Theorem 5.19 (solvability of a linear system). The system (S) has a solution if and only if the matrix has the same rank as the extended matrix of the system.
Remark. The system (S) has a solution if and only if the vector \boldsymbol{b} can be expressed as a linear combination of the columns of the matrix \mathbb{A}.

5.5. Matrices and linear mappings.

Definition. We say that a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if
(i) $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbf{R}^{n}: f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$,
(ii) $\forall \lambda \in \mathbf{R} \forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\lambda \boldsymbol{u})=\lambda f(\boldsymbol{u})$.

Definition. Let $i \in\{1, \ldots, n\}$. The vector

$$
\boldsymbol{e}^{i}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \ldots i \text {-th coordinate }
$$

is called i-th canonical vector of the space \mathbf{R}^{n}. The set $\left\{\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}\right\}$ of all canonical vectors in \mathbf{R}^{n} is called canonical basis of the space \mathbf{R}^{n}.

The properties of canonical vectors:
(i) $\forall \boldsymbol{x} \in \mathbf{R}^{n} \exists \lambda_{1}, \ldots, \lambda_{n} \in \mathbf{R}: \boldsymbol{x}=\lambda_{1} \boldsymbol{e}^{1}+\cdots+\lambda_{n} \boldsymbol{e}^{n}$,
(ii) the vectors $\boldsymbol{e}^{1}, \ldots, \boldsymbol{e}^{n}$ are linearly independent.

Theorem $\mathbf{5 . 2 0}$ (representation of linear mappings). The mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear if and only if there exists a matrix $\mathbb{A} \in M(m \times n)$ such that

$$
\forall \boldsymbol{u} \in \mathbf{R}^{n}: f(\boldsymbol{u})=\mathbb{A} \boldsymbol{u}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)
$$

Remark. The matrix \mathbb{A} from the previous theorem is uniquely determined and is called the representing matrix of the linear mapping f.
Theorem 5.21 (representing matrix of a composition). Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear mapping represented by matrix $\mathbb{A} \in M(m \times n)$ a $g: \mathbf{R}^{m} \rightarrow \mathbf{R}^{k}$ be a linear mapping represented by a matrix $\mathbb{B} \in M(k \times m)$. Then the composed mapping $g \circ f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{k}$ is linear and is represented by the matrix $\mathbb{B} \mathbb{A}$.

Theorem 5.22. Let a mapping $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be linear. Then the following are equivalent.
(i) The mapping f is a bijection (i.e., f is an injective mapping \mathbf{R}^{n} onto \mathbf{R}^{n}).
(ii) The mapping f is an injective mapping.
(iii) The mapping f is a mapping \mathbf{R}^{n} onto \mathbf{R}^{n}.

