6.2. Antiderivatives.

Definition. Let a function f be defined on an open interval I. We say that a function F is an antiderivative of f on I, if for each $x \in I$ there exists $F^{\prime}(x)$ and $F^{\prime}(x)=f(x)$.
Theorem 6.7. Let F and G be antiderivatives of f on an open interval I. Then there exists $c \in \mathbb{R}$ such that $F(x)=G(x)+c$ for each $x \in I$.
Notation: The set of all antiderivatives of f on an open interval I is denoted by $\int f(x) \mathrm{d} x$. The fact that F is an antiderivative of f on I is expressed by

$$
\int f(x) \mathrm{d} x \stackrel{c}{=} F(x), \quad x \in I
$$

Proposition 6.8 (table of basic antiderivatives).

- $\int x^{n} \mathrm{~d} x \stackrel{c}{=} \frac{x^{n+1}}{n+1}$ on $\mathbf{R}($ for $n \in \mathbf{N} \cup\{0\})$;
- $\int x^{\alpha} \mathrm{d} x \stackrel{c}{=} \frac{x^{\alpha+1}}{\alpha+1}$ on $(0,+\infty)($ for $\alpha \in \mathbf{R} \backslash\{-1\}$, for $\alpha \in \mathbf{Z}, \alpha<-1$ also on $(-\infty, 0)$);
- $\int \frac{1}{x} \mathrm{~d} x \stackrel{c}{=} \log x$ on $(0,+\infty), \int \frac{1}{x} \mathrm{~d} x=\log (-x)$ on $(-\infty, 0)$;
- $\int \exp x \mathrm{~d} x \stackrel{c}{=} \exp x$ on \mathbf{R};
- $\int \sin x \mathrm{~d} x \stackrel{c}{=}-\cos x$ on $\mathbf{R}, \int \cos x \mathrm{~d} x \stackrel{c}{=} \sin x$ on \mathbf{R};
- $\int \frac{1}{\cos ^{2} x} \mathrm{~d} x \stackrel{c}{=} \operatorname{tg} x$ on any of the intervals $\left(-\frac{\pi}{2}+k \pi, \frac{\pi}{2}+k \pi\right), k \in \mathbf{Z}$;
- $\int \frac{1}{\sin ^{2} x} \mathrm{~d} x \stackrel{c}{=}-\operatorname{cotg} x$ on any of the intervals $(k \pi,(k+1) \pi), k \in \mathbf{Z}$;
- $\int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x \stackrel{c}{=} \arcsin x$ on $(-1,1)$;
- $\int \frac{1}{1+x^{2}} \mathrm{~d} x \stackrel{c}{=} \operatorname{arctg} x$ on \mathbf{R}.

Theorem 6.9 (existence of antiderivative). Let f be a continuous function on an open interval I. Then f admits an antiderivative on I.
Theorem 6.10. Let f have on an open interval I an antiderivative F, let a function g have on I an antiderivative G, and let $\alpha, \beta \in \mathbf{R}$. Then the function $\alpha F+\beta G$ is an antiderivative of $\alpha f+\beta g$ on I.
Theorem 6.11 (substitution). (i) Let F be an antiderivative of f on (a, b). Let φ be a function defined on an interval (α, β) with values in (a, b) and such that φ has at each point $t \in(\alpha, \beta)$ finite derivative. Then we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} F(\varphi(t)) \text { on }(\alpha, \beta)
$$

(ii) Let φ be a strictly monotone function on an interval (α, β) which has at each point of (α, β) finite derivative and satisfies $\varphi((\alpha, \beta))=(a, b)$. Let f be a function continuous on (a, b). If we have

$$
\int f(\varphi(t)) \varphi^{\prime}(t) d t \stackrel{c}{=} G(t) \text { on }(\alpha, \beta)
$$

then

$$
\int f(x) d x \stackrel{c}{=} G\left(\varphi^{-1}(x)\right) \text { on }(a, b)
$$

Theorem 6.12 (integration by parts). Let I be an open interval and let functions f and g be continuous on I. Let F be an antiderivative of f on I and G be an antiderivative of g on I. Then we have

$$
\int g(x) F(x) d x=G(x) F(x)-\int G(x) f(x) d x \text { na } I .
$$

