6.3. Integration of rational functions.

Definition. Rational function is a ratio of two polynomials, where the polynomial in denominator is not identically zero.

Theorem 6.13 (decomposition to partial fractions). Let P, Q be polynomial functions with real coefficients such that
(i) degree of P is strictly smaller than degree of Q,
(iii) $Q(x)=a_{n}\left(x-x_{1}\right)^{p_{1}} \ldots\left(x-x_{k}\right)^{p_{k}}\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}} \ldots\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{l}}$,
(iii) $a_{n}, x_{1}, \ldots x_{k}, \alpha_{1}, \ldots, \alpha_{l}, \beta_{1}, \ldots, \beta_{l} \in \mathbf{R}, a_{n} \neq 0$,
(iv) $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{l} \in \mathbf{N}$,
(v) the polynomials $x-x_{1}, x-x_{2}, \ldots, x-x_{k}, x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$ have no common root,
(vi) the polynomials $x^{2}+\alpha_{1} x+\beta_{1}, \ldots, x^{2}+\alpha_{l} x+\beta_{l}$ have no real root.

Then there exist unique real numbers $A_{1}^{1}, \ldots, A_{p_{1}}^{1}, \ldots, A_{1}^{k}, \ldots, A_{p_{k}}^{k}, B_{1}^{1}, C_{1}^{1}, \ldots, B_{q_{1}}^{1}, C_{q_{1}}^{1}, \ldots, B_{1}^{l}$, $C_{1}^{l}, \ldots, B_{q_{l}}^{l}, C_{q_{l}}^{l}$ such that we have

$$
\begin{aligned}
\frac{P(x)}{Q(x)} & =\frac{A_{1}^{1}}{\left(x-x_{1}\right)^{p_{1}}}+\cdots+\frac{A_{p_{1}}^{1}}{\left(x-x_{1}\right)} \\
& +\cdots+\frac{A_{1}^{k}}{\left(x-x_{k}\right)^{p_{k}}}+\cdots+\frac{A_{p_{k}}^{k}}{x-x_{k}} \\
& +\frac{B_{1}^{1} x+C_{1}^{1}}{\left(x^{2}+\alpha_{1} x+\beta_{1}\right)^{q_{1}}}+\cdots+\frac{B_{q_{1}}^{1} x+C_{q_{1}}^{1}}{x^{2}+\alpha_{1} x+\beta_{1}}+\cdots \\
& +\frac{B_{1}^{l} x+C_{1}^{l}}{\left(x^{2}+\alpha_{l} x+\beta_{l}\right)^{q_{l}}}+\cdots+\frac{B_{q_{l}}^{l} x+C_{q_{l}}^{l}}{x^{2}+\alpha_{l} x+\beta_{l}} .
\end{aligned}
$$

Remark. Any nonzero polynomial with real coefficients can be decomposed in the way described in the previous theorem for Q. In particular, if Q is a polynomial with real coefficients and $\lambda \in \mathbf{C}$ is a root of Q, then the complex conjugate $\bar{\lambda}$ is also a root of Q and has the same multiplicity as λ.

Remark. An antiderivative of a rational function $\frac{P(x)}{Q(x)}$ is computed as follows:

- Find polynomials R and Z such that degree of Z is smaller than degree of Q such that

$$
\frac{P(x)}{Q(x)}=R(x)+\frac{Z(x)}{Q(x)}
$$

- Decompose $\frac{Z(x)}{Q(x)}$ as in the previous theorem.
- Compute antiderivative of R and of individual terms of the decomposition.

