4.3. Continuous functions of several variables.

Definition. Let $M \subset \mathbb{R}^n$, $x \in M$, and $f: M \to \mathbb{R}$. We say that f is continuous at x with respect to M, if we have

 $\forall \varepsilon \in \mathbf{R}, \varepsilon > 0 \; \exists \delta \in \mathbf{R}, \delta > 0 \; \forall \mathbf{y} \in B(\mathbf{x}, \delta) \cap M \colon f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$

We say that f is *continuous at the point* x, it it is continuous at x with respect to a neighborhood of x, i.e.,

$$\forall \varepsilon \in \mathbf{R}, \varepsilon > 0 \; \exists \delta \in \mathbf{R}, \delta > 0 \; \forall \mathbf{y} \in B(\mathbf{x}, \delta) \colon f(\mathbf{y}) \in B(f(\mathbf{x}), \varepsilon).$$

Remark. Let $M \subset \mathbb{R}^n$, $x \in M$, $f: M \to \mathbb{R}$, $g: M \to \mathbb{R}$, and $c \in \mathbb{R}$. If f and g are continuous at the point x with respect to M, then the functions cf, f+g a fg are continuous at x with respect to M. If the function g is nonzero at each point of M, then also the function f/g is continuous at x with respect to M.

Theorem 4.7 (Heine). Let $M \subset \mathbb{R}^n$, $x \in M$, and $f: M \to \mathbb{R}$. Then the following are equivalent.

- (i) The function f is continuous at x with respect to M.
- (ii) For each sequence $\{x^j\}_{j=1}^\infty$ such that $\hat{x^j} \in M$ pro $j \in \mathbb{N}$ a $\lim_{i \to \infty} x^j = x$, we have

$$\lim_{j \to \infty} f(\boldsymbol{x}^j) = f(\boldsymbol{x})$$

Remark. Let $r, s \in \mathbf{N}, M \subset \mathbf{R}^s, L \subset \mathbf{R}^r$, and $\boldsymbol{y} \in M$. Let $\varphi_1, \ldots, \varphi_r$ be functions defined on M, which are continuous at \boldsymbol{y} with respect to M and $[\varphi_1(\boldsymbol{x}), \ldots, \varphi_r(\boldsymbol{x})] \in L$ for each $\boldsymbol{x} \in M$. Let $f: L \to \mathbf{R}$ be continuous at the point $[\varphi_1(\boldsymbol{y}), \ldots, \varphi_r(\boldsymbol{y})]$ with respect to L. Then the composed function $F: M \to \mathbf{R}$ defined by

$$F(\boldsymbol{x}) = f(\varphi_1(\boldsymbol{x}), \dots, \varphi_r(\boldsymbol{x})), \quad \boldsymbol{x} \in M,$$

is continuous at y with respect to M.

Definition. Let $M \subset \mathbb{R}^n$ a $f: M \to \mathbb{R}$. We say that f is *continuous on* M, if it is continuous at each point $x \in M$ with respect to M.

Remark. The projection $\pi_j \colon \mathbf{R}^n \to \mathbf{R}, \pi_j(\mathbf{x}) = x_j, 1 \le j \le n$, are continuous on \mathbf{R}^n .

Theorem 4.8.

- (1) Let f be a function continuous on an open set $G \subset \mathbf{R}^n$ and $c \in \mathbf{R}$. Then the set $\{x \in G; f(x) < c\}$ is open in \mathbf{R}^n .
- (2) Let f be a function continuous on a closed set $F \subset \mathbf{R}^n$ and $c \in \mathbf{R}$. Then the set $\{x \in F; f(x) \leq c\}$ is closed in \mathbf{R}^n .

Definition. We say that a function f of n variables has at a point $a \in \mathbb{R}^n$ limit equal $A \in \mathbb{R}^*$, if we have

$$\forall \varepsilon \in \mathbf{R}, \varepsilon > 0 \; \exists \delta \in \mathbf{R}, \delta > 0 \; \forall \boldsymbol{x} \in B(\boldsymbol{a}, \delta) \setminus \{\boldsymbol{a}\} \colon f(\boldsymbol{x}) \in B(A, \varepsilon).$$

Remark.

- Each function has at a given point at most one limit. We write $\lim_{x\to a} f(x) = A$.
- The function f is continuous at a if and only if $\lim_{x\to a} f(x) = f(a)$.

• For functions of several variables one can prove similar theorems as for functions of one variable (arithmetics, sandwich theorem, ...).

Theorem 4.9. Let $r, s \in \mathbf{N}$, $a \in \mathbf{R}^s$, and let $\varphi_1, \ldots, \varphi_r$ be functions of s variables such that $\lim_{x \to a} \varphi_j(x) = b_j$, $j = 1, \ldots, r$. Set $\mathbf{b} = [b_1, \ldots, b_r]$. Let f be a function of r variables whic is continuous at the point \mathbf{b} . We define a function F of s variables by

$$F(\boldsymbol{x}) = f(\varphi_1(\boldsymbol{x}), \varphi_2(\boldsymbol{x}), \dots, \varphi_r(\boldsymbol{x})).$$

Then $\lim_{\boldsymbol{x}\to\boldsymbol{a}} F(\boldsymbol{x}) = f(\boldsymbol{b}).$

4.4. Compact sets and their applications.

Definition. We say that a set $M \subset \mathbb{R}^n$ is *compact*, if for each sequence of elements of M there exists a convergent subsequence with limit in M.

We say that a set $M \subset \mathbb{R}^n$ is *bounded*, if there exists r > 0 such that $M \subset B(o, r)$.

Theorem 4.10 (characterization of compact subsets of \mathbb{R}^n). The set $M \subset \mathbb{R}^n$ is compact if and only if M is bounded and closed.

Theorem 4.11 (attaining extrema). Let $M \subset \mathbb{R}^n$ be a nonempty compact set and $f: M \to \mathbb{R}$ be continuous on M. Then f attains on M its maximum and minimum.

Corollary 4.12. Let $M \subset \mathbb{R}^n$ be a nonempty compact set and $f: M \to \mathbb{R}$ be continuous on M. Then f is bounded on M.