4.3. Continuous functions of several variables.

Definition. Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. We say that f is continuous at \boldsymbol{x} with respect to M, if we have

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta) \cap M: f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon)
$$

We say that f is continuous at the point \boldsymbol{x}, it it is continuous at \boldsymbol{x} with respect to a neighborhood of \boldsymbol{x}, i.e.,

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{y} \in B(\boldsymbol{x}, \delta): f(\boldsymbol{y}) \in B(f(\boldsymbol{x}), \varepsilon) .
$$

Remark. Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M, f: M \rightarrow \mathbf{R}, g: M \rightarrow \mathbf{R}$, and $c \in \mathbf{R}$. If f and g are continuous at the point \boldsymbol{x} with respect to M, then the functions $c f, f+g$ a $f g$ are continuous at \boldsymbol{x} with respect to M. If the function g is nonzero at each point of M, then also the function f / g is continuous at \boldsymbol{x} with respect to M.

Theorem 4.7 (Heine). Let $M \subset \mathbf{R}^{n}, \boldsymbol{x} \in M$, and $f: M \rightarrow \mathbf{R}$. Then the following are equivalent.
(i) The function f is continuous at \boldsymbol{x} with respect to M.
(ii) For each sequence $\left\{\boldsymbol{x}^{j}\right\}_{j=1}^{\infty}$ such that $\boldsymbol{x}^{j} \in M$ pro $j \in \mathbf{N} a \lim _{j \rightarrow \infty} \boldsymbol{x}^{j}=\boldsymbol{x}$, we have $\lim _{j \rightarrow \infty} f\left(\boldsymbol{x}^{j}\right)=f(\boldsymbol{x})$.
Remark. Let $r, s \in \mathbf{N}, M \subset \mathbf{R}^{s}, L \subset \mathbf{R}^{r}$, and $\boldsymbol{y} \in M$. Let $\varphi_{1}, \ldots, \varphi_{r}$ be functions defined on M, which are continuous at \boldsymbol{y} with respect to M and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in L$ for each $\boldsymbol{x} \in M$. Let $f: L \rightarrow \mathbf{R}$ be continuous at the point $\left[\varphi_{1}(\boldsymbol{y}), \ldots, \varphi_{r}(\boldsymbol{y})\right]$ with respect to L. Then the composed function $F: M \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in M
$$

is continuous at \boldsymbol{y} with respect to M.
Definition. Let $M \subset \mathbf{R}^{n}$ a $f: M \rightarrow \mathbf{R}$. We say that f is continuous on M, if it is continuous at each point $\boldsymbol{x} \in M$ with respect to M.
Remark. The projection $\pi_{j}: \mathbf{R}^{n} \rightarrow \mathbf{R}, \pi_{j}(\boldsymbol{x})=x_{j}, 1 \leq j \leq n$, are continuous on \mathbf{R}^{n}.

Theorem 4.8.

(1) Let f be a function continuous on an open set $G \subset \mathbf{R}^{n}$ and $c \in \mathbf{R}$. Then the set $\{\boldsymbol{x} \in$ $G ; f(\boldsymbol{x})<c\}$ is open in \mathbf{R}^{n}.
(2) Let f be a function continuous on a closed set $F \subset \mathbf{R}^{n}$ and $c \in \mathbf{R}$. Then the set $\{\boldsymbol{x} \in$ $F ; f(\boldsymbol{x}) \leq c\}$ is closed in \mathbf{R}^{n}.
Definition. We say that a function f of n variables has at a point $\boldsymbol{a} \in \mathbf{R}^{n}$ limit equal $A \in \mathbb{R}^{*}$, if we have

$$
\forall \varepsilon \in \mathbf{R}, \varepsilon>0 \exists \delta \in \mathbf{R}, \delta>0 \forall \boldsymbol{x} \in B(\boldsymbol{a}, \delta) \backslash\{\boldsymbol{a}\}: f(\boldsymbol{x}) \in B(A, \varepsilon) .
$$

Remark.

- Each function has at a given point at most one limit. We write $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=A$.
- The function f is continuous at \boldsymbol{a} if and only if $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} f(\boldsymbol{x})=f(\boldsymbol{a})$.
- For functions of several variables one can prove similar theorems as for functions of one variable (arithmetics, sandwich theorem, ...).
Theorem 4.9. Let $r, s \in \mathbf{N}, \boldsymbol{a} \in \mathbf{R}^{s}$, and let $\varphi_{1}, \ldots, \varphi_{r}$ be functions of s variables such that $\lim _{\boldsymbol{x} \rightarrow \boldsymbol{a}} \varphi_{j}(\boldsymbol{x})=b_{j}, j=1, \ldots, r$. Set $\boldsymbol{b}=\left[b_{1}, \ldots, b_{r}\right]$. Let f be a function of r variables whic is continuous at the point \boldsymbol{b}. We define a function F of s variables by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right) .
$$

Then $\lim _{x \rightarrow a} F(\boldsymbol{x})=f(\boldsymbol{b})$.

4.4. Compact sets and their applications.

Definition. We say that a set $M \subset \mathbf{R}^{n}$ is compact, if for each sequence of elements of M there exists a convergent subsequence with limit in M.
We say that a set $M \subset \mathbf{R}^{n}$ is bounded, if there exists $r>0$ such that $M \subset B(\boldsymbol{o}, r)$.
Theorem 4.10 (characterization of compact subsets of \mathbf{R}^{n}). The set $M \subset \mathbf{R}^{n}$ is compact if and only if M is bounded and closed.

Theorem 4.11 (attaining extrema). Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on M. Then f attains on M its maximum and minimum.

Corollary 4.12. Let $M \subset \mathbf{R}^{n}$ be a nonempty compact set and $f: M \rightarrow \mathbf{R}$ be continuous on M. Then f is bounded on M.

