4.5. Functions of the class C^1 .

Definition. Let $G \subset \mathbb{R}^n$ be a nonempty open set. Let a function $f: G \to \mathbb{R}$ have at each point of the set G all partial derivatives continuous (i.e., function $\mathbf{x} \mapsto \frac{\partial f}{\partial x_j}(\mathbf{x})$ are continuous on G for each $j \in \{1, \ldots, n\}$). Then we say that f is of the *class* \mathcal{C}^1 on G. The set of all these functions is denoted by $\mathcal{C}^1(G)$.

Remark. If $G \subset \mathbb{R}^n$ is a nonempty open set and and $f, g \in \mathcal{C}^1(G)$, then $f + g \in \mathcal{C}^1(G)$, $f - g \in \mathcal{C}^1(G)$, and $fg \in \mathcal{C}^1(G)$. If moreover for each $x \in G$ we have $: g(x) \neq 0$, then $f/g \in \mathcal{C}^1(G)$.

Proposition 4.13 (weak Lagrange theorem). Let $n \in \mathbb{N}$, $I_1, \ldots, I_n \subset \mathbb{R}$ be open intervals, $I = I_1 \times I_2 \times \cdots \times I_n$, $f \in C^1(I)$, $a, b \in I$. Then there exist points $\xi^1, \ldots, \xi^n \in I$ with $\xi_j^i \in \langle a_j, b_j \rangle$ for each $i, j \in \{1, \ldots, n\}$, such that

$$f(\boldsymbol{b}) - f(\boldsymbol{a}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (\boldsymbol{\xi}^i) (b_i - a_i).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in \mathcal{C}^1(G)$. Then the graph of the function

$$T: \boldsymbol{x} \mapsto f(\boldsymbol{a}) + \frac{\partial f}{\partial x_1}(\boldsymbol{a})(x_1 - a_1) + \frac{\partial f}{\partial x_2}(\boldsymbol{a})(x_2 - a_2) + \dots + \frac{\partial f}{\partial x_n}(\boldsymbol{a})(x_n - a_n), \quad \boldsymbol{x} \in \mathbf{R}^n,$$

is called *tangent hyperplane* to the graph of the function f at the point [a, f(a)].

Theorem 4.14. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in C^1(G)$, and T be a function, such that its graph is the tangent hyperplane of the function f at the point [a, f(a)]. Then

$$\lim_{\boldsymbol{x}\to\boldsymbol{a}}\frac{f(\boldsymbol{x})-T(\boldsymbol{x})}{\rho(\boldsymbol{x},\boldsymbol{a})}=0.$$

Theorem 4.15. Let $G \subset \mathbf{R}^n$ be an open nonempty set and $f \in \mathcal{C}^1(G)$. Then f is continuous on G.

Theorem 4.16. Let $r, s \in \mathbf{N}$, $G \subset \mathbf{R}^s$, $H \subset \mathbf{R}^r$ be open sets. Let $\varphi_1, \ldots, \varphi_r \in \mathcal{C}^1(G)$, $f \in \mathcal{C}^1(H)$ and $[\varphi_1(\boldsymbol{x}), \ldots, \varphi_r(\boldsymbol{x})] \in H$ for each $\boldsymbol{x} \in G$. Then the composed function $F \colon G \to \mathbf{R}$ defined by

$$F(\boldsymbol{x}) = f(\varphi_1(\boldsymbol{x}), \varphi_2(\boldsymbol{x}), \dots, \varphi_r(\boldsymbol{x})), \quad \boldsymbol{x} \in G_1$$

is of the class C^1 on G. Let $\mathbf{a} \in G$ and $\mathbf{b} = [\varphi_1(\mathbf{a}), \dots, \varphi_r(\mathbf{a})]$. Then for each $j \in \{1, \dots, s\}$ we have

$$\frac{\partial F}{\partial x_j}(\boldsymbol{a}) = \sum_{i=1}^r \frac{\partial f}{\partial y_i}(\boldsymbol{b}) \frac{\partial \varphi_i}{\partial x_j}(\boldsymbol{a}).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, and $f \in \mathcal{C}^1(G)$. Gradient of f at the point a is defined as the vector

$$abla f(\boldsymbol{a}) = \left[\frac{\partial f}{\partial x_1}(\boldsymbol{a}), \frac{\partial f}{\partial x_2}(\boldsymbol{a}), \dots, \frac{\partial f}{\partial x_n}(\boldsymbol{a})\right].$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $a \in G$, $f \in \mathcal{C}^1(G)$, and $\nabla f(a) = o$. Then the point a is called *stationary* (or also *critical*) *point* of the function f.

Definition. Let $G \subset \mathbb{R}^n$ be an open set, $f: G \to \mathbb{R}$, $i, j \in \{1, \ldots, n\}$, and $\frac{\partial f}{\partial x_i}(x)$ exists for each $x \in G$. Then partial derivative of the second order of the function f according to i-th and j-th variable at the point $a \in G$ is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)(\boldsymbol{a}).$$

If i = j then we use the notation

$$\frac{\partial^2 f}{\partial x_i^2}(\boldsymbol{a}).$$

Similarly we define higher order partial derivatives.

Theorem 4.17. Let $i, j \in \{1, ..., n\}$ and let both partial derivatives $\frac{\partial^2 f}{\partial x_i \partial x_j}$ and $\frac{\partial^2 f}{\partial x_j \partial x_i}$ be continuous at a point $a \in \mathbb{R}^n$. Then we have

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{a}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\boldsymbol{a}).$$

Definition. Let $G \subset \mathbb{R}^n$ be an open set and $k \in \mathbb{N}$. We say that a function f is of the *class* \mathcal{C}^k on G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions is denoted by $\mathcal{C}^k(G)$. We say that a function f is of the *class* \mathcal{C}^∞ on G, if all partial derivatives of all orders of f are continuous on G. The set of all functions of the class \mathcal{C}^∞ on G is denoted by $\mathcal{C}^\infty(G)$.