4.5. Functions of the class C^{1}.

Definition. Let $G \subset \mathbf{R}^{n}$ be a nonempty open set. Let a function $f: G \rightarrow \mathbf{R}$ have at each point of the set G all partial derivatives continuous (i.e., function $\boldsymbol{x} \mapsto \frac{\partial f}{\partial x_{j}}(\boldsymbol{x})$ are continuous on G for each $j \in\{1, \ldots, n\}$). Then we say that f is of the class \mathcal{C}^{1} on G. The set of all these functions is denoted by $\mathcal{C}^{1}(G)$.
Remark. If $G \subset \mathbf{R}^{n}$ is a nonempty open set and and $f, g \in \mathcal{C}^{1}(G)$, then $f+g \in \mathcal{C}^{1}(G)$, $f-g \in \mathcal{C}^{1}(G)$, and $f g \in \mathcal{C}^{1}(G)$. If moreover for each $\boldsymbol{x} \in G$ we have $: g(\boldsymbol{x}) \neq 0$, then $f / g \in \mathcal{C}^{1}(G)$.

Proposition 4.13 (weak Lagrange theorem). Let $n \in \mathbf{N}, I_{1}, \ldots, I_{n} \subset \mathbf{R}$ be open intervals, $I=I_{1} \times I_{2} \times \cdots \times I_{n}, f \in \mathcal{C}^{1}(I), \boldsymbol{a}, \boldsymbol{b} \in I$. Then there exist points $\boldsymbol{\xi}^{1}, \ldots, \boldsymbol{\xi}^{n} \in I$ with $\xi_{j}^{i} \in\left\langle a_{j}, b_{j}\right\rangle$ for each $i, j \in\{1, \ldots, n\}$, such that

$$
f(\boldsymbol{b})-f(\boldsymbol{a})=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}\left(\boldsymbol{\xi}^{i}\right)\left(b_{i}-a_{i}\right) .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Then the graph of the function $T: \boldsymbol{x} \mapsto f(\boldsymbol{a})+\frac{\partial f}{\partial x_{1}}(\boldsymbol{a})\left(x_{1}-a_{1}\right)+\frac{\partial f}{\partial x_{2}}(\boldsymbol{a})\left(x_{2}-a_{2}\right)+\cdots+\frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\left(x_{n}-a_{n}\right), \quad \boldsymbol{x} \in \mathbf{R}^{n}$, is called tangent hyperplane to the graph of the function f at the point $[\boldsymbol{a}, f(\boldsymbol{a})]$.
Theorem 4.14. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and T be a function, such that its graph is the tangent hyperplane of the function f at the point $[\boldsymbol{a}, f(\boldsymbol{a})]$. Then

$$
\lim _{x \rightarrow a} \frac{f(\boldsymbol{x})-T(\boldsymbol{x})}{\rho(\boldsymbol{x}, \boldsymbol{a})}=0
$$

Theorem 4.15. Let $G \subset \mathbf{R}^{n}$ be an open nonempty set and $f \in \mathcal{C}^{1}(G)$. Then f is continuous on G.

Theorem 4.16. Let $r, s \in \mathbf{N}, G \subset \mathbf{R}^{s}, H \subset \mathbf{R}^{r}$ be open sets. Let $\varphi_{1}, \ldots, \varphi_{r} \in \mathcal{C}^{1}(G), f \in$ $\mathcal{C}^{1}(H)$ and $\left[\varphi_{1}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right] \in H$ for each $\boldsymbol{x} \in G$. Then the composed function $F: G \rightarrow \mathbf{R}$ defined by

$$
F(\boldsymbol{x})=f\left(\varphi_{1}(\boldsymbol{x}), \varphi_{2}(\boldsymbol{x}), \ldots, \varphi_{r}(\boldsymbol{x})\right), \quad \boldsymbol{x} \in G
$$

is of the class \mathcal{C}^{1} on G. Let $\boldsymbol{a} \in G$ and $\boldsymbol{b}=\left[\varphi_{1}(\boldsymbol{a}), \ldots, \varphi_{r}(\boldsymbol{a})\right]$. Then for each $j \in\{1, \ldots, s\}$ we have

$$
\frac{\partial F}{\partial x_{j}}(\boldsymbol{a})=\sum_{i=1}^{r} \frac{\partial f}{\partial y_{i}}(\boldsymbol{b}) \frac{\partial \varphi_{i}}{\partial x_{j}}(\boldsymbol{a}) .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G$, and $f \in \mathcal{C}^{1}(G)$. Gradient of f at the point \boldsymbol{a} is defined as the vector

$$
\nabla f(\boldsymbol{a})=\left[\frac{\partial f}{\partial x_{1}}(\boldsymbol{a}), \frac{\partial f}{\partial x_{2}}(\boldsymbol{a}), \ldots, \frac{\partial f}{\partial x_{n}}(\boldsymbol{a})\right] .
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $\boldsymbol{a} \in G, f \in \mathcal{C}^{1}(G)$, and $\nabla f(\boldsymbol{a})=\boldsymbol{o}$. Then the point \boldsymbol{a} is called stationary (or also critical) point of the function f.
Definition. Let $G \subset \mathbf{R}^{n}$ be an open set, $f: G \rightarrow \mathbf{R}, i, j \in\{1, \ldots, n\}$, and $\frac{\partial f}{\partial x_{i}}(\boldsymbol{x})$ exists for each $\boldsymbol{x} \in G$. Then partial derivative of the second order of the function f according to i-th and j-th variable at the point $\boldsymbol{a} \in G$ is defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{a})=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)(\boldsymbol{a}) .
$$

If $i=j$ then we use the notation

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{a}) .
$$

Similarly we define higher order partial derivatives.
Theorem 4.17. Let $i, j \in\{1, \ldots, n\}$ and let both partial derivatives $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ and $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$ be continuous at a point $\boldsymbol{a} \in \mathbf{R}^{n}$. Then we have

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{a})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\boldsymbol{a})
$$

Definition. Let $G \subset \mathbf{R}^{n}$ be an open set and $k \in \mathbf{N}$. We say that a function f is of the class \mathcal{C}^{k} on G, if all partial derivatives of f till k-th order are continuous on G. The set of all these functions is denoted by $\mathcal{C}^{k}(G)$. We say that a function f is of the class \mathcal{C}^{∞} on G, if all partial derivatives of all orders of f are continuous on G. The set of all functions of the class \mathcal{C}^{∞} on G is denoted by $\mathcal{C}^{\infty}(G)$.

