4.6. Implicit function theorem.

Theorem 4.18 (implicit function theorem – basic version). Let $G \subset \mathbf{R}^{n+1}$ be an open set, $F: G \to \mathbf{R}, \, \tilde{x} \in \mathbf{R}^n, \, \tilde{y} \in \mathbf{R}, \, [\tilde{x}, \tilde{y}] \in G$. Suppose that

(1) $F \in \mathcal{C}^1(G)$, (2) $F(\tilde{\boldsymbol{x}}, \tilde{y}) = 0$, (3) $\frac{\partial F}{\partial y}(\tilde{\boldsymbol{x}}, \tilde{y}) \neq 0$.

Then there exist a neighborhood $U \subset \mathbf{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighborhood $V \subset \mathbf{R}$ of the point \tilde{y} such that for each $\mathbf{x} \in U$ there exists unique $y \in V$ with the property $F(\mathbf{x}, y) = 0$. If we denote this y by $\varphi(\mathbf{x})$, then the resulting function φ is in $\mathcal{C}^1(U)$ and

$$rac{\partial \varphi}{\partial x_j}(\boldsymbol{x}) = -rac{rac{\partial F}{\partial x_j}(\boldsymbol{x}, \varphi(\boldsymbol{x}))}{rac{\partial F}{\partial y}(\boldsymbol{x}, \varphi(\boldsymbol{x}))} \quad \textit{for } \boldsymbol{x} \in U, \ j \in \{1, \dots, n\}.$$

If, moreover, $F \in \mathcal{C}^k(G)$ for some $k \in \mathbb{N} \cup \{\infty\}$, then also $\varphi \in \mathcal{C}^k(U)$

Theorem 4.19 (implicit function theorem – advanced version). Let $m, n \in \mathbb{N}$, $k \in \mathbb{N} \cup \{\infty\}$, $G \subset \mathbb{R}^{n+m}$ be an open set, $F_j: G \to \mathbb{R}$ for j = 1, ..., m, $\tilde{x} \in \mathbb{R}^n$, $\tilde{y} \in \mathbb{R}^m$, $[\tilde{x}, \tilde{y}] \in G$. Suppose that

(1)
$$F_{j} \in \mathcal{C}^{k}(G)$$
 for each $j \in \{1, ..., m\}$,
(2) $F_{j}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) = 0$ for each $j \in \{1, ..., m\}$,
(3) $\begin{vmatrix} \frac{\partial F_{1}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \dots & \frac{\partial F_{1}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial y_{1}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) & \dots & \frac{\partial F_{m}}{\partial y_{m}}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{y}}) \end{vmatrix} \neq 0.$

Then there exist a neighborhood $U \subset \mathbf{R}^n$ of the point $\tilde{\mathbf{x}}$ and a neighborhood $V \subset \mathbf{R}^m$ of the point $\tilde{\mathbf{y}}$ such that for each $\mathbf{x} \in U$ there exists unique $\mathbf{y} \in V$ with the property $F_j(\mathbf{x}, \mathbf{y}) = 0$ for each $j \in \{1, \ldots, m\}$. If we denote coordinates of this \mathbf{y} by $\varphi_j(\mathbf{x})$, $j = 1, \ldots, m$, then the resulting functions φ_j are in $\mathcal{C}^k(U)$.

Remark. The symbol in the condition (3) of Theorem 4.19 is called *determinant*. The definition will presented in the next chapter.

For
$$m = 1$$
 we have $\begin{vmatrix} a \end{vmatrix} = a, a \in \mathbf{R}$.
For $m = 2$ we have $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc, a, b, c, d \in \mathbf{R}$.