4.7. Lagrange multiplier theorem.

Theorem 4.20 (Lagrange multiplier theorem - basic version). Let $n \in \mathbf{N}, n \geq 2$, let $G \subset \mathbf{R}^{n}$ be an open set, $f, g \in \mathcal{C}^{1}(G), M=\{\boldsymbol{x} \in G ; g(\boldsymbol{x})=0\}$, and ley $\tilde{\boldsymbol{x}} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:
(1) $\nabla g(\tilde{\boldsymbol{x}})=\boldsymbol{o}$,
(2) there exists $\lambda \in \mathbf{R}$ satisfying $\nabla f(\tilde{\boldsymbol{x}})+\lambda \nabla g(\tilde{\boldsymbol{x}})=0$, i.e.m

$$
\begin{gathered}
\frac{\partial f}{\partial x_{1}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)+\lambda \frac{\partial g}{\partial x_{1}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)=0 \\
\frac{\partial f}{\partial x_{2}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)+\lambda \frac{\partial g}{\partial x_{2}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)=0 \\
\vdots \\
\frac{\partial f}{\partial x_{n}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)+\lambda \frac{\partial g}{\partial x_{n}}\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)=0 .
\end{gathered}
$$

Theorem 4.21 (Lagrange multiplier theorem - advanced version). Let $m, n \in \mathbf{N}, m<n$, $G \subset \mathbf{R}^{n}$ be an open set, $f, g_{1}, \ldots, g_{m} \in \mathcal{C}^{1}(G)$,

$$
M=\left\{\boldsymbol{z} \in G ; g_{1}(\boldsymbol{z})=0, g_{2}(\boldsymbol{z})=0, \ldots, g_{m}(\boldsymbol{z})=0\right\}
$$

and let $\tilde{\boldsymbol{z}} \in M$ be a point of local extremum of f with respect to the set M. Then at least one of the following conditions holds:
(1) the vectors

$$
\nabla g_{1}(\tilde{\boldsymbol{z}}), \nabla g_{2}(\tilde{\boldsymbol{z}}), \ldots, \nabla g_{m}(\tilde{\boldsymbol{z}})
$$

are linearly dependent,
(2) there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbf{R}$ satisfying

$$
\nabla f(\tilde{\boldsymbol{z}})+\lambda_{1} \nabla g_{1}(\tilde{\boldsymbol{z}})+\lambda_{2} \nabla g_{2}(\tilde{\boldsymbol{z}})+\cdots+\lambda_{m} \nabla g_{m}(\tilde{\boldsymbol{z}})=\boldsymbol{o}
$$

Remark. The notion of linearly dependent vectors will be defined in the next chapter.
For $m=1$: One vector is linearly dependent if it is the zero vector.
For $m=2$: Two vectors are linearly dependent if one of them is a multiple of the other one.

