### 4.8. Concave and quasiconcave functions.

Definition. Let $M \subset \mathbf{R}^{n}$. We say that $M$ is convex, if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in M \forall t \in\langle 0,1\rangle: t \boldsymbol{x}+(1-t) \boldsymbol{y} \in M
$$

Definition. Let $M \subset \mathbf{R}^{n}$ be a convex set and a function $f$ be defined on $M$. We say that $f$ is - concave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in\langle 0,1\rangle: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq t f(\boldsymbol{a})+(1-t) f(\boldsymbol{b}),
$$

- strictly concave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b} \forall t \in(0,1): f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>t f(\boldsymbol{a})+(1-t) f(\boldsymbol{b}) .
$$

Remark. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f: M \rightarrow \mathbf{R}$ a function. The following assertions are equivalent:
(i) $f$ is concave.
(ii) The restriction of $f$ to any segment in $M$ is concave.
(iii) For any $a, b \in M$ the function $t \mapsto f(a+t(b-a))$ is concave on $\langle 0,1\rangle$.

A similar equivalence is valid for strictly concave functions.
Theorem 4.22. Let a function $f$ be concave on an open convex set $G \subset \mathbf{R}^{n}$. Then $f$ is continuous on $G$.

Theorem 4.23. Let a function $f$ be concave on a convex set $M \subset \mathbf{R}^{n}$. Then for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

Theorem 4.24 (characterization of concave functions of the class $\mathcal{C}^{1}$ ). Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function $f$ is convex on $G$ if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G: f(\boldsymbol{y}) \leq f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right) .
$$

Corollary 4.25. Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$ be concave on $G$. If a point $\boldsymbol{a} \in G$ is a stationary point of $f$, then $\boldsymbol{a}$ is a point of maximum of $f$ with respect to $G$.
Theorem 4.26 (characterization of strictly concave functions of the class $\mathcal{C}^{1}$ ). Let $G \subset \mathbf{R}^{n}$ be a convex open set and $f \in \mathcal{C}^{1}(G)$. Then the function $f$ is strictly concave on $G$ if and only if we have

$$
\forall \boldsymbol{x}, \boldsymbol{y} \in G, \boldsymbol{x} \neq \boldsymbol{y}: f(\boldsymbol{y})<f(\boldsymbol{x})+\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(\boldsymbol{x})\left(y_{i}-x_{i}\right) .
$$

Definition. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be defined on $M$. We say that $f$ is

- quasiconcave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M \forall t \in[0,1]: f(t \boldsymbol{a}+(1-t) \boldsymbol{b}) \geq \min \{f(\boldsymbol{a}), f(\boldsymbol{b})\},
$$

- strictly quasiconcave on $M$, if

$$
\forall \boldsymbol{a}, \boldsymbol{b} \in M, \boldsymbol{a} \neq \boldsymbol{b}, \forall t \in(0,1): f(t \boldsymbol{a}+(1-t) \boldsymbol{b})>\min \{f(\boldsymbol{a}), f(\boldsymbol{b})\} .
$$

Remark. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be a function defined on $M$.

- Let $f$ be concave on $M$. Then $f$ is quasiconcave on $M$.
- Let $f$ be strictly concave on $M$. Then $f$ is strictly quasiconcave on $M$.

Remark. Let $M \subset \mathbf{R}^{n}$ be a convex set and $f: M \rightarrow \mathbf{R}$ a function. The following assertions are equivalent:
(i) $f$ is quasiconcave.
(ii) The restriction of $f$ to any segment in $M$ is quasiconcave.
(iii) For any $a, b \in M$ the function $t \mapsto f(a+t(b-a))$ is quasiconcave on $\langle 0,1\rangle$.

A similar equivalence is valid for strictly quasiconcave functions.
Remark. Let $I \subset \mathbf{R}$ be an interval and $f: I \rightarrow \mathbf{R}$ is a function.

- The function $f$ is quasiconcave on $I$ if and only if one of the following conditions is fulfilled
(a) $f$ is non-decreasing on $I$.
(b) $f$ is non-increasing on $I$.
(c) There is $x \in I$ such that $f$ is non-decreasing on $I \cap(-\infty, a\rangle$ and non-increasing on $I \cap\langle a,+\infty)$.
- The function $f$ is strictly quasiconcave on $I$ if and only if one of the following conditions is fulfilled
(a) $f$ is strictly decreasing on $I$.
(b) $f$ is strictly increasing on $I$.
(c) There is $x \in I$ such that $f$ is trictly increasing on $I \cap(-\infty, a\rangle$ and strictly decreasing on $I \cap\langle a,+\infty)$.
Theorem 4.27 (characterization of quasiconcave functions via level sets). Let $M \subset \mathbf{R}^{n}$ be a convex set and $f$ be defined on $M$. The function $f$ is quasiconcave on $M$ if and only if for each $\alpha \in \mathbf{R}$ the set $Q_{\alpha}=\{\boldsymbol{x} \in M ; f(\boldsymbol{x}) \geq \alpha\}$ is convex.

Theorem 4.28 (on uniqueness of extremum). Let $f$ be a strictly quasiconcave function on a convex set $M \subset \mathbf{R}^{n}$. Then there exists at most one point of maximum of $f$.
Corollary 4.29. Let $M \subset \mathbf{R}^{n}$ be a convex, bounded, closed and nonempty set. Let $f$ be continuous and strictly quasiconcave function on $M$. Then $f$ attains its maximum on $M$ in a unique point.

