5. MATRIX CALCULUS

5.1. Basic operations with matrices.

Definition. The scheme

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

where $a_{i j} \in \mathbf{R}, i=1, \ldots, m, j=1, \ldots, n$, is called a matrix of type $m \times n$ (shortly, an m-by- n matrix). We write $\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$. An n-by- n matrix is called square matrix of order n. The set of all m-by- n matrices is denoted $M(m \times n)$.

Definition. Let

$$
\mathbb{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right)
$$

The n-tuple $\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right)$, where $i \in\{1,2, \ldots, m\}$, is called i-th row of the matrix \mathbb{A}.
The m-tuple $\left(\begin{array}{c}a_{1 j} \\ a_{2 j} \\ \vdots \\ a_{m j}\end{array}\right)$, where $j \in\{1,2, \ldots, n\}$, is called j-th column of the matrix \mathbb{A}.
Definition. We say that two matrices are equal, if they are of the same type and the corresponding elements are equal, i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . . m \\ j=1 . . n}}$ and $\mathbb{B}=\left(b_{u v}\right)_{\substack{u=1 . . r \\ v=1 . . s}}$, then $\mathbb{A}=\mathbb{B}$ if and only if $m=r$, $n=s$ and $a_{i j}=b_{i j}$ for every $i \in\{1, \ldots, m\}, j \in\{1, \ldots, n\}$.
Definition. Let $\mathbb{A}, \mathbb{B} \in M(m \times n), \mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . n}}, \mathbb{B}=\left(b_{i j}\right)_{\substack{i=1 . m \\ j=1 . n}}, \lambda \in \mathbf{R}$. The sum of \mathbb{A} and \mathbb{B} is defined by

$$
\mathbb{A}+\mathbb{B}=\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \ldots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right)
$$

Product of a real number λ and the matrix \mathbb{A} is defined by

$$
\lambda \mathbb{A}=\left(\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \ldots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \ldots & \lambda a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \ldots & \lambda a_{m n}
\end{array}\right) .
$$

Proposition 5.1 (basic properties).

- $\forall \mathbb{A}, \mathbb{B}, \mathbb{C} \in M(m \times n): \mathbb{A}+(\mathbb{B}+\mathbb{C})=(\mathbb{A}+\mathbb{B})+\mathbb{C}$,
(associativity)
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n): \mathbb{A}+\mathbb{B}=\mathbb{B}+\mathbb{A}$,
(commutativity)
- $\exists!\mathbb{O} \in M(m \times n) \forall \mathbb{A} \in M(m \times n): \mathbb{A}+\mathbb{O}=\mathbb{A} \quad(\mathbb{O}$ is the zero matrix, all it entries are zero),
- $\forall \mathbb{A} \in M(m \times n) \exists \mathbb{C}_{\mathbb{A}} \in M(m \times n): \mathbb{A}+\mathbb{C}_{\mathbb{A}}=\mathbb{O} \quad$ (the matrix $C_{\mathbb{A}}$ is usually denoted $-\mathbb{A}$ and equals $(-1) \cdot \mathbb{A})$,
- $\forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda \mu) \mathbb{A}=\lambda(\mu \mathbb{A})$,
- $\forall \mathbb{A} \in M(m \times n): 1 \cdot \mathbb{A}=\mathbb{A}$,
- $\forall \mathbb{A} \in M(m \times n) \forall \lambda, \mu \in \mathbf{R}:(\lambda+\mu) \mathbb{A}=\lambda \mathbb{A}+\mu \mathbb{A}$,
- $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \lambda \in \mathbf{R}: \lambda(\mathbb{A}+\mathbb{B})=\lambda \mathbb{A}+\lambda \mathbb{B}$.

Definition. Let $\mathbb{A} \in M(m \times n), \mathbb{A}=\left(a_{i s}\right)_{\substack{i=1 . m \\ s=1 . n}}, \mathbb{B} \in M(n \times k), \mathbb{B}=\left(b_{s j}\right)_{\substack{s=1 . . n \\ j=1 . . k}}$. Then the product of matrices \mathbb{A} and \mathbb{B} is defined as $\mathbb{A} \mathbb{B} \in M(m \times k), \mathbb{A} \mathbb{B}=\left(c_{i j}\right)_{\substack{c=1 . m \\ j=1 . . k}}$, where

$$
c_{i j}=\sum_{s=1}^{n} a_{i s} b_{s j} .
$$

Remark.

- If \mathbb{A} is a 1-by- n matrix and \mathbb{B} is an n-by- 1 matrix, then $\mathbb{A} \mathbb{B}$ is a 1 -by- 1 matrix. Such a matrix is usually viewed as a number.
- Let $\mathbb{A} \in M(m \times n), \mathbb{B} \in M(n \times k), i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, k\}$. Then:
- The entry of $\mathbb{A} \mathbb{B}$ with coordinates $i j$ is equal to the product of the i th row of \mathbb{A} and the j th column of \mathbb{B}.
- The i th row of $\mathbb{A} \mathbb{B}$ is the product of i th row of \mathbb{A} and \mathbb{B}.
- The j th column of $\mathbb{A} \mathbb{B}$ is the product of \mathbb{A} and the j th column of \mathbb{B}.

Theorem 5.2 (properties of matrix multiplication). Let $m, n, k, l \in \mathbf{N}$. Then we have:
(i) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k) \forall \mathbb{C} \in M(k \times l): \mathbb{A}(\mathbb{B} \mathbb{C})=(\mathbb{A} \mathbb{B}) \mathbb{C}$, (associativity)
(ii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B}, \mathbb{C} \in M(n \times k): \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}$, \quad (left distributivity)
(iii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n) \forall \mathbb{C} \in M(n \times k):(\mathbb{A}+\mathbb{B}) \mathbb{C}=\mathbb{A} \mathbb{C}+\mathbb{B} \mathbb{C}, \quad$ (right distributivity)
(iv) $\exists!\mathbb{I} \in M(n \times n) \forall \mathbb{A} \in M(n \times n): \mathbb{I} \mathbb{A}=\mathbb{A} \mathbb{I}=\mathbb{A}$.
(identity matrix \mathbb{I})
Remark. Warning! Matrix multiplication is not commutative. Firstly, it may happen that $\mathbb{A} \mathbb{B}$ is defined and $\mathbb{B} \mathbb{A}$ is not defined. Secondly, it may happen that both products $\mathbb{A} \mathbb{B}$ and $\mathbb{B} \mathbb{A}$ do exist but they are of different types. And, finally, even if \mathbb{A} and \mathbb{B} are square matrices of the same order, $\mathbb{A} \mathbb{B}$ may differ from $\mathbb{B} \mathbb{A}$.

Remark. The identity matrix $\mathbb{I} \in M(n \times n)$ has the following entries: The entries on the main diagonal are equal to 1 , all the other entries are 0 .

Moreover, if $\mathbb{B} \in M(m \times n)$, then $\mathbb{B} \mathbb{I}=\mathbb{B}$; if $\mathbb{C} \in M(n \times k)$, then $\mathbb{I C}=\mathbb{C}$.
Definition. Transpose of a matrix

$$
\mathbb{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

is a matrix defined by

$$
\mathbb{A}^{T}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
a_{13} & a_{23} & \ldots & a_{m 3} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right)
$$

i.e., if $\mathbb{A}=\left(a_{i j}\right)_{\substack{i=1 . m \\ j=1 . . n}}$, then $\mathbb{A}^{T}=\left(b_{u v}\right)_{\substack{u=1 . n \\ v=1 . . m}}^{\substack{2}}$, where $b_{u v}=a_{v u}$ for each $u \in\{1, \ldots, n\}$, $v \in\{1,2, \ldots, m\}$.

Theorem 5.3 (transpose of a matrix - properties). We have
(i) $\forall \mathbb{A} \in M(m \times n):\left(\mathbb{A}^{T}\right)^{T}=\mathbb{A}$,
(ii) $\forall \mathbb{A}, \mathbb{B} \in M(m \times n):(\mathbb{A}+\mathbb{B})^{T}=\mathbb{A}^{T}+\mathbb{B}^{T}$,
(iii) $\forall \mathbb{A} \in M(m \times n) \forall \mathbb{B} \in M(n \times k):(\mathbb{A} \mathbb{B})^{T}=\mathbb{B}^{T} \mathbb{A}^{T}$.

