5.2. Invertible matrices and rank of a matrix.

Definition. Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is an invertible matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$
\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}
$$

Definition. We say that $\mathbb{B} \in M(n \times n)$ is an inverse of a matrix $\mathbb{A} \in M(n \times n)$, if $\mathbb{A} \mathbb{B}=\mathbb{B} \mathbb{A}=\mathbb{I}$.
Remark.

- A matrix $\mathbb{A} \in M(n \times n)$ is invertible, if and only if it has an inverse.
- Each matrix $\mathbb{A} \in M(n \times n)$ has at most one inverse. If it exists, it is denoted by \mathbb{A}^{-1}.
- If $\mathbb{A}, \mathbb{B} \in M(n \times n)$ are such that $\mathbb{A} \mathbb{B}=\mathbb{I}$, then also $\mathbb{B} \mathbb{A}=\mathbb{I}$, hence $\mathbb{B}=\mathbb{A}^{-1}$. (This is not obvious, it follows from the section 5.5)

Theorem 5.4 (invertibity and matrix operations). Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be invertible. Then we have:
(i) \mathbb{A}^{-1} is invertible and $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$,
(ii) \mathbb{A}^{T} is invertible and $\left(\mathbb{A}^{T}\right)^{-1}=\left(\mathbb{A}^{-1}\right)^{T}$,
(iii) $\mathbb{A} \mathbb{B}$ is invertible and $(\mathbb{A} \mathbb{B})^{-1}=\mathbb{B}^{-1} \mathbb{A}^{-1}$.

Definition. Let $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k} \in \mathbf{R}^{n}$ be vectors. Linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ is an expression $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$. By trivial linear combination of vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ we mean the linear combination $0 \cdot \boldsymbol{v}^{1}+\cdots+0 \cdot \boldsymbol{v}^{k}$. Linear combination, which is not trivial, is called nontrivial.

Definition. We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly dependent, if there exists their nontrivial linear combination, which is equal to the zero vector.

We say that vectors $\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}$ are linearly independent, if they are not linearly dependent, i.e., if whenever $\lambda_{1}, \ldots, \lambda_{k} \in \mathbf{R}$ satisfy $\lambda_{1} \boldsymbol{v}^{1}+\cdots+\lambda_{k} \boldsymbol{v}^{k}=\boldsymbol{o}$, then $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{k}=0$.

Definition. Let $\mathbb{A} \in M(m \times n)$. Rank of the matrix \mathbb{A} is the maximal number of linearly independent row vectors of \mathbb{A}. Rank of \mathbb{A} is denoted by $\operatorname{rk}(\mathbb{A})$.
Remark. $\operatorname{rk}(\mathbb{A})=k$ means that there is a k-tuple of rows which is linearly independent and that any $(k+1)$-tuple of rows is linearly dependent.
Definition. We say that $\mathbb{A} \in M(m \times n)$ is in the row echelon form, if for each $i \in\{2, \ldots, m\}$ we have, that either the i th row of \mathbb{A} is a zero vector or the number of zeros at the beginning of the i th row is strictly bigger than the number of zeros at the beginning of $(i-1)$ th row.
Remark. The rank of a row echelon matrix \mathbb{A} is equal to the number of nonzero rows of \mathbb{A}.
Definition. Elementary row transformations of the matrix \mathbb{A} are defined as:
(i) interchange of two rows,
(ii) multiplication of a row by a nonzero real number,
(iii) addition of a multiple of a row to another row.

Definition. Transformation is defined as a finite sequence of elementary row transformations. If the matrix $\mathbb{B} \in M(m \times n)$ was created from $\mathbb{A} \in M(m \times n)$ applying a transformation T to \mathbb{A}, then this fact is denoted by $\mathbb{A} \xrightarrow{T} \mathbb{B}$.

Theorem 5.5 (properties of transformation).
(i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming \mathbb{A} to a row echelon matrix.
(ii) Let T_{1} be a transformation applicable to m-by-n matrices. Then there exists a transformation T_{2} applicable to m-by-n matrices such that if $\mathbb{A} \stackrel{T_{1}}{\rightsquigarrow} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \xrightarrow{T_{2}} \mathbb{A}$.
(iii) Let $\mathbb{A}, \mathbb{B} \in M(m \times n)$ and there exist a transformation T such that $\mathbb{A} \xrightarrow{T} \mathbb{B}$. Then $\operatorname{rk}(\mathbb{A})=$ $\operatorname{rk}(\mathbb{B})$.

Theorem 5.6 (multiplication and transformation). Let $\mathbb{A} \in M(m \times k), \mathbb{B} \in M(k \times n), \mathbb{C} \in$ $M(m \times n)$ and we have $\mathbb{A} \mathbb{B}=\mathbb{C}$. Let T be a transformation and $\mathbb{A} \stackrel{T}{\rightsquigarrow} \mathbb{A}^{\prime}$ and $\mathbb{C} \xrightarrow{T} \mathbb{C}^{\prime}$. Then we have $\mathbb{A}^{\prime} \mathbb{B}=\mathbb{C}^{\prime}$.

Lemma 5.7. Let $\mathbb{A} \in M(n \times n)$ and $\operatorname{rk}(\mathbb{A})=n$. Then there exists a transformation transforming $\mathbb{A} t o \mathbb{I}$.

Theorem 5.8. Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is invertible if and only if $\operatorname{rk}(\mathbb{A})=n$.

Remark.

- Similarly as elementary row transformations one can define elementary column transformations. A finite sequence of elementary column transformations is then called a column transformation.
- It is not hard to check that a column transformation does not change the rank of a matrix.
- Using this fact it is easy to deduce that $\operatorname{rk}(\mathbb{A})=\operatorname{rk}\left(\mathbb{A}^{T}\right)$ for any matrix \mathbb{A}. (Let us transform \mathbb{A} to a row echelon matrix \mathbb{B} by a transformation. Then $\operatorname{rk}(\mathbb{A})=\operatorname{rk}(\mathbb{B})$ and, moreover, by the previous item, $\operatorname{rk}\left(\mathbb{A}^{T}\right)=\operatorname{rk}\left(\mathbb{B}^{T}\right)$. Finally, it is not hard to check that $\operatorname{rk}(\mathbb{B})=\operatorname{rk}\left(\mathbb{B}^{T}\right)$.)

