5.2. Invertible matrices and rank of a matrix.

Definition. Let $\mathbb{A} \in M(n \times n)$. We say that \mathbb{A} is an *invertible* matrix, if there exists $\mathbb{B} \in M(n \times n)$ such that

$$\mathbb{AB}=\mathbb{BA}=\mathbb{I}.$$

Definition. We say that $\mathbb{B} \in M(n \times n)$ is an *inverse* of a matrix $\mathbb{A} \in M(n \times n)$, if $\mathbb{AB} = \mathbb{BA} = \mathbb{I}$.

Remark.

- A matrix $\mathbb{A} \in M(n \times n)$ is invertible, if and only if it has an inverse.
- Each matrix $\mathbb{A} \in M(n \times n)$ has at most one inverse. If it exists, it is denoted by \mathbb{A}^{-1} .
- If $\mathbb{A}, \mathbb{B} \in M(n \times n)$ are such that $\mathbb{AB} = \mathbb{I}$, then also $\mathbb{BA} = \mathbb{I}$, hence $\mathbb{B} = \mathbb{A}^{-1}$. (This is not obvious, it follows from the section 5.5)

Theorem 5.4 (invertibity and matrix operations). Let $\mathbb{A}, \mathbb{B} \in M(n \times n)$ be invertible. Then we have:

(i) \mathbb{A}^{-1} is invertible and $(\mathbb{A}^{-1})^{-1} = \mathbb{A}$, (ii) \mathbb{A}^{T} is invertible and $(\mathbb{A}^{T})^{-1} = (\mathbb{A}^{-1})^{T}$, (iii) $\mathbb{A}\mathbb{B}$ is invertible and $(\mathbb{A}\mathbb{B})^{-1} = \mathbb{B}^{-1}\mathbb{A}^{-1}$.

Definition. Let $v^1, \ldots, v^k \in \mathbb{R}^n$ be vectors. *Linear combination* of vectors v^1, \ldots, v^k is an expression $\lambda_1 v^1 + \cdots + \lambda_k v^k$, where $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$. By *trivial linear combination* of vectors v^1, \ldots, v^k we mean the linear combination $0 \cdot v^1 + \cdots + 0 \cdot v^k$. Linear combination, which is not trivial, is called *nontrivial*.

Definition. We say that vectors v^1, \ldots, v^k are *linearly dependent*, if there exists their nontrivial linear combination, which is equal to the zero vector.

We say that vectors v^1, \ldots, v^k are *linearly independent*, if they are not linearly dependent, i.e., if whenever $\lambda_1, \ldots, \lambda_k \in \mathbf{R}$ satisfy $\lambda_1 v^1 + \cdots + \lambda_k v^k = o$, then $\lambda_1 = \lambda_2 = \cdots = \lambda_k = 0$.

Definition. Let $\mathbb{A} \in M(m \times n)$. *Rank* of the matrix \mathbb{A} is the maximal number of linearly independent row vectors of \mathbb{A} . Rank of \mathbb{A} is denoted by $rk(\mathbb{A})$.

Remark. $rk(\mathbb{A}) = k$ means that there is a k-tuple of rows which is linearly independent and that any (k + 1)-tuple of rows is linearly dependent.

Definition. We say that $\mathbb{A} \in M(m \times n)$ is in the *row echelon form*, if for each $i \in \{2, \ldots, m\}$ we have, that either the *i*th row of \mathbb{A} is a zero vector or the number of zeros at the beginning of the *i*th row is strictly bigger than the number of zeros at the beginning of (i - 1)th row.

Remark. The rank of a row echelon matrix \mathbb{A} is equal to the number of nonzero rows of \mathbb{A} .

Definition. *Elementary row transformations* of the matrix \mathbb{A} are defined as:

- (i) interchange of two rows,
- (ii) multiplication of a row by a nonzero real number,
- (iii) addition of a multiple of a row to another row.

Definition. *Transformation* is defined as a finite sequence of elementary row transformations. If the matrix $\mathbb{B} \in M(m \times n)$ was created from $\mathbb{A} \in M(m \times n)$ applying a transformation T to \mathbb{A} , then this fact is denoted by $\mathbb{A} \xrightarrow{T} \mathbb{B}$.

Theorem 5.5 (properties of transformation).

- (i) Let $\mathbb{A} \in M(m \times n)$. Then there exists a transformation transforming \mathbb{A} to a row echelon matrix.
- (ii) Let T_1 be a transformation applicable to *m*-by-*n* matrices. Then there exists a transformation T_2 applicable to *m*-by-*n* matrices such that if $\mathbb{A} \xrightarrow{T_1} \mathbb{B}$ for some $\mathbb{A}, \mathbb{B} \in M(m \times n)$, then $\mathbb{B} \xrightarrow{T_2} \mathbb{A}$.
- (iii) Let $\mathbb{A}, \mathbb{B} \in M(m \times n)$ and there exist a transformation T such that $\mathbb{A} \xrightarrow{T} \mathbb{B}$. Then $\operatorname{rk}(\mathbb{A}) = \operatorname{rk}(\mathbb{B})$.

Theorem 5.6 (multiplication and transformation). Let $\mathbb{A} \in M(m \times k)$, $\mathbb{B} \in M(k \times n)$, $\mathbb{C} \in M(m \times n)$ and we have $\mathbb{AB} = \mathbb{C}$. Let T be a transformation and $\mathbb{A} \xrightarrow{T} \mathbb{A}'$ and $\mathbb{C} \xrightarrow{T} \mathbb{C}'$. Then we have $\mathbb{A}'\mathbb{B} = \mathbb{C}'$.

Lemma 5.7. Let $\mathbb{A} \in M(n \times n)$ and $\operatorname{rk}(\mathbb{A}) = n$. Then there exists a transformation transforming \mathbb{A} to \mathbb{I} .

Theorem 5.8. Let $\mathbb{A} \in M(n \times n)$. Then \mathbb{A} is invertible if and only if $rk(\mathbb{A}) = n$.

Remark.

- Similarly as elementary row transformations one can define *elementary column transformations*. A finite sequence of elementary column transformations is then called a *column transformation*.
- It is not hard to check that a column transformation does not change the rank of a matrix.
- Using this fact it is easy to deduce that rk(A) = rk(A^T) for any matrix A. (Let us transform A to a row echelon matrix B by a transformation. Then rk(A) = rk(B) and, moreover, by the previous item, rk(A^T) = rk(B^T). Finally, it is not hard to check that rk(B) = rk(B^T).)