I. Determine and draw domains and contours of the following functions

1. $f(x, y)=x+\sqrt{y}$
2. $f(x, y)=\frac{y}{x}$
3. $f(x, y)=x^{2}+y^{2}$
4. $f(x, y)=x^{2}-y^{2}$
5. $f(x, y)=\sqrt{x y}$
6. $f(x, y)=\sqrt{1-x^{2}-y^{2}}$
7. $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}-1}}$
8. $f(x, y)=\sqrt{\left(x^{2}+y^{2}-1\right)\left(4-x^{2}-y^{2}\right)}$
9. $f(x, y)=\sqrt{1-\left(x^{2}+y\right)^{2}}$
10. $f(x, y)=\sqrt{\sin \left(x^{2}+y^{2}\right)} \quad$ 11. $f(x, y)=\operatorname{sgn}(\sin x \cdot \sin y)$
11. $f(x, y)=|x|+y$
Decide whether the following sets are open or closed
AND DETERMINE THEIR INTERIOR, CLOSURE AND BOUNDARY
12. (a) \mathbb{Q}
(b) \mathbb{N}
(c) $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$
(d) $(-\infty, 0) \cup\{x \in \mathbb{Q} \mid x>0\}$
13. $\left\{[x, y] \in \mathbb{R}^{2} \mid x>0, y \leq 0\right\}$
14. $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$
15. $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2} \geq 1\right\}$
16. $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+e^{y}>17\right\}$
17. $\left\{[x, y] \in \mathbb{R}^{2}| | x+y \mid>x+y\right\}$
18. $\left\{[x, y] \in \mathbb{R}^{2}| | x-y \mid=x-y\right\}$
19. $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2}+2 x y=5\right\}$
20. $\left\{[x, y, z] \in \mathbb{R}^{3} \mid x \geq 0, y>0, x+y=2, z \leq 0\right\}$

Answers and hints.

1. $D_{f}=\left\{[x, y] \in \mathbb{R}^{2} \mid y \geq 0\right\}$

2. $D_{f}=\mathbb{R}^{2}$
3. $D_{f}=\mathbb{R}^{2}$

4. $D_{f}=\{[x, y] \mid(x \geq 0 \& y \geq 0) \vee(x \leq 0 \& y \leq 0)\}$, contours are hyperbolas of the form $y=\frac{c}{x}$ for $c>0$, together with the pair of axes.
5. $D_{f}=\left\{[x, y] \mid x^{2}+y^{2} \leq 1\right\}$, contours are circles. 7 . $D_{f}=\left\{[x, y] \mid x^{2}+y^{2}>1\right\}$, contours are circles. 8. $D_{f}=\left\{[x, y] \mid 1 \leq x^{2}+y^{2} \leq 4\right\}$, contours are pairs of circles, one of them is just a circle. 9. $D_{f}=\left\{[x, y] \mid-x^{2}-1 \leq y \leq-x^{2}+1\right\}$, contours are pairs of parabolas, one of them is just a parabola. 10. $D_{f}=\left\{[x, y] \mid 2 k \pi \leq x^{2}+y^{2} \leq\right.$ $(2 k+1) \pi$ for some $k=0,1,2, \ldots\}$, contours are sequences of circles. 11. $D_{f}=\mathbb{R}^{2}$, there are just three contours - one of them is formed by the interiors of black circles, the second one by interiors of white circles and the third one by boundary lines.
6. $D_{f}=\mathbb{R}^{2}$, contours are graphs of functions $y=k-|x|$.

7. (a) $\operatorname{int} \mathbb{Q}=\emptyset, \operatorname{bd} \mathbb{Q}=\overline{\mathbb{Q}}=\mathbb{R}, \mathbb{Q}$ is neither open nor closed. (b) \mathbb{N} is closed, int $\mathbb{N}=\emptyset$, $\operatorname{bd} \mathbb{N}=\overline{\mathbb{N}}=\mathbb{N}$ (c) The set is neither open nor closed, the interior is empty, both boundary and closure are $\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \cup\{0\}$. (d) The set is neither open nor closed, the interior is $(-\infty, 0)$, the closure is \mathbb{R}, the boundary is $[0, \infty)$. 14. The set is neither open nor closed, the interior is $\left\{[x, y] \in \mathbb{R}^{2} \mid x>0, y<0\right\}$, the closure is $\left\{[x, y] \in \mathbb{R}^{2} \mid x \leq 0, y \leq 0\right\}$, the boundary is $\left\{[x, y] \in \mathbb{R}^{2} \mid x \leq 0 \& y \leq 0 \&(x=0 \vee y=0)\right\}$. 15. Open; closure $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}$, boundary $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. 16. Closed; interior $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2}>1\right\}$, boundary $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. 17. Open; boundary $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+e^{y}=17\right\}$, closure $\left\{[x, y] \in \mathbb{R}^{2} \mid x^{2}+e^{y} \leq 17\right\} \quad$ 18. Open; closure $\{[x, y] \mid x+y \leq 0\}$, boundary $\{[x, y] \mid x+y=0\}$. 19. Closed; interior $\{[x, y] \mid x+y>0\}$, boundary $\{[x, y] \mid x+y=0\}$. 20. Closed with empty interior. 21. Neither open nor closed. Empty interior. Boundary and closure $\left\{[x, y, z] \in \mathbb{R}^{3} \mid\right.$ $x \geq 0, y \geq 0, x+y=2, z \leq 0\}$.
