

5. $D_f = \{[x, y] \mid (x \ge 0 \& y \ge 0) \lor (x \le 0 \& y \le 0)\}$, contours are hyperbolas of the form $y = \frac{c}{x}$ for c > 0, together with the pair of axes. **6.** $D_f = \{[x, y] \mid x^2 + y^2 \le 1\}$, contours are circles. **7.** $D_f = \{[x, y] \mid x^2 + y^2 > 1\}$, contours are circles. **8.** $D_f = \{[x, y] \mid 1 \le x^2 + y^2 \le 4\}$, contours are pairs of circles, one of them is just a circle. **9.** $D_f = \{[x, y] \mid -x^2 - 1 \le y \le -x^2 + 1\}$, contours are pairs of parabolas, one of them is just a parabola. **10.** $D_f = \{[x, y] \mid 2k\pi \le x^2 + y^2 \le (2k + 1)\pi$ for some $k = 0, 1, 2, \ldots\}$, contours are sequences of circles. **11.** $D_f = \mathbb{R}^2$, there are just three contours - one of them is formed by the interiors of black circles, the second one by interiors of white circles and the third one by boundary lines. **12.** $D_f = \mathbb{R}^2$, contours are graphs of functions y = k - |x|.

13. (a) int $\mathbb{Q} = \emptyset$, bd $\mathbb{Q} = \overline{\mathbb{Q}} = \mathbb{R}$, \mathbb{Q} is neither open nor closed. (b) N is closed, int $\mathbb{N} = \emptyset$, bd $\mathbb{N} = \overline{\mathbb{N}} = \mathbb{N}$ (c) The set is neither open nor closed, the interior is empty, both boundary and closure are $\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$. (d) The set is neither open nor closed, the interior is $(-\infty, 0)$, the closure is \mathbb{R} , the boundary is $[0, \infty)$. **14.** The set is neither open nor closed, the interior is $\{[x, y] \in \mathbb{R}^2 \mid x > 0, y < 0\}$, the closure is $\{[x, y] \in \mathbb{R}^2 \mid x > 0, y < 0\}$, the closure is $\{[x, y] \in \mathbb{R}^2 \mid x \leq 0, y \leq 0\}$, the boundary is $\{[x, y] \in \mathbb{R}^2 \mid x \leq 0, y \leq 0\}$, the boundary is $\{[x, y] \in \mathbb{R}^2 \mid x \leq 0, y \leq 0, y < 0\}$, the closure is $\{[x, y] \in \mathbb{R}^2 \mid x \leq 0, y \leq 0\}$, the boundary is $\{[x, y] \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. **16.** Closed; interior $\{[x, y] \in \mathbb{R}^2 \mid x^2 + y^2 > 1\}$, boundary $\{[x, y] \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. **17.** Open; boundary $\{[x, y] \in \mathbb{R}^2 \mid x^2 + e^y = 17\}$, closure $\{[x, y] \in \mathbb{R}^2 \mid x^2 + e^y \leq 17\}$ **18.** Open; closure $\{[x, y] \mid x + y \leq 0\}$, boundary $\{[x, y] \mid x + y = 0\}$. **19.** Closed; interior $\{[x, y] \mid x + y > 0\}$, boundary $\{[x, y] \mid x + y = 0\}$. **20.** Closed with empty interior. **21.** Neither open nor closed. Empty interior. Boundary and closure $\{[x, y, z] \in \mathbb{R}^3 \mid x \geq 0, y \geq 0, x + y = 2, z \leq 0\}$.