III. DETERMINE SUP AND INF OF THE FUNCTION f ON THE SET MAND DECIDE WHETHER THESE VALUES ARE ATTAINED 1. $f(x, y, z) = (x + y)^2 + (x - y)^2 + z; M = [-1; 1] \times [-1; 1] \times [-1; 1];$ 2. $f(x, y) = x^2 - xy + y^2, \qquad M = \{[x, y] \in \mathbb{R}^2; |x| + |y| \le 1\}$ 3. $f(x, y) = \frac{x}{a} + \frac{y}{b}, a > 0, b > 0; M = \{[x, y]; x^2 + y^2 \le 1\};$ 4. $f(x, y) = (x^2 + y^2) e^{-(x^2 + y^2)}; M = \mathbb{R}^2; \qquad 5. f(x, y) = (x^2 + 5y^2) e^{-(3x^2 + y^2)}; M = \mathbb{R}^2;$ 6. $f(x, y) = (x + y) e^{-2x - 3y}; M = \{[x, y]; x > 0, y > 0\}$ 7. $f(x, y, z) = x^2 + y^2 + z^2; M = \{[x, y, z]; \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}; a > b > c > 0.$

ANSWERS AND HINTS. **1.** max 5 at points [1, 1, 1], [1, -1, 1], [-1, 1, 1], [-1, -1, 1], min -1 at the point [0, 0, -1]. (Simplify the formula for f and show the result without computing derivatives.) **2.** max 1 at points $[\pm 1, 0]$, $[0, \pm 1]$, min 0 at the point [0, 0]. **3.** max $\frac{\sqrt{a^2+b^2}}{ab}$ at the point $\left[\frac{b}{\sqrt{a^2+b^2}}, \frac{a}{\sqrt{a^2+b^2}}\right]$, min $-\frac{\sqrt{a^2+b^2}}{ab}$ at the point $\left[-\frac{b}{\sqrt{a^2+b^2}}, -\frac{a}{\sqrt{a^2+b^2}}\right]$. (Distinguish the interior and the boundary. For the boundary circle, use the parametrization $x = \cos t$, $y = \sin t$.) **4.** min 0 at the point [0, 0], max $\frac{1}{e}$ at points of the circle $x^2 + y^2 = 1$. (Use the behaviour of the function $t \mapsto te^{-t}$.) **5.** max $\frac{5}{e}$ at the points $[0, \pm 1]$, min 0 at the point [0, 0]. (The value of min is obvious, to show that max is attained use that f is bounded from above by $5(3x^2 + y^2)e^{-(3x^2+y^2)}$.) **6.** sup $\frac{1}{2e}$, not attained; inf 0, not attained. (Use the fact that sup and inf of f on M is the same as on \overline{M} . Show that on \overline{M} the respective values are attained using similar ideas as in the previous problem.) **7.** max a^2 v bodech $[\pm a, 0, 0]$, min 0 v [0, 0, 0]. (Use geometrical interpretation to determine the values without computing derivatives.)