## V. Applications of the implicit function theorem

1. Let us consider the equation $e^{x y}+\sin y+y^{2}=1$ and the point $[2,0]$ :
a) Show that this equation defines a $C^{\infty}$ function $y=f(x)$ defined on a neighborhood of 2 , which satisfies $f(2)=0$.
b) Determine the tangent line to the graph of $f$ at the point 2 .
c) Compute $f^{\prime \prime}(2)$.
d) For which points $[a, 0], a \in \mathbf{R}$ one can prove an analogue of a)?
e) Draw the set af all the points $[x, y]$ which satisfy the equation.
2. Consider the equation $x^{2}+2 x y^{2}+y^{4}-y^{5}=0$ and the point $[0,1]$. Show that
a) this equation defines a $C^{\infty}$ function $y=f(x)$ in a neighborhood of 0 , which satisfies $f(0)=1$;
b) the function $f$ is strictly increasing on a neighborhood of 0 .
c) If $f$ convex or concave on a neighborhood of 0 ?
3. Let us consider the equation $x^{2}+2 y^{2}+3 z^{2}+x y-z-9=0$ and the point $[1,-2,1]$ :
a) Show that this equation defines a $C^{\infty}$ function $z=z(x, y)$ on a neighborhood $U$ of $[1,-2]$, which satisfies $z(1,-2)=1$;
b) compute $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ in $U$;
c) determine the equation of the tangent plane to the graph of $z$ at the point $[1,-2]$.
4. Show that the set of all the points $[x, y, z] \in \mathbf{R}^{3}$ satisfying the equation $x^{2}+y^{2}+z^{2}-3 x y z=0$ can be in a neighborhood of $[1,1,1]$ described as the graph of a $C^{\infty}$ function $f(x, y)$ defined on a neighborhood of $[1,1]$ which satisfies $f(1,1)=1$. Determine the equation of the tangent plane to the graph of $f$ at $[1,1]$.

Answers and hints. 1. (b) tangent line: $y=0$ (c) 0 (d) for $a \neq-1$. (e) The set contains all the $x$-axis (i.e., points $[a, 0]$ for $a \in \mathbf{R}$ ), for $a \neq-1$ there is a unique number $\varphi(a) \neq 0$ such that [ $a, \varphi(a)$ ] belongs to the set. For $a>-1$ one has $\varphi(a)<0$, for $a<-1$ one has $\varphi(a)>0$. One can show that $\lim _{a \rightarrow-1} \varphi(a)=0$. 2. (b) Compute $f^{\prime}(0)$ and check that $f^{\prime}(0)=2>0$. (c) We have $f^{\prime \prime}(0)=-14$, hence $f^{\prime \prime}<0$ on a neighborhood of 0 , thus $f$ is strictly concave on a neighborhood of 0 . 3. tangent plane $z=\frac{7}{5}(y+2)+1 \quad$ 4. tangent plane $z=-(x-1)-(y-1)+1$

