1. $\left|\begin{array}{cccc}1 & -1 & 0 & -3 \\ 7 & -2 & 2 & -10 \\ 7 & -1 & 1 & -9 \\ 2 & 0 & -2 & -4 \\ 6 & -1 & 2 & -7\end{array}\right|$
2. $\left|\begin{array}{ccc}1 & 2 & -1 \\ 2 & 3 & 0 \\ 0 & -1 & 1\end{array}\right|$
3. $\left|\begin{array}{ccc}1 & 0 & -1 \\ -1 & 1 & 0 \\ 2 & 1 & 3\end{array}\right|$
4. $\left|\begin{array}{cccc}1 & 2 & -3 & 1 \\ 2 & 3 & -1 & 2 \\ 7 & -1 & 4 & 3 \\ 1 & 1 & -2 & -1\end{array}\right|$
5. $\left|\begin{array}{cccc}1 & 2 & -1 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 0\end{array}\right|$
6. $\left|\begin{array}{llll}1 & 2 & 1 & 3 \\ 2 & 4 & 5 & 1 \\ 3 & 6 & 7 & 5 \\ 4 & 8 & 3 & 7\end{array}\right|$
7. $\left|\begin{array}{ccc}246 & 427 & 327 \\ 1014 & 543 & 443 \\ -342 & 721 & 621\end{array}\right|$
8. Determine the determinant of the matrix made:
a) from the matrix from problem 2 by re-ordering rows in the order $2,3,1$;
b) by multiplying the matrix from problem 3 by -1 ;
c) by re-ordering columns in the matrix from problem 4 in the order $4,2,1,3$;
d) by multiplying the matrix form problem 7 by $1 / 100$;
e) by multiplying the matrices from problems 4 a 5 ;
f) as $A^{T} A B$, where A is the matrix from problem 1 and B is the matrix from problem 6 ;
$\mathrm{g})^{*}$ as $A A^{T}$, where A is the matrix from problem 1 .

Find all the solutions of the following systems of linear equations

$$
\begin{aligned}
& x+2 y-z=1 \quad x \quad-z=-2 \\
& \text { 9. } 2 x+3 y=1 \quad \text { 10. }-x+y=1 \\
& -y+z=1 \quad 2 x+y+3 z=13 \\
& x_{1}+2 x_{2}-3 x_{3}+x_{4}=-5 \\
& \text { 9. } 2 x+3 y=1 \\
& 2 x+y+3 z=13 \\
& \text { 11. } \begin{array}{l}
2 x_{1}+3 x_{2}-x_{3}+2 x_{4}=0 \\
7 x_{1}-x_{2}+4 x_{3}-3 x_{4}=15
\end{array} \\
& x_{1}+x_{2}-2 x_{3}-x_{4}=-3 \\
& x_{1}+2 x_{2}-x_{3}+x_{4}=2 \\
& x_{1}+2 x_{2}+2 x_{3}+3 x_{4}=5 \\
& \text { 12. } \begin{aligned}
x_{1} \quad-x_{4} & =-1 \\
x_{2}+x_{3} & =0
\end{aligned} \\
& x_{1}+2 x_{2} \quad=-1 \\
& \text { 13. } 6 x_{1}+15 x_{2}+12 x_{3}+25 x_{4}=42 \\
& 2 x_{1}+5 x_{2}+4 x_{3}+8 x_{4}=14 \\
& x_{1}-x_{2}+2 x_{3}-4 x_{4}=-7
\end{aligned}
$$

14. For which vectors on the right-hand side does the system with the same matrix as the system in the previous problem have a solution?

Answers and hints. 1. Determinant does not exist, it is not a square matrix. 2. 1 3. 6
$\begin{array}{llllll}\text { 4. }-84 & \text { 5. } 1 & \text { 6. } 0 & \text { 7. }-29400000 & \text { 8. a) } 1 \text {; b) }-6 \text {; c) }-84 \text {; d) }-29.4 \text {; e) }-84 \text {; f) } 0 \text { (because }\end{array}$ $\operatorname{det} B=0$); g) 0 (one can proceed as follows: check that $h(A)<5$, deduce (using, for example, the theorem on matrix multiplication and transformation) that $h\left(A A^{T}\right)<5$, so $\operatorname{det}\left(A A^{T}\right)=0$). $\begin{array}{lllll}\text { 9. } x=5, y=-3, z=-2 & \text { 10. } x=1, y=2, z=3 & \text { 11. }(1,0,2,0) & \text { 12. }(5,-3,3,6) & \mathbf{1 3} .\end{array}$ infinitely many solutions of the form $(-3-2 t, 4, t, 0), t \in \mathbb{R} \quad 14$. for those vectors (a, b, c, d), which satisfy $7 a=b+d$.

