
Sample problems for the written part of exam

Problem 1 - version 1 Compute the inverse of the matrix A. (Hint: Let B be the matrix made
from A by multiplying the second row by 1

3
, the third row by 1

9
and the fourth row by 1

27
. Compute

first B−1 and then deduce the value of A−1.)

A =







1 3 9 27
3 3 9 27
9 9 9 27
27 27 27 27







Sketch of the solution.

The matrix B equals

B =







1 3 9 27
1 1 3 9
1 1 1 3
1 1 1 1






.

To compute the inverse we take the matrix

(B|I) =







1 3 9 27
1 1 3 9
1 1 1 3
1 1 1 1
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∣

∣

∣

∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







Using standard elementary row transformations we arrive to







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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,

thus

B
−1 =
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.

Finally, since A can be made from B by multiplying the second row by 3, the third row by 9 and
the fourth row by 27, the matrix A

−1 will be made from B
−1 by multiplying the second column

by 1
3
, the third column by 1

9
and the fourth column by 1

27
. Therefore

A
−1 =









−1
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1

2
0 0

1

2
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6
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18

0 0 1

18
− 1
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.









Approximate evaluation:

Correct beginning of computation of the inverse: 1 point.
Correct application of elementary row transformation: 5 points. (The computation should be, of
course, given explicitly step by step, in order the way to the result can checked.)
Pointing out the value of B−1: 1 point.
Determining the value of A−1 including explanation: 3 points.



Problem 2 - version 2 Compute determinants of matrices A and B
T
A, where A is given below

and B is made from A by multiplying the first column by 17 and fifth column by 1
5
.

A =











1 2 3 4 5
2 12 13 14 15
3 13 23 24 25
4 14 24 34 35
5 15 25 35 50











Sketch of solution: Standard rules for transformation and determinant yield:

det











1 2 3 4 5
2 12 13 14 15
3 13 23 24 25
4 14 24 34 35
5 15 25 35 50











= 25 det











1 2 3 4 1
2 12 13 14 3
3 13 23 24 5
4 14 24 34 7
1 3 5 7 2











= 25 det











1 2 3 4 1
0 8 7 6 1
0 7 14 12 2
0 6 12 18 3
0 1 2 3 1











= 25 det











1 2 3 4 1
0 0 −9 −18 −7
0 0 0 −9 −5
0 0 0 0 −3
0 1 2 3 1











= 25 det







0 −9 −18 −7
0 0 −9 −5
0 0 0 −3
1 2 3 1







= 25 · 1 · (−1)1+4 det





−9 −18 −7
0 −9 −5
0 0 −3





= −25 · (−9) · (−9) · (−3) = 25 · 35.

Hence detA = 25 · 35.
Further, detBT = detB = 17 · 1

5
· detA = 5 · 17 · 35.

Finally: det(BT
A) = detBT · detA = 17 · 53 · 310.

Approximate evaluation:

Computing detA: 7 points.
Deducing the value of det(BT

A): 3 points.



Problem 1 - version 3

Find all the solutions of the system Ax = b for the below given matrix A and given three right-hand
side vectors b1, b2 a b3.

A =







1 3 9 27
3 1 27 9
1 3 27 9
3 1 9 27






,b1 =







1
3
2
2






,b2 =







1
1
1
1






,b3 =







1
2
3
4







Sketch of the solution:

We will use Gauss elimination method. The best possibility is to make the computation simulta-
neously for all the three vectors. I.e., take the augmented matrix

(A|b1 b2 b3) =







1 3 9 27
3 1 27 9
1 3 27 9
3 1 9 27
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and perform the elimination (i.e., transform the matrix to the row echelon form using elementary
row transformation). We will get







1 3 9 27
0 −8 0 −72
0 0 18 −18
0 −8 −18 −54
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∼







1 3 9 27
0 −8 0 −72
0 0 18 −18
0 0 −18 18
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∼







1 3 9 27
0 −8 0 −72
0 0 18 −18
0 0 0 0
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Now we can write down the solutions:
For b1: [−9t+ 12 ,−9t, t+ 1

18
, t], t ∈ R.

For b2: [−9t+ 14 ,−9t+ 14 , t, t], t ∈ R.
For b3: no solution.
Approximate evaluation:

Correct beginning of the elimination: 1 point.
The elimination itself: 4 points.
Deducing the formulas for solutions for b1 2 points, for b2 2 points.
Nonexistence of solution for b3: 1 point.



Problem 2 Determine and draw the domain of the function

f(x, y) =

√

y − sinx
y

,

compute its partial derivatives with respect to all the variables at all points where they exist.
Sketch of the solution: Domain is the following:

Df = {[x, y] ∈ R2 : (y > 0 and y ≥ sinx) or (y < 0 and y ≤ sinx)}.

Picture of the domain:

−π 0 π

Partial derivatives are computed using standard rules:

∂f

∂x
(x, y) =

1

2

√

y

y − sinx · − cosx
y

∂f

∂y
(x, y) =

1

2

√

y

y − sinx · sinx
y2

.

Both formulas are valid at points [x, y] satisfying y > 0 and y > sinx or y < 0 and y < sinx.
It remains to check the points [x, y] satisfying y = sinx, y 6= 0.
At these points partial derivative with respect to y is not defined, since there is no vertical segment
centered at the respective point contained in the domain.
Further, partial derivative with respect to x has a sense only in points [π

2
+2kπ, 1] and [−π

2
+2kπ,−1]

for k ∈ Z, since otherwise there is no horizontal segment centered at the respective point contained
in the domain.
Finally, ∂f

∂x
(π
2
+ 2kπ, 1) and ∂f

∂x
(−π
2
+ 2kπ,−1) for k ∈ Z do not exist. This can be checked, for

example, using the definition of partial derivatives.

∂f

∂x
(
π

2
+ 2kπ, 1) = lim

x→π

2
+2kπ

√

1−sinx
1

− 0
x− (π

2
+ 2kπ)

= lim
x→π

2

√
1− sinx
x− π

2

= lim
x→0

√
1− cosx
−x

= lim
x→0

−
√

1− cosx
x2

· sgn(x).

This limit does not exist, since the limit from the right equals − 1√
2
and the limit from the left

equals 1√
2
.

Similarly for the other points.
Approximate evaluation:

Determining the domain: 2 points.
Picture of the domain: 1 point.
Formulas for the partial derivatives: 2 points.
Domain of the validity of these formulas: 1 point.
Determining in which of the remaining points the partial derivatives can be defined: 2 points.
Computation of the respective limits: 2 points (1 point each).



Problem 3: Let us consider the equation

cos(x+ y2) + sin(x2 + y) = 1

and the point [−1,−1]. Show that this equation defines a C∞ function y = f(x) defined on a
neighborhood of −1, which satisfies f(−1) = −1. Compute f ′(−1), f ′′(−1) and determine the
equation of the tangent line to the graph of f at the point [−1, f(−1)].
Sketch of solution. Denote F (x, y) = cos(x+ y2) + sin(x2 + y)− 1. To show the existence of f
with the given properties, it is enough to check the assumptions of the implicit function theorem:
(1) F is C∞ on an open set containing [−1,−1]. This is true, because F ∈ C∞(R2). This follows
from the properties of the elementary functions.
(2) F (−1,−1) = 0. This can be checked by computation.
(3) ∂F

∂y
(−1,−1) 6= 0. Indeed,

∂F

∂y
(−1,−1) = −sin(x+ y2) · 2y + cos(x2 + y)

∣

∣

x=−1,y=−1
= 1.

The implicit function theorem then yields the existence of f with the required properties. In
particular, f satisfies

cos(x+ f(x)2) + sin(x2 + f(x))− 1 = 0 on a neighborhood of − 1.

To compute the first derivative, we differentiate this equation:

− sin(x+f(x)2) · (1+2f(x)f ′(x))+cos(x2+f(x)) · (2x+f ′(x)) = 0 on a neighborhood of −1.

If we substitute there x = −1 and use that f(−1) = −1, we get

− sin(0) · (1− 2f ′(−1)) + cos(0) · (−2 + f ′(−1)) = 0,

hence f ′(−1) = 2.
To compute the second derivative, we differentiate once more. We get

− cos(x+ f(x)2) · (1 + 2f(x)f ′(x))2 − sin(x+ f(x)2) · (2(f ′(x))2 + 2f(x)f ′′(x))

− sin(x2+ f(x)) · (2x+ f ′(x))2+cos(x2+ f(x)) · (2+ f ′′(x)) = 0 on a neighborhood of − 1.

Further, we substitute x = −1 and use the fact f(−1) = −1 and the already computed value
f ′(−1) = 2. We get

− cos(0) · (1+2 · (−1) ·2)2−sin(0) · (2 ·22+4f ′′(−1))−sin(0) · (−2+2))2+cos(0) · (2+f ′′(−1)) = 0,

hence f ′′(−1) = 7.
Equation of the tangent plane is then y = −1 + 2(x+ 1).
Approximate evaluation:

Checking the assumptions of IFT: 3 points
The equation satisfied by f : 1 point
Differentiating the equation for the first time: 1 point
Computing f ′(−1): 1 point
Differentiating the equation for the second time: 2 points
Computing f ′′(−1): 1 point
Tangent line: 1 point



Problem 4: Determine sup and inf of the function f on the set M and decide whether these
values are attained, if

f(x, y, z) = x2y and M = {[x, y, z] ∈ R
3 : x2 + y2 + 2z2 = 4, xz ≥ 1}

Sketch of solution:

Existence of extrema: f is continuous on R
3. The set M is closed (it is determined by equality

and non-strict inequality of continuous functions) and bounded (it is contained in the closed ball
centered at origin with radius 2. Therefore it is compact. Thus the extrema (minimum and
maximum) do exist provided M is nonempty. This assumption will be checked later by finding
some points in M .
To find extrema, we decompose M to two sets, M =M1 ∪M2, where

M1 = {[x, y, z] ∈ R
3 : x2 + y2 + 2z2 = 4, xz > 1},

M2 = {[x, y, z] ∈ R
3 : x2 + y2 + 2z2 = 4, xz = 1}.

Further, denote g1(x) = x2 + y2 + 2z2 − 4 and g2(x, y, z) = xz − 1. For future use let us compute
gradients:

∇f(x, y, z) = [2xy, x2, 0],

∇g1(x, y, z) = [2x, 2y, 4z],

∇g2(x, y, z) = [z, 0, x].

Let us now investigate the set M1. By the Lagrange multiplier theorem, if at some point [x, y, z] ∈
M1 there is a local extremum of f with respect to M1, then at this point either ∇g1 = o or there
is λ ∈ R such that ∇f + λ · ∇g1 = 0.
Let us first consider the first possibility. ∇g1 = o only at the point [0, 0, 0], but this point does
not belong to M1 (it does not satisfy the respective equation). So, this possibility is excluded.
So, in points of extrema there is λ ∈ R such that

2xy + λ · 2x = 0,
x2 + λ · 2y = 0,
0 + λ · 4z = 0

The third equation implies that either z = 0 or λ = 0. If z = 0, then also xz = 0 and such points
cannot be in M1 since all the points of M1 satisfy xz > 1. If λ = 0, then the second equation
yields x = 0, which is again in contradiction with xz > 1. Therefore there are no extrema in M1.
So, let us continue with M2. By the Lagrange multiplier theorem, if at some point [x, y, z] ∈ M2
there is a local extremum of f with respect to M2, then at this point either ∇g1 and ∇g2 are
linearly dependent or there are λ1, λ2 ∈ R such that ∇f + λ · ∇g1 + λ2∇g2 = o.
Let us first consider the first possibility. If ∇g1 and ∇g2 are linearly dependent, then either there
is α ∈ R such that ∇g1 = α∇g2 or there is α ∈ R such that ∇g2 = α∇g1.
If ∇g1 = α∇g2, i.e. [2x, 2y, 4z] = [αz, 0, αx], necessarily y = 0. Further, we get 2x = αz =
α · 1

4
αx = 1

4
α2x. It follows that either x = 0 or α2 = 8. If x = 0, then necessarily z = 0, which is

not possible as [0, 0, 0] /∈ M2. Hence α
2 = 8, so x2 = 2z2. Hence, from the first equation defining

M2 we get 2z
2 + 2z2 = 4, thus z2 = 1 and x2 = 2. But it is in contradiction with the second

equation xz = 1. So, the possibility ∇g1 = α∇g2 is excluded.
Suppose now ∇g2 = α∇g1. If α 6= 0, we get ∇g1 =

1

α
∇g2, which is impossible by the previous

paragraph. If α = 0, we get x = z = 0. But it contradicts the equation xz = 1, so no such point
belongs to M2.
Finally, suppose that there are λ1, λ2 ∈ R such that ∇f + λ · ∇g1 + λ2∇g2 = o. I.e., we have the
following system of equations:

2xy + λ1 · 2x+ λ2z = 0,

x2 + λ1 · 2y + λ2 · 0 = 0,
0 + λ1 · 4z + λ2x = 0



If we multiply the first equation by x and the third one by z and subtract the resulting two
equations, we obtain

2x2y + λ1(2x
2 − 4z2) = 0.

If we now multiply this equation by y, the second equation by x2 − 2z2 and subtract the resulting
equations, we get

2x2y2 − x2(x2 − 2z2) = 0.

Since x 6= 0 due the the equation xz = 1, the above equation can be divided by x2, so we get

2y2 − x2 + 2z2 = 0, hencey2 =
1

2
x2 − z2.

If we substitute this into the first equation definining M2, we obtain

3

2
x2 + z2 = 4.

If we substitute there moreover z = 1

x
, we get

3

2
x2 +

1

x2
= 4, hence

3

2
x4 − 4x2 + 1.

This is a biquadratic equation, so

x2 =
4±

√
10

3
, hence x = ±

√

4±
√
10

3
,

where all the four combinations of signs are allowed.

Now we compute z = 1

x
and y2 = 1

2
x2 − z2. In case x = ±

√

4+
√
10

3
, we obtain in this way four

points, in case x = ±
√

4−
√
10

3
no solutions are obtained since one gets y2 < 0 which is impossible.

If we compute the values of f at the four obtained points and compare them, we get the results:

Maximum 2

9

√
3
√

14 + 5
√
10 at points

[

±
√

4+
√
10

3
,

√

2
√
10−3
3

,±
√

3

4+
√
10

]

(the two signs are the

same), minimum −2
9

√
3
√

14 + 5
√
10 at points

[

±
√

4+
√
10

3
,−

√

2
√
10−3
3

,±
√

3

4+
√
10

]

(the two signs

are the same).
Approximate evaluation:

Existence of extrema: 2 points
Decomposition to M1 ∪M2: 1 point
On M1:
- the case of the zero gradient 1 point
- the stating of the equations with mutlipliers 1 point
- solving the equations 2 points
On M2:
- the case of linearly dependent gradients 2 points
- the stating of the equations with mutlipliers 1 points
- solving the equations 3 points
Final discussion: 2 points



Problem 5: Compute the following antiderivative on maximal possible intervals:

∫

x4 + 4x3 + x2 + x+ 1

(x2 + x+ 1)(x2 + 5x+ 4)
dx

Sketch of solution:

The integrand is a rational function. The degrees of nominator and denominator are equal to 4,
so we should start by division of the two polynomials.
The denominator can be expanded to x4 + 6x3 + 10x2 + 9x+ 4, hence we have

x4 + 4x3 + x2 + x+ 1

(x2 + x+ 1)(x2 + 5x+ 4)
=

x4 + 4x3 + x2 + x+ 1

x4 + 6x3 + 10x2 + 9x+ 4
= 1 +

−2x3 − 9x2 − 8x− 3
x4 + 6x3 + 10x2 + 9x+ 4

.

The second fraction is a rational function where the degree of the nominator is strictly smaller
than the degree of the denominator, so the next step is the decomposition to the partial fractions.
First we need to decompose the denominator to a suitable product. We have

x4 + 6x3 + 10x2 + 9x+ 4 = (x2 + x+ 1)(x2 + 5x+ 4) = (x2 + x+ 1)(x+ 4)(x+ 1),

where the first step follows from the fact that left-hand side has been computed by expanding the
respective product. Further, the quadratic polynomial x2 + x + 1 has no real roots, so the above
decomposition is the required one. Now, to decompose the fraction to partial fractions we need to
find A,B,C,D ∈ R such that

−2x3 − 9x2 − 8x− 3
x4 + 6x3 + 10x2 + 9x+ 4

=
Ax+B

x2 + x+ 1
+

C

x+ 4
+

D

x+ 1
.

If we multiply this equation by the denominator of the left-hand side, we get

−2x3 − 9x2 − 8x− 3 = (Ax+B)(x+ 4)(x+ 1) + C(x2 + x+ 1)(x+ 1) +D(x2 + x+ 1)(x+ 4).

If we substitute there x = −1, we get

−2 = 3D, hence D = −2
3
.

If we substitute x = −4, we get

13 = −39C, hence C = −1
3
.

To find the values of A and B, we will compare the coefficient of the polynomials on the right-hand
side and on the left-hand side. The coefficient at x3 of the right-hand side is A+ C +D = A− 1.
We thus get

−2 = A− 1, hence A = −1.
Further, the coefficient at x0 on the right-hand side is 4B + C + 4D = 4B − 3. We thus get

−3 = 4B − 3, hence B = 0.

We therefore have

−2x3 − 9x2 − 8x− 3
x4 + 6x3 + 10x2 + 9x+ 4

=
−x

x2 + x+ 1
+

−1
3

x+ 4
+

−2
3

x+ 1
.

The first fraction should be furhter decomposed:

−x

x2 + x+ 1
= −1
2

2x+ 1

x2 + x+ 1
+

1

2

x2 + x+ 1
.



The antiderivative to the first fraction is −1
2
log(x2 + x+1). The antiderivative to the second one

is computed in the standard way:

∫ 1

2

x2 + x+ 1
dx =

∫

1

2
· 1

(x+ 1
2
)2 + 3

4

dx =

∫

1

2
· 4
3

1
4

3
(x+ 1

2
)2 + 1

dx

=

∫

2

3
·

√
3

2
· 2√
3

( 2√
3
(x+ 1

2
))2 + 1

dx
c
=
1√
3
arctg

2x+ 1√
3

on R.

By putting together the partial results we get that

∫

x4 + 4x3 + x2 + x+ 1

(x2 + x+ 1)(x2 + 5x+ 4)
dx

c
= x−1

2
log(x2+x+1)+

1√
3
arctg

2x+ 1√
3

−1
3
log |x+4|−2

3
log |x+1|

on each of the three intervals (−∞,−4), (−4,−1) and (−1,+∞).
Approximate evaluation:

Division of polynomials: 1 point
Decomposing to the partial fractions:
- correct statement of the general equation 1 point
- solution 3 points
Integration of the first fraction:
- further decomposition 1 point
- integration of the first part 1 point
- integration of the second part 3 points
Integration of the second and third fractions: 2 points
Putting the results together: 1 point
Determining of the intervals: 2 points


