\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\% Theorems to prove
\%
$\% \% \% \%$ The number after the ' $\%$ ' sign are the numbers $\% \%$
$\% \% \% \%$ of the respective theorems in the lecture notes. $\% \%$
$\% \%$
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\% Chapter 4
characterization of closed sets \% 4.4
Heine theorem on continuity with respect to a set \% 4.7
characterization of compact subsets of $\mathbf{R}^{n}($ for $n=2) \% 4.10$
on attaining of extrema $\% 4.11$
weak Langrange theorem (for $n=2$) $\% 4.13$
on derivative of a composed function $\% 4.16$ (the case $s=1$ and $r=2$)
implicit function theorem $\% 4.18$ (just the part of the proof presented at the lecture)
Lagrange multiplier theorem \% 4.20
\%\% 8 proofs from Chapter 4
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\% Chapter 5
on transformation to the row-echelon form $\% 5.5(\mathrm{i})$
on transformation and rank $\% 5.5$ (iii)
on transformation and matrix multiplication $\% 5.6$
on determinant and elementary row transformation $\% 5.11$ (including 5.10) - the proof of 5.11 (i) not required
characterization of invertible matrices $\% 5.8$ (including 5.7) and 5.13
on determinant of triangular matrices $\% 5.9$ (including the remark on matrices with zero row or column)
on linear systems with square matrix $\% 5.17$
Cramer's rule \% 5.18
on reprezentation of linear mappings $\% 5.20$
on linear mapings from \mathbf{R}^{n} to $\mathbf{R}^{n} \% 5.22$
$\% \% \% 10$ proofs from Chapter 5
\%\%\%\%\%\%\%\%\%\%\% Chapter 6
on differentiating indefinite integral $\% 6.6$
Newton-Leibniz formula for generalized Riemann integral $\% 6.14$
integration by parts for definite integral $\% 6.15$
substitution for definite integral $\% 6.16$
\%\%\% 4 proofs from Chapter 6
$\% \% \% \% \% \% \% \% \% \%$ Chapter 7
comparison test $\% 7.2$
on convergence and absolute convergence $\% 7.3$
limit test \% 7.4
Cauchy test \% 7.5
on series of the form $\sum 1 / n^{\alpha} \% 7.7$
$\% \% \% 5$ proofs from Chapter 7
\%

