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On optimality of constants
in the Little Grothendieck Theorem
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Abstract. We explore the optimality of the constants making valid the recently
established little Grothendieck inequality for JB∗-triples and JB∗-algebras. In our main
result we prove that for each bounded linear operator T from a JB∗-algebra B into a
complex Hilbert space H and ε > 0, there is a norm-one functional ϕ ∈ B∗ such that

‖Tx‖ ≤ (
√
2 + ε)‖T‖ ‖x‖ϕ for x ∈ B.

The constant appearing in this theorem improves the best value known up to date (even
for C∗-algebras). We also present an easy example witnessing that the constant cannot be
strictly smaller than

√
2, hence our main theorem is ‘asymptotically optimal’. For type I

JBW∗-algebras we establish a canonical decomposition of normal functionals which may
be used to prove the main result in this special case and also seems to be of an independent
interest. As a tool we prove a measurable version of the Schmidt representation of compact
operators on a Hilbert space.

1. Introduction. We investigate the optimal values of the constant in
the Little Grothendieck Theorem for JB∗-algebras. The story begins in 1953
when A. Grothendieck [20] proved his famous theorem on factorization of
bilinear forms on spaces of continuous functions through Hilbert spaces.
A weaker form of this result, called the Little Grothendieck Theorem, can
be formulated as a canonical factorization of bounded linear operators from
spaces of continuous functions into a Hilbert space. It was also proved by
A. Grothendieck [20] (see also [43, Theorem 5.2]) and reads as follows.

Theorem A. There is a universal constant k such that for any bounded
linear operator T : C(K) → H, where K is a compact space and H is
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a Hilbert space, there is a Radon probability measure µ on K such that

‖Tf‖ ≤ k‖T‖
(�
|f |2 dµ

)1/2
for f ∈ C(K).

Moreover, the optimal value of k is 2/
√
π in the complex case and

√
π/2 in

the real case.

The Grothendieck Theorem was later extended to the case of C∗-algebras
by Pisier [42] and Haagerup [21]. The ‘little version’ of the extension reads
as follows. Henceforth, all Hilbert spaces considered in this note will be over
the complex field.

Theorem B. Let A be a C∗-algebra, H a Hilbert space and T : A→ H
a bounded linear operator. Then there are two states ϕ1, ϕ2 ∈ A∗ such that

‖Tx‖ ≤ ‖T‖(ϕ1(x
∗x) + ϕ2(xx

∗))1/2 for x ∈ A.
Moreover, the constant 1 on the right-hand side is optimal.

The positive part of the previous theorem is due to Haagerup [21], the
optimality result was proved by Haagerup and Itoh in [22] (see also [43, Sec-
tion 11]). Let us recall that a state on a C∗-algebra is a positive functional
of norm one, hence in the case of a complex C(K) space (which is a commu-
tative C∗-algebra), a state is just a functional represented by a probability
measure. Hence, as a consequence of Theorem B we get a weaker version of
the complex version of Theorem A with k ≤

√
2.

Let us point out that Theorem B is specific for (non-commutative) C∗-al-
gebras due to the asymmetric role played there by the products xx∗ and x∗x.
To formulate its symmetric version recall that the Jordan product on a C∗-al-
gebra A is defined by

x ◦ y = 1
2(xy + yx) for x, y ∈ A.

Using this notation we may formulate the following consequence of Theo-
rem B.

Theorem C. Let A be a C ∗-algebra, H a Hilbert space and T : A→ H
a bounded linear operator. Then there is a state ϕ ∈ A∗ such that

‖Tx‖ ≤ 2‖T‖ϕ(x ◦ x∗)1/2 for x ∈ A.
To deduce Theorem C from Theorem B it suffices to take ϕ = 1

2(ϕ1+ϕ2)
and to use positivity of the elements xx∗ and x∗x. However, in this case the
question on optimality of the constant remains open.

Question 1.1. Is the constant 2 in Theorem C optimal?

It is easy to show that the constant should be at least
√
2 (see Ex-

ample 7.10 below) and, to the best of our knowledge, no counterexample is
known showing that

√
2 is not enough.
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A further generalization of the Grothendieck Theorem, to the setting of
JB∗-triples (see Section 2 for basic definitions and properties), was suggested
by J. T. Barton and Y. Friedman [3]. However, their proof contained a gap
found later by Peralta and Rodríguez Palacios [39, 40] who proved a weaker
variant of the theorem. A correct proof was recently provided in [25]. The
‘little versions’ of these results are summarized in the following theorem.

Theorem D. Let E be a JB∗-triple, H a Hilbert space and T : E → H
a bounded linear operator.

(1) If T ∗∗ attains its norm, there is a norm-one functional ϕ ∈ E∗ such that

‖Tx‖ ≤
√
2 ‖T‖ ‖x‖ϕ for x ∈ E.

(2) Given ε > 0, there are norm-one functionals ϕ1, ϕ2 ∈ E∗ such that

‖Tx‖ ≤ (
√
2 + ε)‖T‖(‖x‖2ϕ1

+ ε‖x‖2ϕ2
)1/2 for x ∈ E.

(3) Given ε > 0, there is a norm-one functional ϕ ∈ E∗ such that

‖Tx‖ ≤ (2 + ε)‖T‖ ‖x‖ϕ for x ∈ E.
The prehilbertian seminorms ‖ · ‖ϕ used in the statement are defined in

Subsection 2.1 below.
Let us comment on the history and the differences of the three versions.

It was claimed in [3, Theorem 1.3] that assertion (1) holds without the
additional assumption on attaining the norm, because those authors assumed
this assumption is satisfied automatically. In [39] and [40, Example 1 and
Theorem 3] it was pointed out that this is not the case and assertion (2)
was proved using a variational principle from [44]. In [40, Lemma 3] also
assertion (1) was formulated.

Note that in (2) not only is the constant
√
2 replaced by a slightly larger

one, but also the prehilbertian seminorm on the right-hand side is perturbed.
This perturbation was recently avoided in [25, Theorem 6.2], at the cost of
squaring the constant. Further, although the proof from [3] was not correct,
up to now there is no counterexample to the statement itself. In particular,
the following question remains open.

Question 1.2. What is the optimal constant in assertion (3) of Theo-
rem D? In particular, does assertion (1) of the theorem hold without assuming
the norm attainment?

The main result of this note is the following partial answer.

Theorem 1.3. Let B be a JB∗-algebra, H a Hilbert space and T : B → H
a bounded linear operator. Given ε>0, there is a norm-one functional ϕ ∈ B∗
such that

‖Tx‖ ≤ (
√
2 + ε)‖T‖ ‖x‖ϕ for x ∈ B.

In particular, this holds if B is a C∗-algebra.
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Note that JB∗-algebras form a subclass of JB∗-triples and can be viewed
as a generalization of C∗-algebras (see the next section). We further remark
that the previous theorem is ‘asymptotically optimal’ as the constant cannot
be strictly smaller than

√
2 by Example 7.2 below.

The paper is organized as follows. Section 2 contains basic background
on JB∗-triples and JB∗-algebras. In Section 3 we formulate the basic strategy
of the proof using majorization results for prehilbertian seminorms.

In Section 4 we deal with a large subclass of JBW∗-algebras (finite ones
and those of type I). The main result of this section is Proposition 4.2 which
provides a canonical decomposition of normal functionals on the just com-
mented JBW∗-algebras. This statement may be used to prove the main result
in this special case and, moreover, it seems to be of an independent interest.
As a tool we further establish a measurable version of Schmidt decomposition
of compact operators (see Theorem 4.4).

In Section 5 we address Jordan subalgebras of von Neumann algebras.
Section 6 contains a synthesis of the previous sections, the proof of the main
result and some consequences. In particular, we show that Theorem B (with
the precise constant) follows easily from Theorem 1.3.

Section 7 contains several examples witnessing optimality of some re-
sults and related open problems. In Section 8 we discuss the possibility of
extending our results to general JB∗-triples.

2. Basic facts on JB∗-triples and JB∗-algebras. It is known that
in most cases, like in B(H), the hermitian part of a C∗-algebra A need not
be a subalgebra of A because it is not necessarily closed for the associative
product. This instability can be avoided, at the cost of losing associativity,
by replacing the associative product ab in A with the Jordan product defined
by

(1) a ◦ b := 1
2(ab+ ba).

This may be seen as an inspiration for the following abstract definitions.
A real or complex Jordan algebra is a non-necessarily associative algebra B
over R or C whose multiplication (denoted by ◦) satisfies the identities

(2)
x ◦ y = y ◦ x (commutative law),

(x ◦ y) ◦ x2 = x ◦ (y ◦ x2) (Jordan identity)

for all x, y ∈ B, where x2 = x ◦ x.
Jordan algebras were the mathematical structures designed by the theo-

retical physicist P. Jordan to formalize the notion of an algebra of observables
in quantum mechanics in 1933. The term ‘Jordan algebra’ was introduced by
A. A. Albert in the 1940s. Promoted by the pioneering works of I. Kaplansky,
E. M. Alfsen, F. W. Shultz, H. Hanche-Olsen, E. Størmer, J. D. M. Wright



Constants in the Little Grothendieck Theorem 5

and M. A. Youngson, JB∗- and JBW∗-algebras are Jordan extensions of
C∗- and von Neumann algebras. A JB∗-algebra is a complex Jordan algebra
(B, ◦) equipped with a complete norm ‖ · ‖ and an involution ∗ satisfying
the following axioms:

(a) ‖x ◦ y‖ ≤ ‖x‖ ‖y‖ for x, y ∈ B;
(b) ‖Ux(x∗)‖ = ‖x‖3 for x ∈ B (a Gelfand–Naimark type axiom),

where Ux(y) = 2(x ◦ y) ◦ x− x2 ◦ y (x, y ∈ B). These axioms guarantee that
the involution of every JB∗-algebra is an isometry (see [51, Lemma 4] or [9,
Proposition 3.3.13]).

JB∗-algebras were also called Jordan C∗-algebras by I. Kaplansky and
other authors at the early stages of the theory.

Every C∗-algebra is a JB∗-algebra with its original norm and involution
and the Jordan product defined in (1). Actually, every norm-closed self-
adjoint Jordan subalgebra of a C∗-algebra is a JB∗-algebra. Those JB∗-al-
gebras obtained as JB∗-subalgebras of C∗-algebras are called JC ∗-algebras.
There exist JB∗-algebras which are exceptional in the sense that they cannot
be identified with a JB∗-subalgebra of a C∗-algebra: this is the case of the
JB∗-algebra H3(O) of all 3 × 3-hermitian matrices with entries in the al-
gebra O of complex octonions (see, for example, [26, §7.2], [10, §§6.1 and
7.1] or [23, §§6.2 and 6.3]).

A JBW ∗-algebra (respectively, a JW ∗-algebra) is a JB∗-algebra (respec-
tively, a JC∗-algebra) which is also a dual Banach space.

JB∗-algebras are intrinsically connected with another mathematical ob-
ject deeply studied in the literature. A JB-algebra is a real Jordan algebra J
equipped with a complete norm satisfying

(3) ‖a2‖ = ‖a‖2, and ‖a2‖ ≤ ‖a2 + b2‖ for all a, b ∈ J.

In a celebrated lecture in St. Andrews in 1976, I. Kaplansky suggested
the definition of JB∗-algebra and pointed out that the self-adjoint part Bsa =
{x ∈ B; x∗ = x} of a JB∗-algebra is always a JB-algebra. One year later,
J. D. M. Wright contributed one of the most influential results in the theory
of JB∗-algebras by proving that the complexification of every JB-algebra is a
JB∗-algebra (see [49]). A JC-algebra (respectively, a JW-algebra) is a norm-
closed (respectively, a weak∗-closed) real Jordan subalgebra of the hermitian
part of a C∗-algebra (respectively, of a von Neumann algebra).

Suppose B is a unital JB∗-algebra. The smallest norm-closed real Jordan
subalgebra C(a) of Bsa containing a self-adjoint element a in B and 1 is
associative. According to the usual notation, the spectrum of a in B, denoted
by Sp(a), is the the set of all real λ such that a−λ1 does not have an inverse
in C(a) (cf. [26, 3.2.3]). If B is not unital, we consider the unitization of B to
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define the spectrum of a self-adjoint element. It is known that the JB∗-sub-
algebra of B generated by a single self-adjoint element a ∈ B and the unit is
isometrically JB∗-isomorphic to the commutative C∗-algebra C(Sp(a)) of all
complex-valued continuous functions on Sp(a) (see [26, 3.2.4. The spectral
theorem]). An element a ∈ B is called positive if a = a∗ and Sp(a) ⊆ R+

0

(cf. [26, 3.3.3]).
Although there exist exceptional JB∗-algebras which cannot be embedded

as JB∗-subalgebras of C∗-algebras, the JB∗-subalgebra of a JB∗-algebra B
generated by two hermitian elements (and the unit element) is a JC∗-algebra
(compare Macdonald’s and Shirshov–Cohn’s theorems [26, Theorems 2.4.13
and 2.4.14], [49, Corollary 2.2] or [9, Proposition 3.4.6]). Consequently, for
each x ∈ B, the element x ◦ x∗ is positive in B.

We refer to [26, 9, 10] for the basic background, notions and results on
JB∗-algebras.

C∗- and JB∗-algebras have been extensively employed as a framework
for studying bounded symmetric domains in complex Banach spaces of infi-
nite dimension, as an alternative notion to simply connected domains. The
open unit ball of every C∗-algebra is a bounded symmetric domain (see [27])
and the open unit balls of (unital) JB∗-algebras are, up to a biholomorphic
mapping, those bounded symmetric domains which have a realization as a
tube domain, i.e., an upper half-plane (cf. [6]). These examples do not ex-
haust all possible bounded symmetric domains in arbitrary complex Banach
spaces; a strictly wider class of Banach spaces is actually required. The most
conclusive result was obtained by W. Kaup who proved in 1983 that every
bounded symmetric domain in a complex Banach space is biholomorphically
equivalent to the open unit ball of a JB∗-triple [32].

A complex Banach space E belongs to the class of JB∗-triples if it admits
a triple product (i.e., a continuous mapping) {·, ·, ·} : E3 → E which is
symmetric and bilinear in the outer variables and conjugate linear in the
middle variable and satisfies the next algebraic and geometric axioms:

(JB∗-1) {x, y, {a, b, c}} = {{x, y, a}, b, c} − {a, {y, x, b}, c} + {a, b, {x, y, c}}
for any x, y, a, b, c ∈ E (Jordan identity);

(JB∗-2) For any a ∈ E the operator L(a, a) : x 7→ {a, a, x} is hermitian with
non-negative spectrum;

(JB∗-3) ‖{x, x, x}‖ = ‖x‖3 for all x ∈ E (a Gelfand–Naimark type axiom).

C∗-algebras and JB∗-algebras belong to the wide list of examples of JB∗-
triples when they are equipped with the triple products given by

(4)
{a, b, c} = 1

2(ab
∗c+ cb∗a),

{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗,
respectively (see [6, Theorem 3.3] or [9, Theorem 4.1.45]). The first triple
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product in (4) induces a structure of JB∗-triple on every closed subspace of
the space B(H,K) of all bounded linear operators between complex Hilbert
spaces H and K, which is closed under this triple product. In particular,
B(H,K) and every complex Hilbert space are JB∗-triples with their canon-
ical norms and the first triple product given in (4).

In a JB∗-triple E the triple product is contractive, that is,

‖{x, y, z}‖ ≤ ‖x‖ ‖y‖ ‖z‖ for all x, y, z in E

(cf. [17, Corollary 3] or [10, Corollary 7.1.7], [12, p. 215]).
A linear bijection between JB∗-triples is a triple-isomorphism if and only

if it is an isometry (cf. [32, Proposition 5.5] or [12, Theorems 3.1.7, 3.1.20]).
Thus, a complex Banach space admits at most one triple product under
which it is a JB∗-triple.

A JBW ∗-triple is a JB∗-triple which is also a dual space. Every JBW∗-
triple admits a unique (in the isometric sense) predual and its triple product
is separately weak∗-continuous (see [5], [10, Theorems 5.7.20, 5.7.38]).

Each idempotent e in a Banach algebra A produces a Peirce decom-
position of A as a sum of eigenspaces of the left and right multiplication
operators by e. A. A. Albert extended the classical Peirce decomposition to
the setting of Jordan algebras in the middle of the last century. The notion
of idempotent might mean nothing in a general JB∗-triple. The appropriate
alternative is the concept of tripotent. An element e in a JB∗-triple E is a
tripotent if {e, e, e} = e. It is worth mentioning that when a C∗-algebra A is
regarded as a JB∗-triple with respect to the first triple product given in (4),
an element e ∈ A is a tripotent if and only if it is a partial isometry (i.e., ee∗,
or equivalently e∗e, is a projection) in A.

In case we fix a tripotent e in a JB∗-triple E, the classical Peirce decompo-
sition for associative and Jordan algebras extends to a Peirce decomposition
of E associated with the eigenspaces of the mapping L(e, e), whose eigen-
values are all contained in the set

{
0, 12 , 1

}
. For j ∈ {0, 1, 2}, the (linear)

projection Pj(e) of E onto the eigenspace, Ej(e), of L(e, e) corresponding
to the eigenvalue j/2 admits a concrete expression in terms of the triple
product as follows:

P2(e) = L(e, e)(2L(e, e)− idE) = Q(e)2,

P1(e) = 4L(e, e)(idE − L(e, e)) = 2(L(e, e)−Q(e)2),

P0(e) = (idE − L(e, e))(idE − 2L(e, e)),

where Q(e)(x) = {e, x, e} for x ∈ E. The projection Pj(e) is known as the
Peirce-j projection associated with e. Peirce projections are all contractive
(cf. [16, Corollary 1.2]), and the JB∗-triple E decomposes as the direct sum

E = E2(e)⊕ E1(e)⊕ E0(e),
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which is termed the Peirce decomposition of E relative to e (see [16], [12, Def-
inition 1.2.37] or [9, Subsection 4.2.2] and [10, Section 5.7] for more details).
In the particular case in which e is a tripotent (i.e., a partial isometry) in a
C∗-algebra A with initial projection pi = e∗e and final projection pf = ee∗,
the subspaces in the Peirce decomposition are precisely

A2(e) = pfApi,

A1(e) = pfA(1− pi)⊕ (1− pf )Api,
A0(e) = (1− pf )A(1− pi).

A tripotent e in a JB∗-triple E is called complete if E0(e) = {0}. We shall
say that e is unitary ifE = E2(e), or equivalently, if {e, e, x} = x for all x ∈ E.
Obviously, every unitary is a complete tripotent, but the converse implication
is not always true: consider for example a non-surjective isometry e in B(H).
A non-zero tripotent e satisfying E2(e) = Ce is called minimal.

Note that in a unital JB∗ algebra there is another definition of a unitary
element (cf. [9, Definition 4.2.25]). However, it is equivalent to the above-
defined notion as witnessed by the following fact (where condition (3) is
the alternative definition). We will work solely with the notion of unitary
tripotent defined above (i.e., with condition (1) from the fact below) but we
include these equivalences for the sake of completeness.

Fact 2.1. Let B be a unital JB∗-algebra and let u ∈ B. The following
assertions are equivalent:

(1) u is a unitary tripotent, i.e., u is a tripotent with B2(u) = B.
(2) u is a tripotent and u ◦ u∗ = 1.
(3) u ◦ u∗ = 1 and u2 ◦ u∗ = u, i.e., u∗ is the Jordan inverse of u.

Proof. The equivalence (1)⇔(3) is proved in [6, Proposition 4.3] (see also
[9, Theorem 4.2.28]).

To prove the equivalence (1)⇔(2) observe that assertion (2) means that
1 = {u, u, 1}, i.e., 1 ∈ B2(u). It remains to use [24, Proposition 6.6].

Complete tripotents in a JB∗-triple E can be geometrically characterized
since a norm-one element e in E is a complete tripotent if and only if it is
an extreme point of its closed unit ball (cf. [6, Lemma 4.1], [34, Proposi-
tion 3.5] or [9, Theorem 4.2.34]). Consequently, every JBW∗-triple contains
an abundant collection of complete tripotents.

Given a unitary element u in a JB∗-triple E, the latter becomes a unital
JB∗-algebra with Jordan product and involution defined by

(5) x ◦u y = {x, u, y} and x∗u = {u, x, u} for x, y ∈ E;

see [9, Theorem 4.1.55]. We even know that u is the unit of this JB∗-algebra
(i.e., u ◦u x = x for x ∈ E). Each tripotent e in a JB∗-triple E is a unitary
in the JB∗-subtriple E2(e), and thus (E2(e), ◦e, ∗e) is a unital JB∗-algebra.
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Therefore, since the triple product is uniquely determined by the structure
of a JB∗-algebra, unital JB∗-algebras are in one-to-one correspondence with
those JB∗-triples admitting a unitary element.

A linear subspace I of a JB∗-triple E is called a triple ideal or simply an
ideal of E if {I, E,E} ⊂ I and {E, I,E} ⊂ I (see [28]). Let I, J be two ideals
of E. We will say that I and J are orthogonal if I∩J = {0} (and consequently
{I, J, E} = {J, I, E} = {0}). It is known that every weak∗-closed ideal I of
a JBW∗-triple M is orthogonally complemented, that is, there exists another
weak∗-closed ideal J ofM which is orthogonal to I andM = I⊕∞J (see [28,
Theorem 4.2(4) and Lemmata 4.3 and 4.4]). For each weak∗-closed ideal I
ofM , we will denote by PI the natural projection ofM onto I. Let us observe
that, in this case, PI is always a weak∗-continuous triple homomorphism.

2.1. Positive functionals and prehilbertian seminorms. As in the
case of C∗-algebras, a functional φ in the dual space, B∗, of a JB∗-algebra B
is called positive if it maps positive elements to non-negative real numbers.
We will frequently apply that a functional φ in the dual space of a unital
JB∗-algebra B is positive if and only if ‖φ‖ = φ(1) (cf. [26, Lemma 1.2.2]).
The same conclusion holds for functionals in the predual of a JBW∗-algebra.

A positive normal functional ϕ in the predual of a JBW∗-algebra B is
called faithful if from ϕ(a) = 0 for a ≥ 0 in B it follows that a = 0.

If φ is a positive functional in the dual of a C∗-algebra A, and 1 denotes
the unit element in A∗∗, then the mapping

(a, b) 7→ φ

(
ab∗ + b∗a

2

)
= φ{a, b, 1} (a, b ∈ A)

is a positive semidefinite sesquilinear form on A×A; its associated prehilber-
tian seminorm is denoted by ‖x‖φ = (φ{x, x, 1})1/2. If we consider a positive
functional φ in the dual of a JB∗-algebra B, the associated prehilbertian
seminorm is defined by ‖x‖2φ = φ{x, x, 1} = φ(x◦x∗), where 1 stands for the
unit in B∗∗.

The lacking of a local order or positive cone in a general JB∗-triple,
and hence the lacking of positive functionals, makes a bit more complicated
the definition of appropriate prehilbertian seminorms. Namely, let ϕ be a
functional in the predual of a JBW∗-tripleM and let z be a norm-one element
in M satisfying ϕ(z) = ‖ϕ‖. Proposition 1.2 in [3] proves that the mapping
M × M → C, (x, y) 7→ ϕ{x, y, z}, is a positive semidefinite sesquilinear
form on M which does not depend on the choice of the element z (that
is, ϕ{x, y, z} = ϕ{x, y, z̃} for all x, y ∈ M and all z̃ ∈ M with ‖z̃‖ = 1
and ϕ(z̃) = ‖ϕ‖; see [10, Proposition 5.10.60]). The associated prehilbertian
seminorm is denoted by ‖x‖ϕ = (ϕ{x, x, z})1/2 (x ∈ M). Since the triple
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product of every JB∗-triple is contractive, it follows that

(6) ‖x‖ϕ ≤
√
‖ϕ‖ ‖x‖ for all x ∈M.

If ϕ is a non-zero functional in the dual E∗ of a JB∗-triple E, and we regard
E∗ as the predual of the JBW∗-triple E∗∗, then the prehilbertian seminorm
‖ · ‖ϕ on E∗∗ acts on E by mere restriction.

2.2. Comparison theory of projections and tripotents. Two pro-
jections p, q in a C∗-algebra A (respectively, in a JB∗-algebra B) are said
to be orthogonal (p ⊥ q for short) if pq = 0 (respectively, p ◦ q = 0). The
relation ‘being orthogonal’ can be used to define a natural partial ordering
on the set of projections in A (respectively, in B) by declaring p ≤ q if q− p
is a projection and q − p ⊥ p. We write p < q if p ≤ q and p 6= q.

Two tripotents e and u in a JB∗-triple E are called orthogonal (e ⊥ u
for short) if {e, e, u} = 0 (equivalently, u ∈M0(e)). It is known that e ⊥ u if
and only if any of the following equivalent reformulations holds:

• e ∈ E0(u).
• E2(u) ⊂ E0(e).
• L(u, e) = 0.
• L(e, u) = 0.
• Both u+ e and u− e are tripotents.
• {u, u, e} = 0.

For proofs see [36, Lemma 3.9], [24, Proposition 6.7] or [23, Lemma 2.1]. The
induced partial order defined by this orthogonality on the set of tripotents
is given by e ≤ u if u− e is a tripotent with u− e ⊥ e.

Let ϕ be a non-zero functional in the predual of a JBW∗-tripleM . By [16,
Proposition 2] (or [10, Proposition 5.10.57]) there exists a unique tripotent
s(ϕ) ∈M , called the support tripotent of ϕ, such that ϕ = ϕ ◦P2(s(ϕ)), and
ϕ|M2(s(ϕ)) is a faithful positive functional on the JBW∗-algebraM2(s(ϕ)). In
particular, ‖x‖2ϕ = ϕ{x, x, s(ϕ)} for all x ∈M .

The support tripotent of a non-zero functional ϕ in the predual of a
JBW∗-triple M is also the smallest tripotent in M at which ϕ attains its
norm, that is,
(7) ϕ(u) = ‖ϕ‖ for some tripotent u ∈M =⇒ s(ϕ) ≤ u.
Namely, the element P2(s(ϕ))(u) lies in the unit ball of M2(s(ϕ)) because
P2(s(ϕ)) is contractive. Since ϕ = ϕ ◦ P2(s(ϕ)) and ϕ|M2(s(ϕ)) is a faithful
functional on the JBW∗-algebra M2(s(ϕ)), we deduce that P2(s(ϕ))(u) =
s(ϕ). It follows from [16, Lemma 1.6 or Corollary 1.7] that s(ϕ) ≤ u. Actually
the previous arguments prove

(8) ϕ(a) = ‖ϕ‖ for some element a ∈M with ‖a‖ = 1
=⇒ a = s(ϕ) + P0(s(ϕ))(a).
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Two projections p and q in a von Neumann algebraW are called (Murray–
von Neumann) equivalent (written p ∼ q) if there is a partial isometry e ∈W
whose initial projection is p and whose final projection is q. This Murray–von
Neumann equivalence is employed to classify projections and von Neumann
algebras in terms of their properties. For example a projection p in W is
said to be finite if there is no projection q < p that is equivalent to p. For
example, all finite-dimensional projections inB(H) are finite, but the identity
operator onH is not finite whenH is an infinite-dimensional complex Hilbert
space. The von Neumann algebra W is called finite if its unit element is a
finite projection. The set of all finite projections in the sense of Murray–von
Neumann inW forms a (modular) sublattice of the set of all projections inW
(see e.g. [47, Theorem V.1.37]). We recall that a projection p in W is infinite
if it is not finite, and properly infinite if p 6= 0 and zp is infinite whenever z
is a central projection such that zp 6= 0 (cf. [47, Definition V.1.15]).

In the setting of JBW∗-algebras the notion of finiteness was replaced by
the concept of modularity, and the Murray–von Neumann equivalence by the
relation ‘being equivalent by symmetries’, that is, two projections p, q in a
JBW∗-algebra N are called equivalent (by symmetries) (denoted by p s∼ q) if
there is a finite set s1, . . . , sn of self-adjoint symmetries (i.e. sj = 1− 2pj for
certain projections pj) such that Q(s1) · · ·Q(sn)(p) = q, where Q(sj)(x) =
{sj , x, sj} = 2(sj ◦ x∗) ◦ sj − s2j ◦ x∗ for all x ∈ N (cf. [48, §10], [26, 5.1.4],
[2, §3] or [23, §7.1]). Unlike Murray–von Neumann equivalence, p s∼ q in
N implies 1 − p

s∼ 1 − q. If M is a von Neumann algebra regarded as a
JBW∗-algebra, and p, q are projections in M , then p

s∼ q if and only if p
and q are unitarily equivalent, i.e., there exists a unitary u ∈ M such that
upu∗ = q (see [1, Proposition 6.56]). In particular, p s∼ q implies p ∼ q.

In a recent contribution we study the notion of finiteness in JBW∗-
algebras and JBW∗-triples from a geometric point of view. In the setting
of von Neumann algebras, the results by H. Choda, Y. Kijima, and Y. Naka-
gami assert that a von Neumann algebra W is finite if and only if all the
extreme points of its closed unit ball are unitary (see [11, Theorem 2] or [38,
proof of Theorem 4]). Therefore, a projection p in W is finite if and only if
every extreme point of the closed unit ball of pWp is a unitary in the latter
von Neumann algebra. This is the motivation for the notion of finiteness
introduced in [23]. According to the just quoted reference, a tripotent e in a
JBW∗-triple M is called

• finite if any tripotent u ∈ M2(e) which is complete in M2(e) is already
unitary in M2(e);
• infinite if it is not finite;
• properly infinite if e 6= 0 and for each weak∗-closed ideal I of M the

tripotent PI(e) is infinite whenever it is non-zero.
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If any tripotent in M is finite, we say that M itself is finite. Finite-
dimensional JBW∗-triples are always finite [23, Proposition 3.4]. A JBW∗-
triple M is said to be infinite if it is not finite. Finally, M is properly infinite
if each non-zero weak∗-closed ideal of M is infinite.

Every JBW∗-triple decomposes as an orthogonal sum of weak∗-closed
ideals M1, M2, M3 and M4, where M1 is a finite JBW∗-algebra, M2 is either
a trivial space or a properly infinite JBW∗-algebra,M3 is a finite JBW∗-triple
with no non-zero direct summand isomorphic to a JBW∗-algebra, and M4 is
either a trivial space or M4 = qV4, where V4 is a von Neumann algebra
and q ∈ V4 is a properly infinite projection such that qV4 has no direct
summand isomorphic to a JBW∗-algebra; we further know that M4 is prop-
erly infinite provided that it is not zero (see [23, Theorem 7.1] where a
more detailed description is presented). This decomposition applies in the
particular case in which M is a JBW∗-algebra with the appropriate modi-
fications and simplifications on the summands to avoid those which are not
JBW∗-algebras.

In a von Neumann algebra W the two notions of finiteness coincide for
projections (see [23, Lemma 3.2(a)]). Every modular projection in a JBW∗-
algebra is a finite tripotent in the sense above, but the reciprocal is not
always true (cf. [23, Lemma 7.12 and Remark 7.13]).

Finite JBW∗-triples enjoy formidable properties. For example, for each
finite tripotent u in a JBW∗-algebra M there is a unitary element e ∈ M
with u ≤ e (cf. [23, Proposition 7.5]). More details and properties can be
found in [23].

A projection p in a von Neumann algebra W is called abelian if the
subalgebra pWp is abelian (see [47, Definition V.1.15]). The von Neumann
algebra W is said to be of type I or discrete if every non-zero (central)
projection contains a non-zero abelian subprojection [47, Definition V.1.17].
In the previous definition the word central can be relaxed (see, for example,
[46, Corollary 4.20]).

A tripotent e in a JB∗-triple is said to be abelian if the JB∗-algebra E2(u)
is associative, or equivalently, (E2(u), ◦u, ∗u) is a unital abelian C∗-algebra.
Obviously, any minimal tripotent is abelian. We further know that every
abelian tripotent is finite [23, Lemma 3.2(e)].

According to [29, 30, 28], a JBW∗-tripleM is said to be of type I (respec-
tively, continuous) if it coincides with the weak∗-closure of the span of all its
abelian tripotents (respectively, it contains no non-zero abelian tripotents).
Every JBW∗-triple can be written as the orthogonal sum of two weak∗-closed
ideals M1 and M2 such that M1 is of type I and M2 is continuous (any of
these summands might be trivial). G. Horn and E. Neher established in
[29, 30] structure results describing type I and continuous JBW∗-triples.
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Concretely, every JBW∗-triple of type I may be represented in the form

(9)
`∞⊕
j∈J

Aj ⊗ Cj ,

where the Aj ’s are abelian von Neumann algebras and the Cj ’s are Cartan
factors (the concrete definitions will be presented below in Section 4, the
reader can also consult [36, 31, 33] for details). To reassure the reader we
simply note that every Cartan factor C is a JBW∗-triple. When C is a
JW∗-subtriple of some B(H) and A is an abelian von Neumann algebra,
the symbol A⊗C denotes the weak∗-closure of the algebraic tensor product
A⊗C in the von Neumann tensor product A⊗B(H) (see [47, Section IV.1]
and [29, §1]). In the remaining cases C is finite-dimensional and A⊗ C will
stand for the completed injective tensor product (see [45, Chapter 3]).

3. Majorizing certain seminorms. The main result will be proved
using its dual version. The starting point is the following dual version of
Theorem D(2).

Theorem 3.1 ([40, Theorem 3]). Let M be a JBW ∗-triple, H a Hilbert
space and T : M → H a weak∗-to-weak continuous linear operator. Given
ε > 0, there are norm-one functionals ϕ1, ϕ2 ∈M∗ such that

‖Tx‖ ≤ (
√
2 + ε)‖T‖(‖x‖2ϕ1

+ ε‖x‖2ϕ2
)1/2 for x ∈M.

We continue by recalling two results from [25]. The first one is essentially
the main result and easily implies Theorem D(3). The second one was used
to prove one of the particular cases and we will use it several times as
well.

Proposition 3.2 ([25, Theorem 2.4]). Let M be a JBW ∗-triple. Then
given any two functionals ϕ1, ϕ2 in M∗, there exists a norm-one functional
ψ ∈M∗ such that

‖x‖2ϕ1
+ ‖x‖2ϕ2

≤ 2(‖ϕ1‖+ ‖ϕ2‖) · ‖x‖2ψ
for all x ∈M.

Lemma 3.3 ([25, Proposition 3.2]). Let M be a JBW ∗-triple and let
ϕ ∈ M∗. Assume that p ∈ M is a tripotent such that s(ϕ) ∈ M2(p). Then
there exists a functional ϕ̃ ∈M∗ such that ‖ϕ̃‖ = ‖ϕ‖, s(ϕ̃) ≤ p and ‖x‖ϕ ≤√
2 ‖x‖ϕ̃ for all x ∈M .

The key step to prove our main result is the following proposition which
says that for JBW∗-algebras a stronger version of Proposition 3.2 is achiev-
able.
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Proposition 3.4. Let M be a JBW ∗-algebra. Then given any two func-
tionals ϕ1, ϕ2 in M∗ and ε > 0, there exists a norm-one functional ψ ∈M∗

‖x‖2ϕ1
+ ‖x‖2ϕ2

≤ (‖ϕ1‖+ 2‖ϕ2‖+ ε)‖x‖2ψ for x ∈M.

Using this proposition we will easily deduce the main result in Section 6
below. Proposition 3.4 will be proved using the following result.

Proposition 3.5. Let M be a JBW ∗-algebra, ϕ ∈M∗ and ε > 0. Then
there are a functional ϕ̃ ∈M∗ and a unitary element w ∈M such that

‖ϕ̃‖ ≤ ‖ϕ‖, s(ϕ̃) ≤ w and ‖ · ‖2ϕ ≤ (1 + ε)‖ · ‖2ϕ̃.

This proposition will be proved at the beginning of Section 6 using the
results from Sections 4 and 5. Let us now show that it implies Proposition 3.4.

Proof of Proposition 3.4 from Proposition 3.5. Let ϕ̃1 ∈M∗ and w ∈M
correspond to ϕ1 and ε/‖ϕ1‖ by Proposition 3.5. Since w is unitary, we have
M2(w) =M , hence we may apply Lemma 3.3 to get ψ2 ∈M∗ such that

s(ψ2) ≤ w, ‖ψ2‖ ≤ ‖ϕ2‖, ‖ · ‖ϕ2 ≤
√
2 ‖ · ‖ψ2 .

Then

‖ · ‖2ϕ1
+ ‖ · ‖2ϕ2

≤
(
1 +

ε

‖ϕ1‖

)
‖ · ‖2ϕ̃1

+ ‖ · ‖2ϕ2

≤
(
1 +

ε

‖ϕ1‖

)
‖ · ‖2ϕ̃1

+ 2‖ · ‖2ψ2

= ‖ · ‖2(1+ε/‖ϕ1‖)ϕ̃1+2ψ2

=

((
1 +

ε

‖ϕ1‖

)
‖ϕ̃1‖+ 2‖ψ2‖

)
‖ · ‖2ψ,

where

ψ =
(1 + ε/‖ϕ1‖)ϕ̃1 + 2ψ2

(1 + ε/‖ϕ1‖)‖ϕ̃1‖+ 2‖ψ2‖
.

(Note that the first equality follows from the fact that the support tripotents
of both functionals are below w.) Since the functionals ϕ̃1 and ψ2 attain their
norms at w, we deduce that ‖ψ‖ = 1. It remains to observe that(

1 +
ε

‖ϕ1‖

)
‖ϕ̃1‖+ 2‖ψ2‖ ≤ ‖ϕ1‖+ ε+ 2‖ϕ2‖.

4. Finite or type I JBW∗-algebras. The aim of this section is to prove
a stronger version of Proposition 3.5 for a large subclass of JBW∗-algebras
(see Proposition 4.2). We follow the notation from [23] recalled in Section 2.

Since in a finite JBW∗-algebra any tripotent is majorized by a unitary
one (cf. [23, Lemma 3.2(d)]), we get the following observation.
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Observation 4.1. Let M be a finite JBW ∗-algebra. Then Proposition 3.5
holds for M in a very strong version: one can take ϕ̃ = ϕ and ε = 0.

There is a larger class of JBW∗-algebras for which we get a stronger and
canonical version of Proposition 3.5. The concrete result appears in the con-
tent of the following proposition. The exact relationship with Proposition 3.5
will be explained in Remark 5.7(1) below.

We first recall that, in the setting of JBW∗-triples, two normal function-
als ϕ and ψ in the predual of a JBW∗-triple M are called (algebraically)
orthogonal (written ϕ ⊥ ψ) if their support tripotents are orthogonal in M
—that is, s(ϕ) ⊥ s(ψ) (cf. [18, 14]). It is shown in [18, Lemma 2.3] (see also
[14, Theorem 5.4]) that ϕ,ψ ∈ M∗ are orthogonal if and only if they are
‘geometrically’ L-orthogonal in M∗ i.e., ‖ϕ± ψ‖ = ‖ϕ‖+ ‖ψ‖. In particular
‖ · ‖2ϕ+ψ = ‖ · ‖2ϕ + ‖ · ‖2ψ if ϕ and ψ are orthogonal because in this case ϕ, ψ
and ϕ+ ψ attain their respective norms at s(ϕ) + s(ψ).

Proposition 4.2. Let M be a JBW ∗-algebra which is triple-isomorphic
to a direct sum M1 ⊕`∞ M2, where M1 is a finite JBW ∗-algebra and M2 is
a type I JBW ∗-algebra. Let ϕ ∈M∗ be arbitrary. Then for each ε > 0 there
are two functionals ϕ1, ϕ2 ∈M∗ such that

(i) ϕ = ϕ1 + ϕ2;
(ii) ϕ1 ⊥ ϕ2;
(iii) ‖ϕ2‖ < ε;
(iv) s(ϕ1) is a finite tripotent in M .

The rest of this section is devoted to proving Proposition 4.2. To this
end we will use the following decomposition result which was essentially
established in [23]. Let us note that the concrete definition of a type 2 Cartan
factor can be found in the next subsection.

Proposition 4.3. Let M be a JBW ∗-algebra which is triple-isomorphic
to a direct sum M1 ⊕`∞ M2, where M1 is a finite JBW ∗-algebra and M2 is
a type I JBW ∗-algebra. Then M is triple-isomorphic to a JBW ∗-algebra of
the form

N ⊕`∞
(⊕
j∈J

L∞(µj)⊗ Cj
)
⊕`∞

(⊕
λ∈Λ

L∞(νλ)⊗B(Hλ)
)
,

where

• N is a finite JBW ∗-algebra;
• J and Λ are (possibly empty) sets;
• µj’s and νλ’s are probability measures;
• Cj is an infinite-dimensional type 2 Cartan factor for each j ∈ J ;
• Hλ is an infinite-dimensional Hilbert space for each λ ∈ Λ.
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Proof. By [23, Theorem 7.1], M is triple-isomorphic to N ⊕`∞N1, where
N is a finite JBW∗-algebra and N1 is (either trivial or) a properly infinite
JBW∗-algebra. By the same theorem, N1 is triple-isomorphic to(⊕

j∈J
L∞(µj)⊗ Cj

)
⊕`∞ N2,

where the first summand has the above-mentioned form and N2 is (either
trivial or) a properly infinite von Neumann algebra. Since by the assumptions
N2 is clearly of type I, we may conclude using [47, Theorem V.1.27].

We observe that the validity of Proposition 4.2 is preserved by `∞-sums,
so it is enough to prove it for the individual summands from Propostion 4.3.
For the finite JBW∗-algebra N we may use Observation 4.1. We will prove
the desired conclusion for the summands L∞(µj) ⊗ Cj . For the remaining
summands an easier version of the same proof works as we will explain below.

4.1. The case of type 2 Cartan factors. Let us start by recalling the
definition of type 2 Cartan factors. Let H be a Hilbert space with a fixed
orthonormal basis (eγ)γ∈Γ . Then H is canonically represented as `2(Γ ). For
ξ ∈ H let ξ be the coordinatewise complex conjugate of ξ. Further, for
x ∈ B(H) we denote by xt the operator defined by

xtξ = x∗ξ, ξ ∈ H.
Then xt is the transpose of x with respect to the fixed orthonormal basis,
i.e.,

〈xteγ , eδ〉 = 〈xeδ, eγ〉 for γ, δ ∈ Γ
(see, e.g., [23, Section 5.3] for the easy computation). Then

B(H)s = {x ∈ B(H) ; xt = x} and B(H)a = {x ∈ B(H) ; xt = −x}
are the so-called Cartan factors of type 3 and type 2, respectively. They are
formed by operators with symmetric (antisymmetric, respectively) ‘repre-
senting matrices’ with respect to the fixed orthonormal basis. We will deal
with the second case, i.e., with ‘antisymmetric operators’.

So, assume thatH has infinite dimension (or, equivalently, Γ is an infinite
set). Let M = B(H)a. Define π : B(H) → M by π(x) = 1

2(x − x
t). Then

π is a norm-one projection which is moreover weak∗-to-weak∗ continuous.
Hence π∗ :M∗ → B(H)∗ defined by π∗(ϕ) = ϕ ◦ π is an isometric injection.
Moreover,

π∗M∗ = {ϕ ∈ B(H)∗ ; ϕ(x
t) = −ϕ(x) for x ∈ B(H)}

= {ϕ ∈ B(H)∗ ; ϕ|B(H)s = 0}.

Recall that B(H)∗ is isometric to the space N(H) of nuclear operators
via the trace duality (cf. [47, Theorem II.1.8]). Moreover, any y ∈ N(H) is
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represented in the form
y =

∑
k≥1

λk〈·, ηk〉ξk

where (ξk) and (ηk) are orthonormal sequences in H and the λk are positive
numbers with

∑
k≥1 λk = ‖y‖N . Then clearly

y∗ =
∑
k≥1

λk〈·, ξk〉ηk,

hence for any ξ ∈ H we have

ytξ = y∗ξ =
∑
k≥1

λk〈ξ, ξk〉ηk =
∑
k≥1

λk〈ξ, ξk〉ηk,

thus
yt =

∑
k≥1

λk〈·, ξk〉ηk.

In particular

(10) tr(yt) =
∑
k≥1

λk〈ηk, ξk〉 =
∑
k≥1

λk〈ξk, ηk〉 = tr(y).

Hence, given ϕ ∈ B(H)∗ represented by y ∈ N(H), the functional ϕt(x) =
ϕ(xt), x ∈ B(H), is represented by yt. Indeed,

ϕt(x) = ϕ(xt) = tr(xty) = tr(ytx) = tr(xyt) for x ∈ B(H).

It follows that

π∗M∗ = {ϕ ∈ B(H)∗ ; ϕ is represented
by an antisymmetric nuclear operator}.

Proof of Proposition 4.2 for M = B(H)a. Fix ϕ ∈ M∗ of norm one and
ε > 0. Let u = s(ϕ) ∈M . Set ϕ̃ = π∗ϕ. Fix y ∈ N(H) representing ϕ̃. Then

y =
∑
k≥1

λk〈·, ηk〉ξk

where (ξk) and (ηk) are orthonormal sequences in H and the λk are strictly
positive numbers with

∑
k≥1 λk = 1. Observe that

s(ϕ̃) =
∑
k≥1
〈·, ξk〉ηk.

Moreover, since y is antisymmetric, we deduce that so is s(ϕ̃). Indeed, by
the above we have

y = −yt = −
∑
k≥1

λk〈·, ξk〉ηk.
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Hence
s(ϕ̃) = −

∑
k≥1
〈·, ηk〉ξk = −s(ϕ̃)t.

For δ > 0 set
yδ =

∑
λk≥δ

λk〈·, ηk〉ξk.

Then yδ is a finite rank operator and

ytδ =
∑
λk≥δ

λk〈·, ξk〉ηk.

By uniqueness of the nuclear representation (the sequence (λk) is unique and
for any fixed λ > 0 the linear spans of those ηk, resp. ξk, for which λk = λ
are uniquely determined) we deduce that yδ is antisymmetric and hence its
support tripotent

uδ =
∑
λk≥δ
〈·, ξk〉ηk

is antisymmetric as well.
Fix δ > 0 such that

∑
λk<δ

λk < ε. Then ‖y − yδ‖N < ε.
Let ϕ̃1 be the functional represented by yδ and ϕ̃2 = ϕ̃ − ϕ̃1 (i.e., the

functional represented by y − yδ). As yδ is antisymmetric, both ϕ̃1 and ϕ̃2

belong to π∗M∗. Moreover, s(ϕ̃1) = uδ and s(ϕ̃2) = u− uδ. As uδ ⊥ u− uδ,
we deduce that ϕ̃1 ⊥ ϕ̃2. Further, uδ is a finite tripotent, being a finite rank
partial isometry.

Since we are in π∗M∗, we have functionals ϕ1, ϕ2 ∈ M∗ such that ϕ̃j =
π∗ϕj . It is now clear that they provide the sought decomposition of ϕ.

We have settled the case of B(H)a. Note that for M = B(H) the same
proof works—we just do not use the mapping π and are not obliged to check
the antisymmetry. The proof was done using the Schmidt decomposition of
nuclear operators. To prove the result for the tensor product we will use a
measurable version of the Schmidt decomposition established in the following
subsection.

4.2. Measurable version of Schmidt decomposition. In this sub-
section we are going to prove the following result (note that K(H) denotes
the C∗-algebra of compact operators on H).

Theorem 4.4.Let H be a Hilbert space. Then there are sequences (λn)∞n=0

and (un)
∞
n=0 of mappings such that the following properties are fulfilled for

n ∈ N and x ∈ K(H):

(a) λn : K(H)→ [0,∞) is a lower semicontinuous mapping;
(b) λn+1(x) < λn(x) whenever λn(x) > 0;
(c) un : K(H)→ K(H) is a Borel measurable mapping;
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(d) un(x) is a finite rank partial isometry on H;
(e) un(x) = 0 whenever λn(x) = 0;
(f) the partial isometries uk(x), k ∈ N ∪ {0}, are pairwise orthogonal;
(g) x =

∑∞
n=0 λn(x)un(x), where the series converges in the operator norm.

Let us point out that the Borel measurability in this theorem and in the
lemmata used in the proof is considered with respect to the norm-topology.
However, if X is a separable Banach space, it is well known and easy to see
that any norm-open set is weakly Fσ, hence the norm Borel sets coincide
with the weak Borel sets (cf. [35, pp. 74 and 75]). This applies in particular
to H, K(H) and K(H)×H where H is a separable Hilbert space.

The proof will be done in several steps contained in the following lem-
mata.

Lemma 4.5. Let H be a Hilbert space (not necessarily separable). For
x ∈ K(H) let (αn(x)) be the sequence of its singular numbers. Moreover, let
(λn(x)) be the strictly decreasing version of (αn(x)) (recall that the sequence
(αn(x)) itself is non-increasing), completed by zeros if necessary. That is,

λn(x) =

{
αk(x) if card {α0(x), α1(x), . . . , αk(x)} = n+ 1,

0 if such a k does not exist.

Then the following assertions are valid for each n ∈ N ∪ {0}:
(i) αn is a 1-Lipschitz function on K(H);
(ii) λn is a lower semicontinuous function on K(H), in particular it is Borel

measurable and of the first Baire class.

Proof. (i) This is proved in [19, Corollary VI.1.6] and easily deduced from
the following well-known formula for singular numbers:

αn(x) = dist(x, {y ∈ K(H) ; dim yH ≤ n}), x ∈ K(H), n ∈ N ∪ {0}
(cf. [19, Theorem VI.1.5]).

(ii) Clearly λn ≥ 0. Moreover, for each c > 0 we have λn(x) > c if and
only if

∃c0 > c1 > · · · > cn > cn+1 = c, ∃k0, k1, . . . kn ∈ N such that
αkj (x) ∈ (cj+1, cj) ∀j ∈ {0, 1, . . . , n}.

Since the functions αk are continuous by (i), {x ; λn(x) > c} is open.
Now the lower semicontinuity easily follows.

Finally, any lower semicontinuous function on a metric space is clearly
Fσ-measurable, hence Borel measurable and also of the first Baire class (cf.
[37, Corollary 3.8(a)]).

Lemma 4.6. Let H be a Hilbert space. For any x ∈ K(H)+ and n ∈ N
∪{0} let pn(x) be the projection onto the eigenspace with respect to the eigen-
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value λn(x) provided λn(x) > 0, and pn(x) = 0 otherwise. Then the mapping
pn is Borel measurable.

Proof. We start by proving that the mapping p0 is Borel measurable. For
x ∈ K(H)+ \ {0} we set

ψ(x) =
x− λ0(x) · I

2(λ0(x)− λ1(x))
+ I.

Then the mapping ψ : K(H)+ \ {0} → B(H)sa is Borel measurable (by
Lemma 4.5(ii), note that for x ∈ K(H)+ \ {0} we have λ0(x) > λ1(x)).

Moreover, since
x =

∑
n≥0

λn(x)pn(x),

by the Hilbert–Schmidt Theorem, we deduce that

ψ(x) = p0(x) +
∑
n≥1

λ0(x)− 2λ1(x) + λn(x)

2(λ0(x)− λ1(x))
pn(x)

+
λ0(x)− 2λ1(x)

2(λ0(x)− λ1(x))

(
I −

∑
n≥0

pn(x)
)
,

hence the spectrum of ψ(x) is

σ(ψ(x)) =
{
1, λ0(x)−2λ1(x)

2(λ0(x)−λ1(x))
}
∪
{λ0(x)−2λ1(x)+λn(x)

2(λ0(x)−λ1(x)) ; n ≥ 1
}
⊂ {1}∪

(
−∞, 12

]
.

It follows that p0(x) = f(ψ(x)) whenever f is a continuous function on R
with f = 0 on

(
−∞, 12

]
and f(1) = 1.

Since the mapping y 7→ f(y) is continuous on B(H)sa by [47, Proposition
I.4.10], we deduce that p0 is a Borel measurable mapping.

Further, for n ∈ N we have

pn(x) =

{
0 if λn(x) = 0,

p0(x−
∑n−1

k=0 λk(x)pk(x)) if λn(x) > 0,

hence by the obvious induction we see that pn is Borel measurable as well.

Proof of Theorem 4.4. Fix any x ∈ K(H). Let x = u(x)|x| be the polar
decomposition. By the Hilbert–Schmidt Theorem we have

|x| =
∑
n

λn(x) pn(|x|)

(note that λn(x) = λn(|x|)). Hence

x =
∑
n

λn(x)u(x)pn(|x|) =
∑
n

λn(x)un(x),

where un(x) = u(x)pn(|x|) are mutually orthogonal partial isometries (of
finite rank). The mappings λn are lower semicontinuous by Lemma 4.5.
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Further, the assignment x 7→ |x| =
√
x∗x is continuous by the properties

of the functional calculus. Indeed, the mapping x 7→ x∗x is obviously contin-
uous and the mapping y 7→ √y is continuous on the positive cone of K(H)
by [47, Proposition I.4.10].

Hence, we can deduce from Lemma 4.6 that the assignments x 7→ pn(|x|)
are Borel measurable. Since un(x) = 0 whenever λn(x) = 0 and un(x) =

1
λn(x)

xpn(|x|) if λn(x) > 0, it easily follows that the mapping un is Borel
measurable.

Proposition 4.7. Let H be a separable Hilbert space. Consider the map-
pings λn and un provided by Theorem 4.4 restricted to N(H). Then λn and un
are also Borel measurable with respect to the nuclear norm. Moreover, the
series from assertion (g) converges absolutely in the nuclear norm, and

‖x‖ =
∑
n=0

λn‖un(x)‖

where the norm is the nuclear one.

Proof. The Borel measurability of λn and un follows from the continuity
of the canonical inclusion of N(H) into K(H) together with Theorem 4.4.
The rest follows from the Schmidt representation of nuclear operators.

4.3. Proof of the remaining cases of Proposition 4.2. Let us adopt
the notation from Subsection 4.1. Moreover, let µ be a probability measure
and A = L∞(µ). Set W = A ⊗ B(H). Then W is a von Neumann algebra
canonically represented inB(L2(µ,H)) (for a detailed description see e.g. [23,
Section 5.3]). Moreover, on L2(µ,H) we have a canonical conjugation (the
pointwise one—recall that H = `2(Γ ) is equipped with the coordinatewise
conjugation). Therefore a natural transpose of any x ∈W is defined by

xt(f) = x∗(f), f ∈ L2(µ,H).

Then we have a canonical identification

M = A⊗B(H)a =Wa = {x ∈W ; xt = −x}.
Similarly to Subsection 4.1 we denote by π the canonical projection of W
onto M , i.e., x 7→ 1

2(x− x
t).

Recall that, by [47, Theorem IV.7.17],W∗ = L1(µ,N(H)) (the Lebesgue–
Bochner space). Since π is a weak∗-weak∗ continuous norm-one projection,
we have an isometric embedding π∗ : M∗ → W∗ defined by π∗ω = ω ◦ π.
Moreover, clearly

π∗(M∗) = {ω ∈W∗ ; ωt = −ω}.
Lemma 4.8. Assume that g ∈ L1(µ,N(H)) =W∗. Then

(i) g∗(ω) = (g(ω))∗ µ-a.e.;
(ii) gt(ω) = (g(ω))t µ-a.e.
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Proof. Let us start by explaining the meaning. On the left-hand side we
consider the involution and transpose applied to g as to a functional on W ,
while on the right-hand side these operations are applied to the nuclear
operators g(ω).

Observe that it is enough to prove the equality for g = χEy (where E is
a measurable set and y ∈ N(H)) as functions of this form are linearly dense
in L1(µ,N(H)), i.e., we want to prove

(χEy)
∗ = χEy

∗ and (χEy)
t = χEy

t.

It is clear that the elements on the right-hand side belong to L1(µ,N(H))
= W∗, so the equality may be proved as equality of functionals. Since these
functionals are linear and weak∗-continuous on W , it is enough to prove the
equality on the generators f ⊗ x, f ∈ L∞(µ), x ∈ B(H).

So, fix such f and x and recall that

(f ⊗ x)∗ = f ⊗ x∗ and (f ⊗ x)t = f ⊗ xt.
Indeed, the first equality follows from the very definition of the von Neumann
tensor product, the second one is proved in [23, the computation before
Lemma 5.10]. Hence we have

〈(χEy)∗, f ⊗ x〉 = 〈χEy, f ⊗ x∗〉 =
�

E

f dµ · tr(yx∗) =
�

E

f dµ · tr((yx∗)∗)

=
�

E

f dµ · tr(xy∗) =
�

E

f dµ · tr(y∗x) = 〈χEy∗, f ⊗ x〉,

and similarly, by (10),

〈(χEy)t, f ⊗ x〉 = 〈χEy, f ⊗ xt〉 =
�

E

f dµ · tr(yxt) =
�

E

f dµ · tr((yxt)t)

=
�

E

f dµ · tr(xyt) =
�

E

f dµ · tr(ytx) = 〈χEyt, f ⊗ x〉.

It easily follows that

π∗(M∗) = L1(µ,N(H)a).

Lemma 4.9. Let g ∈ L1(µ,N(H)) =W∗. Then

(i) 〈f ⊗ x, g〉 =
	
f(ω) tr(xg(ω)) dµ(ω) for f ∈ L∞(µ) and x ∈ B(H).

(ii) There exists a projection p ∈ B(H) with separable range such that
pg(ω)p = g(ω) µ-a.e. In this case (1⊗ p)g(1⊗ p) = g, i.e.,

〈T, g〉 = 〈(1⊗ p)T (1⊗ p), g〉 for T ∈W.

Proof. (i) Fix f ∈ L∞(µ) and x ∈ B(H). Consider both the left-hand side
and the right-hand side as functionals depending on g. Since both functionals
are linear and continuous on L1(µ,N(H)), it is enough to prove the equality
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for g = χEy where E is a measurable set and y ∈ N(H). In this case we
have

〈f ⊗ x, χEy〉 =
�

E

f dµ tr(xy),

so the equality holds.
(ii) Note that g is essentially separably-valued, so there is a separable

subspace Y ⊂ N(H) with g(ω) ∈ Y µ-a.e. Since for any y ∈ N(H) there is
a projection q with separable range such that qyq = y (due the the Schmidt
representation), the existence of p easily follows.

To prove the last equality it is enough to verify it for the generators
T = f ⊗ x and this easily follows from (i).

Proposition 4.10. Let g ∈ L1(µ,N(H)). Then there are a separable
subspace H0 ⊂ H, a sequence (ζn) of non-negative measurable functions and
a sequence (un) of measurable mappings with values in K(H0) such that the
following hold for each ω:

(a) ζn+1(ω) < ζn(ω) whenever ζn(ω) > 0;
(b) un(ω) is a finite rank partial isometry on H0;
(c) un(ω) = 0 whenever ζn(x) = 0;
(d) the partial isometries uk(ω), k ∈ N ∪ {0}, are pairwise orthogonal;
(e) g =

∑∞
n=0 ζnun where the series converges absolutely almost everywhere

and also in the norm of L1(µ,N(H)).

Proof. Let p ∈ B(H) be a projection with separable range provided by
Lemma 4.9(ii) and setH0 = pH. Let (λn) and (un) be the mappings provided
by Theorem 4.4. Let un(ω) = un(g(ω)) and ζn(ω) = λn(g(ω)). Then these
functions are measurable due to measurability of g and Proposition 4.7.
Assertions (a)–(d) now follow from Theorem 4.4.

By Proposition 4.7 we get the first statement of (e) and, moreover,∑
n

‖ζn(ω)un(ω)‖ = ‖g(ω)‖ µ-a.e.,

hence the convergence holds also in the norm of L1(µ,N(H)), by the Lebes-
gue dominated convergence theorem for Bochner integral.

Set

W0 = {f : Ω→B(H) ; f is bounded, measurable and has separable range}.
By a measurable function we mean a strongly measurable one, i.e., an almost
everywhere limit of simple functions. However, note that weak measurability
is equivalent to strong measurability in this case by the Pettis measurability
theorem as we consider only functions with separable range.

Then W0 is clearly a C∗-algebra when equipped with the pointwise op-
erations and the supremum norm.
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We remark that the following lemma seems to be close to the results of
[47, Section IV.7]. However, it is not clear how to apply those results in our
situation, so we give the proofs.

Lemma 4.11. For f ∈W0 and h ∈ L2(µ,H) define the function Tfh by

Tfh(ω) = f(ω)(h(ω)), ω ∈ Ω.

(i) For each f ∈ W0 the mapping Tf is a bounded linear operator on
L2(µ,H) which belongs to W and satisfies ‖Tf‖ ≤ ‖f‖∞.

(ii) If f ∈W0 and g ∈W∗ = L1(µ,N(H)), then

〈Tf , g〉 =
�
tr(f(ω)g(ω)) dµ(ω).

(iii) Tf is a partial isometry (a projection) in W whenever f(ω) is a partial
isometry (a projection) µ-a.e.

(iv) If g ∈ L1(µ,N(H)) is represented as in Proposition 4.10(e), then s(g)
≤
∑

n Tu∗n where series converges in the SOT topology in W .

Proof. (i) It is clear that h 7→ Tfh is a linear mapping assigning to each
H-valued function another H-valued function. Moreover,

‖Tfh(ω)‖ = ‖f(ω)(h(ω))‖ ≤ ‖f(ω)‖ ‖h(ω)‖ ≤ ‖f‖∞‖h(ω)‖.

In particular, if a sequence (hn) converges almost everywhere to a function h,
then (Tfhn) converges almost everywhere to Tfh. Therefore Tf is well defined
on L2(µ,H) (in the sense that if h1 = h2 a.e., then Tfh1 = Tfh2 a.e.).

The next step is to observe that Tfh is measurable whenever h is mea-
surable. This is easy for simple functions. Any measurable function is an a.e.
limit of a sequence of simple functions, hence the measurability follows by
the above.

Further, it follows from the above inequality that ‖Tfh‖2 ≤ ‖f‖∞‖h‖2,
thus ‖Tf‖ ≤ ‖f‖∞. Finally, by [23, Lemma 5.12] we deduce that Tf ∈W .

(ii) Let us first show that fg ∈ L1(µ,N(H)) whenever f ∈ W0 and
g ∈ L1(µ,N(H)). By the obvious inequalities the only thing to prove is
measurability of this mapping. This is easy if g is a simple function. The
general case follows from the facts that any measurable function is an a.e.
limit of simple functions and that measurability is preserved by a.e. limits
of sequences.

It remains to prove the equality. Since the functions fromW0 are separably-
valued, functions which are countably-valued are dense inW0. So, it is enough
to prove the equality for countably-valued functions. To this end let

f =
∑
k∈N

χEk
xk,

where (Ek) is a disjoint sequence of measurable sets and (xk) is a bounded
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sequence in B(H). For any h ∈ L2(µ,H) we have

Tfh(ω) =
∑
k∈N

χEk
(ω)xk(h(ω)), ω ∈ Ω.

As Tfh ∈ L2(µ,H) by (i) and the sets Ek are pairwise disjoint, we see that

Tfh =
∑
k∈N

TχEk
xkh,

where the series converges in L2(µ,H). Since this holds for any h ∈ L2(µ,H),
we deduce that

Tf =
∑
k∈N

TχEk
xk

unconditionally in the SOT topology, hence also in the weak∗ topology ofW .
Thus, for any g ∈W∗ = L1(µ,N(H)) we get

〈Tf , g〉 =
∑
k∈N
〈TχEk

xk , g〉 =
∑
k∈N

�

Ek

tr(xkg(ω)) dµ(ω) =
�
tr(f(ω)g(ω)) dµ(ω),

where in the second equality we used Lemma 4.9(i).
(iii) This is obvious as the mapping f 7→ Tf is clearly a ∗-homomorphism

of W0 into W .
(iv) First observe that the mappings u∗n belong toW0. Indeed, by Propo-

sition 4.10 the mapping un is measurable and has separable range (as K(H0)
is separable). Moreover, ‖un‖∞ ≤ 1 for each n ∈ N. These properties are
shared by u∗n, hence u∗n ∈W0.

By (iii) we deduce that Tu∗n is a partial isometry for any n ∈ N. More-
over, these partial isometries are pairwise orthogonal (cf. property (d) from
Proposition 4.10), hence U =

∑
n Tu∗n is a well-defined partial isometry inW .

Moreover, by taking g as in Proposition 4.10(e), we have

〈U, g〉 =
∞∑
n=0

〈Tu∗n , g〉 =
∞∑
n=0

�
tr(u∗n(ω)g(ω)) dµ(ω)

=

∞∑
n=0

�
ζn(ω) tr(u

∗
n(ω)un(ω)) dµ(ω)

=
� ∞∑
n=0

ζn(ω) tr(u
∗
n(ω)un(ω)) dµ(ω) =

�
‖g(ω)‖dµ(ω) = ‖g‖,

thus s(g) ≤ U .

Proof of Proposition 4.2 for A⊗B(H)a. Fix any g ∈M∗=L1(µ,N(H)a)
and ε > 0. Fix its representation from Proposition 4.10. Fix N ∈ N with∥∥∥∑

n>N

ζnun

∥∥∥ < ε.
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This is possible by the convergence established in Proposition 4.10. Note
that

−g = gt =

∞∑
n=1

ζnu
t
n,

hence utn = −utn. (Note also that the representation from Proposition 4.10
is unique due to the uniqueness of the Hilbert–Schmidt representation). Let

g1 =

N∑
n=1

ζnun.

Then g1 ∈M∗ as gt1 = −g1. Further, let

v =
N∑
n=1

un.

We have g − g1 ⊥ g1 as

s(g1) ≤ Tv∗ and s(g − g1) ≤
∑
n>N

Tu∗n

and the two tripotents on the right-hand sides are orthogonal. Moreover, Tv∗
is a finite tripotent in M by [23, Proposition 5.31(i) and Lemma 5.16(ii)].

Proof of Proposition 4.2 for A⊗B(H). The proof is an easier version of
the previous case. Fix g ∈W∗ = L1(µ,N(H)) and ε > 0. In the same way we
find N and define g1 and v. We omit the considerations of the transpose and
antisymmetry. Finally, Tv∗ is a finite tripotent in W by [23, Proposition 4.7
and Lemma 5.16(ii)].

5. JW∗-algebras. The aim of this section is to show the following
proposition which will be used to prove Proposition 3.5.

Proposition 5.1. Let M be a JBW ∗-algebra, ϕ ∈M∗ and ε > 0. Then
there are functionals ϕ1, ϕ2 ∈M∗ and a unitary element w ∈M satisfying:

(i) ‖ϕ1‖ ≤ ‖ϕ‖;
(ii) ‖ϕ2‖ < ε;
(iii) s(ϕ1) ≤ w;
(iv) ‖ · ‖2ϕ ≤ ‖ · ‖2ϕ1

+ ‖ · ‖2ϕ2
.

The proof will be given at the end of the section with the help of several
lemmata.

We focus mainly on JW∗-algebras, i.e., on weak∗-closed Jordan ∗-sub-
algebras of von Neumann algebras. To this end we recall some notation (cf.
[47, Section III.2]).
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Let A be a C∗-algebra and let φ ∈ A∗. Then we define functionals aφ
and φa by

(11) aφ(x) = φ(xa) and φa(x) = φ(ax) for x ∈ A.

Note that aφ, φa ∈ A∗ and ‖aφ‖ ≤ ‖a‖ ‖φ‖, ‖φa‖ ≤ ‖a‖ ‖φ‖. We recall the
natural isometric involution φ 7→ φ∗ defined by φ∗(x) = φ(x∗). Then clearly
(aφ)∗ = φ∗a∗, (φa)∗ = a∗φ∗.

If W is a von Neumann algebra and if φ ∈W∗, a ∈W then aφ, φa ∈W∗.
Further, given φ ∈ W∗ we set |φ| = s(φ)φ where s(φ) ∈ W is the support
tripotent of φ. Then φ = s(ϕ)∗|φ| is the polar decomposition of φ (cf. [47,
Section III.4]). More generally, if a ∈ W is a norm-one element at which φ
attains its norm then |φ| = aφ, φ = a∗|φ|, |φ∗| = φa (cf. (8)). Note that
|φ| = |φ|∗ since |φ| is positive. All this is stable by small perturbations as
witnessed by the following lemma.

Lemma 5.2 ([41, Lemma 3.3]). Let A be a C∗-algebra, φ a functional on
A and a, b in the unit ball of A. Then∥∥φ− a∗|φ|∥∥ ≤ (2‖φ‖)1/2

∣∣‖φ‖ − φ(a)∣∣1/2,(12) ∥∥|φ| − aφ∥∥ ≤ (2‖φ‖)1/2
∣∣‖φ‖ − φ(a)∣∣1/2,(13) ∥∥|φ∗| − φa∥∥ ≤ (2‖φ‖)1/2
∣∣‖φ‖ − φ(a)∣∣1/2.(14)

(Formula (14), which is not stated explicitly in [41, Lemma 3.3], follows eas-
ily from (13) by

∥∥|φ∗|−φa∥∥ =
∥∥|φ∗|−a∗φ∗∥∥ ≤ (2‖φ∗‖)1/2

∣∣‖φ∗‖−φ∗(a∗)∣∣1/2 =
(2‖φ‖)1/2

∣∣‖φ‖ − φ(a)∣∣1/2.)
There is another way to obtain positive functionals: We can write φ =

φ1 − φ2 + i(φ3 − φ4) with positive φk ∈ W∗ (k = 1, 2, 3, 4) such that ‖φk −
φk+1‖ = ‖φk‖+ ‖φk+1‖ ≤ ‖φ‖, k = 1, 3 (cf. [47, Theorem III.4.2]). Then we
set

[φ] =
1

2

4∑
k=1

φk =
1

2
(|φ1 − φ2|+ |φ3 − φ4|)

and observe that [φ] ∈ W∗ is positive, ‖[φ]‖ ≤ ‖φ‖ and |φ(a)| ≤ 2[φ](a) for
all positive a ∈W .

Finally, let us remark that ifA is a C∗-algebra, thenA∗∗ is a von Neumann
algebra and A∗ = (A∗∗)∗, thus |φ| and [φ] make sense also for continuous
functionals on a C∗-algebra.

Lemma 5.3. Let W be von Neumann algebra, let w ∈ W be a unitary
element and δ ∈ (0, 1). Let φ ∈ W∗ be a norm-one functional such that
φ(w) > 1 − δ (in particular, φ(w) ∈ R). Then ψ := w∗|φ| is a norm-one
element of W∗ satisfying ψ(w) = 1 and ‖φ− ψ‖ <

√
2δ.
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Proof. On the one hand, we have ‖ψ‖ ≤
∥∥|φ|∥∥ = ‖φ‖ = 1. On the other

hand, since ψ(w) = (w∗|φ|)(w) = |φ|(ww∗) = |φ|(1) =
∥∥|φ|∥∥ = 1, we deduce

that ‖ψ‖ = 1. Applying (12) of Lemma 5.2 we obtain∥∥φ− w∗|φ|∥∥ ≤ √2|1− φ(w)|1/2 ≤ √2δ.
We continue by extending the previous lemma to JW∗-algebras.

Lemma 5.4. Let M be a JW ∗-algebra, w ∈ M a unitary element and
δ ∈ (0, 1). Let φ ∈ M∗ be a norm-one functional such that φ(w) > 1 − δ
(in particular, φ(w) ∈ R). Then there exists a norm-one functional ψ ∈ M∗
satisfying ψ(w) = 1 and ‖φ− ψ‖ <

√
2δ.

Proof. Let us assume that M is a JW∗-subalgebra of a von Neumann
algebra W . Let 1 denote the unit of M . Then 1 is a projection in W , thus,
up to replacing W by 1W1, we may assume that M contains the unit of W .

We observe that w, being a unitary element in M , is unitary in W . Let
φ̃ ∈W∗ be a norm-preserving extension of φ provided by [7, Theorem]. By hy-
pothesis, 1− δ < φ(w) = φ̃(w) ≤ ‖φ‖ = ‖φ̃‖ = 1. Now, applying Lemma 5.3
to W , φ̃ ∈ W∗ and the unitary w, we find a norm-one functional ψ̃ ∈ W∗
satisfying ψ̃(w) = 1 and ‖φ̃ − ψ̃‖ <

√
2δ. Since w ∈ M and 1 = ψ̃(w), the

functional ψ = ψ̃|M has norm one, ψ(w) = 1 and clearly ‖φ− ψ‖ <
√
2δ.

Lemma 5.5. Let M be a JW ∗-algebra, let φ ∈ M∗ and δ > 0. Suppose
a1, a2 are norm-one elements in M such that∣∣‖φ‖ − φ(ak)∣∣ < δ‖φ‖ for k = 1, 2.

Then there is a positive functional ω ∈M∗ satisfying ‖ω‖ ≤ 2
√
2δ ‖φ‖ and

|φ{x, x, a1 − a2}| ≤ 4‖x‖2ω for all x ∈M.

Proof. Similarly to the proof of Lemma 5.4 we may assume that M is a
JW∗-subalgebra of a von Neumann algebra W containing the unit of W .

Let φ̃ ∈ W∗ be a norm-preserving normal extension of φ (see [7, The-
orem]). Working in W∗ we set ψ̃l = a1φ̃ − a2φ̃ and ψ̃r = φ̃a1 − φ̃a2. By
(13) of Lemma 5.2 we have

∥∥|φ̃| − akφ̃
∥∥ ≤ √2δ ‖φ̃‖ (k = 1, 2), hence

‖ψ̃l‖ ≤ 2
√
2δ ‖φ̃‖. Likewise we get ‖ψ̃r‖ ≤ 2

√
2δ ‖φ̃‖ with (14) of Lemma 5.2.

Set ω̃ = ([ψ̃l] + [ψ̃r])/2. Then ‖ω̃‖ ≤ 2
√
2δ ‖φ̃‖ and

|φ̃{x, x, a1 − a2}| = 1
2 |ψ̃l(xx

∗) + ψ̃r(x
∗x)| ≤ [ψ̃l](xx

∗) + [ψ̃r](x
∗x)

≤ ([ψ̃l] + [ψ̃r])(xx
∗ + x∗x) = 4ω̃({x, x, 1}) = 4‖x‖2ω̃.

It remains to set ω = ω̃|M .

Lemma 5.6. Let M be a JW ∗-algebra, φ ∈ M∗ and let a be a norm-one
element of M . Then there is a positive functional ω ∈M∗ such that

‖ω‖ ≤ ‖φ‖ and ∀x ∈W : |φ{x, x, a}| ≤ 4‖x‖2ω.
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Proof. The proof resembles that of Lemma 5.5. Assume that M is a
JW∗-subalgebra of a von Neumann algebra W and 1W ∈ M . Let φ̃ ∈ W∗
be a norm-preserving extension of φ (see [7, Theorem]). Set ψ̃l = aφ̃ and
ψ̃r = φ̃a. Then ‖ψ̃l‖ ≤ ‖a‖ ‖φ̃‖ = ‖φ̃‖, and similarly ‖ψ̃r‖ ≤ ‖φ̃‖. Set
ω̃ = ([ψ̃l] + [ψ̃r])/2. Then ‖ω̃‖ ≤ ‖φ̃‖ and

|φ̃{x, x, a}| = 1
2 |ψ̃l(xx

∗) + ψ̃r(x
∗x)| ≤ [ψ̃l](xx

∗) + [ψ̃r](x
∗x)

≤ ([ψ̃l] + [ψ̃r])(xx
∗ + x∗x) = 4ω̃({x, x, 1}) = 4‖x‖2ω̃.

Finally, we may set ω = ω̃|M .

Proof of Proposition 5.1. It follows from [23, Theorem 7.1] that any
JBW∗-algebra M can be represented as M1 ⊕`∞ M2 where M1 is a finite
JBW∗-algebra and M2 is a JW∗-algebra. The validity of Proposition 5.1 for
finite JBW∗-algebras follows immediately from Observation 4.1. Since the
validity of Proposition 5.1 is clearly preserved by `∞-sums, it remains to
prove it for JW∗-algebras.

So, assume that M is a JW∗-algebra and ϕ ∈ M∗. By homogeneity we
may assume ‖ϕ‖ = 1. Fix ε > 0. Choose δ > 0 such that 12

√
2δ < ε. By the

Wright–Youngson extension of the Russo–Dye theorem, the convex hull of
all unitary elements inM is norm dense in the closed unit ball ofM (see [50,
Theorem 2.3] or [9, Fact 4.2.39]). We can therefore find a unitary element w
such that ϕ(w) > 1 − δ. By Lemma 5.4 there exists a norm-one functional
ψ ∈M∗ satisfying ψ(w) = 1 and ‖ϕ− ψ‖ <

√
2δ. Set u = s(ϕ).

For x ∈M we then have

‖x‖2ϕ = ϕ{x, x, u} = ψ{x, x, w}+ (ϕ− ψ){x, x, w}+ ϕ{x, x, u− w}.
Applying Lemma 5.6 to ϕ−ψ and w we find a positive functional ω1 ∈M∗

with ‖ω1‖ ≤ ‖ϕ− ψ‖ <
√
2δ such that

|(ϕ− ψ){x, x, w}| ≤ 4‖x‖2ω1
for x ∈M.

Applying Lemma 5.5 to the functional ϕ and the pair w, u ∈ M we get
a positive functional ω2 ∈M∗ with ‖ω2‖ ≤ 2

√
2δ such that

|ϕ{x, x, u− w}| ≤ 4‖x‖2ω2
for x ∈M.

Hence for each x ∈M we have

‖x‖2ϕ ≤ ‖x‖2ψ + 4(‖x‖2ω1
+ ‖x‖2ω2

) = ‖x‖2ψ + ‖x‖24(ω1+ω2)
,

where we used the fact that ω1 and ω2 are positive functionals. As s(ψ) ≤ w
(just have in mind ψ(w) = 1 and (7)), w is unitary and

‖4(ω1 + ω2)‖ < 12
√
2δ,

it is enough to set ϕ1 = ψ and ϕ2 = 4(ω1 + ω2).

Remark 5.7. (1) Note that by [23, Proposition 7.5] any finite tripotent
in a JBW∗-algebra is majorized by a unitary element, hence Proposition 4.2
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is indeed a stronger version of Proposition 5.1 in the special case in which
the JBW∗-algebra M is a direct sum of a finite JBW∗-algebra and a type I
JBW∗-algebra. (For (i) and (iv) of Proposition 5.1 see the remarks before
the statement of Proposition 4.2.) Further, as will be seen at the begin-
ning of the next section, Proposition 5.1 is the main ingredient for proving
Proposition 3.5.

(2) There is an alternative way of proving Proposition 5.1. It follows from
[23, Theorem 7.1] that any JBW∗-algebra M can be represented by M1⊕`∞
M2⊕`

∞
M3 whereM1 is a finite JBW∗-algebra,M2 is a type I JBW∗-algebra

andM3 is a von Neumann algebra. So, we can conclude using Proposition 4.2
and giving the above argument only for von Neumann algebras (which is
slightly easier).

6. Proofs of the main results

Proof of Proposition 3.5. Let M be a JBW∗-algebra, ϕ ∈M∗ and ε > 0.
By homogeneity we may assume that ‖ϕ‖ = 1. Let ϕ1, ϕ2 and w correspond
to ϕ and ε/2 by Proposition 5.1. Since w is unitary, we have M2(w) = M ,
hence we may apply Lemma 3.3 to get ψ2 ∈M∗ such that

s(ψ2) ≤ w, ‖ψ2‖ ≤ ‖ϕ2‖, ‖ · ‖ϕ2 ≤
√
2 ‖ · ‖ψ2 .

Then

‖ · ‖2ϕ ≤ ‖ · ‖2ϕ1
+ ‖ · ‖2ϕ2

≤ ‖ · ‖2ϕ1
+ 2‖ · ‖2ψ2

= ‖ · ‖2ϕ1+2ψ2
= (‖ϕ1‖+ 2‖ψ2‖)‖ · ‖2ψ,

where
ψ =

ϕ1 + 2ψ2

‖ϕ1‖+ 2‖ψ2‖
.

(Note that the first equality follows from the fact that the support tripotents
of both functionals are below w.) Since the functionals ϕ1 and ψ2 attain their
norms at w, we deduce that ‖ψ‖ = 1. It remains to observe that

‖ϕ1‖+ 2‖ψ2‖ ≤ ‖ϕ‖+ 2‖ϕ2‖ ≤ 1 + ε.

Having proved Proposition 3.5, we know that Proposition 3.4 is valid as
well. Using it and Theorem 3.1 we get the following theorem.

Theorem 6.1. Let M be a JBW ∗-algebra, let H be a Hilbert space and
let T :M → H be a weak∗-to-weak continuous linear operator. Given ε > 0,
there is a norm-one functional ϕ ∈M∗ such that

‖Tx‖ ≤ (
√
2 + ε)‖T‖ ‖x‖ϕ for x ∈M.

Now we get the main result by the standard dualization.

Proof of Theorem 1.3. Let T : B → H be a bounded linear operator
from a JB∗-algebra into a Hilbert space. Let ε > 0. Since Hilbert spaces are
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reflexive, the second adjoint operator T ∗∗ maps B∗∗ into H and is weak∗-
to-weak continuous. Further, B∗∗ is a JBW∗-algebra (cf. [26, Theorem 4.4.3]
and [49] or [10, Proposition 5.7.10] and [9, Theorems 4.1.45 and 4.1.55]), so
Theorem 6.1 provides the respective functional ϕ ∈ (B∗∗)∗ = B∗.

We further note that for JB∗-algebras we have two different forms of the
Little Grothendieck Theorem: a triple version (the just proved Theorem 1.3)
and an algebraic version (an analogue of Theorem C). The difference is that
the first form provides just a norm-one functional while the second form
provides a state, i.e., a positive norm-one functional. Let us now show that
the algebraic version may be proved from the triple version.

Theorem 6.2. Let M be a JBW ∗-algebra, let H be a Hilbert space and
let T :M → H be a weak∗-to-weak continuous linear operator. Given ε > 0,
there is a state ϕ ∈M∗ such that

‖Tx‖ ≤ (2 + ε)‖T‖ϕ(x ◦ x∗)1/2 for x ∈M.

Proof. By Theorem 6.1 there is a norm-one functional ψ ∈M∗ such that

‖Tx‖ ≤
(√

2 +
ε√
2

)
‖T‖ ‖x‖ψ for x ∈M.

Since M is unital and M2(1) =M , Lemma 3.3 yields a norm-one functional
ϕ ∈ M∗ with s(ϕ) ≤ 1 and ‖ · ‖ψ ≤

√
2 ‖ · ‖ϕ. Then ϕ is a state (note that

ϕ(1) = 1) and
‖Tx‖ ≤ (2 + ε)‖T‖ ‖x‖ϕ for x ∈M.

It remains to observe that

‖x‖ϕ =
√
ϕ{x, x, 1} =

√
ϕ(x ◦ x∗) for x ∈M .

Theorem 6.3. Let B be a JB∗-algebra, let H be a Hilbert space and let
T : B → H be a bounded linear operator. Then there is a state ϕ ∈ B∗ with

‖Tx‖ ≤ 2‖T‖ϕ(x ◦ x∗)1/2 for x ∈ B.
Proof. Since B∗∗ is a JBW∗-algebra, T ∗∗ maps B∗∗ into H and T ∗∗ is

weak∗-to-weak continuous, by Theorem 6.2 we get a sequence (ϕn) of states
on B such that

‖Tx‖ ≤
(
2 +

1

n

)
‖T‖ϕn(x ◦ x∗)1/2 for x ∈ B and n ∈ N.

Let ϕ̃ be a weak∗ cluster point of the sequence (ϕn). Then ϕ̃ is positive,
‖ϕ̃‖ ≤ 1 and

‖Tx‖ ≤ 2‖T‖ϕ̃(x ◦ x∗)1/2 for x ∈ B.
Now we can clearly replace ϕ̃ by a state. Indeed, if ϕ̃ 6= 0, we take ϕ = ϕ̃/‖ϕ̃‖.
If ϕ̃ = 0, then T = 0 and hence ϕ may be any state. (Note that in case B is
unital, ϕ̃ is already a state.)
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We finish this section by showing that our main result easily implies
Theorem B.

Proof of Theorem B from Theorem 1.3. Let A be a C∗-algebra, let H
be a Hilbert space and let T : A → H be a bounded linear operator. By
Theorem 1.3 there is a sequence (ψn) of norm-one functionals in A∗ with

‖Tx‖ ≤
(√

2 +
1

n

)
‖T‖ ‖x‖ψn for x ∈ A and n ∈ N.

Recall that A∗∗ is a von Neumann algebra. Set un = s(ψn) ∈ A∗∗. Then
‖x‖2ψn

= ψn{x, x, un} = 1
2(ψn(xx

∗un) + ψn(unx
∗x))

= 1
2(unψn(xx

∗) + ψnun(x
∗x))

for x ∈ A. Moreover, ϕ1,n = unψn and ϕ2,n = ψnun are states on A (note
that ϕ1,n = |ψn| and ϕ2,n = |ψ∗n|) such that

‖Tx‖ ≤
(√

2 +
1

n

)
‖T‖ · 1√

2
(ϕ1,n(xx

∗) + ϕ2,n(x
∗x))1/2 for x ∈ A, n ∈ N.

Suppose (ϕ1, ϕ2) is a weak∗ cluster point of the sequence ((ϕ1,n, ϕ2,n))n in
BA∗ ×BA∗ . Then ϕ1, ϕ2 are positive functionals of norm at most one with

‖Tx‖ ≤ ‖T‖(ϕ1(xx
∗) + ϕ2(x

∗x))1/2 for x ∈ A.
Just as above we may replace ϕ1 and ϕ2 by states.

7. Examples and problems

Question 7.1. Do Theorems 1.3 and 6.1 hold with the constant
√
2

instead of
√
2 + ε?

We remark that these theorems do not hold with a constant strictly
smaller than

√
2. Indeed, assume that Theorem 1.3 holds with a constant K.

Then Theorem B holds with constantK/
√
2 (see the proof of the relationship

of these two theorems in Section 6). But the best constant for Theorem B
is 1, due to [22].

Since the example in [22] uses a rather involved combinatorial construc-
tion, we provide an easier example showing that the constant in Theorem 1.3
has to be at least

√
2.

Example 7.2. Let H be an infinite-dimensional Hilbert space. Let A =
K(H) be the C∗-algebra of compact operators. Fix an arbitrary unit vector
ξ ∈ H and define T : A → H by Tx = xξ for x ∈ A. It is clear that
‖T‖ = ‖ξ‖ = 1. Fix an arbitrary norm-one functional ϕ ∈ A∗. We are going
to prove that

(15) sup

{
‖Tx‖
‖T‖ ‖x‖ϕ

; x ∈ A, ‖x‖ϕ 6= 0

}
≥
√
2.
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Recall that K(H)∗ is identified with N(H), the space of nuclear opera-
tors on H equipped with the nuclear norm, and K(H)∗∗ is identified with
B(H), the von Neumann algebra of all bounded linear operators on H. Using
the trace duality we deduce that there is a nuclear operator z on H such
that tr(|z|) = ‖z‖N = 1 and ϕ(x) = tr(zx) for x ∈ A. Consider the polar
decomposition z = u|z| in B(H). Then |z| = u∗z, hence s(ϕ) ≤ u∗. (Note
that ϕ(u∗) = tr(zu∗) = tr(u∗z) = tr(|z|) = 1, hence s(ϕ) ≤ u∗ by (7). The
converse inequality holds as well, but it is not important.) It follows that for
each x ∈ A we have
‖x‖2ϕ = ϕ({x, x, u∗}) = 1

2ϕ(xx
∗u∗ + u∗x∗x) = 1

2 tr(xx
∗u∗z + u∗x∗xz)

= 1
2(tr(xx

∗|z|) + tr(u∗x∗xz)).

If η ∈ H is a unit vector, we define the operator
yη(ζ) = 〈ζ, ξ〉η, ζ ∈ H.

Then yη ∈ A, ‖yη‖ = 1 and ‖Tyη‖ = 1. Moreover,
y∗η(ζ) = 〈ζ, η〉ξ,

hence
yηy
∗
η(ζ) = 〈ζ, η〉η and y∗ηyη(ζ) = 〈ζ, ξ〉ξ.

Thus
‖yη‖2ϕ = 1

2(tr(|z|yηy
∗
η) + tr(zu∗y∗ηyη)) =

1
2(〈|z|η, η〉+ 〈zu

∗ξ, ξ〉)
≤ 1

2(1 + 〈|z|η, η〉).
Consequently,

inf {‖x‖2ϕ ; x ∈ A, ‖Tx‖ = 1} ≤ 1
2 inf {1 + 〈|z|η, η〉 ; ‖η‖ = 1}

= 1
2 + 1

2 minσ(|z|),
where the last equality follows from [15, Theorem 15.35]. Now, z is a nuclear
operator of norm one. Thus 0 ∈ σ(|z|) as H has infinite dimension. Hence

inf {‖x‖ϕ ; x ∈ A, ‖Tx‖ = 1} ≤ 1/
√
2,

which yields inequality (15).
Remark 7.3. If H is a finite-dimensional Hilbert space, the construction

from Example 7.2 could be done as well. Now A = K(H) = B(H) can be
identified with the algebra of n × n matrices where n = dimH. Now σ(|z|)
need not contain 0, but at least one of the eigenvalues of |z| is at most 1

n .
So, we get a lower bound

√
2n
n+2 for the constant in Theorem 1.3.

Next we address the optimality of the algebraic version of the Little
Grothendieck Theorem.

Question 7.4. What is the optimal constant in Theorems C, 6.2, 6.3?
In particular, do these theorems hold with the constant

√
2?
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Note that the constant cannot be smaller than
√
2 due to Example 7.2.

The following example shows that 7.2 cannot yield a greater lower bound.

Example 7.5. Let H, A, ξ and T be as in Example 7.2. Let u ∈ A∗∗ =
B(H) be any unitary element. Then

ϕu(x) = 〈xξ, uξ〉, x ∈ A,

defines a norm-one functional in A∗ such that s(ϕu) ≤ u and, moreover,

‖Tx‖ ≤
√
2 ‖x‖ϕu for x ∈ A.

Indeed, it is clear that ‖ϕu‖ ≤ 1. Since ϕu(u) = 1, necessarily ‖ϕu‖ = 1
and s(ϕ) ≤ u. Moreover, for x ∈ A we have

‖x‖2ϕu
= ϕu{x, x, u} = 1

2ϕu(xx
∗u+ ux∗x) = 1

2(〈xx
∗uξ, uξ〉+ 〈ux∗xξ, uξ〉)

= 1
2(‖x

∗uξ‖2 + ‖xξ‖2) ≥ 1
2‖xξ‖

2 = 1
2‖Tx‖

2.

We continue by recalling the example of [22] showing optimality of The-
orem B and explaining that it shows optimality neither of Theorem C nor
of Theorem 6.3.

An important tool to investigate optimality of constants in Theorem B
is the following characterization.

Proposition 7.6 ([43, Proposition 23.5]).Let A be a C∗-algebra,H a Hil-
bert space, T : A→ H a bounded linear map and K a positive number. Then
the following two assertions are equivalent:

(i) There are states ϕ1, ϕ2 on A such that

(16) ‖Tx‖ ≤ K‖T‖(ϕ1(x
∗x) + ϕ2(xx

∗))1/2 for x ∈ A.

(ii) For any finite sequence (xj) in A we have

(17)
(∑

j

‖Txj‖2
)1/2

≤ K‖T‖
(∥∥∥∑

j

x∗jxj

∥∥∥+ ∥∥∥∑
j

xjx
∗
j

∥∥∥)1/2.
The following proposition is a complete analogue of the preceding one

and can be used to study optimality of Theorem 6.3. We have not found it
explicitly formulated in the literature, but its proof is completely analogous
to that of Proposition 7.6, given in [43].

Proposition 7.7. Let A be a unital JB∗-algebra, H a Hilbert space,
T : A → H a bounded linear map and K a positive number. Then the
following two assertions are equivalent:

(i) There is a state ϕ on A such that

(18) ‖Tx‖ ≤ K‖T‖ϕ(x∗ ◦ x)1/2 for x ∈ A.
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(ii) For any finite sequence (xj) in A we have

(19)
(∑

j

‖Txj‖2
)1/2

≤ K‖T‖
∥∥∥∑

j

x∗j ◦ xj
∥∥∥1/2.

We recall the example originated in [22] and formulated and proved in
this setting in [43].

Example 7.8 ([43, Lemma 11.2]). Consider an integer n ≥ 1. Let N =
2n+1 and d =

(
2n+1
n

)
=
(
2n+1
n+1

)
. Let τd denote the normalized trace on the

space Md of d×d (complex) matrices. There are x1, . . . , xN in Md such that
τd(x

∗
ixj) = 1 if i = j and = 0 otherwise, satisfying

(20)
∑
j

x∗jxj =
∑
j

xjx
∗
j = NI

and moreover such that, with an = (n+ 1)/(2n+ 1),

(21) ∀α = (αi) ∈ CN :
∥∥∥∑

j

αjxj

∥∥∥
(Md)∗

= d
√
an

(∑
j

|αj |2
)1/2

.

In the following example we show that the previous one yields the op-
timality of Theorem B but does not help to find the optimal constant for
Theorem C or Theorem 6.3. The first part is proved already in [22] (cf.
[43, Section 11]) but we include the proof for completeness and in order to
compare it with the second part.

Example 7.9. Fix n ≥ 1. With the notation of Example 7.8 define
T :Md → `N2 by

T (x) = (τd(x
∗
jx))

N
j=1, x ∈Md.

Let (ηj)Nj=1 be the canonical orthonormal basis of `N2 . Then the dual mapping
T ∗ : `N2 →M∗d satisfies

〈T ∗(ηj), x〉 = 〈ηj , T (x)〉 = τd(x
∗
jx) =

1

d
tr(x∗jx) for x ∈Md,

thus T ∗(ηj) = 1
dx
∗
j (we use the trace duality). Then (21) shows that

‖T ∗(α)‖ = 1

d

∥∥∥ N∑
j=1

αjx
∗
j

∥∥∥
(Md)∗

=
√
an ‖α‖ for α ∈ `N2 .

In particular, 1√
an
T ∗ is an isometric embedding, thus 1√

an
T is a quotient

mapping. Hence, ‖T‖ = √an.
Further, T (xj) = ηj for j = 1, . . . , N , so
N∑
j=1

‖T (xj)‖2 = N and
∥∥∥ N∑
j=1

x∗jxj

∥∥∥+ ∥∥∥ N∑
j=1

xjx
∗
j

∥∥∥ = 2‖NI‖ = 2N.
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Thus due to Proposition 7.6 the optimal value of the constant in Theorem B
is bounded below by

1√
2an

=

√
2n+ 1

2n+ 2
→ 1.

On the other hand, ∥∥∥ N∑
j=1

x∗j ◦ xj
∥∥∥ = ‖NI‖ = N,

thus Proposition 7.7 implies that the optimal value of the constant in The-
orem C is bounded below by

1
√
an

=

√
2n+ 1

n+ 1
→
√
2,

so it gives nothing better than Example 7.2.
In fact, this operator T satisfies Theorem C with constant 1√

an
≤
√
2. To

see this observe that (xj)Nj=1 is an orthonormal system in Md equipped with
the normalized Hilbert–Schmidt inner product. Hence, any x ∈ Md can be
expressed as

x = y +
N∑
j=1

αjxj ,

where αj are scalars and y ∈ {x1, . . . , xN}⊥HS . Then T (x) = (αj)
N
j=1 and

τd(x
∗ ◦ x) = τd(x

∗x) = τd(y
∗y) +

N∑
j=1

|αj |2 ≥
N∑
j=1

|αj |2 = ‖T (x)‖2.

Hence
‖T (x)‖ ≤ τd(x∗ ◦ x)1/2 =

1
√
an
‖T‖τd(x∗ ◦ x)1/2.

Since τd is a state, the proof is complete.

We continue by an example showing that there is a real difference between
the triple and algebraic versions of the Little Grothendieck Theorem.

Example 7.10.

(a) Let M be any JBW∗-triple and let ϕ ∈ M∗ be a norm-one functional.
Then

|ϕ(x)| ≤ ‖x‖ϕ for all x ∈M,

hence ϕ :M → C satisfies Theorem D(3) with constant 1.
(b) Let M2 be the algebra of 2 × 2 matrices. Then there is a norm-one

functional ϕ :M2 → C not satisfying Theorem C with constant smaller
than

√
2.

(c) In particular, the constant
√
2 in Lemma 3.3 is optimal.
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Proof. (a) The desired inequality was already stated in [4, comments
before Definition 3.1]. Let us give some details. We set e = s(ϕ). Then

|ϕ(x)| = |ϕ(P2(e)x)| = |ϕ({P2(e)x, e, e})| ≤ ‖P2(e)x‖ϕ‖e‖ϕ = ‖P2(e)x‖ϕ.
Moreover,

‖x‖2ϕ = ϕ({x, x, e}) = ϕ(P2(e){x, x, e})
= ϕ({P2(e)x, P2(e)x, e}+ {P1(e)x, P1(e)x, e})
= ‖P2(e)x‖2ϕ + ‖P1(e)x‖2ϕ ≥ ‖P2(e)x‖2ϕ.

(b) Each a∈M2 can be represented as a=(aij)i,j=1,2. Define ϕ :M2→C
by the formula

ϕ(a) = a12, a ∈M2.

It is clear that ‖ϕ‖ = 1 and that ϕ(s) = 1 where

s =

(
0 1

0 0

)
.

Let ψ be any state on M2. Then

‖s‖2ψ = ψ({s, s,1}) = 1
2ψ(ss

∗ + s∗s) = 1
2ψ(1) =

1
2 .

Thus ϕ(s) =
√
2 ‖s‖ψ for any state ψ on A =M2.

(c) This follows from (b) (consider p = 1).

8. Notes and problems on general JB∗-triples. The main result,
Theorem 1.3, is formulated and proved for JB∗-algebras. The assumption
that we deal with a JB∗-algebra, not with a general JB∗-triple, was strongly
used in the proof. Indeed, the key step was to prove the dual version for
JBW∗-algebras, Theorem 6.1, and we substantially used the existence of
unitary elements. So, the following problem remains open.

Question 8.1. Is Theorem 1.3 valid for general JB∗-triples?

We do not know how to attack this question. However, there are some
easy partial results. Moreover, some of our achievements may be easily ex-
tended to JBW∗-triples. In this section we collect such results.

The first example shows that for some JB∗-triples the optimal constant in
the Little Grothendieck Theorem is indeed

√
2. This is proved by completely

elementary methods.

Example 8.2. Let H be a Hilbert space considered as the triple B(C, H)
(i.e., a type 1 Cartan factor). That is, the triple product is given by

{x, y, z} = 1
2(〈x, y〉z + 〈z, y〉x), x, y, z ∈ H.

The dual coincides with the predual and it is isometric to H. Let y ∈ H∗ be a
norm-one element, i.e., we consider it as the functional 〈·, y〉. Then s(y) = y.
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So, for x ∈ H we have
‖x‖2y = 〈{x, x, y}, y〉 = 1

2〈〈x, x〉y + 〈y, x〉x, y〉 =
1
2(‖x‖

2 + |〈x, y〉|2)
≥ 1

2‖x‖
2.

Hence, if K is another Hilbert space and T : H → K is a bounded linear
operator, then for any norm-one y ∈ H∗ we have

‖Tx‖ ≤ ‖T‖ ‖x‖ ≤
√
2 ‖T‖ ‖x‖y,

so we have the Little Grothendieck Theorem with constant
√
2.

Moreover, the constant
√
2 is optimal in this case as soon as dimH ≥ 2.

Indeed, let T : H → H be the identity. Given any norm-one element y ∈ H,
we may find a norm-one element x ∈ H with x ⊥ y. The above computation
shows that ‖x‖ =

√
2 ‖x‖y.

Another case, non-trivial but well known, is covered by the following
example.

Example 8.3. Assume that E is a finite-dimensional JB∗-triple. Then E
is reflexive and, moreover, any bounded linear operator T : E → H (whereH
is a Hilbert space) attains its norm. Hence E satisfies the Little Grothendieck
Theorem with constant

√
2 by Theorem D(1).

We continue by checking which methods used in the present paper easily
work for general triples.

Observation 8.4. Proposition 4.2 holds for corresponding JBW ∗-triples
as well.

Proof. It is clear that it is enough to prove this separately for finite
JBW∗-triples and for type I JBW∗-triples. The case of finite JBW∗-triples
is trivial (one can take ϕ2 = 0). So, let M be a JBW∗-triple of type I,
ϕ ∈ M∗ and ε > 0. Set e = s(ϕ). Then M2(e) is a type I JBW∗-algebra
(see [8, comments on pp. 61–62 or Theorem 4.2]) and ϕ|M2(e) ∈ M2(e)∗.
Apply Proposition 4.2 to M2(e) and ϕ|M2(e) to get ϕ1 and ϕ2. The pair of
functionals ϕ1 ◦ P2(e) and ϕ2 ◦ P2(e) completes the proof.

Observe that the validity of Proposition 4.2 for finite JBW∗-triples is
trivial but useless if we have no unitary element. However, the ‘type I part’
may be used at least in some cases.

Proposition 8.5. Let M = L∞(µ) ⊗ B(H,K), where H and K are
infinite-dimensional Hilbert spaces. Then Proposition 3.4 holds for M .

Proof. Let us start by showing that Peirce-2 subspaces of tripotents
in M are upwards directed by inclusion. To this end first observe that
M = pV , where V is a von Neumann algebra and p ∈ V is a properly
infinite projection. This is explained for example in [24, p. 43]. Now assume
that u1, u2 ∈ pV are two tripotents (i.e., partial isometries in V with final
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projections below p). By [24, Lemma 9.8(c)] there are projections q1, q2 ∈ V
such that qj ≥ pi(uj) and qj ∼ p for j = 1, 2. Further, by [24, Lemma 9.8(a)]
we have q1∨ q2 ∼ p, so there is a partial isometry u ∈ V with pi(u) = q1∨ q2
and pf (u) = p. Then u ∈ pV =M and M2(u) ⊃M2(u1) ∪M2(u2).

Now we proceed with the proof of the statement itself. Let ϕ1, ϕ2 ∈ M∗
and ε > 0. Note that M is of type I, hence we may apply Observation 8.4 to
get the respective decomposition ϕ1 = ϕ11 + ϕ12. Let u ∈M be a tripotent
such that M2(u) contains s(ϕ11), s(ϕ12), s(ϕ2). Such a u exists as Peirce-2
subspaces of tripotents in M are upwards directed by inclusion as explained
above. We can find a unitary v ∈M2(u) with s(ϕ11) ≤ v (recall that s(ϕ11)
is a finite tripotent and use [23, Proposition 7.5]). We conclude by applying
Lemma 3.3.

Combine Proposition 8.5 with Theorem 3.1 to get the following:

Corollary 8.6. Let M = L∞(µ) ⊗ B(H,K), where H and K are
infinite-dimensional Hilbert spaces. Then Theorem 6.1 holds for M .

We finish by pointing out main problems concerning JBW∗-triples.

Question 8.7. Assume that M is a JBW ∗-triple of one of the following
forms:

• M = L∞(µ,C), where µ is a probability measure and C is a finite-dimen-
sional JB∗-triple without unitary element.
• M = pV , where V is a von Neumann algebra and p is a purely infinite
projection.
• M = pV , where V is a von Neumann algebra and p is a finite projection.

Is Theorem 6.1 valid for M?

Note that these three cases correspond to the three cases distinguished
in [25]. We conjecture that the second case may be proved by adapting the
results of Section 5 (but we do not see an easy way) and that the third case
is the most difficult one (much as in [25]).

Remark 8.8. Haagerup applied in [21] ultrapower techniques to relax
some of the extra hypotheses assumed by Pisier in the first approach to
a Grothendieck inequality for C∗-algebras. We should include a few words
justifying that Haagerup’s techniques are not effective in the setting of JB∗-
triples. Indeed, while a cluster point (in a reasonable sense) of states of a
unital C∗-algebra is a state, a cluster point of norm-one functionals may be
even zero. This is true for weak (or weak∗) limits and also for ultrapowers.
The ultrapower, EU , of a JB∗-triple, E, with respect to an ultrafilter U is
again a JB∗-triple with respect to the natural extension of the triple product
(see [13, Corollary 10]), and E can be regarded as a JB∗-subtriple of EU via
the inclusion of elements as constant sequences. Given a norm-one functional
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ϕ̃ ∈ E∗U the restriction ϕ = ϕ̃|E belongs to E∗, however we cannot guarantee
that ‖x‖ϕ̃ = ‖[x]U‖ϕ̃ is bounded by a multiple of ‖x‖ϕ. Let us observe that
both prehilbertian seminorms coincide on elements of E when the latter is
a unital C∗-algebra and ϕ̃ is a state on E.
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