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Transference of measures via disintegration

by

Ondřej F. K. Kalenda and Jiří Spurný

Abstract. Given a compact space K and a Banach space E we study the structure
of positive measures on the product space K ×BE∗ representing functionals on C(K,E),
the space of E-valued continuous functions on K. Using the technique of disintegration we
provide an alternative approach to the procedure of transference of measures introduced
by Batty (1990). This enables us to substantially strengthen some of his results, to discover
a rich order structure on these measures, to identify maximal and minimal elements and
to relate them to the classical Choquet order.

1. Introduction. The classical Riesz representation theorem provides
a bijective isometric correspondence between continuous linear functionals
on C(K), the space of (real- or complex-valued) continuous functions on a
Hausdorff compact space K, and M(K), the space of (signed or complex)
Radon measures on K. Therefore, given a subspace H ⊂ C(K), the Riesz
theorem together with the Hahn–Banach extension theorem entail that any
continuous linear functional on H may be represented by a Radon measure
on K with the same norm. Such a representing measure need not be unique,
hence it makes sense to compare the representing measures and to investigate
their structure. This is the basic content of Choquet theory.

In the classical case, K is a compact convex set and H = Ac(K) is the
space of all affine continuous functions on K. If K is metrizable, the classical
Choquet theorem yields that any continuous linear functional on Ac(K) is
represented by a measure µ with the same norm that is carried by the set
extK of extreme points of K. For nonmetrizable K the question is more
subtle: the Choquet ordering naturally arises and one gets a representing
measure µ ‘almost carried’ by extK in the sense that |µ|(K \ B) = 0 for
each Baire set B ⊃ extK. This is summarized in the famous Choquet–
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Bishop–de-Leeuw theorem (see [1, Section I.4]). The question of uniqueness
in this context leads to the theory of Choquet simplices (see, e.g., [1, Section
II.3]).

A generalization of this representation theory is encompassed by the no-
tion of a function space H, which is a subspace of C(K,R) containing the
constant functions and separating the points of K (see e.g. [14, Chapter 6]
or [11, Chapter 3]). In this context, the role of the set of extreme points is
played by the so-called Choquet boundary ChH K of H (this is the set of
those points x ∈ K such that the point evaluation at x is an extreme point
of the dual unit ball BH∗ of H). Again we may construct for a functional
s ∈ H∗ a representing measure with the same norm as s which is ‘almost car-
ried’ by ChH K. The question of uniqueness leads to the theory of simplicial
function spaces (see, e.g., [11, Chapter 6]).

The next step was a generalization to the complex case, addressed in
[10, 9, 7, 13]. It turns out that the representation theorem holds in the same
form, but the question of uniqueness is more subtle than in the real case.

A further generalization deals with vector-valued function spaces, i.e.,
subspaces H ⊂ C(K,E) for some compact K and Banach space E. A sat-
isfactory theory of integral representation in this case was presented by
P. Saab and M. Talagrand in a series of papers [18, 19, 20]. Their approach
was further improved by W. Roth and C. J. K. Batty [15, 16, 17, 3]. In
the vector-valued case there are two basic approaches to the representation
– via vector measures on K, using a generalization of the Riesz theorem
saying that the dual to C(K,E) is canonically isometric to M(K,E∗), or
via scalar measures on K × BE∗ , using the canonical isometric inclusion
T : C(K,E) → C(K ×BE∗) defined by

Tf(t, x∗) = x∗(f(t)), (t, x∗) ∈ K ×BE∗ , f ∈ C(K,E).

These two approaches are closely related. In fact, the construction of repre-
senting vector measures in the quoted papers is done via the scalar measures
– at first a suitable representing measure on K × BE∗ is constructed and
then the respective vector measure is obtained by application of the ‘Hustad
mapping’ (which is inspired by [10] and can be viewed as an interpretation of
the dual operator to the above-defined inclusion T ). This procedure was used
in [8] to provide a simple proof of the representation of the dual to C(K,E)
(see Section 2.4) and was substantially elaborated by Batty [3] using the
technique of ‘transference of measures’ which provides a canonical way of
how to assign to each µ ∈ M(K,E∗) a positive measure on K × BE∗ (with
the same norm and whose image under T ∗ is µ).

Our aim is to further investigate the vector-valued integral representation
theory, in particular how to grasp the notion of uniqueness of representing
measures. To this end we investigate in more detail the above-mentioned
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procedure discovered by Batty. Since the procedure itself does not depend
on the choice of H, we restrict ourselves to the case H = C(K,E).

In this case the representation by vector-valued measures trivially reduces
to a known theorem saying that each functional on C(K,E) is represented
by a unique vector measure (see Section 2.4). However, the structure of
representing positive measures on K×BE∗ is nontrivial. In accordance with
Section 5 below let us denote, for a given µ ∈ M(K,E∗), by N(µ) the set
of all positive measures on K × BE∗ with norm ∥µ∥ and representing the
same functional as µ. The main tool we use to investigate the structure of
N(µ) is the technique of disintegration of measures on product spaces (see
Section 2.6). With the help of this technique, we obtain (among others) the
following results:

For a vector measure µ ∈ M(K,E∗), there is a weak∗ Radon–Nikodým
derivative h of µ with respect to |µ| (see Proposition 3.3 and the rest of
Section 3). This enables us to give an alternative proof of [3, Proposition
3.3] (which yields a canonical selection mapping of the assignment µ 7→ N(µ)
denoted by K in [3] and by W in the present paper) and to provide a formula
for the operator W (see Corollary 4.2). We point out that such a formula is
given in [3, Proposition 2.2] but only under the very strong assumption of
the existence of the Bochner–Radon–Nikodým derivative of µ with respect
to |µ|, while our approach provides the formula in full generality.

A further application is Theorem 4.4, which shows that N(µ) is a sin-
gleton for each µ (i.e., the scalar representing measures are unique) if and
only if E∗ is strictly convex. This is the optimal version of a result from [3,
p. 540], where the uniqueness is proved under much stronger assumptions
(in particular, E is required to be separable and reflexive there).

We also analyze in detail a partial order ≺D on N(µ) introduced in [3].
We use the method of disintegration to relate it with the Choquet order on
M1(BE∗) (see Theorem 5.13). The set N(µ) contains the ≺D-largest element
(it coincides with the value Wµ of the above-mentioned operator W , see
Section 5.1). We further characterize ≺D-minimal elements of N(µ) using
maximal measures on M1(BE∗) (see Theorem 5.20). Finally, we show that
each N(µ) contains a unique ≺D-minimal measures if and only if the dual
unit ball BE∗ is a simplexoid (see Theorem 5.23).

We are convinced that the results and techniques from the present paper
will be useful to investigate the integral representation when H ⊊ C(K,E),
which we plan to take up elsewhere. This general case will, however, require
some additional effort, in particular because the Choquet boundary and H-
boundary measures should be considered (in the case of H = C(K,E), the
Choquet boundary is the whole K and all measures are H-boundary). Thus
the representation theorem is more involved (see [20]) and possible analogues
of the relations ≺B and ≺D are more complicated. Moreover, some special
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properties of C(K,E) (Urysohn lemma, functions of the form f ·x, etc.) are
not available for general H.

2. Preliminaries. In this section we collect some notation and auxiliary
results (mostly known) which will be used later on.

2.1. Real and complex Banach spaces. The classical Choquet theory
deals with real spaces, while the complex case requires some additional effort
as recalled in the introduction. In [3], which is one of our main references,
the real spaces are considered as well. However, our results hold for real and
complex spaces equally.

We will denote by F the relevant field (R or C). Moreover, we will repeat-
edly use without comment the following standard facts on complex Banach
spaces:

If E is a complex Banach space and ER is its real version (i.e., the same
space considered over R), then we have the following identifications:

• The assignment x∗ 7→ Rex∗ is a real-linear isometry of E∗ onto (ER)
∗.

• Conversely, if y∗ ∈ (ER)
∗, then the formula x∗(x) = y∗(x)−iy∗(ix), x ∈ E,

defines an element of E∗ with y∗ = Rex∗ (and ∥x∗∥ = ∥y∗∥).

2.2. Classical Choquet theory. This section recalls classical notions
of the Choquet theory of compact convex sets. Assume that X is a compact
convex set in a locally convex Hausdorff space. Then for each µ ∈ M1(X)
(the set of all Radon probability measures on X) there exists a unique point
x = r(µ) ∈ X (called the barycenter of µ) satisfying

	
X f dµ = f(x) for

each affine continuous function f : X → R. If x = r(µ), we say that µ re-
presents x.

The Choquet order ≺ on the cone M+(X) of all Radon positive measures
on X is defined as µ ≺ ν for µ, ν ∈ M+(X) if and only if

	
k dµ ⩽

	
k dν for

each k : X → R convex and continuous. A maximal measure then means a
measure maximal in the ordering ≺.

The maximality of a measure µ ∈M+(X) can be characterized by means
of envelopes. Recall that, given a bounded real-valued function f on X, its
upper and lower envelopes are defined as

(2.1)
f∗ = inf {h; h ⩾ f, h ∈ C(X,R) affine},
f∗ = sup {h; h ⩽ f, h ∈ C(X,R) affine}.

Then µ ∈M+(X) is maximal if and only if
	
f dµ =

	
f∗ dµ for each convex

continuous function f : X → R (this result is due to Mokobodzki, see [1,
Proposition I.4.5]).

If X is metrizable and extX stands for the set of all extreme points of X,
then extX is a Gδ-subset of X and µ ∈ M+(X) is maximal if and only if
µ(X \ extX) = 0 (see [1, p. 35]).
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It is an easy consequence of Zorn’s lemma that for any µ ∈M+(X) there
is a maximal measure ν ∈ M+(X) such that µ ≺ ν. When X is metrizable,
there is a witnessing Borel assignment provided by the following lemma.

Lemma 2.1. Let X be a metrizable compact convex set. Then there exists
a Borel measurable mapping Ψ : M1(X) → M1(X) such that ν ≺ Ψ(ν) and
Ψ(ν) is a maximal measure for each ν ∈M1(X).

Proof. By [11, Theorem 11.41] there is a Borel measurable mapping m :
X → M1(X) such that m(x) is a maximal measure representing x for each
x ∈ X. Fix µ ∈M1(X). Let us define a functional ψµ on C(X) by

ψµ(f) =
�

X

( �

X

f(y) dm(x)(y)
)
dµ(x), f ∈ C(X).

Note that, given f ∈ C(X), the function x 7→
	
f dm(x) is Borel measurable

and bounded by ∥f∥, so ψµ is a well-defined linear functional of norm at
most ∥µ∥. Let Ψ(µ) be the measure representing ψµ.

To observe that Ψ is a Borel mapping, it is enough to show that µ 7→
ψµ(f) is Borel measurable for each f ∈ C(X). We already know that the
function x 7→

	
f dm(x) is Borel measurable, so it is a Baire function, thus

µ 7→ ψµ is also a Baire function.
If f ∈ C(X,R) is convex, then

�
f dΨ(µ) = ψµ(f) =

�

X

( �
f(y) dm(x)(y)

)
dµ(x) ⩾

�

X

f(x) dµ(x),

where we have used the fact that f is convex and m(x) represents x for each
x ∈ X. We deduce that µ ≺ Ψ(µ).

Finally, let us show µ is maximal, i.e, it is carried by extX. By construc-
tion we have�

f dΨ(µ) =
�

X

( �
f(y) dm(x)(y)

)
dµ(x), f ∈ C(X).

By the Lebesgue dominated convergence theorem this equality extends to
bounded Baire functions on X, and so to bounded Borel functions on X. In
particular, applying it to the characteristic function of X \ extX we deduce

Ψ(µ)(X \ extX) =
�

X

m(x)(X \ extX) dµ(x) = 0.

2.3. Integration with respect to measures with values in a dual
Banach space. Let (Ω,Σ) be a measurable space, let E be a (real or
complex) Banach space. If µ is an E∗-valued σ-additive measure on (Ω,Σ),
we denote by |µ| its (absolute) variation (see [4, Definition 4, p. 2]) and we
set ∥µ∥ = |µ|(Ω), the total variation of µ. If ∥µ∥ <∞, then µ is said to have
bounded variation. Moreover, µ is called regular if its variation |µ| is regular.
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Assume that µ is an E∗-valued σ-additive measure on (Ω,Σ) with bound-
ed variation. If x ∈ E, the formula

µx(A) = µ(A)(x), A ∈ Σ,

defines a scalar-valued σ-additive measure on (Ω,Σ) with bounded variation
(more precisely, we have ∥µx∥ ⩽ ∥µ∥ · ∥x∥).

Assume that u =
∑n

j=1 χAj · xj is a simple measurable function (where
x1, . . . , xn ∈ E and A1, . . . , An are pairwise disjoint elements of Σ). Then
we define �

udµ =

n∑
j=1

µ(Aj)(xj).

It is easy to check that the mapping u 7→
	
udµ is linear (from the space of

simple measurable functions to F). Moreover,∣∣∣�udµ
∣∣∣ ⩽ n∑

j=1

|µ(Aj)(xj)| ⩽
n∑
j=1

∥µ(Aj)∥∥xj∥ ⩽ ∥µ∥ · ∥u∥∞,

hence the integral may be uniquely extended to those functions f : Ω → E
which may be uniformly approximated by simple measurable functions. In
particular, if f : Ω → F is a bounded measurable function and x ∈ E, the
function f · x is µ-integrable and�

f · x dµ =
�
f dµx.

Further, if K is a compact space, then any continuous function from K
to E may be uniformly approximated by simple Borel measurable functions,
and thus we may define

	
f dµ whenever f : K → E is continuous and µ is

an E∗-valued Borel measure on K with bounded variation. In this case∣∣∣�f dµ
∣∣∣ ⩽ ∥f∥∞∥µ∥.

An important special type of vector measures are those of the form εt⊗x∗
where t ∈ K and x∗ ∈ E∗. Such measures act as follows:

(εt ⊗ x∗)(B) =

{
x∗, t ∈ B,

0, t /∈ B,
B ⊂ K Borel,

�
f d(εt ⊗ x∗) = x∗(f(t)), f ∈ C(K,E).

2.4. Representation of the dual to C(K,E). The integral from the
previous section may be used to provide a representation of the dual to the
space of vector-valued continuous functions. Let us fix the relevant notation.
Let K be a compact space and let E be a (real or complex) Banach space.
We denote by C(K,E) the Banach space of E-valued continuous functions
on K with the supremum norm, and by M(K,E∗) the space of all regular
E∗-valued Borel measures on K with bounded variation, equipped with the
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total variation norm. Then M(K,E∗) is canonically isometric to the dual of
C(K,E). Let us explain it a bit.

It follows from the previous section that any µ ∈ M(K,E∗) induces a
continuous linear functional on C(K,E) of norm at most ∥µ∥ by

f 7→
�
f dµ.

Conversely, assume that φ ∈ C(K,E)∗ is given. For each x ∈ E define

φx(f) = φ(f · x), f ∈ C(K,F).

Then φx ∈ C(K,F)∗ and ∥φx∥ ⩽ ∥φ∥∥x∥. By the Riesz representation theo-
rem there is a measure µx ∈M(K,F) with ∥µx∥ ⩽ ∥φ∥∥x∥ representing φx.
Moreover, since the assignment x 7→ φx is linear and continuous (of norm
at most ∥φ∥), the mapping x 7→ µx is a bounded linear operator (from E to
M(K,F)). For a Borel set B ⊂ K define

µ(B)(x) = µx(B), x ∈ E.

Then µ is obviously a finitely additive mapping from the Borel σ-algebra
to E∗. Moreover, µ is a regular σ-additive measure with bounded variation
representing φ and satisfying ∥µ∥ ⩽ ∥φ∥. An easy proof of this fact is pro-
vided in [8]. Since we will repeatedly use the related procedure, we briefly
recall the argument.

Let T : C(K,E) → C(K ×BE∗) be defined by

Tf(t, x∗) = x∗(f(t)), (t, x∗) ∈ K ×BE∗ , f ∈ C(K,E).

Then T is a linear isometric injection. By the Riesz representation theorem,
the space C(K×BE∗)∗ is canonically isometric to M(K×BE∗), so the dual
mapping T ∗ may be considered as a mapping T ∗ :M(K×BE∗) → C(K,E)∗.
So, continuing from the previous paragraph, there is ν ∈M(K ×BE∗) such
that ∥ν∥ = ∥φ∥ and T ∗ν = φ. By the definition of the dual mapping we
deduce

φ(f) =
�
x∗(f(t)) dν(t, x∗), f ∈ C(K,E).

In particular, for each x ∈ E and f ∈ C(K) we have
�

K

f dµx = φ(f · x) =
�
f(t)x∗(x) dν(t, x∗),

so
µx(A) =

�

A×BE∗

x∗(x) dν(t, x∗), A ⊂ K Borel.

It follows that

∥µ(A)∥ ⩽ |ν|(A×BE∗), A ⊂ K Borel.
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It now easily follows that µ is σ-additive, regular and ∥µ∥ ⩽ ∥ν∥ = ∥φ∥.
Moreover,

φ(f · x) =
�
f · x dµ, f ∈ C(K), x ∈ E.

Since these functions are linearly dense in C(K,E), we conclude that µ
represents φ in the sense of the previous section.

Finally, we may interpret T ∗ as a mapping T ∗ :M(K×BE∗) →M(K,E∗).
By the construction we have

(2.2) T ∗ν(A)(x) =
�

A×BE∗

x∗(x) dν(t, x∗), A ⊂ K Borel, x ∈ E.

Hence T ∗ in this representation coincides with the Hustad mapping used in
[3] and elsewhere.

2.5. Batty’s correspondences. In this section we briefly recall the
canonical correspondences established in [3, Section 2] and then used in the
procedure of ‘transference of measures’. One of the basic tools for these
correspondences is the following lemma which is repeatedly implicitly used
in the proofs in [3].

Lemma 2.2. Let X be a real locally convex space and let p : X → R be a
lower semicontinuous sublinear functional. Then

p(x) = sup {f(x); f ∈ X∗, f ⩽ p}, x ∈ X.

The sup cannot be replaced by max.

The positive part of this lemma is a (rather standard but nontrivial)
consequence of the Hahn–Banach separation theorem. Since we have not
found any reference for this result (except for a far more general version
[2, Theorem 2.11] with a complicated proof), we have decided to present
here a simple elementary proof, essentially following the argument used in
[3, p. 534] in a special case.

Proof of Lemma 2.2. Let us start with the negative part. A possible
counterexample is given in [2, Example 2.10] using a noncomplete inner
product space. Another possibility is to take X = (Y ∗, w∗), where Y is
any nonreflexive Banach space, p(y∗) = ∥y∗∥ for y∗ ∈ Y ∗ and a functional
y∗0 ∈ Y ∗ not attaining the norm.

To prove the positive part, fix any x ∈ X and any c < p(x). Let

A = {(y, t) ∈ X × R; t ⩾ p(y)}.

Then A is a closed convex set and (x, c) /∈ A. Applying the Hahn–Banach
separation theorem in X × R, we find f ∈ X∗ and d ∈ R such that

f(x) + cd < inf {f(y) + dt; (y, t) ∈ A}.
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Necessarily d ⩾ 0, otherwise the right-hand side would be −∞. Therefore

f(x) + cd < inf {f(y) + dp(y); y ∈ X}.
Since on the right-hand side we may choose y = x, we deduce d > 0. So,
without loss of generality d = 1. That is,
f(x) + c < inf {f(y) + p(y); y ∈ X} = inf {f(ty) + p(ty); y ∈ X, t ⩾ 0}

= inf {t(f(y) + p(y)); y ∈ X, t ⩾ 0}.
It follows that the right-hand side is either 0 or −∞. But the second pos-
sibility cannot take place. Hence f(x) + c < 0, so −f(x) > c. Moreover,
f(y) + p(y) ⩾ 0 for y ∈ X, so −f ⩽ p.

We continue with an abstract version of some of the correspondences
in [3].

Lemma 2.3. Let X be a (real or complex) Banach space.

(a) If U ⊂ X is a nonempty closed convex bounded set, we set

pU (x
∗) = inf {Rex∗(x); x ∈ U}, x∗ ∈ X∗.

Then pU is a weak∗ upper semicontinous superlinear functional.
(b) If p : X∗ → R is a weak∗ upper semicontinuous superlinear functional,

we set
Up = {x ∈ X; Rex∗(x) ⩾ p(x∗) for x∗ ∈ X∗}.

Then Up is a nonempty closed convex bounded set.
(c) If U ⊂ X is a nonempty closed convex bounded set, then UpU = U .
(d) If p : X∗ → R is a weak∗ upper semicontinuous superlinear functional,

then pUp = p.

Proof. Assertion (a) is obvious. Let us continue by proving (b). It is clear
that Up is closed and convex. Further, Up ̸= ∅ by Lemma 2.2 applied to −p.
To prove it is bounded, observe that for each x ∈ Up and x∗ ∈ X∗ we have

p(x∗) ⩽ Rex∗(x) = −Re(−x∗)(x) ⩽ −p(−x∗).
In the case F = C we also have Imx∗(x) = Re(−ix∗)(x). So, in any case
the set {x∗(x); x ∈ Up} is bounded for each x∗ ∈ X∗. By the uniform
boundedness principle we deduce that Up is bounded.

(c) Obviously U ⊂ UpU . Conversely, if x /∈ U , by the separation theorem
there is x∗ ∈ X∗ such that

Rex∗(x) < inf {Rex∗(y); y ∈ U} = pU (x
∗),

so x /∈ UpU .
Assertion (d) follows from Lemma 2.2 applied to −p.
Now we pass to the correspondences related to C(K,E). Recall that

M(K,E∗) is canonically isometric to the dual of C(K,E), so it is equipped
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with the related weak∗ topology. We consider the following four families:
A = {U ⊂ C(K,E); U is nonempty closed bounded and C(K)-convex},
B = {p :M(K,E∗) → R; p is weak∗ upper semicontinuous and superlinear,

p(µ1 + µ2) = p(µ1) + p(µ2) whenever µ1 ⊥ µ2},
C = {ψ : K → 2E ; ψ is lower semicontinuous, bounded

and has nonempty closed convex values},
D = {f : K × E∗ → R; f |K×BE∗ is upper semicontinuous and bounded,

f(t, ·) is superlinear for each t ∈ K}.
Note that U ⊂ C(K,E) is C(K)-convex if hf + (1 − h)g ∈ U whenever
f , g ∈ U and h ∈ C(K) satisfies 0 ⩽ h ⩽ 1.

Proposition 2.4. Let K be a compact space and let E be a Banach
space. The above-defined families A,B, C,D are in compatible bijective cor-
respondences:

B
p7→Up

// A
U 7→pU
oo

U 7→ψU // C
ψ 7→Uψ
oo

ψ 7→fψ
// D

f 7→ψf
oo

The correspondences between A and B are given by the formulas from Lemma
2.3, and the remaining ones are given by

ψU (t) = {f(t); f ∈ U} = {f(t); f ∈ U}, t ∈ K, U ∈ A,
Uψ = all continuous selections from ψ, ψ ∈ C,

fψ(t, x
∗) = inf {Rex∗(x); x ∈ ψ(t)}, (t, x∗) ∈ K × E∗, ψ ∈ C,

ψf (t) = {x ∈ E; Rex∗ ⩾ f(t, ·)}, t ∈ K, f ∈ D.
This proposition is proved in [3, Theorem 2.1]. Let us briefly comment

on it. The proof of the correspondence between A and B is based on the fact
that the abstract correspondence from Lemma 2.3 maps A into B and vice
versa. The proof of the correspondence between A and C uses, among others,
Michael’s selection theorem. Finally, in the proof of the correspondence be-
tween C and D a uniform version of Lemma 2.2 is used to show that D is
mapped into C and then Lemma 2.3 is used for any fixed t ∈ K.

The main application of the above correspondences is the resulting cor-
respondence between B and D (see [3, p. 535]):

Corollary 2.5. The resulting correspondence between B and D is pro-
vided by the formulas
fp(t, x

∗) = p(εt ⊗ x∗), (t, x∗) ∈ K × E∗, p ∈ B,

pf (µ) = inf
{
Re

�
g dµ; g ∈ C(K,E), Rex∗(g(t)) ⩾ f(t, x∗)

for (t, x∗) ∈ K × E∗
}
, µ ∈M(K,E∗), f ∈ D.
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Functions from D are determined by their restrictions to K×BE∗ , there-
fore we will often identify f ∈ D with its restriction. Note that both B and
D are convex cones. Let us look at B ∩ (−B) and D ∩ (−D). We have the
following:

Proposition 2.6.

(a) B ∩ (−B) = {µ 7→ Re
	
f dµ; f ∈C(K,E)}, so B∩(−B) is in a canonical

real-linear bijective correspondence with C(K,E).
(b) D ∩ (−D) = {ReTf ; f ∈ C(K,E)}.
(c) The correspondence p 7→ fp restricted to B ∩ (−B) coincides with the

operator f 7→ ReTf .

Proof. (a) By definition, B∩(−B) consists of real-valued real-linear weak∗
continuous functionals on M(K,E∗). Thus the assertion follows.

(b) Elements of D ∩ (−D) are continuous on K ×BE∗ and real-linear in
the second variable. Thus the assertion follows.

(c) This follows from (a) and Corollary 2.5. Indeed, assume p(µ) =
Re

	
f dµ for some f ∈ C(K,E). Then

fp(t, x
∗) = p(εt ⊗ x∗) = Rex∗(f(t)) = ReTf(t, x∗).

2.6. Disintegration of complex measures on compact spaces. In
this section we include basic results on disintegration of measures on products
of compact spaces. Our basic source is [6, Section 452]. Usually disintegration
is applied to positive measures. We start by a lemma showing that this
method may be easily adapted to complex measures.

Lemma 2.7. Let K and L be two compact Hausdorff spaces and let ν be a
complex Radon measure on K×L. Denote by σ the projection of the absolute
variation |ν| to K. Then there is an indexed family (νt)t∈K of complex Radon
measures on L such that the following conditions are satisfied:

(i) ∥νt∥ = 1 for each t ∈ K.
(ii) For each continuous function f : K × L→ C we have

�

K×L
f dν =

�

K

(�
L

f(t, z) dνt(z)
)
dσ(t).

In particular, for any such f the function

t 7→
�

L

f(t, z) dνt(z)

is σ-measurable.
(iii) If A ⊂ K and B ⊂ L are Borel sets, then

ν(A×B) =
�

A

νt(B) dσ(t).
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In particular, the mapping t 7→ νt(B) is σ-measurable whenever B ⊂ L
is Borel.

Moreover, if ν is positive, then all νt may be chosen to be probability mea-
sures. If ν is real-valued, all νt may be chosen to be real-valued.

Proof. Denote by λ the projection of |ν| to L. Then both σ and λ are
Radon measures. Let Σ and Υ denote the σ-algebras of the σ-measurable and
λ-measurable sets, respectively. LetΣ⊗Υ denote the productσ-algebra and let
ν ′ denote the restriction of |ν| toΣ⊗Υ . We apply [6, Theorem 452M] to ν ′ and
get an indexed family (ν0t )t∈K of Radon probability measures on L such that

(2.3)
�

K×L
f d|ν| =

�

K

(�
L

f(t, z) dν0t (z)
)
dσ(t)

for each f : K × L→ C bounded Σ ⊗ Υ -measurable.

Let h be the Radon–Nikodým density of ν|Σ⊗Υ with respect to ν ′. Then
h is Σ ⊗ Υ -measurable and without loss of generality |h| = 1 everywhere on
K × L. Given t ∈ K, let νt be the measure defined by

dνt = h(t, ·) dν0t .
Then ∥νt∥ = 1. If ν ⩾ 0, then we may take h = 1, so νt = ν0t is a probability
measure. If ν is real-valued, h may attain only real values (1 and −1), hence
νt is also real-valued. Moreover, if f : K × L → C is bounded and Σ ⊗ Υ -
measurable, then�

f dν =
�
fhd|ν| =

�

K

(�
L

f(t, z)h(t, z) dν0t (z)
)
dσ(t)

=
�

K

(�
L

f(t, z) dνt(z)
)
dσ(t),

where we have applied (2.3) to fh.
Thus (iii) clearly holds. To prove (ii) it remains to observe that continuous

functions are Σ ⊗ Υ -measurable. This is clear for functions of the form

(t, z) 7→ f(t)g(z) where f ∈ C(K), g ∈ C(L).

The Stone–Weierstrass theorem implies that such functions are linearly dense
in C(K × L), so we indeed deduce that all continuous functions are Σ ⊗ Υ -
measurable.

The indexed family (νt)t∈K provided by the previous lemma will be called
a disintegration kernel of ν. When L is metrizable, the disintegration kernel
is essentially unique and has some additional properties, collected in the
following lemma.

Lemma 2.8. Let K,L, ν, σ be as in Lemma 2.7. Assume moreover that L
is metrizable. Then:
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(a) Assume that (νt)t∈K is an indexed family of complex Radon measures
on L satisfying conditions (i) and (ii) from Lemma 2.7. Then it is a
disintegration kernel of ν.

(b) If (νt)t∈K is a disintegration kernel of ν, then the mapping t 7→ νt is
σ-measurable as a mapping from K to (BM(K,C), w

∗).
(c) The disintegration kernel of ν is uniquely determined up to a set of σ-

measure zero.

Proof. Assume that (νt)t∈K is an indexed family of complex Radon mea-
sures on L satisfying conditions (i) and (ii) from Lemma 2.7. Given f ∈ C(L),
the function (t, z) 7→ f(z) is continuous on K × L, so condition (ii) shows
that the function

t 7→
�
f dνt

is σ-measurable. Since L is metrizable, the space C(L) is separable and so
(BC(L)∗ , w

∗) is metrizable, hence second countable. It easily follows that the
mapping t 7→ νt is σ-measurable. Hence, assertion (b) follows.

Further, let (ν ′t)t∈K be another indexed family of complex Radon mea-
sures on L satisfying conditions (i) and (ii) from Lemma 2.7. Fix f ∈ C(L).
As in the previous paragraph, we find that the functions

h(t) =
�
f dνt and h′(t) =

�
f dν ′t, t ∈ K,

are σ-measurable. Moreover, for any g ∈ C(K) the function (t, z) 7→ g(t)f(z)
is continuous on K × L and hence we get (using condition (ii))�

ghdσ =
�
g(t)f(z) dν(t, z) =

�
gh′ dσ.

Since this holds for any g ∈ C(K), we deduce that h = h′ σ-almost every-
where. That is,�

f dνt =
�
f dν ′t for σ-almost all t ∈ K whenever f ∈ C(L).

Since C(L) is separable, we easily deduce that νt = ν ′t for σ-almost all t ∈ K.
Assertion (c) now easily follows.

Assertion (a) follows as well. Indeed, it is enough to apply the above
reasoning to a family (νt)t∈K satisfying conditions (i) and (ii) and a disinte-
gration kernel (ν ′t)t∈K which exists due to Lemma 2.7.

We continue with the following lemma which will be used to combine
disintegration with separable reduction methods.

Lemma 2.9. Let K,L, ν, σ be as in Lemma 2.7. Assume that ν ⩾ 0.
Let L′ be a metrizable compact space and let φ : L → L′ be a continuous
surjection. Let ν ′ = (id×φ)(ν) be the image of ν under the mapping id×φ.
If (νt)t∈K is a disintegration kernel of ν, then (φ(νt))t∈K is a disintegration
kernel of ν ′.
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Proof. Since ν ⩾ 0, we see that σ is the projection of |ν| = ν and
simultaneously the projection of |ν ′| = ν ′. Moreover, each φ(νt) is a proba-
bility measure. To prove that (φ(νt))t∈K is a disintegration kernel of ν ′ it is
enough, due to Lemma 2.8(a), to verify condition (ii) from Lemma 2.7. So,
fix f ∈ C(K × L′). We have

�

K×L′

f dν ′ =
�

K×L
f ◦ (id×φ) dν =

�

K

(�
L

f(t, φ(z)) dνt(z)
)
dσ(t)

=
�

K

( �

L′

f(t, y) dφ(νt)(y)
)
dσ(t),

where we have used Lemma 2.7 and the rules of integration with respect to
the image of a measure.

When L is not metrizable, the question of uniqueness is more delicate.
In particular, it is not hard to construct counterexamples showing that
Lemma 2.8(a) may fail for nonmetrizable L (for example if L = [0, 1][0,1] or if
L is the ordinal interval [0, ω1]). However, there is a substitute for uniqueness
in the general case which is contained in the following proposition.

Proposition 2.10. Let K and L be two compact Hausdorff spaces and
let σ be a positive Radon measure on K. Let

M = {ν ∈M+(K × L); π1(ν) = σ}.

Then there is an assignment of disintegration kernels

ν ∈M 7→ (νt)t∈K

such that for any two measures ν1, ν2 ∈M and any two bounded Borel func-
tions g1, g2 : L→ R we have

�
g1 dν1,t ⩽

�
g2 dν2,t σ-almost everywhere

=⇒
�
g1 dν1,t ⩽

�
g2 dν2,t for each t ∈ K.

Proof. Let Σ denote the σ-algebra of σ-measurable subsets of K. Let
Φ0 : Σ → Σ be a lifting (in the sense of [5, Definition 341A]) provided by
[5, Theorem 341K]. By [5, Theorem 363F and Exercise 363Xe] this mapping
induces a linear lifting Φ : L∞(σ) → L∞(Σ) (where L∞(Σ) is the space
of all bounded Σ-measurable functions on K equipped with the supremum
norm) which is also an order isomorphism and satisfies ∥Φ∥ ⩽ 1.

Given ν ∈M and A ⊂ L Borel, the assignment

νA(B) = ν(B ×A), B ∈ Σ,

is a measure on (K,Σ) satisfying νA ⩽ σ. Let hA denote the Radon–Nikodým
derivative of νA with respect to σ. It follows from [6, proof of Theorem 452M]
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that the formula

νt(A) = Φ(hA)(t), A ⊂ L Borel, t ∈ K,

provides a disintegration kernel of ν. We will show that this is a correct
choice.

Given a bounded Borel function g : L→ R, the formula

νg(B) =
�

B×L
g(z) dν(t, z), B ∈ Σ,

defines a signed measure on (K,Σ). Moreover, for each B ∈ Σ we have

|νg(B)| ⩽ ∥g∥∞ · ν(B × L) = ∥g∥∞ · σ(B).

By the definition of absolute variation we easily get |νg| ⩽ ∥g∥∞ · σ. In
particular, νg is absolutely continuous with respect to σ and its Radon–
Nikodým density hg satisfies ∥hg∥∞ ⩽ ∥g∥∞. It follows that the assignment
g 7→ hg is a nonexpansive linear operator from the space of bounded Borel
functions on L into L∞(σ).

We claim that for each bounded Borel function g on L we have
�
g dνt = Φ(hg)(t), t ∈ K.

Fix t ∈ K. By the choice of νt, the equality holds if g is a characteristic
function of a Borel set. By linearity and continuity we deduce that it holds
for each bounded Borel function.

Now assume that ν1, ν2 ∈ M and that g1, g2 : L → R are two bounded
Borel functions satisfing

�
g1 dν1,t ⩽

�
g2 dν2,t σ-almost everywhere.

Thus

ν1,g1(B) =
�

B

(�
L

g1 dν1,t

)
dσ(t) ⩽

�

B

(�
L

g2 dν2,t

)
dσ(t) = ν2,g2(B)

for each B ∈ A, i.e., ν1,g1 ⩽ ν2,g2 . It follows that h1,g1 ⩽ h2,g2 in L∞(σ) and
hence also Φ(h1,g1) ⩽ Φ(h2,g2) in L∞(Σ).

3. The Hustad mapping via disintegration. In this section we ana-
lyze in more detail the operator T ∗ interpreted as a mapping fromM(K×BE∗)
to M(K,E∗). Recall that this operator is defined by formula (2.2). We start
with a slight strengthening of [3, Lemma 3.1].

Lemma 3.1. If ν ∈M(K×BE∗) satisfies ∥T ∗ν∥ = ∥ν∥, then ν is carried
by K × SE∗ (here SE∗ denotes the dual unit sphere).



16 O. F. K. Kalenda and J. Spurný

Proof. Assume that ∥T ∗ν∥ = ∥ν∥. Then

∥ν∥ = ∥T ∗ν∥ = sup
{∣∣∣�f dT ∗ν

∣∣∣; f ∈ C(K,E), ∥f∥ ⩽ 1
}

= sup
{∣∣∣�x∗(f(t)) dν(x∗, t)∣∣∣; f ∈ C(K,E), ∥f∥ ⩽ 1

}
⩽ sup

{�
|x∗(f(t))|d|ν|(x∗, t); f ∈ C(K,E), ∥f∥ ⩽ 1

}
⩽

�
∥x∗∥ d|ν|(x∗, t) ⩽

�
1 d|ν|(x∗, t) = ∥ν∥,

so equalities hold. In particular, ∥x∗∥ = 1 |ν|-a.e.

We will further strengthen this lemma by using disintegration. To this
end we will need the following simple fact.

Lemma 3.2. Let ν be an F-valued Radon measure on BE∗. Then there is
a unique point r(ν) ∈ E∗ such that

�
x∗(x) dν(x∗) = r(ν)(x) for each x ∈ E.

Moreover, ∥r(ν)∥ ⩽ ∥ν∥. If ν is a probability measure, then r(ν) is the
barycenter of ν.

Proof. It is obvious that the mapping x 7→
	
x∗(x) dν(x∗) is a linear

functional on E of norm at most ∥ν∥. Moreover, if ν is a probability measure,
then the equality is clearly satisfied for the barycenter.

We continue by providing a formula for T ∗ν using a kind of ‘density
function’.

Proposition 3.3. Let ν ∈ M(K × BE∗) be arbitrary. Then there is a
function h : K → BE∗ such that

�

K

f dT ∗ν =
�

K

h(t)(f(t)) dπ1(|ν|)(t) for f ∈ C(K,E).

We also have

T ∗ν(A)(x) =
�

A

h(t)(x) dπ1(|ν|)(t) for A ⊂ K Borel and x ∈ E.

A possible choice for h is h(t) = r(νt) for t ∈ K, where (νt)t∈K is a disin-
tegration kernel of ν.

Proof. To simplify the notation we set σ = π1(|ν|). Let (νt)t∈K be a
disintegration kernel of ν. For each t ∈ K let h(t) = r(νt) ∈ BE∗ be the
functional provided by Lemma 3.2. Let us now prove that h satisfies the
first assertion:
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By the definition of T ∗ and Lemma 2.7 we have�

K

f dT ∗ν =
�

K×BE∗

x∗(f(t)) dν(t, x∗) =
�

K

( �

BE∗

x∗(f(t)) dνt(x
∗)
)
dσ(t)

=
�

K

r(νt)(f(t)) dσ(t) =
�

K

h(t)(f(t)) dσ(t),

where in the third equality we used the choice of r(νt).
We proceed by deducing the second assertion from the first one. Fix

x ∈ E. For each f ∈ C(K) we have�

K

f d(T ∗ν)x =
�

K

f · x dT ∗ν =
�

K

f(t) · h(t)(x) dσ(t).

By the Lebesgue dominated convergence we may extend this equality to
bounded Baire functions on K. Therefore the second assertion holds for any
Baire set A ⊂ K. By regularity of the measures in question this may be
extended to Borel sets.

The function h from the previous proposition is a kind of weak∗ Radon–
Nikodým density of T ∗ν with respect to π1(|ν|). Note that it need not be mea-
surable, but it is weak∗ measurable, i.e., t 7→ h(t)(x) is π1(|ν|)-measurable
for each x ∈ E. We will see in Proposition 3.5 below that stronger properties
are satisfied if E is separable.

In general, the function h is not uniquely determined – it is not hard to
find a nonseparable E and ν such that there are two everywhere different
functions h1 and h2 with the required properties. However, we have the
following partial uniqueness result.

Lemma 3.4. Let ν ∈ M(K × BE∗) be arbitrary. Let h1 and h2 be two
functions satisfying the conditions from Proposition 3.3.

(a) Let F ⊂ E be a separable subspace. Then h1(t)|F = h2(t)|F π1(|ν|)-
almost everywhere.

(b) If E is separable, then h1(t) = h2(t) π1(|ν|)-almost everywhere. In par-
ticular, if (νt)t∈K is a disintegration kernel of ν, then h1(t) = r(νt)
π1(|ν|)-almost everywhere.

Proof. Fix x ∈ E. By Proposition 3.3 we have�

A

h1(t)(x) dπ1(|ν|)(t) =
�

A

h2(t)(x) dπ1(|ν|)(t) for A ⊂ K Borel.

Hence h1(t)(x) = h2(t)(x) for π1(|ν|)-almost all t ∈ K. Now both assertions
easily follow.

We continue by more detailed analysis of the ‘density function’. The
following proposition provides, among others, the promised strengthening of
Lemma 3.1.
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Proposition 3.5. Let ν ∈ M(K × BE∗) be arbitrary and let h : K →
BE∗ be the function provided by Proposition 3.3. Then the following asser-
tions are valid:

(a) |T ∗ν| ⩽ π1(|ν|). If ∥T ∗ν∥ = ∥ν∥, then |T ∗ν| = π1(|ν|).
(b) If ∥T ∗ν∥ = ∥ν∥, then ∥h(t)∥ = 1 π1(|ν|)-almost everywhere. If, in ad-

dition, (νt)t∈K is a disintegration kernel of ν, then r(νt) ∈ SE∗ π1(|ν|)-
almost everywhere.

(c) If E is separable, then h is a π1(|ν|)-measurable function from K to
(BE∗ , w∗) and

∥T ∗ν∥ =
�

K

∥h(t)∥dπ1(|ν|)(t).

(d) If F is a separable subspace of E, then t 7→ h(t)|F is a π1(|ν|)-measurable
function from K to (BF ∗ , w∗). Moreover,

∥T ∗ν∥ = max
{ �

K

∥h(t)|F ∥ dπ1(|ν|)(t); F ⊂ E separable
}
.

Proof. To simplify the notation we again set σ = π1(|ν|).
(a) Given A ⊂ K Borel and x ∈ E, Proposition 3.3 yields

|T ∗ν(A)(x)| =
∣∣∣ �
A

h(t)(x) dσ(t)
∣∣∣ ⩽ �

A

|h(t)(x)| dσ(t) ⩽ ∥x∥σ(A),

hence ∥T ∗ν(A)∥ ⩽ σ(A). Now it easily follows that |T ∗ν| ⩽ σ. If ∥T ∗ν∥ =
∥ν∥, then ∥T ∗ν∥ = ∥σ∥ (as clearly ∥ν∥ = ∥σ∥) and hence |T ∗ν| = σ.

(b) We proceed by contraposition. Assume that the set {t∈K; ∥h(t)∥<1}
is not of σ-measure zero. It follows that there is some c < 1 such that the
set

A = {t ∈ K; ∥h(t)∥ ⩽ c}
has positive outer measure. Set δ = σ∗(A) (note that σ∗ denotes the outer
measure induced by σ). Fix any f ∈ BC(K,E). Then the set

C = {t ∈ K; |h(t)(f(t))| ⩽ c}
is σ-measurable and contains A (if t ∈ A, then |h(t)(f(t))| ⩽ ∥h(t)∥ ∥f(t)∥
⩽ c). Therefore∣∣∣ �

K

f dT ∗ν
∣∣∣ = ∣∣∣ �

K

h(t)(f(t)) dσ(t)
∣∣∣ ⩽ �

K

|h(t)(f(t))|dσ(t)

⩽ cσ(C) + σ(K \ C) = ∥σ∥+ (c− 1)σ(C) ⩽ ∥ν∥+ (c− 1)δ.

Hence
∥T ∗ν∥ ⩽ ∥ν∥+ (c− 1)δ < ∥ν∥,

which completes the argument. The additional statement follows from Propo-
sition 3.3.
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(c) Assume E is separable. Then (BE∗ , w∗) is a compact metrizable space,
hence it is second countable. By the assumption we know that t 7→ h(t)(x)
is σ-measurable for each x ∈ E. It follows that h−1(U) is σ-measurable
whenever U belongs to the canonical base of the weak∗ topology of BE∗ .
By second countability this may be extended to any weak∗ open set, so h is
σ-measurable.

Hence also t 7→ ∥h(t)∥ is σ-measurable. Moreover, if f ∈ BC(K,E), then∣∣∣ �
K

f dT ∗ν
∣∣∣ = ∣∣∣ �

K

h(t)(f(t)) dσ(t)
∣∣∣ ⩽ �

K

|h(t)(f(t))| dσ(t)

⩽
�

K

∥h(t)∥ ∥f(t)∥ dσ(t) ⩽
�

K

∥h(t)∥dσ(t),

so
∥T ∗ν∥ ⩽

�

K

∥h(t)∥ dσ(t).

To prove the converse inequality fix ε > 0. For x∗ ∈ SE∗ set

ψ(x∗) = {x ∈ BE ; Rex
∗(x) > 1− ε}.

Then ψ(x∗) is a nonempty convex set. Moreover, the set-valued mapping
ψ is clearly lower semicontinuous from the weak∗ topology to the norm.
Since (SE∗ , w∗) is a separable completely metrizable space and the mapping
x∗ 7→ ψ(x∗) is also lower semicontinuous (cf. [12, Proposition 2.3]), Michael’s
selection theorem [12, Theorem 3.2′′] provides a continuous selection of this
mapping. Hence, we have a (weak∗-to-norm) continuous map g : SE∗ → BE
such that Rex∗(g(x∗)) ⩾ 1 − ε for each x∗ ∈ SE∗ . Define a mapping f0 :
K → BE by

f0(t) =

{
g
( h(t)
∥h(t)∥

)
, h(t) ̸= 0,

0, h(t) = 0.

Then f0 is σ-measurable and Reh(t)(f0(t)) ⩾ (1− ε)∥h(t)∥ for t ∈ K.
By Luzin’s theorem (see [6, Theorem 418J and Definition 411M]) there

is a closed subset B ⊂ K such that σ(K \ B) < ε and f0|B is continuous.
By Michael’s selection theorem (see [12, Corollary 1.5] or [12, Theorem 3.1])
there is a continuous function f : K → BE extending f0. Then

∥T ∗ν∥ ⩾
∣∣∣ �
K

f dT ∗ν
∣∣∣ = ∣∣∣ �

K

h(t)(f(t)) dσ(t)
∣∣∣ ⩾ ∣∣∣ �

B

h(t)(f(t)) dσ(t)
∣∣∣− ε

=
∣∣∣ �
B

h(t)(f0(t)) dσ(t)
∣∣∣− ε ⩾

�

B

Reh(t)(f0(t)) dσ(t)− ε

⩾
�

B

(1− ε)∥h(t)∥ dσ(t)− ε ⩾ (1− ε)
( �

K

∥h(t)∥ dσ(t)− ε
)
− ε.

Since ε > 0 is arbitrary, the remaining inequality follows.
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(d) Fix a separable subspace F ⊂ E. For each x ∈ F we have

h(t)|F (x) = h(t)(x), t ∈ K,

so the function t 7→ h(t)|F is σ-measurable by the argument used in the
proof of (c). We also get

∥T ∗ν∥ ⩾ ∥T ∗ν|C(K,F )∥ =
�

K

∥h(t)|F ∥ dσ(t),

again by the same arguments as in (c).
Conversely, there is a sequence (fn) in BC(K,E) such that

∥T ∗ν∥ = sup
{∣∣∣ �
K

fn dT
∗ν
∣∣∣; n ∈ N

}
.

Since fn(K) is a compact (hence separable) subset of E for each n ∈ N,
there is a separable subspace F ⊂ E such that fn(K) ⊂ F for n ∈ N. Then

∥T ∗ν∥ = ∥T ∗ν|C(K,F )∥ =
�

K

∥h(t)|F ∥ dσ(t),

since h(t)|F is a density of (T ∗ν)|C(K,F ). This completes the proof of Propo-
sition 3.5.

The next lemma provides a more precise version of assertion (a) from the
previous proposition by describing the Radon–Nikodým density |T ∗ν| with
respect to π1(|ν|).

Lemma 3.6. Let ν ∈ M(K × BE∗) be arbitrary, let h : K → BE∗ be the
function provided by Proposition 3.3 and let F0 ⊂ E be a separable subspace
at which the maximum from Proposition 3.5(d) is attained. Then:

(a) If F ⊂E is a separable subspace containing F0, then ∥h(t)|F ∥=∥h(t)|F0∥
π1(|ν|)-a.e.

(b) d|T ∗ν| = ∥h|F0∥ dπ1(|ν|), i.e.,

|T ∗ν|(A) =
�

A

∥h(t)|F0∥dπ1(|ν|) for A ⊂ K Borel.

Proof. Once more we set σ = π1(|ν|).
(a) Since F ⊃ F0, we see that ∥h(t)|F ∥ ⩾ ∥h(t)F0∥ everywhere. On the

other hand, by Proposition 3.5(d) these two functions are σ-measurable and
have the same integral with respect to σ. Thus they are equal σ-almost
everywhere.

(b) Fix A ⊂ K Borel and x ∈ E. Let F = span(F0 ∪ {x}). By Proposi-
tion 3.3 we get
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|T ∗ν(A)(x)| =
∣∣∣ �
A

h(t)(x) dσ(t)
∣∣∣ ⩽ �

A

|h(t)(x)|dσ(t)

⩽
�

A

∥h(t)|F ∥ ∥x∥ dσ(t) = ∥x∥
�

A

∥h(t)|F0∥ dσ(t),

where the last equality follows from (a). Therefore

∥T ∗ν(A)∥ ⩽
�

A

∥h(t)|F0∥ dσ(t).

By definition of the absolute variation we deduce

|T ∗ν|(A) ⩽
�

A

∥h(t)|F0∥ dσ(t).

Finally, using the choice of F0 we deduce that equality holds.

The final result of this section provides a construction replacing any
ν ∈ M(K × BE∗) by a positive measure in a canonical way. This will serve
as a starting point for the next section devoted to an alternative view to
Batty’s procedure of transference of measures. Before coming to the final
result, we give a simple consequence of the Stone–Weierstrass theorem.

Lemma 3.7. The closed self-adjoint subalgebra of C(K ×BE∗) generated
by T (C(K,E)) is

C0(K ×BE∗) = {f ∈ C(K ×BE∗); f |K×{0} = 0}.
Proof. The inclusion ‘⊂’ is obvious. To prove the converse we use the

Stone–Weierstrass theorem. Assume that (t, x∗), (s, y∗) ∈ K ×BE∗ . Then:

• Assume y∗ ̸= x∗. Fix x ∈ E with y∗(x) ̸= x∗(x). Let f ∈ C(K,E) be
the constant function equal to x. Then Tf(t, x∗) = x∗(x) ̸= y∗(x) =
Tf(s, y∗).

• Assume y∗ = x∗ ̸= 0 and s ̸= t. Fix x ∈ E with x∗(x) ̸= 0 and f ∈ C(K)
with f(s) = 0 and f(t) = 1. Then

T (f · x)(t, x∗) = x∗(x) ̸= 0 = T (f · x)(s, y∗).
Let Z denote the subalgebra from the statement. By the Stone–Weierstrass
theorem we deduce

span(Z ∪ {1}) = {f ∈ C(K ×BE∗); f |K×{0} is constant},

hence, Z = C0(K ×BE∗).

Proposition 3.8. Let ν,h, F0 be as in Lemma 3.6. Define

g(t) =

{
h(t)

∥h(t)|F0∥
if h(t)|F0 ̸= 0,

0 otherwise.

Then:
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(i) There is a unique measure ν̃ ∈M(K×BE∗) carried by K× (BE∗ \{0})
such that

�

K×BE∗

f dν̃ =
�

K

f(t, g(t)) d|T ∗ν|(t) for f ∈ C0(K ×BE∗).

(ii) The measure ν̃ is positive, T ∗ν̃ = T ∗ν and ∥ν̃∥ = ∥T ∗ν∥. In particular,
ν̃ is carried by K × SE∗.

(iii) π1(ν̃) = |T ∗ν̃| = |T ∗ν|.
(iv) ∥g(t)∥ = 1 (hence ∥h(t)∥ = ∥h(t)|F0∥) π1(ν̃)-a.e.

Proof. Let f ∈ C(K,E). Let F ⊂ E be a separable subspace containing
F0 and f(K). Then

�

K

f dT ∗ν =
�

K

h(t)(f(t)) dπ1(|ν|)(t)

=
�

K

g(t)(f(t))∥h(t)|F0∥ dπ1(|ν|)(t)

=
�

K

Tf(t, g(t)) d|T ∗ν|(t).

Here the first equality follows from Proposition 3.3. To prove the second
equality we compare the integrated functions. By the definition of g they
are equal if h(t)|F0 ̸= 0 or h(t)(f(t)) = 0. At the remaining points we have
h(t)|F0 = 0 and h(t)|F ̸= 0 (recall that f(t) ∈ F ). But such points form a set
of π1(|ν|)-measure zero by Lemma 3.6(a). Hence the second equality follows.
The third equality follows from the definition of T and Lemma 3.6(b).

In particular, we deduce that the function t 7→ f(t, g(t)) is |T ∗ν|-mea-
surable for each f ∈ T (C(K,E)). Since measurability is preserved by prod-
ucts, linear combinations, complex conjugation and limits of sequences, by
Lemma 3.7 we find that the function t 7→ f(t, g(t)) is |T ∗ν|-measurable for
each f ∈ C0(K ×BE∗). Therefore, the mapping

f 7→
�

K

f(t, g(t)) d|T ∗ν|(t)

defines a linear functional on C0(K × BE∗). It is clear that this functional
is bounded, with norm at most ∥T ∗ν∥. So, the existence and uniqueness
of ν̃ follows from the Riesz representation theorem applied to the space
C0(K × (BE∗ \ {0})). This completes the proof of (i).

By the Riesz theorem the norm of ν̃ equals the norm of the represented
functional. In particular, ∥ν̃∥ ⩽ ∥T ∗ν∥. Conversely,
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∥ν̃∥ = sup
{∣∣∣ �
K

f(t, g(t)) d|T ∗ν|(t)
∣∣∣; f ∈ C0(K ×BE∗), ∥f∥∞ ⩽ 1

}
⩾ sup

{∣∣∣ �
K

Tf(t, g(t)) d|T ∗ν|(t)
∣∣∣; f ∈ C(K,E), ∥f∥∞ ⩽ 1

}
= sup

{∣∣∣ �
K

f dT ∗ν
∣∣∣; f ∈ C(K,E), ∥f∥∞ ⩽ 1

}
= ∥T ∗ν∥,

where the first equality on the third line follows from the computation at
the beginning of the proof. Hence ∥ν̃∥ = ∥T ∗ν∥. Further, ν̃ ⩾ 0 as the
represented functional is clearly positive. Finally, if f ∈ C(K,E), then

�
f dT ∗ν̃ =

�
Tf dν̃ =

�

K

Tf(t, g(t)) d|T ∗ν|(t) =
�

K

f dT ∗ν,

where the last equality again follows from the computation at the beginning
of the proof. We conclude that T ∗ν̃ = T ∗ν. This completes the proof of (ii)
as the last statement follows from Lemma 3.1.

Assertion (iii) follows from Proposition 3.5(a) using (ii).
For assertion (iv), note that, by the construction, the function g satisfies

the first equality from Proposition 3.3 for ν̃. Thus we conclude using (ii) and
Proposition 3.5(b).

4. Transference of measures revisited. In this section we show that
Proposition 3.8 provides an alternative approach to the procedure named
‘transference of measures’ in [3, Section 3]. This procedure provides, given
µ ∈ M(K,E∗), a canonical positive measure Wµ ∈ M(K × BE∗) (denoted
by Kµ in [3]) such that T ∗Wµ = µ and ∥Wµ∥ = ∥µ∥. The construction in
[3, Section 3] uses the correspondence between the cones B and D recalled
in Section 2.5 above. Using our approach we get stronger results than [3]
(as promised in the introduction). We start with the following lemma which
may be seen as an ultimate generalization of [3, Proposition 2.2].

Lemma 4.1. Let ν ∈ M(K × BE∗) be arbitrary. Let ν̃ be the measure
provided by Proposition 3.8. Then

pf (T
∗ν) =

�
f dν̃ for each f ∈ D.

Proof. We adopt the notation from Proposition 3.8. The proof will be
done in several steps.

Step 1. If f ∈ D, then

f = inf {ReTf ; f ∈ C(K,E), ReTf ⩾ f}.
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By Corollary 2.5 we have (for (t, x∗) ∈ K × E∗)

f(t, x∗) = pf (εt ⊗ x∗)

= inf
{
Re

�
f d(εt ⊗ x∗); f ∈ C(K,E),

Re y∗(f(s)) ⩾ f(s, y∗) for (s, y∗) ∈ K × E∗
}

= inf {ReTf(t, x∗); f ∈ C(K,E), ReTf ⩾ f},

which completes the argument.

Step 2. pf (T ∗ν) ⩾
	
f dν̃ for each f ∈ D.

Let f ∈ C(K,E) be arbirary. Then
�
Tf dν̃ =

�
Tf(t, g(t)) d|T ∗ν|(t) =

�
g(t)(f(t)) d|T ∗ν|(t)

=
�
g(t)(f(t))∥h(t)|F0∥ dπ1(|ν|)(t) =

�
h(t)(f(t)) dπ1(|ν|)(t)

=
�
f dT ∗ν.

Indeed, the first equality follows from Proposition 3.8 as Tf ∈ C0(K×BE∗).
The second equality follows from the definition of T , and the third one from
Lemma 3.6(b) (F0 has the same meaning as in Lemma 3.6). Let us explain the
fourth equality. Let F ⊂ E be a separable subspace containing F0 ∪ f(K).
Then h(t)(f(t)) = g(t)(f(t))∥h(t)|F0∥ unless h(t)(f(t)) ̸= 0 and h(t)|F0

= 0. But such points form a set of π1(|ν|)-measure zero by Lemma 3.6(a).
The last equality follows from Proposition 3.3.

Let f ∈ D be arbitrary. Using Step 1 and the preceding computation we
get

�
f dν̃ =

�
inf {ReTf ; f ∈ C(K,E), ReTf ⩾ f} dν̃

⩽ inf
{
Re

�
Tf dν̃; f ∈ C(K,E), ReTf ⩾ f

}
= inf

{
Re

�
f dT ∗ν; f ∈ C(K,E), ReTf ⩾ f

}
= pf (T

∗ν),

where the last equality follows from Corollary 2.5.

Step 3. If f = ReTf for some f ∈ C(K,E), then pf (T
∗ν) =

	
f dν̃.

Assume f = ReTf . It follows from Proposition 2.6 and from the first
computation in Step 2 that

pf (T
∗ν) = Re

�
f dT ∗ν =

�
ReTf dν̃ =

�
f dν̃.

Step 4. Assume f1, . . . ,fn∈C(K,E), fj = ReTf j and f = f1∧· · ·∧fn.
Then pf (T

∗ν) =
	
f dν̃.
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Assume first that f(t, g(t)) = f1(t, g(t)) |T ∗ν|-almost everywhere. Then

pf (T
∗ν) ⩽ pf1(T

∗ν) =
�
f1 dν̃ =

�
f dν̃ ⩽ pf (T

∗ν).

The first inequality follows from the fact that f ⩽ f1. The equalities follow
from Step 3 and from the definition of ν̃. The last inequality follows from
Step 2. Hence equalities hold.

In general there is a partition of K into Borel sets A1, . . . , An such that
f(t, g(t)) = fj(t, g(t)) for |T ∗ν|-almost all t ∈ Aj . Then

pf (T
∗ν) =

n∑
j=1

pf (T
∗ν|Aj ) =

n∑
j=1

pf (T
∗(ν|Aj×BE∗ )) =

n∑
j=1

�

K

f d( ˜ν|Aj×BE∗ )

=
n∑
j=1

�

K

f dν̃|Aj×BE∗ =
�

K

f dν̃.

Here the first equality follows from the fact that pf is additive on pairs
of mutually orthogonal measures. The second one follows easily from (2.2).
The fourth equality follows from the construction of ν̃: it is clear that this
measure constructed for ν|Aj×BE∗ coincides with ν̃ restricted to Aj × BE∗ .
In view of this the third equality follows from the special case addressed in
the previous paragraph. The last equality is obvious.

Step 5. The general case.
Let now f ∈ D be general. Then�
f dν̃ =

�
inf {h1 ∧ · · · ∧ hn; hj ∈ D ∩ (−D), hj ⩾ f for 1 ⩽ j ⩽ n} dν̃

= inf
{�

(h1 ∧ · · · ∧ hn) dν̃; hj ∈ D ∩ (−D), hj ⩾ f for 1 ⩽ j ⩽ n
}

= inf {ph1∧···∧hn(T ∗ν); hj ∈ D ∩ (−D), hj ⩾ f for 1 ⩽ j ⩽ n}
= pf (T

∗ν).

Here the first equality follows from Step 1 and the description of D ∩ (−D)
in Proposition 2.6. The second one follows from the monotone convergence
theorem for nets. The third equality follows from Step 4. The last equality
follows easily from Corollary 2.5.

Now we easily get the promised relationship to Batty’s operator:
Corollary 4.2. Let ν ∈M(K×BE∗) be arbitrary. Let ν̃ be the measure

provided by Proposition 3.8. Then ν̃ =WT ∗ν, where W is the operator from
[3, Proposition 3.3] (denoted by K in the quoted paper).

Proof. By Proposition 3.8 and Lemma 4.1, the measure ν̃ has the prop-
erties uniquely determining WT ∗ν by [3, Proposition 3.3].

Remark 4.3. Our approach provides an alternative construction of the
operator W from [3]. The original construction uses the assignment f 7→ pf
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from Corollary 2.5, which may be extended to a real-linear mapping D−D →
B − B and then the Hahn–Banach and Riesz representation theorems are
invoked. Our construction is different – we start from µ ∈ M(K,E∗), find
an arbitrary ν ∈M(K×BE∗) with T ∗ν = µ and then apply Proposition 3.8.
If we choose ν such that ∥ν∥ = ∥µ∥ (which is possible by the Hahn–Banach
theorem), the construction is a bit simpler.

We note that our construction uses more advanced tools (disintegration
of measures), but provides stronger results (see Theorem 4.4 below) and,
moreover, provides a weak∗ Radon–Nikodým derivative of µ with respect
to |µ|. Hence, as mentioned earlier, Lemma 4.1 may be viewed as an ultimate
generalization of [3, Proposition 2.2].

We continue by a further result promised in the introduction, which is
the optimal version of the uniqueness statement from [3, p. 540].

Theorem 4.4. The following assertions are equivalent:

(1) E∗ is strictly convex.
(2) If ν1, ν2 ∈M+(K ×BE∗) are such that T ∗ν1 = T ∗ν2 and ∥ν1∥ = ∥ν2∥ =

∥T ∗ν1∥, then ν1 = ν2.
(3) If ν ∈M+(K ×BE∗) is such that ∥T ∗ν∥ = ∥ν∥, then WT ∗ν = ν.

Proof. (2)⇒(3): This is obvious as, given ν as in (3), the measures ν and
WT ∗ν satisfy the assumptions of (2).

(3)⇒(2): This is also obvious, as given ν1 and ν2 as in (2), assertion (3)
yields ν1 =WT ∗ν1 =WT ∗ν2 = ν2.

(2)⇒(1): This is proved in [3, p. 540]. Let us recall the easy argument.
Assume E∗ is not strictly convex. Then there are three distinct points
x∗, x∗1, x

∗
2 ∈ SE∗ such that x∗ = 1

2(x
∗
1 + x∗2). Fix t ∈ K and set

ν1 = ε(t,x∗) and ν2 =
1
2(ε(t,x∗1) + ε(t,x∗2)).

Then ν1, ν2 are positive measures, ν1 ̸= ν2, T ∗ν1 = εt ⊗ x∗, and

T ∗ν2(f) =
�
Tf dν2 =

1
2

(
x∗1(f(t)) + x∗2(f(t))

)
= x∗(f(t)),

so T ∗ν2 = εt ⊗ x∗. Since ∥εt ⊗ x∗∥ = 1, the argument is complete.
(1)⇒(3): Assume E∗ is strictly convex. Let ν be as in (3). By Proposi-

tion 3.5(a) we deduce π1(ν) = |T ∗ν|. Denote this measure by σ. Let (νt)t∈K
be a disintegration kernel for ν. By Proposition 3.5(b) we get r(νt) ∈ SE∗

σ-almost everywhere. Since νt are probability measures (recall that ν ⩾ 0)
and E∗ is strictly convex, we deduce that νt = εr(νt) σ-almost everywhere.

Let h(t) = r(νt) for t ∈ K and let F0, g and ν̃ be as in Proposition 3.8.
By the choice of F0 we have ∥h(t)|F0∥ = 1 σ-almost everywhere (cf. Propo-
sition 3.5(d)) and hence g(t) = h(t) σ-almost everywhere. It follows from
Lemma 2.7 that ν satisfies the equality from Proposition 3.8(i). By unique-
ness of ν̃ we conclude that ν = ν̃. Using Lemma 4.1 we deduce ν =WT ∗ν.
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The key new result in the previous theorem is the implication (1)⇒(3).
Indeed, the equivalence (2)⇔(3) is easy, (2)⇒(1) follows from the example
in [3, p. 540], but (1)⇒(3) is new. In [3, p. 540] a much weaker version is
proved – it is assumed there that E is separable, reflexive and both E and E∗

are strictly convex. Using the technique of disintegration we show that strict
convexity of E∗ is enough, thus obtaining the optimal result.

5. Orderings of measures. In this section we analyze some orderings
of measures defined using the cones B and D. This is inspired by [3, Sec-
tion 4]. Since we focus on the whole cones B and D and not their subcones,
the situation is in fact different. As we will see below, the ordering defined
by B is trivial – it is not interesting in itself, but just as the trivial case of
possible future considerations. On the other hand, the ordering defined by
D enjoys several interesting and perhaps surprising features which we try to
understand.

This section is divided to five subsections. In the first one we collect defi-
nitions and easy properties of the orderings, in particular, maximal measures
with respect to the cone D are identified. The second subsection has auxiliary
nature and its results are applied in the third subsection where we relate the
ordering using D with the classical Choquet ordering (using the method of
disintegration). In the fourth subsection we focus on minimal measures with
respect to D and relate them to the classical maximal measures. In the final
subsection we address the question of uniqueness of these minimal measures.

5.1. Orderings by the cones B and D: basic facts. We start with
the trivial case. For µ1, µ2 ∈M(K,E∗) it is natural to define

µ1 ≺B µ2 := ∀p ∈ B : p(µ1) ⩽ p(µ2).

However, as the following observation says, this is not very interesting.

Observation 5.1. Let µ1, µ2 ∈ M(K,E∗). Then µ1 ≺B µ2 if and only
if µ1 = µ2.

Proof. The ‘if’ part is obvious. To prove the ‘only if’ part assume µ1≺B µ2.
Then p(µ1) = p(µ2) for each p ∈ B ∩ (−B). Hence, for each f ∈ C(K,E) we
have

Re
�
f dµ1 = Re

�
f dµ2.

It follows that µ1 and µ2 define the same linear functional on C(K,E), thus
µ1 = µ2.

The previous observation witnesses that the ordering ≺B is trivial as it
reduces to equality. This is related to the fact that we only deal with the
whole space C(K,E) and not with a proper function space H ⊊ C(K,E).
This also corresponds to the triviality of the Choquet ordering for function
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spaces H = C(K,R) in the classical setting. However, if we look at pos-
sible orderings induced by D, the situation is much more complicated and
interesting even in this ‘trivial’ case. So, let us continue by defining the first
possible notion of ordering induced by D.

If ν1, ν2 ∈M+(K ×BE∗), we define

ν1 ≺D ν2 := ∀f ∈ D :
�
f dν1 ⩽

�
f dν2.

Basic properties are collected in the following lemma.

Lemma 5.2. Let ν1, ν2 ∈M+(K ×BE∗). Then:

(a) ν1 ≺D ν2 if and only if�
(ReTf1 ∧ · · · ∧ ReTfn) dν1 ⩽

�
(ReTf1 ∧ · · · ∧ ReTfn) dν2

whenever f1, . . . ,fn ∈ C(K,E).
(b) If ν1 ≺D ν2, then T ∗ν1 = T ∗ν2.
(c) ν ≺D WT ∗ν for any ν ∈M+(K ×BE∗).

Proof. (a) The ‘only if’ part is obvious. The ‘if’ part follows from the for-
mula in Step 1 of the proof of Lemma 4.1 by using the monotone convergence
theorem for nets.

(b) Assume ν1 ≺D ν2. Then
	
f dν1 =

	
f dν2 for each f ∈ D ∩ (−D).

This means that
	
ReTf dν1 =

	
ReTf dν2 for each f ∈ C(K,E). It easily

follows that T ∗ν1 = T ∗ν2.
(c) This is proved in [3, Lemma 4.1] using the formulas from Corollary 2.5.

We are going to present an alternative proof which shows a relationship of
≺D to the classical Choquet ordering. By (a) we may restrict to functions of
the form f = f1 ∧ · · · ∧ fn, where fj = ReTf j for some f j ∈ C(K,E).

Let (νt)t∈K be a disintegration kernel of ν. Since ν ⩾ 0, all measures νt
are probability measures. Let h(t) = r(νt) for t ∈ K. Let F0, g, ν̃ be as in
Proposition 3.8. By Corollary 4.2 we know that ν̃ = WT ∗ν. Moreover, let
F ⊂ E be a separable subspace containing F0 ∪

⋃n
j=1 f j(K). Then

�

K×BE∗

f dWT ∗ν =
�

K×BE∗

f dν̃ =
�

K

f(t, g(t)) d|T ∗ν|(t)

=
�

K

f(t, g(t))∥h(t)|F0∥ dπ1(ν)(t)

=
�

K

f(t, ∥h(t)|F0∥g(t)) dπ1(ν)(t)

=
�

K

f(t,h(t)) dπ1(ν)(t) =
�

K

f(t, r(νt)) dπ1(ν)(t)

⩾
�

K

( �

BH∗

f(t, x∗) dνt(x
∗)
)
dπ1(ν)(t) =

�

K×BE∗

f dν.
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The first equality follows from Corollary 4.2, the second one from Propo-
sition 3.8(i) (note that f ∈ C0(K × BE∗)) and the third one follows from
Lemma 3.6(b). In the fourth one we use the fact that f(t, ·) is superlinear.

Let us explain the fifth equality. Note that under our assumption we have
(due to the choice of F )

f(t, x∗) = min
1⩽j⩽n

Rex∗(f j(t)) = min
1⩽j⩽n

Rex∗|F (f j(t))

for (t, x∗) ∈ K ×BE∗ . So, if h(t)|F = 0, then

f(t,h(t)) = 0 = f(t, ∥h(t)|F0∥g(t)).
Further, by Proposition 3.8 we know that

∥h(t)|F0∥g(t) = h(t) if h(t)|F0 ̸= 0.

Hence,

f(t,h(t)) = f(t, ∥h(t)|F0∥g(t)) unless h(t)|F0 = 0 & h(t)|F ̸= 0.

But this set has π1(ν)-measure zero by Lemma 3.6(a). This completes the
proof of the fifth equality.

The sixth equality follows from the choice of h. The inequality follows
from the facts that r(νt) is the barycenter of νt and that f(t, ·) is a continuous
concave function on BE∗ . The last equality follows from Lemma 2.7.

This completes the proof of Lemma 5.2.

The relation ≺D is obviously reflexive and transitive, so it is a pre-order.
However, it is not a partial order as the weak antisymmetry fails. Indeed,
if t ∈ K and x∗ ∈ SE∗ are arbitrary, then the measures ε(t,x∗) and 2ε(t, 1

2
x∗)

coincide on all functions from D (recall that such functions are positively
homogeneous in the second variable). Therefore, we consider (inspired by [3])
a finer relation ≺D,c defined by

ν1 ≺D,c ν2 ⇐⇒ ν1 ≺ ν2 and ∥ν2∥ ⩽ ∥ν1∥.
This is again a pre-order, but not a partial order as witnessed by the measures

ε(t,x∗) + 2ε(s, 1
2
x∗), ε(s,x∗) + 2ε(t, 1

2
x∗),

where s, t ∈ K are two distinct points and x∗ ∈ SE∗ . The following proposi-
tion summarizes the relationship between the pre-orders ≺D and ≺D,c and
identifies ≺D,c-maximal measures with Batty’s measures.

Proposition 5.3.

(a) A measure ν ∈M+(K×BE∗) is ≺D,c-maximal if and only if ν =WT ∗ν.
(b) The relations ≺D and ≺D,c restricted to measures carried by K × SE∗

coincide and are partial orders.

Proof. (b) Assume that ν1, ν2 are carried by K×SE∗ and ν1 ≺D ν2. Since
the function f(t, x∗) = −∥x∗∥ belongs to D (this is obvious, as noticed in [3,
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Example 2.3(1)]) and f = −1 on K × SE∗ , we deduce that −∥ν1∥ ⩽ −∥ν2∥.
Thus ν1 ≺D,c ν2. This proves the coincidence of the two relations.

To prove they are partial orders, it is enough to establish weak antisym-
metry. But this is proved in [3, Lemma 3.2].

(a) Assume that WT ∗ν1 = ν1 and ν1 ≺D,c ν2. Then T ∗ν2 = T ∗ν1 (by
Lemma 5.2(b)) and hence

∥ν2∥ ⩽ ∥ν1∥ = ∥T ∗ν1∥ = ∥T ∗ν2∥ ⩽ ∥ν2∥,
so ∥ν2∥ = ∥ν1∥. Further, by Lemma 5.2(c) we get

ν2 ≺D WT ∗ν2 =WT ∗ν1 = ν1.

We conclude ν2 ≺D,c ν1. Thus ν1 is ≺D,c-maximal. In fact, as both ν1 and
ν2 are carried by K × SE∗ (by Lemma 3.1), by (b) we get ν2 = ν1.

Next assume that ν is ≺D,c-maximal. Since ν ≺D WT ∗ν (by Lemma 5.2)
and ∥WT ∗ν∥ ⩽ ∥ν∥, we deduce ν ≺D,c WT ∗ν. By the maximality of ν we
get WT ∗ν ≺D,c ν. Thus ∥ν∥ = ∥T ∗ν∥ and so ν is carried by K × SE∗ (by
Lemma 3.1). Therefore, using (b) we deduce ν =WT ∗ν.

5.2. On the Choquet ordering of measures on BE∗. In this auxil-
iary subsection we present a result on the Choquet ordering on probability
measures on BE∗ for a Banach space E. This seems to be interesting in it-
self, but our main motivation is to apply it to a more detailed analysis of
the pre-orders ≺D and ≺D,c in Section 5.3 below. The promised result reads
as follows.

Theorem 5.4. Let µ, ν be two probability measures on BE∗ with the same
barycenter. Assume the common barycenter lies on the sphere. If

	
pdµ ⩽	

p dν for each weak∗ continuous sublinear function p on E∗, then µ ≺ ν in
the Choquet ordering.

Note that a probability measure on the ball with barycenter on the sphere
is necessarily carried by the sphere. We further note that it is enough to
prove this theorem for a real Banach space E, since the complex case may
be deduced by considering the real version of the space. Therefore, in this
section we assume that E is a real Banach space. To prove the theorem we
need two lemmata.

Lemma 5.5. Let µ ∈ M1(BE∗) be a measure with barycenter on the
sphere. Then for each ε > 0 there exists a weak∗ compact convex set K ⊂ SE∗

with µ(K) > 1− ε.

Proof. Let x∗ = r(µ). Let (xn) be a sequence in BE with x∗(xn) → 1.
Define fn(y∗) = y∗(xn) for y∗ ∈ BE∗ and n ∈ N. Given n ∈ N, fn is a
continuous affine function on BE∗ satisfying −1 ⩽ fn ⩽ 1 on BE∗ . Moreover,�

fn dµ = fn(x
∗) = x∗(xn) → 1.
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It follows that fn → 1 in L1(µ), hence, up to passing to a subsequence, we may
assume that fn → 1 µ-almost everywhere. Let F = {y∗ ∈ BE∗ ; y∗(xn) → 1}.
Then F ⊂ SE∗ , it is a convex set of full measure and it may be expressed as

F =
⋂
k∈N

⋃
n∈N

Fk,n,

where
Fk,n =

⋂
m⩾n

{y∗ ∈ BE∗ ; y∗(xm) ⩾ 1− 1/k}, k, n ∈ N.

Observe that Fk,n are weak∗ compact convex sets with Fk,n ⊂ Fk,n+1 for
k, n ∈ N. Since

1 = µ(F ) = µ
(⋂
k∈N

⋃
n∈N

Fk,n

)
,

we get

µ
(⋃
n∈N

Fk,n

)
= 1 for each k ∈ N.

Let nk ∈ N be such that µ(Fk,nk) > 1−ε/2k. ThenK =
⋂
k∈N Fn,kn is a weak∗

compact convex set with µ(K) > 1− ε. Further, clearly K ⊂ F ⊂ SE∗ .

Lemma 5.6. Let E be a real Banach space. Let f : E∗ → R be a weak∗
lower semicontinuous L-Lipschitz convex function (where L > 0) with f(0)
= 0. Let K ⊂ SE∗ be a weak∗ compact convex set. For each x∗ ∈ K we have

f(x∗) = sup {x∗(x); x ∈ E, ∥x∥ ⩽ 6L, y∗(x) ⩽ f(y∗) for each y∗ ∈ K}.

Proof. The proof is divided into several steps.

Step 1. Set C =
⋃
α⩾0 αK. Then C is a weak∗ closed convex cone.

Clearly, C is a convex cone. Moreover, since K ⊂ SE∗ , for each r > 0 we
have

C ∩ rBE∗ =
⋃

0⩽α⩽r

αK,

which is weak∗ compact, being the image of the compact set [0, r] × K by
the continuous map (α, x∗) 7→ αx∗. We conclude by the Krein–Shmul’yan
theorem.

Step 2. Set g(αy∗) = αf(y∗), α ∈ [0,∞) and y∗ ∈ K. Then g is a weak∗
lower semicontinuous sublinear function on C.

It is clear that g is well-defined and positively homogeneous. To prove it
is subadditive observe that, given y∗, z∗ ∈ K and α, β ⩾ 0 with α + β > 0,
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we have

g(αy∗ + βz∗) = g

(
(α+ β)

αy∗ + βz∗

α+ β

)
= (α+ β)f

(
αy∗ + βz∗

α+ β

)
⩽ (α+ β) · αf(y

∗) + βf(z∗)

α+ β

= αf(y∗) + βf(z∗) = g(αy∗) + g(βz∗).

To prove it is weak∗ lower semicontinuous, it is enough to prove that [g ⩽ d]
is a weak∗ closed subset of C for each d ∈ R. Since the set [g ⩽ d] is convex,
by the Krein–Shmul’yan theorem it is enough to prove that [g ⩽ d] ∩ rBE∗

is weak∗ closed for each r > 0. So, fix d ∈ R and r > 0. Then

[g ⩽ d] ∩ rBE∗ = {αx∗; x∗ ∈ K, α ∈ [0, r], αf(x∗) ⩽ d}
is weak∗ compact, being the image of the compact set

{(α, x∗) ∈ [0, r]×K; αf(x∗) ⩽ d}
under the continuous map (α, x∗) 7→ αx∗.

Step 3. Fix x∗ ∈ K and t0 < f(x∗). Since f(x∗) ⩾ −L, we may assume
t0 > −2L. Set

A = {(y∗, t) ∈ C × R; t ⩾ g(y∗)},
B = conv({(x∗, t0)} ∪ (x∗ +BE∗)× {−5L}).

Then A,B are disjoint nonempty convex sets in Z = (E∗, w∗)×R. Moreover,
A is closed and B is compact.

Obviously A and B are nonempty and convex and B is compact. The set
A is closed by Steps 1 and 2. It remains to prove that A and B are disjoint.
Assume that (αy∗, t) ∈ A ∩B for some y∗ ∈ K, α ∈ [0,∞) and t ∈ R. Then
g(αy∗) = αf(y∗) ⩽ t and there is c ∈ [0, 1] and u∗ ∈ B∗

E such that

(5.1) (αy∗, t) = (x∗ + (1− c)u∗, ct0 − 5L(1− c)).

We distinguish several cases:

Case 1: c = 1. Then t = t0 and αy∗ = x∗, hence α = 1 and y∗ = x∗. So,

t0 = t ⩾ f(y∗) = f(x∗) > t0,

a contradiction.

Case 2: c < 1 and α ⩽ 1. Then

f(αy∗) ⩽ αf(y∗) ⩽ t = ct0 − 5L(1− c) ⩽ cf(x∗)− 5L(1− c).

Further,

f(αy∗) = f(x∗ + (1− c)u∗)− f(x∗) + f(x∗)

⩾ f(x∗)− L∥(1− c)u∗∥ ⩾ f(x∗)− L(1− c).
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Putting these together we obtain

f(x∗)− L(1− c) ⩽ cf(x∗)− 5L(1− c).

This gives f(x∗) ⩽ −4L, a contradiction (recall that f(x∗) ⩾ −L).

Case 3: c < 1 and α > 1. Then
f(αy∗)− αf(y∗) = f(αy∗)− f(y∗) + f(y∗)− αf(y∗)

⩽ L∥(α− 1)y∗∥+ |f(y∗)|(α− 1) ⩽ 2L(α− 1).

Hence
f(αy∗) ⩽ αf(y∗) + 2L(α− 1).

On the other hand,

f(αy∗) = f(x∗ + (1− c)u∗) ⩾ f(x∗)− L(1− c).

Putting these together we obtain
f(x∗)− L(1− c) ⩽ αf(y∗) + 2L(α− 1) ⩽ t+ 2L(α− 1)

= ct0 − 5L(1− c) + 2L(α− 1)

⩽ cf(x∗)− 5L(1− c) + 2L(α− 1)

⩽ cf(x∗)− 5L(1− c) + 2L(1− c),

where the last inequality follows from comparison of the first coordinates in
(5.1) and the triangle inequality. We deduce f(x∗) ⩽ −2L, a contradiction.

Step 4. Construction of x.

Using the Hahn–Banach separation theorem we find x ∈ E and ω ∈ R
such that

sup {y∗(x) + ωs; (y∗, s) ∈ B} < inf {z∗(x) + ωt; (z∗, t) ∈ A}.
By the definition of A we see that necessarily ω ⩾ 0. By setting y∗ = z∗ = x∗,
s = t0 and t = f(x∗) we deduce that ω > 0. Hence, up to scaling we may
assume ω = 1, i.e.,

sup {y∗(x) + s; (y∗, s) ∈ B} < inf {z∗(x) + t; (z∗, t) ∈ A}.
We note that

inf {z∗(x) + t; (z∗, t) ∈ A} = inf {z∗(x) + g(z∗); z∗ ∈ C}
= inf {t(z∗(x) + f(z∗)); z∗ ∈ K, t ⩾ 0},

which is obviously either 0 or −∞. But the second possibility cannot take
place, so the infimum is 0. In particular,

z∗(−x) ⩽ f(z∗) for z∗ ∈ K.

Further, since (x∗, t0) ∈ B, we deduce that x∗(x)+ t0 < 0, i.e., x∗(−x) > t0.
Finally,

0 > sup {x∗(x) + y∗(x)− 5L; y∗ ∈ BE∗} = x∗(x) + ∥x∥ − 5L,
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so
∥−x∥ = ∥x∥ < 5L− x∗(x) ⩽ 5L+ f(x∗) ⩽ 6L.

This completes the proof of Lemma 5.6.

Proof of Theorem 5.4. We proceed by contraposition. Assume that µ ̸≺ ν
in the Choquet ordering. By [11, Proposition 3.56] there are weak∗ continuous
affine functions f1, . . . , fn on BE∗ such that�

max {f1, . . . , fn} dν <
�
max {f1, . . . , fn} dµ.

Since any weak∗ continuous affine function on BE∗ is Lipschitz (it is a func-
tion of the form x∗ 7→ x∗(x) + c for some x ∈ E and c ∈ R), we have a Lip-
schitz weak∗ continuous convex function f : E∗ → R with

	
f dν <

	
f dµ.

Since both µ and ν are probability measures, up to replacing f by f − f(0)
we may assume f(0) = 0. Let L denote the Lipschitz constant of f . Clearly
L > 0.

Fix ε > 0. Since µ and ν have the same barycenter, the measure 1
2(µ+ν)

has barycenter on the sphere. Therefore we may apply Lemma 5.5 to find
a weak∗ compact convex set K ⊂ SE∗ such that (µ + ν)(BE∗ \K) < ε. By
Lemma 5.6 we have, for x∗ ∈ K,

f(x∗) = sup {g(x∗); g : E∗ → R weak∗ continuous, linear,
6L-Lipschitz, g ⩽ f on K}

= sup {g(x∗); g : E∗ → R weak∗ continuous, sublinear,
6L-Lipschitz, g ⩽ f on K}.

Indeed, the first equality follows directly from Lemma 5.6, and the second
one is a trivial consequence. Since the family of functions from the last
expression is upwards directed, the monotone convergence theorem for nets
provides such g with

	
K g dµ >

	
K f dµ− ε. Then

�
g dµ ⩾

�

K

g dµ− 6Lε >
�

K

f dµ− ε− 6Lε ⩾
�
f dµ− ε− 7Lε,

where we used the choice of K, the choice of g, the equalities f(0) = g(0) = 0
and the assumptions that f is L-Lipschitz and g is 6L-Lipschitz. On the other
hand, we similarly get�

g dν ⩽
�

K

g dν + 6Lε ⩽
�

K

f dν + 6Lε ⩽
�
f dν + 7Lε.

It is now clear that choosing ε > 0 small enough we may achieve
	
g dν <	

g dµ. This completes the proof of Theorem 5.4.

5.3. More on orderings defined by the cone D. We now analyze in
more detail the pre-orders ≺D and ≺D,c and their relationship to the classical
Choquet order. To this end we will use the result from previous subsection
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and the technique of disintegration of measures. We restrict ourselves to
positive measures of minimal norm, i.e., to the set

N = {ν ∈M+(K ×BE∗); ∥T ∗ν∥ = ∥ν∥}.
Further, given µ ∈M(K,E∗), we set

N(µ) = {ν ∈ N ; T ∗ν = µ}.
We start by collecting a few basic facts on the set N :

Observation 5.7.

(a) The pre-orders ≺D and ≺D,c coincide on N .
(b) The relation ≺D restricted to N is a partial order.
(c) If ν1, ν2 ∈ N are such that ν1 ≺D ν2, then these two measures belong to

the same N(µ).

Proof. By Lemma 3.1 the measures from N are carried by K × SE∗ .
Assertions (a) and (b) thus follow from Proposition 5.3(b). Assertion (c)
follows from Lemma 5.2(b).

In order to address the case of possibly nonseparable E we will use restric-
tion maps to separable spaces. More specifically, if F ⊂ E is a (separable)
subspace, let RF : E∗ → F ∗ be the canonical restriction map. Then RF
restricted to BE∗ is a continuous surjection of BE∗ onto BF ∗ .

Lemma 5.8. Let µ ∈M(K,E∗) \ {0} be given. For ν ∈ N(µ) let (νt)t∈K
be a disintegration kernel of ν. Then:

(a) If ν ∈ N(µ), then r(νt) ∈ SE∗ for |µ|-almost all t ∈ K.
(b) Let ν ∈ N(µ). If F ⊂ E is a sufficently large separable subspace of E,

then ∥RF ◦ µ∥ = ∥µ∥ and (id×RF )(ν) ∈ N(RF ◦ µ).
(c) Let ν1, ν2 ∈ N(µ). If F ⊂ E is a sufficently large separable subspace

of E, then r(RF (ν1,t)) = r(RF (ν2,t)) ∈ SF ∗ for |µ|-almost all t ∈ K.

Proof. (a) This follows from Proposition 3.5(b).
(b) Let F ⊂ E be an arbitrary separable subspace. Let TF : C(K,F ) →

C(K ×BF ∗) be the respective variant of the operator T . If A ⊂ K is Borel
and x ∈ F , then by (2.2) we get

T ∗
F ((id×RF )(ν))(A)(x) =

�

A×BF∗

y∗(x) d(id×RF )(ν)(t, y
∗)

=
�

A×BE∗

(RFx
∗)(x) dν(t, x∗) =

�

A×BE∗

x∗(x) dν(t, x∗)

= µ(A)(x) = (RF ◦ µ)(A)(x).
We deduce that T ∗

F ((id×RF )(ν)) = RF ◦ µ. Since clearly ∥(id×RF )(ν)∥ =
∥ν∥ (as ν ⩾ 0), it is enough to take F so large that ∥RF ◦ µ∥ = ∥µ∥. This
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may be achieved easily – similarly to the proof of Proposition 3.5(d) we find
a sequence (fn) in C(K,E) such that

∥µ∥ = sup
n∈N

∣∣∣�fn dµ∣∣∣
and let F be the closed linear span of

⋃
n fn(K). (Any larger F works as

well.)
(c) Let F be a subspace provided by (b) which works simultaneously for

ν1 and ν2. Let h1 and h2 be the functions provided by Proposition 3.3 for
ν1 and ν2. For j = 1, 2 set ν̃j = (id × RF )(νj). Then for each f ∈ C(K,F )
we have�

K

f dT ∗
F (ν̃j) =

�

K×BF∗

TFf dν̃j =
�

K×BE∗

(TFf) ◦ (id×RF ) dνj

=
�

K×BE∗

RF (x
∗)(f(t)) dνj(t, x

∗) =
�

K×BE∗

x∗(f(t)) dνj(t, x
∗)

=
�

K

hj(t)(f(t)) d|µ|(t) =
�

K

hj(t)|F (f(t)) d|µ|(t).

The first equality follows from the definition of T ∗
F , and the second one

follows from the rules of integration with respect to the image of a measure.
The third one follows from the definition of TF . The fourth one is obvious
(as f(t) ∈ F for each t ∈ K). The fifth one follows from the choice of hj ,
and the last one is again obvious. Hence the function RF ◦ hj is a possible
choice of h associated to ν̃j by Proposition 3.3. Using the choice of F and
combining Lemmata 2.9 and 3.4 we deduce that

r(ν̃1,t) = h1(t)|F = h2(t)|F = r(ν̃2,t) |µ|-almost everywhere.

We continue by collecting several results on separable factorization which
will be useful further on.

Lemma 5.9.

(a) Let f ∈ C(BE∗) be given. Then there is a separable subspace F ⊂ E and
g ∈ C(BF ∗) such that f = g ◦RF .

(b) Let S ⊂ C(BE∗) be a norm-separable set. Then there exists a separable
subspace F ⊂ E such that for each f ∈ S there exists g ∈ C(BF ∗) with
f = g ◦RF .

(c) Let f ∈ C(K×BE∗) be given. Then there exists a separable space F ⊂ E
and g ∈ C(K ×BF ∗) such that f = g ◦ (id×RF ).

Proof. (a) Let Y denote the set of all f ∈ C(BE∗) admitting the required
factorization. It is clear that Y is a closed subalgebra containing the con-
stants and stable under complex conjugation. Moreover, for any x ∈ E the
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function x∗ 7→ x∗(x) belongs to Y (it is enough to take F = span{x}). Hence
Y separates the points of BE∗ , so we conclude by the Stone–Weierstrass the-
orem.

(b) LetD ⊂ S be a countable dense subset of S. For each d ∈ D, using (a)
we select a separable subspace Fd ⊂ E such that there exists gd ∈ C(BFd∗)

satisfying f = gd ◦ RFd . Then the space F = span
⋃
d∈D Fd is separable

and any function from D can be factorized as a function from C(BF ∗). Now
it is easy to see that any function f from S ⊂ D

∥·∥ can be factorized as
f = gf ◦RF for some gf ∈ C(BF ∗).

(c) We proceed similarly to part (a). Let Z denote the set of all f ∈
C(K×BE∗) admitting the required factorization. It is clear that Z is a closed
subalgebra containing the constants and stable under complex conjugation.
Moreover, by (a), Z contains all functions of the form

(t, x∗) 7→ f(x∗) where f ∈ C(BE∗).

Obviously it also contains all functions of the form

(t, x∗) 7→ f(t) where f ∈ C(K).

It follows that Z separates the points of BE∗ , so we conclude by the Stone–
Weierstrass theorem.

Using the previous lemma we may easily show that the relation ≺D is
separably determined. This is the content of the following proposition.

Proposition 5.10. Let ν1, ν2 ∈ M+(K × BE∗). Then the following as-
sertions are equivalent:

(1) ν1 ≺D ν2.
(2) (id×RF )(ν1) ≺D (id×RF )(ν2) for each separable subspace F ⊂ E.
(3) (id × RF )(ν1) ≺D (id × RF )(ν2) for each F from a cofinal family of

separable subspaces of E.

Proof. To clarify the meaning of (3) let us recall that a family of separable
subspaces of E is cofinal if any separable subspace of E is contained in a
member of the family.

We now proceed with the proof itself. The implication (1)⇒(2) is easy:
If f belongs to the cone D on K × F ∗, then f ◦ (id × RF ) belongs to the
cone D on K × E∗ and we may use the rules of integration with respect to
the image of a measure.

The implication (2)⇒(3) is trivial.
(3)⇒(1): To prove that ν1 ≺D ν2 it is enough to show that

	
f dν1 ⩽	

f dν2 for any continuous f from D (by Lemma 5.2(a)). So, fix such f . By
Lemma 5.9(c) there is a separable subspace F ⊂ E and g ∈ C(K × BF ∗)
such that f = g ◦ (id×RF ). By (3) we may assume, up to enlarging F , that
(id × RF )(ν1) ≺D (id × RF )(ν2). Since g clearly belongs to the cone D on
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K ×BF ∗ , we get
	
g d(id×RF )(ν1) ⩽

	
g d(id×RF )(ν2). Then we conclude

using the rules of integration with respect to the image of a measure.

Now we are going to characterize the relation ≺D on N and relate it to
the classical Choquet ordering and to the Choquet theory of cones. To this
end we set

K = {f ∈ C(K ×BE∗); f(t, ·) is concave for each t ∈ K}.
And, naturally, for ν1, ν2 ∈ N we set

ν1 ≺K ν2 ⇐⇒ ∀f ∈ K :
�
f dν1 ⩽

�
f dν2.

The promised characterization is the content of the following theorem.

Theorem 5.11. Let ν1, ν2 ∈ N(µ) be given. Let (ν1,t)t∈K and (ν2,t)t∈K
be their disintegration kernels. Then the following assertions are equivalent:

(1) ν1 ≺D ν2.
(2) If p : BE∗ → R is weak∗ continuous and sublinear, then�

p dν2,t ⩽
�
p dν1,t for |µ|-almost all t ∈ K.

(3) If g : BE∗ → R is weak∗ continuous and convex, then�
g dν2,t ⩽

�
g dν1,t for |µ|-almost all t ∈ K.

(4) For each f ∈ K we have�
f(t, x∗) dν1,t(x

∗) ⩽
�
f(t, x∗) dν2,t(x

∗) for |µ|-almost all t ∈ K.

(5) ν1 ≺K ν2.

Proof. (1)⇒(2): We proceed by contraposition. Assume (2) fails and fix
some p witnessing it. Then p is bounded on BE∗ , say, |p| ⩽ C on BE∗ .
Further, {

t ∈ K;
�
pdν2,t >

�
p dν1,t

}
is not a |µ|-measure zero set. By σ-additivity there is some δ > 0 such that
the set {

t ∈ K;
�
p dν2,t > δ +

�
pdν1,t

}
is not a |µ|-measure zero set. But this set is measurable, so there is a compact
set F ⊂ K with |µ|(F ) > 0 such that�

pdν2,t > δ +
�
p dν1,t for t ∈ F.

Let ε > 0 be arbitrary. By the regularity of |µ| we find an open subset
U ⊂ K containing F such that |µ|(U \ F ) < ε. Fix a continuous function
g : K → [0, 1] such that g = 1 on F and g = 0 on K \ U . Then

f(t, x∗) = −g(t)p(x∗), (t, x∗) ∈ K ×BE∗ ,
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is a continuous function from D. Moreover,
�

K×BE∗

f dν2 =
�

K

( �

BE∗

−g(t)p(x∗) dν2,t(x∗)
)
d|µ|(t)

= −
�

F

( �

BE∗

p(x∗) dν2,t(x
∗)
)
d|µ|(t)

−
�

U\F

( �

BE∗

g(t)p(x∗) dν2,t(x
∗)
)
d|µ|(t)

⩽ −
�

F

(
δ +

�

BE∗

p(x∗) dν1,t(x
∗)
)
d|µ|(t) + Cε

= Cε− δ|µ(F )| −
�

K

( �

BE∗

g(t)p(x∗) dν1,t(x
∗)
)
d|µ|(t)

+
�

U\F

( �

BE∗

g(t)p(x∗) dν1,t(x
∗)
)
d|µ|(t)

⩽ 2Cε− δ|µ(F )|+
�

K×BE∗

f dν1.

Let us explain this computation: The first equality follows from the definition
of f and from the properties of disintegration kernels. The second one follows
from the choice of g: note that g = 1 on F and g = 0 on K \ U . The
subsequent inequality follows from the choice of F and U using the estimate
|gp| ⩽ C. The next equality follows by algebraic manipulation using the fact
that g = 1 on F . The final inequality follows from the estimates |gp| ⩽ C
and |µ|(U \ F ) < ε together with the definition of f and the properties of
disintegration kernels.

If ε > 0 is sufficiently small, the above computation yields�

K×BE∗

f dν2 <
�

K×BE∗

f dν1,

so ν1 ̸≺D ν2, hence (1) fails.
(2)⇒(3): Let g : BE∗ → R be weak∗ convex and continuous. Let F ⊂ E

be a separable subspace such that g = gF ◦ RF for some gF ∈ C(BE∗) (it
exists by Lemma 5.9(a)). Up to enlarging F we may assume that the con-
dition from Lemma 5.8(b) is fulfilled. Given p : BF ∗ → R weak∗ continuous
and sublinear, we have�

p dRF (ν2,t) =
�
p ◦RF dν2,t ⩽

�
p ◦RF dν1,t =

�
p dRF (ν1,t)

for |µ|-almost all t ∈ K, where we have used assumption (2) applied to
p◦RF . Since F is separable, the dual ball (BF ∗ , w∗) is metrizable and hence
C(BF ∗) is separable. It now easily follows that for |µ|-almost all t ∈ K we
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have �
pdRF (ν2,t) ⩽

�
pdRF (ν1,t)

for each p : BE∗ → R weak∗ continuous and sublinear. Using the validity
of the condition from Lemma 5.8(b) we deduce from Theorem 5.4 that for
|µ|-almost all t ∈ K we have�

g dν2,t =
�
gF dRF (ν2,t) ⩽

�
gF dRF (ν1,t) =

�
g dν1,t,

which completes the argument.
(3)⇒(4): We proceed by contraposition. Let f ∈ K be such that the

converse inequality holds on a set of positive |µ|-measure. Using σ-additivity
and regularity we find a compact set L ⊂ K with |µ|(L) > 0 and δ > 0 such
that �

f(t, x∗) dν1,t(x
∗) > 2δ +

�
f(t, x∗) dν2,t(x

∗) for t ∈ L.

For t ∈ K let ft = f(t, ·). Then each ft is a continuous concave function
on BE∗ , and moreover the assignment t 7→ ft is continuous (from K to
C(BE∗)). Therefore, there is a finite set F ⊂ L such that {ft; t ∈ F} forms
a δ-net of {ft; t ∈ L}. For each t ∈ F let

Lt = {s ∈ L; ∥fs − ft∥ < δ}.
These sets form a finite cover of L by relatively open sets, so at least one of
them has positive measure. Hence, fix t ∈ F with |µ|(Lt) > 0. Let s ∈ Lt.
Then �

ft dν1,s ⩾
�
fs dν1,s − δ >

�
fs dν2,s + δ ⩾

�
ft dν2,s.

So, the function ft witnesses that (3) is violated.
(4)⇒(5): This follows from the disintegration formula (see Lemma 2.7).
(5)⇒(1): This is trivial (by Lemma 5.2(a)), as continuous functions from

D belong to K.

For separable E we have the following improvement.

Corollary 5.12. Assume that E is separable. Let ν1, ν2 ∈ N(µ) be
given. Let (ν1,t)t∈K and (ν2,t)t∈K be their disintegration kernels. Then the
following assertions are equivalent:

(1) ν1 ≺D ν2.
(2) ν2,t ≺ ν1,t (in the Choquet order on M1(BE∗)) for |µ|-almost all t ∈ K.

Proof. (2)⇒(1): This follows immediately from the implication (3)⇒(1)
of Theorem 5.11 (separability is not needed).

(1)⇒(2): Assume ν1 ≺D ν2. Then assertion (3) of Theorem 5.11 is valid.
Since E is separable, (BE∗ , w∗) is metrizable and hence C(BE∗) is also sep-
arable. In particular, the cone of weak∗ convex continuous functions on BE∗

is separable in the sup-norm. Let C be a countable dense subset of this cone.
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Assertion (3) of Theorem 5.11 then implies that for |µ|-almost all t ∈ K we
have

∀g ∈ C :
�
g dν2,t ⩽

�
g dν1,t.

This clearly passes to the closure, hence C may be replaced by the cone of
all weak∗ continuous convex functions. But this means that condition (2) is
fulfilled.

Even for nonseparable E we have an analogue of the previous corollary.
However, the disintegration kernels have to be chosen in a proper way. This
is the content of the following theorem.

Theorem 5.13. Let µ ∈M(K,E∗)\{0} be given. Then there is a choice
of disintegration kernels

N(µ) ∋ ν 7→ (νt)t∈K

such that for each pair ν1, ν2 ∈ N(µ) we have

ν1 ≺D ν2 ⇐⇒ ∀t ∈ K : ν2,t ≺ ν1,t.

Proof. The implication ‘⇐’ holds for any choice of disintegration kernels
due to the implication (3)⇒(1) from Theorem 5.11.

For the converse observe that π1(ν) = |µ| for any ν ∈ N(µ) by Proposi-
tion 3.5(a). Therefore we may apply Proposition 2.10 to choose an assignment
of disintegration kernels. If ν1, ν2 ∈ N(µ) satisfy ν1 ≺D ν2, we conclude by
combining Theorem 5.11 (the implication (1)⇒(3)) with Proposition 2.10.

5.4. On ≺D-minimal measures. In this section we characterize ≺D-
minimal measures in N . We start with the separable case, which follows
easily from Corollary 5.12.

Proposition 5.14. Assume that E is separable. Let µ ∈ M(K,E∗) be
fixed. Let ν ∈ N(µ) be given and let (νt)t∈K be a disintegration kernel of ν.
Then the following assertions are equivalent:

(1) ν is ≺D-minimal in N(µ).
(2) νt is a maximal measure for |µ|-almost all t ∈ K.
(3) ν is carried by K × extBE∗.

Proof. (2)⇒(1): Assume that νt is a maximal measure for |µ|-almost all
t ∈ K. Let ν ′ ∈ N be such that ν ′ ≺D ν. Let (ν ′t)t∈K be a disintegration
kernel of ν ′. By Corollary 5.12 we deduce that νt ≺ ν ′t for |µ|-almost all t ∈ K.
By the assumption of maximality we conclude that νt = ν ′t for |µ|-almost all
t ∈ K, so ν ′ = ν. Therefore ν is ≺D-minimal.

(1)⇒(2): Assume that ν is ≺D-minimal. Since BE∗ is metrizable, Lem-
ma 2.1 provides a Borel mapping Ψ : M1(BE∗) → M1(BE∗) such that,
for each σ ∈ M1(BE∗), Ψ(σ) is a maximal measure such that σ ≺ Ψ(σ).
For t ∈ K set ν ′t = Ψ(νt). Since the assignment t 7→ νt is measurable (by
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Lemma 2.8(b), due to the metrizability of BE∗), the assignment t 7→ ν ′t is
measurable as well. Therefore we may define a measure ν ′ on K ×BE∗ by�

K×BE∗

f dν ′ =
�

K

( �

BE∗

f(t, x∗) dν ′t(x
∗)
)
d|µ|(t), f ∈ C(K ×BE∗).

Since the barycenter of ν ′t coincides with the barycenter of νt, we see that ν ′ ∈
N(µ) (just use the above formula for Tf , f ∈ C(K,E)) and by Lemma 2.8(a)
we deduce that (ν ′t)t∈K is a disintegration kernel of ν ′.

Moreover, by Corollary 5.12 we see that ν ′ ≺D ν and hence, by minimal-
ity, we get ν ′ = ν. Finally, Lemma 2.8(c) shows that ν ′t = νt for |µ|-almost
all t ∈ K.

(2)⇔(3): Assume ν ∈ N(µ). Since extBE∗ is a Gδ-subset of BE∗ , by
Lemma 2.7 we get

ν(K × (BE∗ \ extBE∗)) =
�

K

νt(BE∗ \ extBE∗) d|µ|(t).

So,
ν is carried by K × extBE∗ ⇐⇒ νt(BE∗ \ extBE∗) = 0 |µ|-a.e.

⇐⇒ νt is maximal |µ|-a.e.

To characterize ≺D-minimal measures in the general case (for possibly
nonseparable E) we will use the Choquet theory of cones. Indeed, the relation
≺D coincides with ≺K and K is clearly a min-stable convex cone containing
the constants and separating points. Therefore we define (following [1, Sec-
tion I.5]) the upper and lower envelopes of a function g ∈ C(K ×BE∗ ,R) by

ĝ = inf {k ∈ K; k ⩾ g}, qg = sup {k; −k ∈ K, k ⩽ g}.
The standard upper and lower envelopes on compact convex sets are de-
noted by g∗ and g∗ (see (2.1)). The promised characterization of ≺D-minimal
measures is contained in the following theorem.

Theorem 5.15. For ν ∈ N(µ) with a disintegration kernel (νt) the fol-
lowing assertions are equivalent:

(1) ν is ≺D-minimal.
(2) ν is ≺K-minimal.
(3)

	
f dν =

	
f̂ dν for each f ∈ −K.

(4) For each g convex and weak∗ continuous on BE∗ we have
	
g dνt =	

g∗ dνt for |µ|-almost all t.

Proof of the equivalence of conditions (1)–(3). The equivalence (1)⇔(2)
follows from Theorem 5.11.

(2)⇔(3): Since K contains the constants, ν is ≺K-minimal within N(µ) if
and only if it is ≺K-minimal within M+(K×BE∗). Therefore the equivalence
follows from [1, Proposition I.5.9].
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The remaining equivalence requires some auxiliary results contained in
the following lemmata. For (t, x∗) ∈ K ×BE∗ we set (following [1, p. 46])

M+
(t,x∗)(K) =

{
ν ∈M+(K ×BE∗); k(t, x∗) ⩾

�
k dν for each k ∈ K

}
.

Lemma 5.16. If (t, x∗) ∈ K ×BE∗, then

M+
(t,x∗)(K) = {εt × λ; λ ∈M1(BE∗), r(λ) = x∗}.

Proof. The inclusion ‘⊃’ is obvious. To prove the converse inclusion fix
ν ∈ M+

(t,x∗)(K). For any h ∈ C(K,R) the function h ⊗ 1 : (t, x∗) 7→ h(t)

belongs to −K ∩K, and thus�
hdπ1(ν) =

�
(h ◦ π1) dν =

�
(h⊗ 1) dν = (h⊗ 1)(t, x∗) = h(t).

Therefore π1(ν) = εt. Hence ν = εt × λ where λ = π2(ν). If f : BE∗ → R is
a weak∗ continuous affine function, then the function 1⊗ f : (t, x∗) 7→ f(x∗)
belongs to −K ∩K, hence�

f dλ =
�
1⊗ f dν = (1⊗ f)(t, x∗) = f(x∗).

It follows that x∗ is the barycenter of λ.

This lemma may be applied to get the following relationship of two ver-
sions of upper envelopes.

Lemma 5.17. Let f ∈ C(K ×BE∗ ,R). Then

f̂(t, x∗) = (ft)
∗(x∗), (t, x∗) ∈ K ×BE∗ ,

where ft = f(t, ·).
Proof. Fix (t, x∗) ∈ K × BE∗ . By [1, Proposition I.5.8] there is ν ∈

M+
(t,x∗)(K) such that f̂(t, x∗) =

	
f dν. By Lemma 5.16 we have ν = εt × λ,

where r(λ) = x∗. Thus

f̂(t, x∗) =
�
f dν =

�
ft dλ ⩽ (ft)

∗(x∗),

where the last inequality follows from [1, Corollary I.3.6]. This proves ‘⩽’.
Conversely, by [1, Corollary I.3.6] there is λ ∈ M1(BE∗) such that r(λ)

= x∗ and (ft)
∗(x∗) =

	
ft dλ. Then εt × λ ∈M+

(t,x∗)(K), and thus

(ft)
∗(x∗) =

�
ft dλ =

�
f d(εt × λ) ⩽ f̂(t, x∗),

where the last inequality follows from [1, Corollary I.5.7].

Lemma 5.18. Let f ∈ C(K×BE∗ ,R) be given. Let Σ denote the σ-algebra
generated by Borel rectangles in K ×BE∗. Then f̂ is Σ-measurable.

Proof. To prove that f̂ is Σ-measurable it is enough to show that it may
be uniformly approximated by Σ-measurable functions. So, fix ε > 0. The
mapping t 7→ ft = f(t, ·) is continuous (from K to C(BE∗)). Hence its range
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is compact and so there are t1, . . . , tn ∈ K such that ft1 , . . . , ftn form an
ε-net of {ft; t ∈ K}. Therefore we may find a partition {A1, . . . , An} of K
into nonempty Borel sets such that ∥ft − fti∥ < ε for t ∈ Ai and i = 1, . . . , n.
It follows that also ∥(ft)∗ − (fti)

∗∥∞ < ε for t ∈ Ai and i = 1, . . . , n (this
may be easily deduced using the subadditivity of the upper envelope, see [1,
Proposition I.1.6, (1.7)]).

Since the functions (fti)∗ are weak∗ upper semicontinous and thus Borel
on BE∗ , the function

g(t, x∗) =
n∑
i=1

χAi(t)(fti)
∗, (t, x∗) ∈ K ×BE∗ ,

is Σ-measurable. Moreover, Lemma 5.17 easily yields ∥f̂ − g∥∞ ⩽ ε.

Now we are ready to prove the remaining part of Theorem 5.15.

Proof of (3)⇔(4) from Theorem 5.15. (3)⇒(4): Let g be a weak∗ con-
tinuous convex function on BE∗ . Then f = 1⊗ g ∈ −K. Hence�

K

( �
g dνt

)
d|µ|(t) =

�
f dν =

�
f̂ dν =

�

K

( �
g∗ dνt

)
d|µ|(t).

The first equality follows from the formula from Lemma 2.7 together with
Proposition 3.5(a). The second equality follows from (3). For the last equality
we may apply Lemma 2.7 to f̂ due to Lemmata 5.17 and 5.18.

Taking into account that g ⩽ g∗, we deduce that
	
g dνt =

	
g∗ dνt |µ|-

almost everywhere.
(4)⇒(3): Fix f ∈ −K. The mapping f : K → C(BE∗) defined by t 7→

ft = f(t, ·) is continuous. Since f(K) is a norm-compact set in C(BE∗),
there exists a countable set D ⊂ K with f(D) norm-dense in f(K). It now
follows from (4) that there is a |µ|-null set N ⊂ K such that

∀t ∈ K \N ∀d ∈ D :
�
fd dνt =

�
(fd)

∗ dνt.

Fix t ∈ K\N . Then there is a sequence {dn} in D with ∥fdn − ft∥ → 0. Then
also ∥(fdn)∗ − (ft)

∗∥∞ → 0 (use the subadditivity of the upper envelope [1,
Proposition I.1.6, (1.7)]), and thus�

ft dνt = lim
�
fdn dνt = lim

�
(fdn)

∗ dνt =
�
(ft)

∗ dνt.

Hence �
f dν =

�

K

( �
ft dνt

)
d|µ|(t) =

�

K

(�
(ft)

∗ dνt

)
d|µ|(t) =

�
f̂ dν.

The first equality follows from Lemma 2.7. To verify the second one observe
that the inner integrals are equal whenever t ∈ K \N and |µ|(N) = 0. The
last equality follows by combining Lemmata 5.18, 2.7 and 5.17.

This completes the proof of Theorem 5.15.
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Corollary 5.19. Let µ ∈ M(K,E∗) be given and let ν ∈ N(µ) be
≺D-minimal. Then:

(a) ν is carried by any Baire set containing K × extBE∗.
(b) If B ⊂ BE∗ is a Baire set containing extBE∗ and (νt)t∈K is a disinte-

gration kernel of ν, then νt is carried by B for |µ|-almost all t ∈ K.

Proof. It easily follows from Lemma 5.16 that K × extBE∗ is the K-
Choquet boundary of K × BE∗ (see the definition in [1, p. 46]). Therefore
assertion (a) follows from [1, Proposition I.5.22].

To prove (b), fix B ⊂ BE∗ a Baire set containing extBE∗ . Then K×B is
a Baire set in K×BE∗ containing K×extBE∗ , hence by (a) and Lemma 2.7
we get

0 = ν(K × (BE∗ \B)) =
�

K

νt(BE∗ \B) d|µ|(t)

and the assertion follows.

A further consequence is the following theorem.

Theorem 5.20. Let ν ∈ N(µ). Then ν is ≺D-minimal if and only if it
admits a disintegration kernel (νt)t∈K consisting of maximal measures.

Proof. Assume that (νt)t∈K is a disintegration kernel consisting of max-
imal measures. It follows from the Mokobodzki criterion (see Section 2.2)
that assertion (4) of Theorem 5.15 is satisfied, hence ν is ≺D-minimal.

Conversely, assume ν is ≺D-minimal. Let (νt)t∈K be a disintegration ker-
nel provided by Proposition 2.10. Fix g : BE∗ → R weak∗ continuous and
convex. By Theorem 5.15 we see that

	
g dνt =

	
g∗ dνt |µ|-almost every-

where. Since both g and g∗ are bounded Borel functions, the choice of the
disintegration kernel implies that the equality holds for all t ∈ K. The Moko-
bodzki criterion then shows that each νt is maximal.

We finish this section by showing that ≺D-minimal measures are sepa-
rably determined. To formulate the result properly we recall the notion of a
rich family. A family F of separable subspaces of a Banach space E is called
rich if the following two conditions are satisfied:

• ∀F ⊂ E separable ∃F ′ ∈ F : F ⊂ F ′;
•
⋃
n Fn ∈ F whenever (Fn) is an increasing sequence in F .

Theorem 5.21. Let ν ∈ N . Then the following assertions are equivalent:

(1) ν is ≺D-minimal.
(2) There is a rich family F of separable subspaces of E such that for each

F ∈ F the measure (id×RF )(ν) belongs to NF and is ≺D minimal.
(3) There is a cofinal family F of separable subspaces of E such that for each

F ∈ F the measure (id×RF )(ν) belongs to NF and is ≺D minimal.
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Proof. The implication (2)⇒(3) is trivial.
(3)⇒(1): Let ν ′ ∈ N be such that ν ′ ≺D ν. By Lemma 5.8(b) there is

some F0 ⊂ E separable such that for each F ⊂ E separable containing F0

we have (id×RF )(ν
′) ∈ NF .

Fix any F ∈ F containing F0. By Proposition 5.10 we deduce (id ×
RF )(ν

′) ≺D (id×RF )(ν). Since both measures (id×RF )(ν ′) and (id×RF )(ν)
belong to NF , we deduce that (id×RF )(ν ′) = (id×RF )(ν). Since such spaces
F form a cofinal family, another use of Proposition 5.10 shows ν ′ = ν (we
are also using the fact that ≺D is a partial order on N by Observation 5.7).
Thus ν is ≺D-minimal.

(1)⇒(2): Let µ = T ∗ν and let (νt)t∈K be a disintegration kernel of ν.
Set

F = {F ⊂ E separable; (id×RF )(ν) ∈ NF & (id×RF )(ν) is ≺D-minimal}.

We will show that F is a rich family of separable subspaces of E. We start
by proving the second property. Assume that (Fn) is an increasing sequence
of elements of F and let F =

⋃
n Fn. Clearly (id×RF )(ν) ∈ NF . Fix n ∈ N.

By Lemma 2.9, (RFn(νt))t∈K is a disintegration kernel of (id × RFn)(ν), so
by Proposition 5.14 we deduce that RFn(νt) is a maximal measure on BF ∗

n

for |µ|-almost all t ∈ K (note that our assumptions imply π1((id×RFn)(ν))
= |µ|). For each t∈K the measure RF (νt) is the inverse limit of (RFn(ν))n
and hence for |µ|-almost all t ∈ K it is a maximal measure (by [11, Theorem
12.31]). Hence (id×RF )(ν) is ≺D-minimal by Proposition 5.14. Thus F ∈ F
and the second property holds.

It remains to prove the cofinality of F . To this end denote by Con(BE∗)
the convex cone of all weak∗ continuous convex functions on BE∗ . The proof
will proceed in several steps.

Step 1. For any g ∈ Con(BE∗) there exists a countable set Cg ⊂ −
Con(BE∗) and a set Kg ⊂ K of full |µ| measure such that

• for any k ∈ Cg we have k ⩾ g;
• for any ε > 0 and t ∈ Kg there exists h ∈ Cg with

	
hdνt ⩽

	
g dνt + ε.

Indeed, given g ∈ Con(BE∗), the function (1⊗ g)(t, x∗) = g(x∗) belongs
to −K, and hence

	
(1⊗ g) dν =

	
(1̂⊗ g) dν by Theorem 5.15. By the mono-

tone convergence theorem for nets we deduce
�
(1⊗ g) dν = inf

{�
k dν; k ∈ K, k ⩾ 1⊗ g

}
.

Hence there exists a nonincreasing sequence {kn} of functions from K such
that kn ⩾ 1⊗ g for each n and

	
(1⊗ g) dν = infn∈N

	
kn dν. For each n ∈ N

we consider a countable set Kn ⊂ K such that {(kn)t; t ∈ Kn} is norm-dense
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in {(kn)t; t ∈ K} (note that (kn)t = kn(t, ·), as above). Let

Cg =
⋃
n∈N

{(kn)t; t ∈ Kn}.

Then Cg ⊂ −Con(BE∗) and every function from Cg is greater than or equal
to g.

Further, k = infn∈N kn satisfies
	
(1⊗ g) dν =

	
k dν, and hence

	
g dνt =	

kt dνt for |µ|-almost all t ∈ K. Let us denote by Kg the relevant set of full
|µ| measure.

Then Kg and Cg satisfy the required properties. Indeed, let ε > 0 be
given. For t ∈ Kg we have

	
g dνt =

	
kt dνt = infn∈N

	
(kn)t dνt. Hence there

exists n ∈ N with
	
(kn)t dνt ⩽

	
g dνt+ ε/3. Let h ∈ Cg be chosen such that

∥h− (kn)t∥ < ε/3. Then
�
hdνt ⩽

�
(kn)t dνt + ε/3 ⩽

�
g dνt + 2ε/3.

Hence the family Cg along with the set Kg have the desired properties.

Step 2. For any norm-separable S ⊂ Con(BE∗) there exists a countable
set CS ⊂ −Con(BE∗) and a set KS ⊂ K of full |µ| measure such that for
for any ε > 0, g ∈ S and t ∈ KS there exists h ∈ CS with h + ε ⩾ g and	
hdνt ⩽

	
g dνt + ε.

Let A ⊂ S be a countable norm-dense set. It is enough to set

CS =
⋃
g∈A

Cg and KS =
⋂
g∈A

Kg,

where Cg and Kg are constructed for the function g ∈ A as in the first step.

Step 3. Fix F0 ⊂ E separable. We construct inductively norm-separable
sets S0 ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Con(BE∗), sets K = K0 ⊃ K1 ⊃ K2 ⊃ · · · of full
|µ| measure and separable subspaces F0 ⊂ F1 ⊂ F2 ⊂ · · ·E as follows.

In the first step of the construction, we set K0 = K and

S0 = {g ◦RF0 ; g ∈ Con(BF ∗
0
)}.

Assume that Sn−1, Kn−1 and Fn−1 have been constructed. We apply
Step 2 for Sn−1 to find a countable set C ⊂ −Con(BE∗) along with the
set Kn ⊂ K (without loss of generality Kn ⊂ Kn−1) with the properties
described in Step 2. Let H ⊂ E be a separable subspace such that C can be
factorized via H in the sense of Lemma 5.9(b). Let Fn = span(Fn−1 ∪H)
and

Sn = {g ◦RFn ; g ∈ Con(BF ∗
n
)} ∪ Sn−1.

Then all elements from Sn ∪ C can be factorized via Fn. This finishes the
inductive construction.
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To conclude the proof we set F =
⋃∞
n=0 Fn. Now (RF (νt))t∈K is a dis-

integration kernel of (id × RF )(ν) (by Lemma 2.9). We want to check that
RF (νt) is maximal for each t ∈

⋂∞
n=0Kn.

So, fix such t, g = g1 ∨ · · · ∨ gk where g1, . . . , gk are real-valued weak∗
continuous affine functions on BF ∗ and ε > 0. Then there are x1, . . . , xk ∈ F
and c1, . . . , ck ∈ R such that gj(x∗) = cj + Rex∗(xj) for x∗ ∈ BF ∗ and
j = 1, . . . , k. By the choice of F there is n ∈ N and elements x′1, . . . , x′k ∈ Fn
with ∥xj − x′j∥ < ε for j = 1, . . . , k. Set

g′(x∗) = min
1⩽j⩽k

(cj +Rex∗(x′j)), x∗ ∈ BF ∗ .

Then ∥g − g′∥∞ < ε and g′ ◦ RF ∈ Sn. By the inductive construction there
is h ∈ Sn+1 such that h+ ε ⩾ g′ ◦RF and

	
hdνt ⩽

	
g′ ◦RF dνt+ ε. Clearly

h = h′ ◦RF for some h′ ∈ −Con(BF ∗).
Then h′ + ε is in −Con(BF ∗) and

(h′ + ε) ◦RF = h+ ε ⩾ g′ ⩾ g ◦RF − ε.

Hence g ⩽ h′ + 2ε on BF ∗ , and thus�
g∗ dRF (νt) ⩽

�
(h′ + 2ε) dRF (νt) =

�
(h+ 2ε) dνt ⩽

�
g′ dνt + 3ε

⩽
�
(g ◦RF ) dνt + 4ε =

�
g dRF (νt) + 4ε.

Since ε > 0 is arbitrary, we get
	
g∗ dRF (νt) =

	
g dRF (νt). This implies

that νt is maximal (by a version of Mokobodzki test, cf. [11, Theorem
3.58(i)⇔(ii)]). Hence RF (νt) is maximal for |µ|-almost all t, which proves
that (id×RF )(ν) is minimal (by Proposition 5.14).

5.5. Uniqueness of ≺D-minimal measures. It is easy to show that
for any µ ∈ M(K,E∗) there is a ≺D-minimal measure in N(µ). In this
section we address the question of uniqueness of such a measure. To this end
we will use the notion of simplexoid introduced in [13]. Recall that a convex
set X is called a simplexoid if every proper face of X is a simplex. This is a
geometrical notion, but in the case of dual unit balls it may be characterized
using representing mesures.

Fact 5.22. Let E be a Banach space. Then BE∗ is a simplexoid if and
only if for each x∗ ∈ SE∗ there is a unique maximal probability measure on
BE∗ with barycenter x∗.

Proof. The assertion follows from [7, proof of Theorem 3.11].

The following theorem characterizes uniqueness of ≺D-minimal measures.
We note that the implication (2)⇒(1) is essentially trivial, so the key result
is the implication (1)⇒(2). We also point out that assertion (1) does not
depend on K, so the uniqueness depends just on the target space E.



Transference of measures via disintegration 49

Theorem 5.23. The following assertions are equivalent:
(1) BE∗ is a simplexoid.
(2) For each µ ∈ M(K,E∗) there exists a unique ≺D-minimal measure ν ∈

N(µ).

Proof. (2)⇒(1): Assume that BE∗ is not a simplexoid. Then there is
some x∗ ∈ SE∗ and two distinct maximal measures ω1, ω2 with barycenter x∗.
Fix t ∈ K. Consider the two measures

ν1 = εt × ω1, ν2 = εt × ω2.

Then T ∗ν1 = T ∗ν2 = εt⊗x∗ and ν1, ν2 ∈ N(εt⊗x∗). Moreover, both ν1 and
ν2 are ≺D-minimal, by Theorem 5.20 for example.

(1)⇒(2): Assume BE∗ is a simplexoid. Fix µ ∈M(K,E∗). Choose the as-
signment of disintegration kernels provided by Proposition 2.10. Let ν1, ν2 ∈
N(µ) be a pair of ≺D-minimal measures. As in Theorem 5.20, we see that
ν1,t and ν2,t are maximal for t ∈ K. Moreover, let ν0 =Wµ.

Fix j ∈ {1, 2}. By Lemma 5.2(c) we know that νj ≺D ν0, hence ν0,t ≺ ν1,t
for each t ∈ K (as in Theorem 5.13). Thus r(ν0,t) = r(νj,t) for each t ∈ K.
We deduce that r(ν1,t) = r(ν2,t) for t ∈ K. Since r(ν1,t) ∈ SE∗ |µ|-almost
everywhere (by Proposition 3.5(b)), the assumption that BE∗ is a simplexoid
yields ν1,t = ν2,t |µ|-almost everywhere, hence ν1 = ν2.

6. Overview of the results. In this final section we present a brief
overview of the results from this paper and of the related context.

• The continuous functionals on C(K,E) are in one-to-one isometric corre-
spondence with E∗-valued regular Borel measures onK. It is the content of
Singer’s representation theorem (an easy proof is given in [8] and recalled
in Section 2.5).

• Since the canonical inclusion T : C(K,E) → C(K ×BE∗) is an isometry,
any µ ∈ M(K,E∗) admits some ν ∈ M(K × BE∗) with ∥ν∥ = ∥µ∥ such
that T ∗ν = µ. This is just a consequence of the Hahn–Banach extension
theorem and the Riesz representation theorem. The vector measure µ may
be computed from ν by the Hustad formula (2.2).

• The measure ν in the previous item may be chosen positive. We denoted
the set of such measures N(µ), i.e.,

N(µ) = {ν ∈M+(K ×BE∗); ∥ν∥ = ∥µ∥ & T ∗ν = µ}.
Moreover, there is a canonical selection operator W from the assignment
µ 7→ N(µ). This operator was constructed in [3]; we present an alterna-
tive approach using the method of disintegration (see Proposition 3.8 and
Lemma 4.1).

• If E∗ is strictly convex, then N(µ) is a singleton for each µ ∈ M(K,E∗).
This is established in Theorem 4.4.
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• If E∗ is not strictly convex, then N(µ) is a larger set (at least for some µ).
There is a natural partial order ≺D on N(µ). In this order, Wµ is the
unique maximal measure (see Proposition 5.3). Further, minimal mea-
sures exist and are pseudosupported by K× extBE∗ (see Proposition 5.14
and Corollary 5.19). Minimal measures are unique if and only if BE∗ is a
simplexoid (see Theorem 5.23).

• The order ≺D is closely related to the Choquet order on BE∗ (see Corol-
lary 5.12 and Theorem 5.13), and ≺D-minimal measures are closely related
to maximal measures on BE∗ (see Proposition 5.14 and Theorem 5.20).
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