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Summary

We study classes of compact spaces which are useful in Banach space
theory. Banach spaces serve as framework to both di�erential and inte-
gral calculus, including (among others) �nding solutions of di�erential
equations. The strength of this theory is in its abstraction � it enables
us to consider complicated objects (for example sequences and func-
tions) as points in a space with a geometrical structure. As it is usual
in mathematics � once the theory was established, it became interesting
in itself. It has its own inner structure, its own natural problems and
deep theorems.
Banach spaces are closely related to compact spaces. Firstly, the space

C(K) of continuous functions on a compact space K equipped with the
maximum norm is a Banach space. This is not only a natural example
of a Banach space, but the spaces of this form are in a sense universal.
More precisely, any Banach space is isometric to a subspace of a C(K)
space.
Secondly, if X is a Banach space, the unit ball of its dual space X∗ is

compact when equipped with the topology of pointwise convergence on
X (i.e., with the weak* topology).
The main focus of the research presented in the thesis is the interplay

of topological properties of compact spaces and properties of Banach
spaces (including geometrical and topological ones). We address in par-
ticular the questions of the following type: Which topological properties
of a compact space K ensure a given property of a Banach space C(K)
and vice versa? Which topological properties of the unit ball of the dual
space X∗ ensure a given property of a Banach space X and vice versa?
As this area is very large, we focus on two more narrow sets of prop-

erties. The �rst one is devoted to di�erentiability and the second one to
decompositions of Banach spaces.
The basic idea of di�erentiation is to approximate complicated func-

tions by a�ne ones. Therefore it is natural to set apart the classes of
Banach spaces in which such an approximation is possible. It leads to
the de�nition of the classes of Asplund spaces, weak Asplund spaces and
Gâteaux di�erentiability spaces. They are de�ned using di�erentiability
of convex continuous functions. But it turned out in such spaces also
some non-convex functions can be di�erentiated.
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The main problems addressed in Chapter 2 of the thesis concern dis-
tinguishing various classes of Banach spaces de�ned by di�erentiability,
namely Gâteaux di�erentiability spaces, weak Asplund spaces and some
subclasses of weak Asplund spaces.
As for the second area � one of the main tools in the investigation

of nonseparable Banach spaces consists in decomposing the space to
smaller subspaces. This is done by indexed families of projections � pro-
jectional resolutions of identity and, more recently, projectional skele-
tons. This research began in 1960s by results of J. Lindenstrauss and
was continued by many authors proving the existence of such families
of projections for larger and larger classes of Banach spaces.
The main topic of Chapter 3 of the thesis is the structure of almost the

largest natural class of Banach spaces with such families of projections,
and related classes of compact spaces. Namely, it deals with 1-Plichko
and Plichko spaces and with Valdivia compact spaces and their contin-
uous images.

3



Resumé

V disertaci studujeme t°ídy kompaktních prostor·, které jsou vyuºí-
vány v teorii Banachových prostor·. Banachovy prostory slouºí jako
rámec pro diferenciální i integrální po£et, i jako prost°edek pro hledání
°e²ení diferenciálních rovnic. Ú£innost této teorie spo£ívá v abstrakci,
umoº¬uje totiº se sloºitými objekty (nap°íklad posloupnostmi a funk-
cemi) jako s body v prostoru s geometrickou strukturou. A jak je v
matematice obvyklé � jakmile byla tato teorie zformulována, stala se
zajímavou i sama o sob¥. Získala svou vnit°ní strukturu, své p°irozené
otázky a téº hluboké výsledky.
Banachovy prostory úzce souvisí s kompaktními prostory. Pokud pros-

tor spojitých funkcí na kompaktním prostoru K, který se zna£í C(K),
vybavíme maximovou normou, dostaneme Banach·v prostor. Tento
prostor není jen p°irozeným p°íkladem Banachova prostoru, ale je v
jistém smyslu univerzální. P°esn¥ji, kaºdý Banach·v prostor je izomet-
rický podprostoru n¥jakého prostoru tvaru C(K).
Na druhou stranu, je-li X Banach·v prostor, pak uzav°ená jednotková

koule duálního prostoruX∗ je kompaktní v topologii bodové konvergence
na X (tj. ve slabé* topologii).
Výzkum, jehoº výsledky jsou prezentovány v dizertaci, je zam¥°en ze-

jména na vztahy mezi topologickými vlastnostmi kompaktních prostor·
a r·znými vlastnostmi Banachových prostor· (nap°íklad geometrickými
nebo topologickými). Zabývá se mimo jiné otázkami typu: Jaké topo-
logické vlastnosti kompaktního prostoru K zaru£í, ºe prostor C(K) má
danou vlastnost (a obrácen¥)? Jaké topologické vlastnosti uzav°ené jed-
notkové koule duálního prostoru X∗ zaru£í, ºe prostor X má danou
vlastnost (a obrácen¥)?
Jelikoº jde o velmi ²irokou oblast výzkumu, pro dizertaci jsem zvolil

dv¥ uº²í témata. První se týká diferencovatelnosti a druhé rozklad·
neseparabilních prostor· na men²í podprostory.
Základní my²lenka derivování je aproximace sloºitých funkcí a�nními

funkcemi. K tomu je p°irozené vyd¥lit t°ídy Banachových prostor·,
kde taková aproximace je moºná. To vede k zavedení Asplundových
prostor·, slab¥ Asplundových prostor· a prostor· gâteauxovské dife-
rencovatelnosti. Tyto t°ídy jsou de�novány pomocí diferencovatelnosti
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konvexních spojitých funkcí. Ukázalo se nicmén¥, ºe na t¥chto pros-
torech je moºné derivovat i n¥které dal²í, nekonvexní funkce.
Základní otázky, jimº se v¥nuje Kapitola 2, se týkají rozli²ení n¥-

kterých t°íd Banachových prostor· de�novaných pomocí diferencovatel-
nosti. Konkrétn¥ jde o prostory gâteauxovské diferencovatelnosti, slab¥
Asplundovy prostory a n¥které podt°ídy slab¥ Asplundových prostor·.
Pokud jde o druhé téma � jedna z d·leºitých metod zkoumání ne-

separabilních Banachových prostor· spo£ívá v rozkládání prostoru na
men²í podprostory. K tomu se vyuºívají indexované systémy projekcí
� projek£ní rozklady identity a v posledních letech i projek£ní skele-
teony. Na za£átku výzkumu v tomto sm¥ru stály v 60. letech dvacátého
století výsledky J. Lindenstrausse. Pokra£ováním byla úsp¥²ná snaha
mnoha matematik· p·vodní výsledky roz²i°ovat, a tak byla postupn¥
ukazována existence p°íslu²ných systém· projekcí ve v¥t²ích a v¥t²ích
t°ídách Banachových prostor·.
Kapitola 3 se v¥nuje struktu°e tém¥° nejv¥t²í p°irozené t°ídy Ba-

nachových prostor· s vhodnými systémy projekcí a téº souvisejícím
t°ídám kompaktních prostor·. P°esn¥ji, je zam¥°ena na 1-Pli£kovy a
Pli£kovy prostory, a také na Valdiviovy kompaktní prostory a jejich
spojité obrazy.
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1. Introduction
A Banach space is a (real or complex) normed linear space which

is complete in the metric induced by the norm. In particular, Rn or
Cn is a Banach space when equipped with the euclidean norm. The
sequence spaces ℓp (for p ∈ [1,∞]), the space c0 of sequences converging
to 0, Lebesgue function spaces Lp[0, 1] (for p ∈ [1,∞]) or the space
C[0, 1] of continuous functions on [0, 1] are classical examples of in�nite
dimensional Banach spaces.
Banach spaces admit several structures including algebraical, geomet-

rical and topological ones. One can view them as linear spaces, metric
spaces or topological spaces. It is also possible to study the interplay
of these points of view. There are several natural topologies on a Ba-
nach space. The �rst one is the norm topology, induced by the metric
generated by the norm. Another very important one is the weak topol-
ogy, which is the weakest topology having the same continuous linear
functionals as the norm topology. On a dual space there is another
topology � namely topology of pointwise convergence, which is called
weak* topology.
A compact space is a topological space K such that each cover of K

by open sets admits a �nite subcover. For example, the unit interval
[0, 1] is compact. More generally, a subset of Rn is compact if and only
if it is closed and bounded.
Compact spaces are closely related to Banach spaces. The �rst result

of this kind says that the closed unit ball BX of a Banach space X is
compact (in the norm topology) if and only if the space X has �nite
dimension. A deeper result is the Banach-Alaoglu theorem saying that
the unit ball of the dual space X∗ is compact in the weak* topology for
any Banach space X.
One of the consequences of Banach-Alaoglu theorem is the characteri-

zation of re�exive spaces. A Banach space X is re�exive if the canonical
embedding of X into the second dual X∗∗ is onto, i.e. if each continuous
linear functional on X∗ is of the form ξ 7→ ξ(x) for some x ∈ X. And
the promised characterization says that X is re�exive if and only if BX

is weakly compact.
Conversely, there is a natural way from compact spaces to Banach

spaces. Namely, if K is a compact space, the space C(K) of continuous
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functions on K equipped with the maximum norm, is a Banach space.
More exactly � there are two such spaces � real space of real-valued
functions and complex space of complex-valued functions. It should be
clear from the context which one we have in mind (in most cases it does
not matter).
These two ways relating Banach spaces and compact spaces result in a

kind of duality. More exactly: Let us start with a Banach spaceX. Then
the unit ball BX∗ of the dual space X∗ is compact in the weak* topology.
So, the space of continuous functions on this compact space is again a
Banach space. Moreover, to each x ∈ X we can associate a weak*
continuous function fx on BX∗ by setting fx(ξ) = ξ(x). Then x 7→ fx
is an isometric embedding of X into C(BX∗, w∗). So, in particular, X
is isometric to a subspace of a space of the form C(K).
Conversely, if we start with a compact space K, we get the Banach

space C(K). Further, the unit ball BC(K)∗ is compact in the weak*
topology. Again, to each x ∈ K we can associate εx ∈ BC(K)∗ by setting
εx(f) = f(x). Then the mapping x 7→ εx is a homeomorphic embedding
of K into (BC(K)∗, w

∗). We also remark that the unit ball BC(K)∗ has an
important subset P (K) formed by those ξ ∈ BC(K)∗ for which ξ(1) = 1
(where 1 is the constant function with value 1). Note that εx ∈ P (K)
for each x ∈ K. If we use the identi�cation of the dual space C(K)∗

with the space of (signed or complex) Radon measures on K (which
is provided by Riesz representation theorem), then P (K) is formed by
Radon probability measures onK and εx is the Dirac measure supported
at x.
Let us now name several results showing how the duality works for

some concrete classes of Banach spaces and compact spaces. These re-
sults are due to a large number of mathematicians. A more detailed
exposition, including the relevant references, can be found in the intro-
ductory chapter of the habilitation thesis of the author [37].
In the following tables X denotes a Banach space and K a compact

space. The �rst table says that separable Banach spaces and metrizable
compact spaces are in a complete duality.

X is separable C(K) is separable
⇕ ⇕

(BX∗ , w∗) is metrizable K is metrizable

7



The next table is devoted to weakly compactly generated Banach
spaces and Eberlein compact spaces. We recall that a Banach space
X is weakly compactly generated (shortly WCG) if there is a weakly
compact subset L ⊂ X such that the closed linear span of L is whole X
(i.e., L generates X). A compact spaceK is called Eberlein if it is home-
omorphic to a weakly compact subset of some Banach space. The table
for these classes is a bit more complicated, as Eberlein compact spaces
are preserved by continuous mappings but weakly compactly generated
spaces are not preserved by subspaces. Therefore one more class en-
ter there � the class of subspaces of weakly compactly generated spaces,
i.e. of those spaces which are isomorphic to a subspace of a weakly
compactly generated space.

X is weakly compactly generated C(K) is weakly compactly generated
⇓ ̸⇑ ⇕

X is a subspace of a WCG space C(K) is a subspace of a WCG space
⇕ ⇕

(BX∗ , w∗) is Eberlein K is Eberlein

We include one more table of this kind. It deals with Corson compact
spaces and weakly Lindelöf determined Banach spaces. We recall that
a compact space K is Corson if it is homeomorphic to a subset of the
space

Σ(Γ) = {x ∈ RΓ : {γ ∈ Γ : x(γ) ̸= 0} is at most countable}
equipped with the topology of pointwise convergence inherited from RΓ.
Further, a Banach spaceX is weakly Lindelöf determined (shortlyWLD)
if there is M ⊂ X linearly dense (i.e., such that the closed linear span of
M is equal to X) such that for each ξ ∈ X∗ there are at most countably
many x ∈ M with ξ(x) ̸= 0. The duality of these classes is also not
complete, we thus need one more property of compact spaces: A compact
space K is said to have property (M) if each Radon probability measure
on K has metrizable support. The table is then as follows:

X is weakly Lindelöf determined C(K) is weakly Lindelöf determined
⇕ ⇕

(BX∗ , w∗) is Corson K is Corson with property (M)
⇑ ̸⇓ ⇓ ̸⇑

(BX∗ , w∗) is Corson with property (M) K is Corson
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The implication which are not valid are in fact independent of the
standard axioms of the set theory. More exactly, under continuum hy-
pothesis there are counterexamples and under Martin's axiom and nega-
tion of the continuum hypothesis all the implications are valid (as under
these axioms any Corson compact space has property (M)).
There are much more such tables. We included the three ones for

illustration. Some other ones will be included in the following section in
the summary of the thesis.

2. Summary of the thesis
In this section we give the summary of the thesis. This section is

divided into four subsections, the �rst two are devoted to Chapter 2
of the thesis, the remaining two to Chapter 3. In subsections 1 and 3
we explain the background of the respective chapters and we mention
related results and problems. Subsections 2 and 4 then contain the
summary of the results of the respective chapters.

2.1. Di�erentiability of convex functions and the re-
spective classes of Banach spaces.

Let X be a Banach space, a ∈ X and f be a real-valued function
de�ned on a neighborhood of a.
A functional L ∈ X∗ is said to be the Fréchet derivative of f at a if

lim
h→0

f(a+ h)− f(a)− L(h)

∥h∥
= 0.

In this case the functional L is denoted by f ′
F (a). Note that the Fréchet

derivative is a straightforward generalization of the notion of a di�eren-
tial of functions of several real variables.
Further, if h ∈ X is arbitrary, the directional derivative of f at a in

the direction h is de�ned by

∂hf(a) = lim
t→0

f(a+ th)− f(a)

t

provided this limit exists and is �nite. I.e., it is just the derivative of
the function t 7→ f(a + th) at the point 0. This quantity has the real
sense of a directional derivative if h is a unit vector. But it is useful to
de�ne it for any h. If the assignment h 7→ ∂hf(a) de�nes a bounded
linear functional on X, f is said to be Gâteaux di�erentiable at a and
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the respective functional is called Gâteaux derivative of f at a and is
denoted by f ′

G(a).
It is easy to realize that a Fréchet derivative is automatically Gâteaux

derivative as well. Moreover, f is Fréchet di�erentiable at a if and
only if it is Gâteaux di�erentiable and the limit in the de�nition of the
directional derivatives at a is uniform for directions h ∈ SX .
For one-dimensionalX (i.e., X = R) both Fréchet di�erentiability and

Gâteaux di�erentiability coincide with the ordinary di�erentiability. If
the dimension ofX is at least two, it is no longer the case. However, ifX
has �nite dimension, Gâteaux and Fréchet di�erentiability coincide for
locally Lipschitz functions, in particular for continuous convex functions.
And di�erentiability of convex functions is the starting point for de�ning
the classes of Banach spaces which we are dealing with in Chapter 2 of
the thesis.
Let X be a Banach space. We say that the space X is

• an Asplund space if each real-valued convex continuous function
de�ned on an open convex subset G ⊂ X is Fréchet di�erentiable
at all points of a dense Gδ subset of G;

• a weak Asplund space if each real-valued convex continuous func-
tion de�ned on an open convex subset G ⊂ X is Gâteaux di�er-
entiable at all points of a dense Gδ subset of G;

• a Gâteaux di�erentiability space (shortly GDS) if each real-valued
convex continuous function de�ned on an open convex subset G ⊂
X is Gâteaux di�erentiable at all points of a dense subset of G.

Asplund and weak Asplund spaces were introduced by E. Asplund [7]
who called them strong di�erentiability spaces and weak di�erentiability
spaces. Gâteaux di�erentiability spaces were introduced eleven years
later by D.G. Larman and R.R. Phelps [46]. Let us remark that the set
of points of Fréchet di�erentiability of a convex continuous function is
automatically Gδ, so it does not matter whether in the de�nition of an
Asplund space we write �dense� or �dense Gδ�. For Gâteaux di�erentia-
bility it is not the case, we will comment it later in more detail.
Asplund spaces are now quite well understood. They have many equiv-

alent characterizations and nice stability properties. In particular, a Ba-
nach space X is Asplund if and only if each separable subspace of X has
separable dual and if and only if the dual X∗ has the Radon-Nikodým
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property (see e.g. [58, Chapters 2 and 5]). Further, Asplund spaces are
stable to taking subspaces, quotients, �nite products and moreover, to
be Asplund is a three-space property. I.e., X is Asplund whenever there
is an Asplund subspace Y ⊂ X such that the quotient X/Y is also
Asplund. These stability properties are collected in [14, Theorem 1.1.2].
The relationship of Asplund spaces to compact spaces is described by
the following table.

X is Asplund C(K) is Asplund
⇓ ̸⇑ ⇕

(BX∗ , w∗) is Radon-Nikodým K is scattered

The right-hand part of the table is proved for example in [14, Theorem
1.1.3]. Recall that a compact space K is scattered if each nonempty
subset of K has an isolated point. As for the left-hand part � the valid
implication is just a consequence of the de�nition. A compact space
K is said to be a Radon-Nikodým compact space if it is homeomorphic
to a subset of (X∗, w∗) for an Asplund space X. As for the converse
implication � not only it is not valid, but in fact there is no topologi-
cal property of the dual unit ball characterizing Asplund spaces. The
reason is that for all in�nite dimensional separable spaces the respective
dual unit balls are weak* homeomorphic (it is a consequence of Keller's
theorem [72, Theorem 8.2.4] that they are homeomorphic to the Hilbert
cube [0, 1]N), but some of these spaces are Asplund (for example, c0 or
ℓp for p ∈ (1,∞)) and some of them are not Asplund (for example ℓ1 or
C[0, 1]).
The structure of weak Asplund spaces is much less understood. It is

known that this class is quite large, many important classes of Banach
spaces are its subclasses, but the structure of the class itself is completely
unclear. It is not known whether a subspace of a weak Asplund space is
again weak Asplund, it is not known whether X × R is weak Asplund
whenever X is weak Asplund. The only known stability result says that
weak Asplund spaces are preserved by quotients.
As we have already remarked, the set of points of Gâteaux di�eren-

tiability of a convex continuous function on a Banach space need not be
Gδ. More precisely, it is Gδ if the space is separable. In general it may
be highly non-measurable, in particular non-Borel (see e.g. [22]). So,
it is natural to introduce also Gâteaux di�erentiability spaces as it was
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done in [46]. One of the main questions asked in that paper was whether
any Gâteaux di�erentiability space is automatically weak Asplund. This
question was �nally answered in the negative by W. Moors and S. Soma-
sundaram in [52]. Later we will comment the way this counterexample
as it is closely related to the content of Chapter 2 of the thesis.
Gâteaux di�erentiability spaces seem to have a bit better structure

than weak Asplund spaces. There are some characterizations and more
stability properties. For example, X is GDS if and only if each convex
weak* compact subset of X∗ is the weak* closed convex hull of its weak*
exposed points (see [58, Chapter 6]). Moreover, a quotient of a GDS is
again GDS and the product X × Y is GDS whenever X is GDS and Y
is separable. The case of one-dimensional Y was proved by M. Fabian
(his proof is reproduced in the book [58]). The general case is a rather
recent result of L. Cheng and M. Fabian [9]. Anyway, it is not clear
whether a subspace of a GDS is again GDS.
Let us now concentrate on subclasses of weak Asplund spaces. We

will consider the following sequence of classes of Banach spaces ordered
by inclusion:

separable spaces ⊂ weakly compactly generated spaces

⊂ subspaces of WCG spaces ⊂ weakly K-analytic space

⊂ weakly countably determined spaces

⊂ weakly Lindelöf determined spaces

Some of these classes were de�ned in the Introduction. Weakly K-
analytic Banach spaces are those spaces which are K-analytic in the
weak topology (see M. Talagrand's paper [67] or Section 4.1 of M. Fa-
bian's book [14]). Weakly countably determined spaces were introduced
by L. Va²ák in [73]. They can be de�ned, similarly as weakly K-analytic
spaces, by a topological property of the weak topology (see, e.g. [14,
Section 7.1]).
Let us comment now the relationship of these classes to weak As-

plund spaces. Separable Banach spaces are weak Asplund by a result of
S. Mazur [49, Satz 2] published long time before weak Asplund spaces
were introduced. E. Asplund proved in [7, Theorem 2] that a Banach
space X is weak Asplund provided it admits an equivalent norm such
that the respective norm on the dual space X∗ is strictly convex (i.e. the
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unit sphere contains no segments). Any separable Banach space admits
such a norm by M.M. Day [11, Theorem 4]. This result was extended to
weakly compactly generated spaces by D. Amir and J. Lindendstrauss
in [2, Theorem 3] and later to weakly countably determined spaces by
S. Mercourakis in [50, Theorem 4.8]. It follows that weakly countably
determined spaces are weak Asplund. Let us remark that one of the
main ingredients of the method of the proof of these result consisted
in decompositions of nonseparable spaces to smaller subspaces. This
method will be discussed in more detail in Subsection 2.3.
As for weakly Lindelöf determined Banach spaces � they form a natu-

ral class with a simple de�nition and nice properties containing weakly
countably determined spaces. We will discuss them more in Subsec-
tions 2.3 and 2.4. At this point we remark that the inclusion of weakly
countably determined spaces in the class of WLD spaces is not trivial
and follows from the results of S. Mercourakis [50, Section 4]. Further,
WLD spaces do not have an easy relationship to weak Asplund spaces,
since no inclusion between these two classes holds. This was proved by
S. Argyros and S. Mercourakis in [4]. It is worth to mention that it is
up to our knowledge still an open question whether each WLD space is
a Gâteaux di�erentiability space, cf. Conjecture on page 410 of [4].
This list of subclasses of weak Asplund spaces was completed by a

deep theorem of D. Preiss given in [61, Section 4.2]. This result says
that a Banach space is weak Asplund whenever it admits an equivalent
smooth norm (i.e. a norm which is Gâteaux di�erentiable at each point
except for the origin). It is an extension of the above mentioned result of
E. Asplund as it is easy to see that the norm on X is smooth as soon as
the norm on the dual space X∗ is strictly convex. (This was observed by
V.L. Klee in [43, Appendix, (A1.1)].) Therefore we have the following
list of classes of Banach spaces ordered by inclusion.

weakly countably determined spaces

⊂ spaces with an equivalent norm with strictly convex dual

⊂ spaces with an equivalent smooth norm ⊂ weak Asplund spaces

All these inclusions are known to be strict. We focus now on the last
inclusion. It was proved by R. Haydon in [21, Theorem 2.1] that there is
even an Asplund space which admits no equivalent smooth norm. This
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not only shows that the last inclusion is strict but also suggests that
there is another list of subclasses of weak Asplund spaces unrelated to
the one discussed above. Indeed, it is the following one:

Asplund spaces ⊂ Asplund generated spaces

⊂ subspaces of Asplund generated spaces

⊂ σ-Asplund generated spaces ⊂ weak Asplund spaces

We recall some of the de�nitions. A spaceX isAsplund generated if there
is an Asplund space Y and a bounded linear operator T : Y → X with
dense range. Subspaces of Asplund generated spaces are those spaces
which are isomorphic to a subspace of an Asplund generated space. The
de�nition of a σ-Asplund generated space is a bit more complicated, we
refer to [16], where also important properties of this class are studied.
The relationship between these classes and the related classes of com-

pact spaces is described by the following table (for proofs see [14, Section
1.5] and [16]).

X is Asplund generated C(K) is Asplund generated
⇓ ̸⇑ ⇕

(BX∗ , w∗) is Radon-Nikodým K is Radon-Nikodým
⇓ ⇓

(BX∗ , w∗) is the image of a RN compact K is the image of a RN compact
⇕ ⇕

X is a subspace of an AG space C(K) is a subspace of an AG space
⇓ ⇓

X is σ-Asplund generated C(K) is σ- Asplund generated
⇕ ⇕

(BX∗ , w∗) is quasi-Radon-Nikodým K is quasi-Radon-Nikodým

As for quasi-Radon-Nikodým compact spaces, the above table may serve
as a de�nition (although the original one was di�erent, see [6]). We
remark that all the missing implications are open questions which are
related to the long-standing problem whether Radon-Nikodým compact
spaces are preserved by continuous mappings.
We have presented two sequences of subclasses of weak Asplund spaces.

They are essentially unrelated. This is witnessed by the following results
(see [14, Section 8.3] and [6]).
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X is WLD and Asplund generated ⇔ X is WCG

X is WLD and a subspace of an AG space ⇔ X is a subspace of a WCG space

K is Corson and quasi-Radon-Nikodým ⇔ K is Eberlein

Anyway, these two unrelated sequences of subclasses of weak Asplund
spaces do have a common roof. It is the class of Banach spaces with
weak* fragmentable dual. To introduce it we need to recall the de�nition
of fragmentability.
Let (X, τ) be a topological space and ρ be a metric on the set X (a

priori unrelated with the topology τ ). We say that (X, τ) is fragmented
by ρ if for each nonempty set A ⊂ X and each ε > 0 there is a nonempty
relatively τ -open subset U ⊂ A with ρ-diameter less than ε. Further, a
topological space (X, τ) is called fragmentable provided it is fragmented
by some metric.
Fragmentability is closely related to di�erentiability. It is witnessed for

example by the fact that a Banach space X is Asplund if and only if the
dual unit ball (BX∗, w∗) is fragmented by the norm metric (see [14, The-
orem 5.2.3]). It follows that each Radon-Nikodým compact space is frag-
mentable. More exactly, it is fragmented by some lower-semicontinuous
metric. This is in fact a characterization of Radon-Nikodým compact
spaces by [53]. Further, quasi-Radon-Nikodým compact spaces are easily
seen to be fragmentable and they can be characterized using a stronger
variant of fragmentability.
Further, it is not hard to show that a Banach space X is weak Asplund

provided (X∗, w∗) is fragmentable. This class of Banach spaces we de-
note (following [14]) by F̃ . The class F̃ is quite stable, in particular it
it stable to subspaces, quotients and �nite products. Moreover, we have
the following table:

X ∈ F̃ C(K) ∈ F̃
⇕ ⇕

(BX∗ , w∗) is fragmentable K is fragmentable

The only non-easy implication is the implication ⇑ from the right-
hand part and it is due to N.K. Ribarska [62]. It follows from the above
remarks that σ-Asplund generated spaces belong to the class F̃ . More-
over, Banach spaces admitting an equivalent smooth norm belong to the
class F̃ as well. This was proved by N.K. Ribarska in [63] by re�ning
the above mentioned result of D. Preiss from [61]. This was further
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extended to Banach spaces having a Lipschitz Gâteaux di�erentiable
bump function (which is a function with nonempty bounded support)
by M. Fosgerau [17]. Thus we have the following inclusions:

spaces with a smooth norm
̸⊂
̸⊃ σ-Asplund generated spaces

∩ ∩
spaces with a Lipschitz
Gâteaux smooth bump

⊂ F̃

∩
weak Asplund spaces

As all the known subclasses of weak Asplund spaces were in fact sub-
classes of F̃ , it was natural to ask whether all weak Asplund spaces
belong to F̃ .
Up to now we discussed which concrete classes of Banach spaces are

subclasses of weak Asplund spaces and �nally we described a common
roof of these classes � the class F̃ . But one can proceed in the opposite
direction � start from weak Asplund spaces and try to �nd a reasonable
characterization, or at least a nice subclass which is as large as possible.
The result of such search is Stegall's class. Before de�ning it we recall
some facts on Gâteaux di�erentiability of convex functions.
LetX be a Banach space, D a nonempty open subset ofX, f : D → R

a continuous convex function and a ∈ D. By a subdi�erential of f at a
we mean the set

∂f(a) = {x∗ ∈ X∗ : f(a+ h) ≤ f(a) + x∗(h) for h ∈ X small enough}.
This set is automatically a nonempty convex weak* compact set. More-
over, f is Gâteaux di�erentiable at a if and only if ∂f(a) is a singleton.
The set-valued mapping a 7→ ∂f(a) has many nice properties, it is in
particular upper-semicontinuous from (D, ∥ · ∥) to (X∗, w∗), i.e. the
set {a ∈ D : ∂f(a) ⊂ U} is norm-open whenever U is a weak*-open
subset of X∗. It is also minimal with respect to inclusion among upper-
semicontinuous mappings with nonempty convex weak* compact values.
These properties and also other ones can be found for example in [58,
Chapter 2].
In view of these facts the following de�nitions are natural: Let T

and X be topological spaces and φ a set-valued mapping de�ned on T
whose values are subsets of X. The mapping φ is called usco if it is
upper semicontinuous and has nonempty compact values. The mapping
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φ is called minimal usco if it is usco and, moreover, it is minimal with
respect to inclusion among usco maps.
Finally, a topological space X is said to be in Stegall's class if for each

Baire topological space T and each minimal usco map φ : T → X there
is at least one point t ∈ T such that φ(t) is a singleton. The set of singl-
evaluedness is then automatically residual (i.e., its complement is of �rst
category) by the Banach localization principle. In particular, it easily
follows that X is weak Asplund as soon as (X∗, w∗) belongs to Stegall's
class. This class of Banach spaces will be denoted by S̃. The class S̃ has
also nice stability properties � it is preserved by subspaces, quotients,
�nite products and even more. However, the respective duality table is
not satisfactory, as only the easy implications are known:

X ∈ S̃ C(K) ∈ S̃
⇕ ⇓

(BX∗ , w∗) is in Stegall's class K is in Stegall's class

It is not hard to show that each fragmentable topological space belong
to Stegall's class, in particular F̃ ⊂ S̃. So, we get:

F̃ ⊂ S̃ ⊂ weak Asplund spaces ⊂ GDS

It was a longstanding problem whether these inclusions are proper. The
way to distinguish these classes will be described in the next subsection.

2.2. Summary of the results of Chapter 2.

Section 2.1: Stegall compact spaces which are not fragmentable.
This section contains the paper [26]. The main result is distinguishing
the class of fragmentable spaces and Stegall's class in the framework of
compact spaces. Let us describe the results and methods in more de-
tail. One of the key ingredients is a proper choice of a smaller class of
compact spaces. It is the following class:
Let I = [0, 1] and A ⊂ I be an arbitrary subset. Set

IA = ((0, 1]× {0}) ∪ (({0} ∪ A)× {1})
and equip this set with lexicographic order (i.e., (x, s) < (y, t) if and
only if either x < y or x = y and s < t). We then equip IA with
the order topology. (Such a space IA is a special case of the spaces
KA de�ned in the paper.) These spaces are a generalization of the
well-known �double arrow space�, which is the space IA for A = (0, 1).
Each KA is a Hausdor� compact space, it is �rst countable, hereditarily
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separable and hereditarily Lindelöf. (In fact, spaces KA are known in
topology, as any perfect separable linearly ordered compact space is of
that form, see [57].)
The �rst important part of the results is a characterization of frag-

mentable spaces and spaces from Stegall's class within spaces KA. The
following proposition is [26, Proposition 3].

Proposition 1. Consider a space of the form KA. Then

A is countable ⇔ KA is metrizable ⇔ KA is fragmentable.

This proposition follows essentially from the fact that KA is hereditar-
ily Lindelöf. Further, let us turn to Stegall's class. The characterization
is formulated in a more general setting, which proved to be useful later.
So, suppose that C is a class of Baire topological spaces which is closed
with respect to open subspaces and dense Gδ-subspaces. We say that
a topological space X is in Stegall's class with respect to C if for each
nonempty T ∈ C and each minimal usco map φ : T → X there is at
least one point t ∈ T such that φ(t) is a singleton.
If C is the class of all Baire spaces, we get the original Stegall's class.

But there are other reasonable choices of C � for example Baire spaces
of weight at most κ for a cardinal number κ, or complete metric spaces.
Now we formulate the characterization given in [26, Proposition 4]:

Proposition 2. Consider a space of the form KA and a class C of Baire
spaces stable with respect to open subspaces and dense Gδ subspaces. The
following assertions are equivalent.

(1) KA is in Stegall's class with respect to C.
(2) Every continuous function f : T → A for any nonempty T ∈ C

has a local extreme (i.e., a local maximum or a local minimum).

The second ingredient of the paper are examples of uncountable sets
A ⊂ R satisfying the condition (2) of Proposition 2. It is done using a
formally stronger condition:
(∗) For any nonempty T ∈ C and any continuous f : T → A there is

a nonempty open subset U ⊂ T such that f is constant on U .
Then we have the following results:

Proposition 3. (a) Under Martin's axiom and negation of contin-
uum hypothesis each subset of R of cardinality ℵ1 satis�es the
condition (∗) with respect to Baire spaces of weight at most ℵ1.
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(b) Assume Martin's axiom, negation of continuum hypothesis and
ℵ1 = ℵL

1 . Then each subset of R of cardinality ℵ1 satis�es the
condition (∗) with respect to all Baire spaces.

(c) If A is a coanalytic set with no perfect subset, then A satis�es the
condition (∗) with respect to all completely regular Baire spaces.

This is a part of [26, Proposition 7] (which contains three more cases
which are not so important for our purpose). Let us recall that L denotes
the constructible universe and that ℵL

1 is the ordinal number, which in
L plays the role of ℵ1. So, in general we have ℵL

1 ≤ ℵ1. Thus the
assumption ℵ1 = ℵL

1 says that, in a sense, the whole universe is not so
far from the constructible one. The proofs of (a) and (b) use a result
from the author's diploma thesis, in case (b) completed by a result of
R. Frankiewicz and K. Kunen [18]. The case (c) was proved already by
I. Namioka and R. Pol [54] for another purpose. Let us remark that the
existence of an uncountable set satisfying the assumption of (c) follows
from the axiom of constructibility V = L.
So, we get the following result [26, Theorem].

Theorem 1. (1) Assume Martin's axiom and negation of continuum
hypothesis. Then there is a non-fragmentable compact space which
is in Stegall's class with respect to Baire spaces of weight at most
ℵ1.

(2) It is consistent with the usual axioms of the set theory that there
is a non-fragmentable compact space which is in Stegall's class.

The assertion (2) of this theorem yields a distinction of fragmentable
spaces and Stegall's class within compact spaces. One disadvantage is
that it is only a consistent result, depending on some additional ax-
ioms of the set theory. This di�culty cannot be easily overcome � it is
witnessed by [26, Proposition 8] which we quote here:

Proposition 4. Suppose that there is a precipitous ideal over ω1. Then
no uncountable subset of R satis�es the condition (∗) with respect to
Baire metric spaces of weight at most 2ℵ1.

The de�nition of a precipitous ideal can be found in [18]. For a more
detailed study we refer to [23, Chapter 22], where it is also proved that
the existence of a precipitous ideal over ω1 is equiconsistent with the
existence of a measurable cardinal.
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There is one more disadvantage of the above theorem � it does not
solve the more interesting problem whether F̃ = S̃. This problem was
left open by the paper [26].
Section 2.2: A weak Asplund space whose dual is not in Ste-
gall's class. This section contains the paper [33]. The main result is
the example mentioned in the title. Let us comment it in more detail.
As we have remarked above, in the paper [26] which form Section 2.1 it

is proved that there are (under some additional axioms of the set theory)
non-fragmentable compact spaces which belong to Stegall's class. The
question whether there are such examples in the framework of Banach
spaces, i.e. whether there are Banach spaces belonging to S̃ but not to
F̃ was left open. This question was solved by P. Kenderov, W. Moors
and S. Sci�er in [41]. They proved that the space C(IA) belongs to S̃
whenever A satis�es the condition (∗). In the proof they used a suitable
representation of the dual space C(IA)

∗. In [33] we used this result to
prove the following proposition:

Proposition 5. Let C be a class of Baire metric spaces closed to taking
open subspaces and dense Baire subspaces. Consider a compact space
of the form IA. Then the following assertions are equivalent.

(a) (C(IA)
∗, w∗) is in Stegall's class with respect to C.

(b) IA is in Stegall's class with respect to C.
(c) A satis�es the condition (2) of Proposition 2.
(d) A satis�es the condition (∗).

The implication (c)⇒(d) is a new result of this section. The implica-
tion (d)⇒(a) is in fact the mentioned result of [41]. Further (a)⇒(b) is
trivial and (b)⇔(c) follows from Proposition 2 above.
As a consequence of the above proposition one gets the following the-

orem.

Theorem 2. (1) If ℵ1 = ℵL
1 , then there is a Banach space belonging

to S̃ \ F̃ .
(2) If Martin's axiom and the negation of continuum hypothesis hold,

then there is a weak Asplund space which does not belong to F̃ .
(3) If there is a precipitous ideal on ω1 and Martin's axiom and the

negation of continuum hypothesis hold, then there is a weak As-
plund space which does not belong to S̃.
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The only really new result in this section is the assertion (3). The
respective space is the space C(IA) for any A ⊂ (0, 1) of cardinality
ℵ1. This follows by combining previous proposition with results of the
previous section. One more thing required a proof � consistency of
the set-theoretical assumptions (assuming consistency of a measurable
cardinal). This is also shown in the paper using a result of Y. Kakuda
[24] on forcing extensions.
The assertion (1) is just a minor improvement of the result of [41]

done with help of the results of [64] and [42]. As for the assertion (2) �
it follows immediately from the results of the previous section and [41].
But it is pointed out as the assumptions are commonly used axioms. We
stress that in this case one cannot determined whether the respective
example belongs to the class S̃ of not.

Section 2.3: On subclasses of weak Asplund spaces. This section
contains the paper [40], co-authored by K. Kunen. The results of [41]
and of the previous section, summed up in Theorem 2, say that under
suitable additional axioms of the set theory there is a Banach space from
S̃ \ F̃ and under another additional axioms there is a weak Asplund
space which does not belong to S̃. However, the respective two sets of
axioms are incompatible. Therefore it is natural to ask whether it is
consistent to have simultaneously both counterexample. The answer to
this question is the content of the paper [40].
The right set of axioms is the following one:

Axioms A.
(i) Martin's axiom and 2ℵ0 = ℵ3 hold.
(ii) There is a precipitous ideal over ω2.
(iii) The cardinal ℵ1 is not measurable in any transitive model of ZFC

containing all the ordinals.

It is �rst proved that this set of axioms is consistent with ZFC provided
the existence of a measurable cardinal is consistent. This part is due to
K. Kunen who is an expert in set theory and in particular in forcing.
Further, the following result is proved.

Theorem 3. Suppose ZFC + A holds.

(a) If A ⊂ (0, 1) has cardinality ℵ1, then C(IA) ∈ S̃ \ F̃ .
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(b) If A ⊂ (0, 1) has cardinality ℵ2, then C(IA) is weak Asplund but

does not belong to S̃.

In view of the described results the most natural question in this area
is whether some additional axioms beyond ZFC are needed. In other
words:

Question. Is it consistent with ZFC that each weak Asplund space be-
longs to F̃?

Sec. 2.4: Weakly Stegall spaces. This section contains the manu-
script [25]. This manuscript was not published and in fact contains no
deep results, but it is included as it started the way to a solution of a
longstanding open problem.
The original motivation which began the research described in the

previous sections was to �nd a Banach space which is GDS but not
weak Asplund. This question was asked in [46] and remained open for
a quite long time.
The idea of the manuscript [25] was simple. Weakly Stegall spaces are

those spaces which are in Stegall's class with respect to the class of all
complete metric spaces. And similarly as any Banach space from S̃ is
weak Asplund, one can easily prove that any Banach space whose dual
in its weak* topology is weakly Stegall is necessarily GDS.
In the manuscript weakly Stegall spaces are introduced. Some basic

properties are proved. Further, it is proved that the compact space of
the form KA is weakly Stegall if and only if the set A contains no perfect
compact subset. Moreover, it is observed that the class of weakly Stegall
compact spaces is not preserved by �nite products, so it is not clear
how to get a compact space such that (C(K)∗, w∗) is weakly Stegall.
Therefore the author did not continue the research.
However, this research was continued by W. Moors and S. Somasun-

daram. In their paper [51] they characterized weakly Stegall compact
space in terms of an in�nite game. They applied this characterization
to show that, unlike for Stegall's class, to prove that a compact space K
is weakly Stegall it is su�cient to test the de�nition for complete metric
spaces of the weight at most equal to the weight of K. In particular,
they showed that (C(IA), w

∗) is weakly Stegall if C(IA) is the space
constructed in [33] (see Theorem 2(3) above). In the following paper
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[52] they used the results on weakly Stegall spaces to �nd a GDS which
is not weak Asplund. It is again a space of the form C(IA).

2.3. Decompositions of nonseparable Banach spaces.

Separable Banach spaces have many nice properties. In particular:

• Any separable Banach space admits an equivalent norm which is
locally uniformly convex (in particular strictly convex) and whose
dual norm is strictly convex (see e.g. [13, Corollary II.4.3]).

• Any separable Banach space X admits a Markushevich basis (see
e.g. [20, Theorem 272]), i.e. there is a sequence (xn, fn)n∈N in
X ×X∗ satisfying the following properties:
� fn(xn) = 1 and fn(xm) = 0 for m,n ∈ N, m ̸= n.
� span {xn : n ∈ N} is dense in X.
� For each x ∈ X \ {0} there is n ∈ N with fn(x) ̸= 0.

• In any separable Banach space any norm-open set is weakly Fσ.
In particular, Borel sets with respect to norm and weak topologies
coincide. (This is an easy exercise.)

Nonseparable Banach spaces need not have these properties. For ex-
ample, if X = ℓ∞, then:

• X does not admit any equivalent locally uniformly convex norm
(see [13, Theorem II.7.10]).

• X does not admit any equivalent smooth norm. (This follows from
[13, Proposition II.5.5]).

• X does not admit any Markushevich basis (see e.g. [20, Theo-
rem 306]; the de�nition of Markushevich basis of a nonseparable
space is the same as in the separable case, only instead of natural
numbers we use an arbitrary index set).

• There is a norm-open subset of X which is not weakly Borel (see
[66]).

If X = ℓ∞(Γ) for an uncountable set Γ, then even X does not admit
any equivalent strictly convex norm (see [13, Corollary II.7.13]).
But on the other hand, some nonseparable spaces share the proper-

ties of separable ones. Consider, for example, a (possibly nonseparable)
Hilbert space H. Then the canonical norm on H is uniformly convex
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and uniformly Fréchet di�erentiable on the unit sphere. Further, H ad-
mits an orthonormal basis, which is much stronger than a Markushevich
basis. Finally, any norm-open set in H is weakly Borel.
The nice properties of a Hilbert space are closely related with the

existence of a nice basis (the orthonormal one). Other spaces with a nice
basis � like c0(Γ) or ℓp(Γ) for p ∈ [1,∞) � have also nice properties (even
though not so nice as a Hilbert space). The reason of this phenomenon
is that a basis essentially provides a decomposition of the space to one-
dimensional pieces.
Let us name a result due to V. Zizler [74] which illustrates the use of

decompositions to smaller subspaces.

Theorem 4. Let X be a Banach space and {Pα : α ∈ Λ} be a family
of bounded linear operators on X such that:

(i) (∥Pαx∥)α∈Λ belongs to c0(Λ) for each x ∈ X.
(ii) Each x ∈ X belongs to the closed linear span of {Pαx : α ∈ Λ}.
(iii) The space PαX admits an equivalent locally uniformly convex norm

for each α ∈ Λ.

Then X admits an equivalent locally uniformly convex norm.

One possible kind of such a family of operators is derived from pro-
jectional resolutions of the identity. Let us give a de�nition of this
important notion. Let X be a nonseparable Banach space with density
κ (i.e., κ is the smallest possible cardinality of a dense subset of X).
By a projectional resolution of identity (shortly PRI ) we mean an in-
dexed family (Pα : ω ≤ α ≤ κ) of linear projections on X satisfying the
following conditions:
(1) Pω = 0, Pκ = IdX ;
(2) ∥Pα∥ = 1 for α ∈ (ω, κ];
(3) PαPβ = PβPα = Pα whenever ω ≤ α ≤ β ≤ κ;
(4) densPαX ≤ cardα;
(5) PµX =

∪
α<µ PαX for µ ∈ (ω, κ] limit.

If (Pα : ω ≤ α ≤ κ) is a PRI on X, then the operators (Pα+1 − Pα :
ω ≤ α < κ) satisfy the properties (i) and (ii) from the above Zizler's
theorem. So we get immediately that any Banach space with density ℵ1

which admits a PRI has an equivalent locally uniformly convex norm.
For larger densities one can use trans�nite induction. As a consequence
we get the following:
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Suppose that C is a class of Banach spaces such that each nonseparable
X ∈ C admits a PRI (Pα : ω ≤ α ≤ κ) such that (Pα+1−Pα)X ∈ C for
each α ∈ [ω, κ). Then each space from C admits an equivalent locally
uniformly convex norm.
The proof is done by obvious trans�nite induction using the fact that

any separable space admits an equivalent locally convex norm and Zi-
zler's theorem. This illustrates the main type of applications of PRIs.
Although there are other methods of renorming, there are other prop-
erties which can be proved by trans�nite induction using PRIs � for
example the existence of a Markushevich basis or the existence of a
bounded linear injection to some c0(Γ) (see [14, Chapter 6]). Moreover,
the existence of a PRI provides an insight into the structure of the space.
First projectional resolutions of the identity were constructed by J. Lin-

denstrauss. In [47] he constructed a PRI in any nonseparable re�exive
Banach space having the metric approximation property. The existence
of a PRI is not stated there as a theorem, but it is just a step in proving
the main result. In [48] he dropped the assumption of metric approxi-
mation property. In fact, in that paper PRI is not explicitly mentioned.
But combining it with results of [47] it follows that any nonseparable
re�exive Banach space admits a PRI.
A substantial progress was made by D. Amir and J. Lindenstrauss in

[2]. They proved the existence of a PRI in every nonseparable weakly
compactly generated Banach space. And again, they did not formulated
it explicitly, the formulation is rather hidden in the proof of the main
result.
This result was further extended to larger classes of Banach spaces.

L. Va²ák [73] extended it to weakly countably determined Banach spaces.
M. Valdivia [68] extended it to weakly Lindelöf determined spaces (he
used another de�nition and terminology). The fact that it is really an
extension is not trivial, it follows from results of S. Mercourakis [50].
There is also another line of results on the existence of a PRI, namely

PRIs in dual spaces. D.G. Tacon in [65] proved that X∗ admits a PRI
whenever X is smooth and the mapping x 7→ ∥x∥ · ∥ · ∥′G(x) is norm-to-
weak continuous. This result was generalized by M. Fabian and G. Gode-
froy who proved in [15] that X∗ admits a PRI wheneverX is an Asplund
space. Let us remark that the PRI is constructed in such a way that
each PαX

∗ is isometric to a dual of a subspace of X, however the range
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need not be weak* closed. In particular, the projections need not be
dual mappings.
A connection of the mentioned two lines is the notion of a shrinking

PRI. It is a PRI on X such that the dual mappings form a PRI on X∗.
A shrinking PRI can be constructed on any Asplund WCG space. It is
also used as a tool of proving that any Asplund WLD space is already
WCG in [55].
Further extensions of the �rst line of results are related to Valdivia

compact spaces and associated Banach spaces. Therefore we give the
respective de�nitions:
Let K be a compact space.
• A subset A ⊂ K is called a Σ-subset of K if there is a set Γ and
a homeomorphic injection h : K → RΓ such that A = h−1(Σ(Γ)).

• K is said to be a Valdivia compact space if it admits a dense Σ-
subset.

So, Valdivia compact spaces are a generalization of Corson compact
spaces. In this terminology a compact space is Corson if and only if it
is a Σ-subset of itself. We continue by the associated classes of Banach
spaces.
Let X be a Banach space.
• A subspace S ⊂ X∗ is called a Σ-subspace of X∗ if there is a
linearly dense set M ⊂ X such that

S = {x∗ ∈ X∗ : {x ∈ M : x∗(x) ̸= 0} is countable}.
• X is said to be a 1-Plichko space if X∗ admits a 1-norming Σ-
subspace.

• X is said to be a Plichko space ifX∗ admits a norming Σ-subspace.
The notion of Valdivia compact space appeared (without a name) in

a paper by S. Argyros, S. Mercourakis and S. Negrepontis [5]. In their
Lemma 1.3 it is proved that any Valdivia compact space admits a retrac-
tional resolution of the identity (which is an indexed family of retractions
with properties similar to those of a PRI). Using Stone-Weierstrass theo-
rem it is easy to check that any retractional resolution of the identity on
a compact space K induces a PRI on C(K). This was done by M. Val-
divia [69] who explicitly formulated and proved that C(K) admits a PRI
wheneverK is Valdivia (he called these compact spaces to be in the class
A). He proved even more � the spaces Pα(C(K)) are again of the form
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C(L) where L is Valdivia. In fact, his PRI is exactly the PRI induced
by the retractions from [5]. This topic was elaborated by M. Valdivia
in [70]. This is a long paper with a number of results. Let us point out
a result given in Note 1 on page 274: Let X be a Banach space such
that (BX∗, w∗) admits a Σ-subset containing Y ∩ BX∗ for a 1-norming
subspace Y ⊂ X∗. Then X admits a PRI. One of the important tools
is the topology of pointwise convergence on a dense Σ-subset.
The name Valdivia compact space was introduced by R. Deville and

G. Godefroy in [12]. As for Plichko and 1-Plichko spaces � the termi-
nology is inspired by older results of A. Plichko [59]. He proved that a
Banach space with a countably norming Markushevich basis admits a
bounded projectional resolution (it is the same thing as PRI, only the
condition (1) is replaced by the requirements that the norms are uni-
formly bounded). It turned out that Plichko spaces as de�ned above are
exactly the spaces with a countably norming Markushevich basis.
Valdivia compact spaces and Plichko and 1-Plichko Banach spaces

are the main topic of the Chapter 3 of the thesis. Its content will be
described in more detail in the following section.
As remarked above, an important application of PRIs is the possibility

to prove results by trans�nite induction. But to use trans�nite induction
we also need the induction hypothesis to be satis�ed. So, we need an
assumption on the ranges of projections Pα (or, in some cases, Pα+1 −
Pα). If the density of X is ℵ1, these ranges are separable. But for
spaces of a larger density mere existence of a PRI provides very few
information. There are some ways to solve this problem. One of them
is the use of a projectional generator. This notion was introduced by
J. Orihuela and M. Valdivia in [56] as a technical tool to construct a PRI.
A simpli�ed version with equivalent applications is given in M. Fabian's
book [14]. The existence of a projectional generator not only implies
the existence of a PRI, but has consequences also for the structure of
the space. More exactly, the ranges of the constructed projections again
admit a projectional generator. Therefore the trans�nite induction can
be applied. As a consequence, one obtains characterizations of Asplund
spaces and of WLD spaces using projectional generators.
Nonetheless, the notion of a projectional generator is quite techni-

cal. The right notion is that of a projectional skeleton introduced by
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W. Kubi± in [45]. The results mentioned below come from this pa-
per. A projectional skeleton on a Banach space X is an indexed family
(Ps : s ∈ Σ) of projections on X such that the following conditions are
satis�ed:

(i) sups∈Σ ∥Ps∥ < +∞
(ii) PsX is separable for each s ∈ Σ.
(iii) X =

∪
s∈Σ PsX

(iv) Σ is a directed set.
(v) If s, t ∈ Σ are such that s ≤ t, then PsPt = PtPs = Ps.
(vi) If (sn)∞n=1 is an increasing sequence in Σ, then it has a supremum

s ∈ Σ and PsX =
∪∞

n=1 PsnX.

If all the respective projections have norm one, the skeleton is called
1-projectional skeleton.
If a Banach space admits a projectional generator, it admits a 1-

projectional skeleton as well. Further, the existence of a 1-projectional
skeleton implies the existence of a PRI such that the ranges of pro-
jections admit 1-projectional skeleton as well. It is worth to mention
that 1-Plichko spaces are exactly the spaces admitting a commutative
1-projectional skeleton. Here, the word commutative mean that any two
projections from the skeleton commute, even if their indices are incom-
parable. There are also spaces with a noncommutative 1-projectional
skeleton which are not Plichko.

2.4. Summary of the results of Chapter 3.

Section 3.1: Valdivia compact spaces in topology and Banach
space theory. This section contains the paper [32]. It is a survey
paper written on the request of J. Castillo, the Editor in chief of Extracta
Mathematica. It surveys the knowledge on Valdivia compact spaces and
their role in topology and Banach space theory at that time. It contains
in particular previous results by the author from [27, 28, 29, 30, 31] and
also several new results.
The paper is divided to six chapters. The �rst one is an introduc-

tory one and contains basic notions and tools. The second one contains
a characterization of Valdivia compact spaces and 1-Plichko spaces (or,
more exactly, of dense Σ-subsets and of 1-norming Σ-subspaces) in terms
of a suitable weak topology. The third chapter is devoted to topological
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properties of Valdivia compacta, the fourth one to Plichko and 1-Plichko
Banach spaces. The �fth chapter focuses on Plichko and 1-Plichko C(K)
spaces. The last chapter collects illustrative examples of Valdivia com-
pact spaces.
Let us name some of the important results.

Theorem 5. Let K be a compact space and A ⊂ K be a dense subset.
The following assertions are equivalent:

• A is a Σ-subset of K.
• A is countably compact and C(K) is primarily Lindelöf in the
topology τp(A) of the pointwise convergence on A.

Theorem 6. Let X be a Banach space and A ⊂ BX∗ be a weak* dense
subset. The following assertions are equivalent:

• There is a Σ-subspace S ⊂ X∗ with A = S ∩BX∗.
• A is an absolutely convex Σ-subset of (BX∗, w∗).
• A is weak* countably compact and X is primarily Lindelöf in the
topology σ(X,A).

A topological space T is called primarily Lindelöf if it is a continuous
image of a closed subspace of the space (LΓ)

N for some Γ, where LΓ is the
one-point lindelö�cation of the discrete space Γ. (I.e., LΓ = Γ ∪ {∞},
where points of Γ are isolated and neighborhoods of ∞ are complements
of countable subsets of Γ.) The two above theorems generalize results
of R. Pol [60] and serve as an important tool in the study of structure
of Valdivia compact spaces.

Theorem 7. Let K be a compact space. The following assertions are
equivalent.

• K is a Corson compact space.
• Every continuous image of K is a Valdivia compact space.
• Every at most two-to-one continuous image of K is a Valdivia
compact space.

It is well know that Corson compact spaces are preserved by contin-
uous images (see e.g. [3, Section IV.3]). M. Valdivia in [71] showed
that it is not the case for Valdivia compact spaces, answering a question
raised in [13, Problem VII.2]. The above theorem provides an answer to
a question asked in [71].
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Theorem 8. Let K be a continuous image of a Valdivia compact space.
If K is not Corson, then K contains a homeomorphic copy of the ordinal
interval [0, ω1].

This theorem is a generalization of a result of R. Deville and G. Gode-
froy [12], who proved the same under the assumption that K is Valdivia.
This generalization was then applied in particular in [29].

Theorem 9. Let X be a Banach space. The following are equivalent.

• X is weakly Lindelöf determined.
• The dual unit ball (B(X,|·|)∗, w

∗) is a Valdivia compact space for
each equivalent norm | · | on X.

This theorem was applied to show the limits of the existence of a
PRI. In particular, in [35] it is proved (using the above result) that a
Banach space X is WLD if an only if each nonseparable Banach space
isomorphic to a complemented subspace of X admits a PRI.

Theorem 10. Let K be a compact space. Consider the following asser-
tions:

(1) K is Valdivia.
(2) C(K) is 1-Plichko.
(3) The space of Radon probability measures P (K) admits a dense

convex Σ-subset.
(4) (BC(K)∗, w

∗) is Valdivia.
(5) P (K) is Valdivia.

Then the following implications hold true:

1 ⇒ 2 ⇔ 3 ⇒ 4 ⇒ 5

If K has a dense set of Gδ-points, then all these assertions are equiva-
lent.

This theorem shows relationship between the Valdivia property of K
and the 1-Plichko property of C(K). An example showing the failure of
2 ⇒ 1 was found by T. Banakh and W. Kubi± in [8].
Section 3.2: M-bases in spaces of continuous functions on or-
dinals. This section contains the paper [34]. The main result of this
paper says that the space C([0, ω2]) of the continuous functions on the
ordinal interval [0, ω2] is not Plichko.
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This result is inspired by basic examples of Valdivia and non-Valdivia
compact spaces. The ordinal interval [0, ω1] is a basic example of a
Valdivia compact space which is not Corson. Further, the ordinal in-
terval [0, ω2] is not Valdivia. It follows that the space C([0, ω2]) is not
1-Plichko (in fact, the dual unit ball is not Valdivia). All these results
are quite easy. But the question whether C([0, ω2]) is Plichko appeared
to be more di�cult.
The answer is provided in [34]. The proof uses ideas of G. Alexandrov

and A. Plichko [1] who proved that the space C([0, ω1]) has no norming
Markushevich basis. This idea had to be completed by one more idea
which consists, roughly speaking, in �adjusting� a norming Σ-subspace.

Section 3.3: On the class of continuous images of Valdivia
compacta. This section contains the paper [36]. It is devoted to the
study of the class of compact spaces which are continuous images of
Valdivia compact spaces and of related classes of Banach spaces.
The de�nition of a Corson compact spaces is extended in the obvious

way to countably compact setting. Hence, a countably compact space
is called Corson if it is homeomorphic to a subset of Σ(Γ) for a set Γ.
Further, continuous images of Corson countably compact spaces are said
to be weakly Corson countably compact spaces . It is well known that
Corson compact spaces are preserved by continuous images, and, more
generally, Corson countably compact spaces are preserved by quotient
images. But they are not preserved by continuous images. For example,
the ordinal interval [0, ω1] is not Corson, but it is weakly Corson as it is
a continuous image of the Corson countably compact space [0, ω1).
An interesting class is that of weakly Corson compact spaces. It is

proved there that weakly Corson compact spaces share some stability
properties of Corson ones. It is also observed that continuous images of
Valdivia compact spaces are exactly those compact spaces which contain
a dense weakly Corson countably compact subset. This easy observation
simpli�es the work with continuous images of Valdivia compact spaces.
In particular we get the following theorem on ordinal intervals:

Theorem 11. Let η be an ordinal.

• If η < ω2, then [0, η] is Valdivia and weakly Corson.
• If η ≥ ω2, then [0, η] is not a continuous image of a Valdivia
compact space.
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In the paper we further study the related classes of Banach spaces �
weakly Plichko spaces (which are subspaces of Plichko spaces), weakly 1-
Plichko spaces (which are isometric subspaces of 1-Plichko spaces) and
weakly WLD spaces (which are spaces whose dual unit ball is weakly
Corson in the weak* topology).
Section 3.4: Natural examples of Valdivia compact spaces.
This section contains the paper [38] which collects examples of Valdivia
compact spaces naturally appearing in various branches of mathematics.
Let us name some of the included results:

Theorem 12. Let K be a linearly ordered compact space.

• If K is Valdivia, then so is each closed subset of K.
• If K is scattered, then K is Valdivia if and only if K has cardinal-
ity at most ℵ1 and each point of uncountable character is isolated
from one side.

This theorem sums up some special properties of linearly ordered Val-
divia compact spaces. Let us remark that general Valdivia compact
spaces are not preserved by closed subsets. Indeed, the space [0, 1]Γ is
Valdivia for any set Γ and any compact space can be embedded into
such a space. The study of linearly ordered Valdivia compact lines was
continued in a joint paper with W. Kubi± [39].

Theorem 13. Let G be a compact group.

• G is an open continuous image of a Valdivia compact space.
• If G is abelian, then C(G) is 1-Plichko.

We note that a compact group is Valdivia if and only if it is home-
omorphic to a product of compact metric spaces. This was proved for
abelian groups by W. Kubi± [44] and in general by A. Chigogidze [10].
The second assertion is valid also for noncommutative groups. In case
G has weight ℵ1 it follows from [8], the general case is due to A. Plichko
(unpublished).

Theorem 14. The following Banach spaces are 1-Plichko:

• The space L1(µ) for an arbitrary σ-additive non-negative measure.
• The dual spaces C0(T )

∗ for any locally compact space T . In par-
ticular, the dual spaces C(K)∗ for a compact space K.

• Banach lattices with order-continuous norm.
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• Preduals to semi�nite von Neumann algebras.

We remark that the �rst assertion is essentially well-known and the
second one is a consequence of the �rst one. The third assertion is
an unpublished result of A. Plichko. The last one is new. It is not
clear whether the semi�niteness assumption may be dropped. This is
also related to a result of U. Haagerup [19, Theorem IX.1] showing
that preduals to von Neumann algebras have separable complementation
property.
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3. List of articles (sections)
The thesis is formed by the eight articles which are listed below. Seven

of them were published in international journals. One of them is an un-
published manuscript included here for the sake of completeness, as it
was later used and quoted as explained above. The symbol IF denotes
the value of the impact factor of the corresponding journal in the year
preceding the year of the publication (according to the common conven-
tion). The list of citations of each article is typed in a small font.

Sec. 2.1: O.Kalenda, Stegall Compact Spaces Which Are Not Fragmentable,
Topol. Appl. 96 no. 2, 1999, 121�132. IF=0.341
[Q1] BORWEIN, J. and MOORS, W. Nonsmooth analysis, optimization theory and Banach space

theory. In Pearl, E. (ed.). Open problems in topology II. Amsterdam: Elsevier, 2007. p.
549�560.

[Q2] KENDEROV, P.S., KORTEZOV, I.S. and MOORS, W.B. Continuity points of quasicontin-
uous mappings. Topol. Appl. 2001, vol. 109, no. 2, 157-165.

[Q3] KENDEROV, P.S, MOORS, W.B. and SCIFFER, S. A weak Asplund space whose dual is
not weak* fragmentable. Proc. Amer. Math. Soc. 2001, vol. 129, 3741�3747.

[Q4] MARCISZEWSKI, W. Modi�cations of the double arrow space and related Banach spaces
C(K). Studia Math. 2008, vol. 184, no. 3, 249�262.

[Q5] MOORS, W.B. Some more recent results concerning weak Asplund spaces. Abstr. Appl.

Anal. 2005, no. 3, 307�318.
[Q6] MOORS, W.B. and SOMASUNDARAM, S. Some recent results concerning weak Asplund

spaces. Acta Univ. Carolin. Math. Phys. 2002, vol. 43, no. 2, 67-86.
[Q7] MOORS, W.B. and SOMASUNDARAM, S. A weakly Stegall space that is not a Stegall

space. Proc. Amer. Math. Soc. 2003, vol. 131, no. 2, 647-654.
[Q8] MOORS, W.B. and SOMASUNDARAM, S. A Gâteaux di�erentiability space that is not

weak Asplund. Proc. Amer. Math. Soc. 2006, vol. 134, no. 9, 2745-2754.
[Q9] PREISS, D. Geometric measure theory in Banach spaces. In Johnson, W.B. and Linden-

strauss, J. (eds.). Handbook of the geometry of Banach spaces, vol. 2. Amsterdam: Elsevier,
2003. p. 1519-1545.

[Q10] TODORCEVIC, S. Universally meager sets and principles of generic continuity and selection
in Banach spaces. Advances in Mathematics 2007, vol. 208, no. 1, 274�298.

[Q11] ZIZLER, V. Nonseparable Banach spaces. In Johnson, W.B. and Lindenstrauss, J. (eds.).
Handbook of the geometry of Banach spaces, vol. 2. Amsterdam: Elsevier, 2003. p. 1743-
1816.

Sec. 2.2: O.Kalenda, A weak Asplund space whose dual is not Stegall,
Proc. Am. Math. Soc. 130 (2002), no. 7, 2139�2143. IF=0.369
[Q1] MARCISZEWSKI, W. Modi�cations of the double arrow space and related Banach spaces

C(K). Studia Math. 2008, vol. 184, no. 3, 249�262.
[Q2] MOORS, W.B. Some more recent results concerning weak Asplund spaces. Abstr. Appl.

Anal. 2005, no. 3, 307�318.
[Q3] MOORS, W.B. and SOMASUNDARAM, S. Some recent results concerning weak Asplund

spaces. Acta Univ. Carolin. Math. Phys. 2002, vol. 43, no. 2, 67-86.
[Q4] MOORS, W.B. and SOMASUNDARAM, S. A weakly Stegall space that is not a Stegall

space. Proc. Amer. Math. Soc. 2003, vol. 131, no. 2, 647-654.
[Q5] PREISS, D. Geometric measure theory in Banach spaces. In Johnson, W.B. and Linden-

strauss, J. (eds.). Handbook of the geometry of Banach spaces, vol. 2. Amsterdam: Elsevier,
2003. p. 1519-1545.
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Sec. 2.3: O.Kalenda and K.Kunen, On subclasses of weak Asplund spaces,
Proc. Amer. Math. Soc. 133 (2005), no. 2, 425�429. IF=0.508
[Q1] MOORS, W.B. and SOMASUNDARAM, S. Some recent results concerning weak Asplund

spaces. Acta Univ. Carolin. Math. Phys. 2002, vol. 43, no. 2, 67-86.1

Sec. 2.4: O.Kalenda,Weak Stegall Spaces. Unpublished manuscript. Spring
1997. 3 pages.
[Q1] MOORS, W.B. and SOMASUNDARAM, S. Some recent results concerning weak Asplund

spaces. Acta Univ. Carolin. Math. Phys. 2002, vol. 43, no. 2, 67-86.
[Q2] MOORS, W.B. and SOMASUNDARAM, S. A weakly Stegall space that is not a Stegall

space. Proc. Amer. Math. Soc. 2003, vol. 131, no. 2, 647-654.
[Q3] MOORS, W.B. and SOMASUNDARAM, S. A Gâteaux di�erentiability space that is not

weak Asplund. Proc. Amer. Math. Soc. 2006, vol. 134, no. 9, 2745-2754.

Sec. 3.1: O.Kalenda, Valdivia compact spaces in topology and Banach space
theory, Extracta Math. 15 (2000), no. 1, 1�85.
[Q1] ACOSTA, M.D. and MONTESINOS, V. On a problem of Namioka on norm-attaining func-

tionals. Mathematische Zeitschrift 2007, vol. 256, no. 2, 295�300.
[Q2] AIENA, P. and GONZALEZ, M. Intrinsic characterizations of perturbation classes on some

Banach spaces. Arch. Math. 2010, vol. 94, no. 4, 373�381.
[Q3] ARHANGEL'SKII, A.V. and HU�EK, M. Closed embeddings into complements ofΣ-products.

Comment. Math. Univ. Carolinae 2008, vol. 49, no. 4, 647�655.
[Q4] AVILÉS, A. and MORENO, Y. Automorphisms in spaces of continuous functions on Valdivia

compacta. Topol. Appl. 2008, vol. 155, no. 17�18, 2027�2030.
[Q5] BANAKH, T. and DIMITROVA, S. Openly factorisable spaces and compact extensions of

topological semigroups. Comment.Math.Univ.Carolin. 2010, vol. 51, no. 1, 113�131.
[Q6] BELL, M. and MARCZISZEWSKI, W. Function spaces on τ -Corson compacta and tightness

of polyadic spaces. Czechoslovak Math. J. 2004, vol. 54, no. 4, 899�914.
[Q7] BORODULIN-NADZIEJA, P. and PLEBANEK, G. On sequential properties of Banach

spaces, spaces of measures and densities. Czechoslovak Math. J. 2010, vol. 60, no. 2,
381�399.

[Q8] BURKE, M., KUBI�, W. and TODORCEVIC, S. Kadec norms on spaces of continuous
functions. Serdica Math. J. 2006, vol. 32, nos. 2-3, 227-258.

[Q9] CASCALES, B. and NAMIOKA, I. The Lindelöf property and sigma-fragmentability. Fund.
Math. 2003, vol. 180, no. 2, 161�183.

[Q10] CHIGOGIDZE, A. Retracts of sigma-products of Hilbert cubes. Topology Proc. 2007, vol.
31, no. 1, 67�75.

[Q11] CHIGOGIDZE, A. Valdivia compact groups are products. Topol. Appl. 2008, vol. 155, no.
6, 605�609.

[Q12] DOW, A., JUNNILA, H. and PELANT, J. Chain conditions and weak topologies. Topol.

Appl. 2009, vol. 156, no. 7, 1327�1344.
[Q13] FABIAN, M., MONTESINOS, V. and ZIZLER, V. Pointwise semicontinuous smooth norms.

Archiv der Mathematik, 2002, vol. 78, no. 6, 459-464.
[Q14] FABIAN, M., MONTESINOS, V. and ZIZLER, V. Smoothness in Banach spaces. Selected

problems. Rev. R. Acad. Cien. Serie A. Mat. 2006, vol. 100, 101�125.
[Q15] FABIAN, M. and ZIZLER, V. Norms that locally depend on countably many linear func-

tionals. Extracta Math. 2001, vol. 16, no.1, 1-20.
[Q16] HÁJEK, P. et al. Biorthogonal systems in Banach spaces. New York: Springer, CMS Books

in Mathematics 26, 2007. 339 p.
[Q17] KAKOL, J., LOPEZ-PELLICER, M., MARTIN-PEINADOR, E. and TARIELADZE, V.

Lindelöf spaces C(X) over topological groups. Forum Math. 2008, vol. 20, no. 2, 201�212.

1This paper quotes our paper as a preprint. The publication took quite a long time.
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[Q18] KOSZMIDER, P. The interplay of compact spaces and the Banach spaces of their continuous
functions. In Pearl, E. (ed.). Open problems in topology II. Amsterdam: Elsevier, 2007. p.
567�580.

[Q19] KUBI�, W. Compact spaces generated by retractions. Topol. Appl. 2006, vol. 153, no. 18,
3383�3396.

[Q20] KUBI�, W. Linearly ordered compacta and Banach spaces with a projectional resolution of
the identity. Topol. Appl. 2007, vol. 154, no. 3, 749�757.

[Q21] KUBI�, W. Valdivia compact Abelian groups. Rev. R. Acad. Cien. Serie A. Mat. 2008,
vol. 102, no. 2, 193�197.

[Q22] KUBI�, W. Banach spaces with projectional skeletons. J. Math. Anal. Appl. 2009, vol.
350, no. 2, 758-776.

[Q23] KUBI�, W. and LEIDERMAN, A. Semi-Eberlein compact spaces. Topology Proc. 2004, vol.
28, no. 2, 603�616.

[Q24] KUBI�, W. and MICHALEWSKI, H. Small Valdivia compact spaces. Topol. Appl. 2006,
vol. 14, no. 2, 2560�2573.

[Q25] KUBI�, W. and USPENSKIJ, V. A compact group which is not Valdivia compact. Proc.

Amer. Math. Soc. 2005, vol. 133, no. 8, 2483�2487.
[Q26] KURKA, O. On binormality in non-separable Banach spaces. J. Math. Anal. Appl. 2010,

vol. 371, no. 2, 425�435.
[Q27] TALPONEN, J. Lindelöf type of generalization of separability in Banach spaces. Topol.

Appl. 2009, vol. 156, no. 5, 915�925.
[Q28] ZIZLER, V. Nonseparable Banach spaces. In Johnson, W.B. and Lindenstrauss, J. (eds.).

Handbook of the geometry of Banach spaces, vol. 2. Amsterdam: Elsevier, 2003. p. 1743-
1816.

Sec. 3.2: O.Kalenda, M-bases in spaces of continuous functions on ordi-
nals, Colloquium Mathematicum 92 (2002), no. 2, 179-187.
[Q1] ALEXANDROV, G. and PLICHKO, A. Connection between strong and norming Markushe-

vich bases in non-separable Banach spaces. Mathematika 2006, vol. 53, no. 2, 321�328.
[Q2] HÁJEK, P. et al. Biorthogonal systems in Banach spaces. New York: Springer, CMS Books

in Mathematics 26, 2007. 339 p.
[Q3] KUBI�, W. Banach spaces with projectional skeletons. J. Math. Anal. Appl. 2009, vol.

350, no. 2, 758-776.

Sec. 3.3: O.Kalenda, On the class of continuous images of Valdivia com-
pacta, Extracta Math. 18 (2003), no. 1, 65-80.
[Q1] ARHANGEL'SKII, A.V. and HU�EK, M. Closed embeddings into complements ofΣ-products.

Comment. Math. Univ. Carolinae 2008, vol. 49, no. 4, 647�655.
[Q2] BURKE, M., KUBI�, W. and TODORCEVIC, S. Kadec norms on spaces of continuous

functions. Serdica Math. J. 2006, vol. 32, nos. 2-3, 227-258.
[Q3] KUBI�, W. Valdivia compact Abelian groups. Rev. R. Acad. Cien. Serie A. Mat. 2008,

vol. 102, no. 2, 193�197.
[Q4] KUBI�, W. and MICHALEWSKI, H. Small Valdivia compact spaces. Topol. Appl. 2006,

vol. 14, no. 2, 2560�2573.

Sec. 3.4: O.Kalenda, Natural examples of Valdivia compact spaces, J. Math.
Anal. Appl. 340 (2008), no. 1, 81�101. IF=0.872
[Q1] BANAKH, T. and DIMITROVA, S. Openly factorisable spaces and compact extensions of

topological semigroups. Comment.Math.Univ.Carolin. 2010, vol. 51, no. 1, 113�131.
[Q2] CHIGOGIDZE, A. Valdivia compact groups are products. Topol. Appl. 2008, vol. 155, no.

6, 605�609.
[Q3] KUBI�, W. Banach spaces with projectional skeletons. J. Math. Anal. Appl. 2009, vol.
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