Prove all the following exercises.

Ex.1 Prove Lemma 38: If c_0 -semigroups S(t) and $\tilde{S}(t)$ have the same generator, then $S(t) = \tilde{S}(t)$ for all $t \ge 0$. *Hint.* For a fixed $\tau > 0$ and $x \in \mathcal{D}(A)$, show that the function $y(t) = S(\tau - t)\tilde{S}(t)x$ is constant on $[0, \tau]$.

Ex.2 Fill the gap in proof of Lemma 39: show that $(A, \mathcal{D}(A))$ is the generator of S(t) if and only if $(\tilde{A}, \mathcal{D}(\tilde{A}))$ is the generator of $\tilde{S}(t)$, where $\tilde{S}(t) = e^{-\omega t}S(t)$ and $\tilde{A} = A - \omega I$ with $\mathcal{D}(\tilde{A}) = \mathcal{D}(A)$. Also show that in this situation $R(\lambda, \tilde{A}) = R(\lambda + \omega, A)$, whenever $\lambda \in \rho(\tilde{A}) \iff \lambda + \omega \in \rho(A)$. *Hint.* It is enough to prove just one implication.

inni. It is enough to prove just one implication

Ex.3 Verify the resolvent identity

$$R(\lambda, A)x - R(\mu, A)x = (\mu - \lambda)R(\lambda, A)R(\mu, A)x$$

for all $x \in X$, and λ , $\mu \in \rho(A)$. Hint. Deduce first formally using $R(\lambda, A) = \frac{1}{\lambda - A}$.