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1 Vector-valued functions

[2, Section VII.1,2,3], [3, Chapter II, IV]
In the whole section X denotes a Banach space with norm ‖u‖X , X∗ is dual of X, 〈x∗, x〉X∗,X is

the duality between x∗ ∈ X∗ and x ∈ X, T > 0, I = [0, T ]. Some theorems hold also for unbounded or
open interval I. Check it.

1.1 Vector-valued integrable functions – Bochner integral

Definition 1. Function u : I → X is called

1. simple, if there is N ∈ N, Aj ⊂ I, j ∈ {1, . . . , N} Lebesgue measurable and xj ∈ X, j ∈ {1, . . . , N}
such that u(t) =

∑N
j=1 χAj (t)xj.

2. simple integrable on Ĩ ⊂ I if for all j ∈ {1, . . . , N}: |Aj ∩ Ĩ| ≤ +∞ or xj = o.

3. measurable (strongly measurable), if there are un(t) simple such that un(t)→ u(t) (strongly in X)
for a.e. t ∈ I

Definition 2. Function u : I → X is called (Bochner) integrable, provided it is strongly measurable
and there exist un simple integrable such that

∫
I ‖u(t)− un(t)‖X dt→ 0 for n→∞.

The (Bochner) integral of u : I → X is defined as follows:

1.
∫
I u(t) dt =

∑N
j=1 xjλ(Aj), if u(t) is simple

2.
∫
I u(t) dt = limn→∞

∫
I un(t) dt, if u(t) is (Bochner) integrable

Remark 1. One has to check these definitions are correct (i.e. independent of xj, Aj in the first part,
and of un(t) in the second part).

One also proves that ‖
∫
I u(t) dt‖X ≤

∫
I ‖u(t)‖X dt for any u(t) integrable.

Theorem 1 (1-Bochner). Function u : I → X is Bochner integrable iff u is measurable and
∫
I ‖u(t)‖X dt <

∞.

Theorem 2 (2-Lebesgue). Let un : I → X be measurable, un(t) → u(t) for a.e. t ∈ I, and let there
exist g : I → R integrable such that ‖un(t)‖ ≤ g(t) for a.e. t and all n. Then u is Bochner integrable
and

∫
I un(t) dt →

∫
I u(t) dt; in fact one even has ‖

∫
I un(t) − u(t) dt‖X ≤

∫
I ‖un(t)− u(t)‖X dt → 0,

n→∞.

Definition 3. For p ∈ [1,∞), u : I → X we set

Lp(I;X) =
{
u(t) : I → X; u(t) is measurable and

∫
I
‖u(t)‖pX dt <∞

}
,

‖u‖Lp(I,X) =

(∫
I
‖u(t)‖pX d t

) 1
p
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For p =∞ we set

L∞(I,X) =
{
u(t) : I → X; u(t) is measurable and t 7→ ‖u(t)‖X is essentially bounded

}
,

‖u‖ = ess-supt∈I ‖u(t)‖X .

Essential boundedness means: there is c > 0 such that ‖u(t)‖X ≤ c pro a.e. t ∈ I, ess-supt∈I ‖u(t)‖X =
inf{M ∈ R;λ({t ∈ I; ‖u(t)‖X > M}) = 0}.

Theorem 3 (3). [2, Section VII.3, Theorem 14] Let p ∈ [1,+∞]. (Lp(I,X), ‖ · ‖Lp(I,X)) is a Banach
space (we identify the function equal a. e.).

Let X be a Hilbert space with scalar product 〈, 〉 then L2(I,X) with the scalar product 〈u, v〉L2(I,X) =∫
I〈u(t), v(t)〉 d t is a Hilbert space.

Let I bounded, 1 ≤ p ≤ q ≤ +∞, then Lq(I,X) ↪→ Lp(I,X).
If p ∈ [1,+∞), the simple integrable functions are dense subspace of Lp(I,X). [2, Section VII.3,

Theorem 15]

Remark 2. If X = R then the simple functions are dense in L∞(I,R). This is not in general true if
X is infinite dimensional.

Definition 4. Let u ∈ L1(R, X), ϕ ∈ D(R). We define for t ∈ R u ? ϕ(t) =
∫
R u(t− s)ϕ(s) d s.

Definition 5. Let J be an interval. Let u : J → X. We say that u is continuous (u ∈ C(J,X)) if for
any U ⊂ X open u−1(U) is open in J .

We say that u is differentiable in t ∈ J◦ if the limit limh→0(u(t + h) − u(t))/h exists in X. We
denote it u′(t). If u is differentiable at every t ∈ J◦ then u′ : J◦ → X. We say that u ∈ C1(J,X) if
u, u′ can be extended to functions in C(J,X).

We define first derivative of u as u(1) = u′ and for k ∈ N, k > 1 we define u(k) = (u(k−1))′. We say
that u ∈ Ck(J,X) if u, u′ ∈ Ck−1(J,X).

We say that u ∈ C∞(J,X) if for all k ∈ N u ∈ Ck(J,X).
By subscript c we always mean that the functions has compact support (in J).

Theorem 4 (4). Let p ∈ [1,∞).

1. The set {ϕ : I → X|∃N ∈ N, xj ∈ X,ϕj ∈ C∞c (I) for j ∈ {1, . . . , N} such that ϕ =
∑N

j=1 ϕjxj} is
dense in Lp(I,X).

2. If Y is dense subset of X, the set {ϕ : I → X|∃N ∈ N, yj ∈ Y, ϕj ∈ C∞c (I) for j ∈ {1, . . . , N}
such that ϕ =

∑N
j=1 ϕjxj} is dense in Lp(I,X). In particular C∞c (I, Y ) is dense in Lp(I,X).

3. If X is separable, then Lp(I,X) is separable.

4. Let ψ ∈ C∞(R), spt(ψ) ⊂ (−1, 1),
∫
R ψ = 1, ψ ≥ 0, ψn(t) = nψ(nt) for n ∈ N. Let u ∈ Lp(I,X)

be extended by 0 outside I. Then u ? ψn → u in Lp(I,X) as n→ +∞.

Remark 3. If X is separable, then also Lp(I;X) is separable for p < ∞. But none of these holds for
p =∞.

Corollary 5 (5). If p ∈ [1,+∞), ε > 0 and u ∈ Lp(U(I, ε), X). Then
∫
I ‖u(x + t) − u(x)‖pX → 0 as

t→ 0.

Lemma 6 (6). Let p ∈ [1,+∞], un → u in Lp(I,X), then there is a subsequence {unk
} of {un} such

that unk
(t)→ u(t) in X for a.e. t ∈ I.
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Theorem 7 (7-Hölder’s inequality.). Let u ∈ Lp(I;X), v ∈ Lp′(I;X∗), where p, p′ are Hölder conjugate.
Then t 7→ 〈v(t), u(t)〉 is measurable and∫

I
| 〈v(t), u(t)〉 | ≤

(∫
I
‖u(t)‖pXdt

) 1
p
(∫

I
‖v(t)‖p

′

X∗dt

) 1
p′

Remark 4. If v ∈ Lp′(I,X∗), p ∈ [1,+∞] then Φv(u) =
∫
I 〈v, u〉 satisfies Φv ∈ (Lp(I,X))∗.

Theorem 8 (8-Dual space to Lp(I;X).). Let X be reflexive, separable and p ∈ [1,∞). Denote X =
Lp(I;X). Then for any F ∈X ∗ there is v ∈ Lp′(I,X∗) such that

〈F, u〉X ∗,X =

∫
I
〈v(t), u(t)〉X∗,X dt ∀u ∈X .

Moreover, v is uniquely defined, and its norm in Lp
′
(I;X∗) equals to the norm of F in X ∗.

Remark 5. If X is reflexive, separable, and p ∈ (1,∞), then Lp(I;X) is also reflexive, separable. Any
sequence bounded in Lp(I;X) has a weakly convergent subsequence.

1.2 Weakly differentiable function

Definition 6. We say that u : I → X is weakly differentiable if u ∈ L1(I,X) and there is g ∈ L1(I,X)
such that

∀ϕ ∈ D(I) :

∫
I
uϕ′ = −

∫
I
gϕ.

We call g a weak derivative of u and we write d
d tu = g or ut = g.

Theorem 9 (9). Let u, g ∈ L1(I;X). Then the following are equivalent:

1. ut = g

2. d
dt 〈x

∗, u(t)〉 = 〈x∗, g(t)〉 in the sense of distributions on (0, T ), for every x∗ ∈ X∗ fixed.

3. There exist x0 ∈ X such that u(t) = x0 +
∫ t

0 g(s) ds for a.e. t ∈ I.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the first lecture 24.2.2017

Theorem 10 (10). Let u : I → X be weakly differentiable.

1. The weak derivative is linear.

2. If η : I → R is C1, then uη : I → X is weakly differentiable, and d
dt

(
u(t)η(t)

)
= d

dtu(t)η(t) +
u(t)η′(t) for a.e. t ∈ I.

Theorem 11 (11). If u : I → X be in L1
loc(I,X), ψ ∈ D(I), J = {t ∈ I, t − sptψ ⊂ I}. Then

u ? ψ ∈ C∞(J◦) and ∀t ∈ J◦ : (u ? ψ)t(t) = u ? ψ′. If moreover u is weakly differentiable then
(u ? ψ)t(t) = (ut ? ψ)(t) for t ∈ J◦.

Notation. Symbol X ↪→ Y means embedding : X ⊂ Y and there is c > 0 such that ‖u‖Y ≤ c‖u‖X
for all u ∈ X. Symbol X ↪→↪→ Y means compact embedding : X ↪→ Y and any sequence bounded in X
has a subsequence converging strongly in Y .
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Definition 7. The claim u ∈ Lp(I,X), ut ∈ Lq(I, Y ) means that there is a Banach space Z such that
X ↪→ Z, Y ↪→ Z, i.e. u ∈ Lp(I, Z) and it has a weak derivative ut ∈ Lq(I, Z). Moreover u ∈ Lp(I,X),
ut ∈ Lq(I, Y ). We will often have X ↪→ Y = Z.

Theorem 12 (12-Smooth approximation.). Let u ∈ Lp(I;X) with d
dtu(t) ∈ Lq(I;Y ). Then there exist

functions un ∈ C∞(I;X) with ut ∈ C∞(I, Y ) such that un → u in Lp(I;X) and u′n → d
dtu(t) in

Lq(I;Y ).

Theorem 13 (13-Extension operator.). Let p, q ∈ [1,+∞), R > 0, Ĩ = U(I,R). We define

Z = {u : I → X;u ∈ Lp(I,X), ut ∈ Lq(I, Y )}, ‖u‖Z = ‖u‖Lp(I,X) + ‖ut‖Lq(I,Z)

Z̃ = {u : Ĩ → X;u ∈ Lp(Ĩ , X), ut ∈ Lq(Ĩ , Y )}, ‖u‖Z = ‖u‖Lp(Ĩ,X) + ‖ut‖Lq(Ĩ,Z)

There is a linear, bounded mapping E : Z → Z̃ such that for all u ∈ Z ∩ C∞(I,X), ut ∈ C∞(I, Y )
Eu = u in I.

Remark 6. The spaces (Z, ‖ · ‖Z) and (Z, ‖ · ‖Z) are Banach spaces.

Remark 7. We can require that Eu satisfies Eu = 0 in U(I,R/2)c but for this we need X ↪→ Y , q ≤ p,
I bounded, i.e. Lp(I,X) ↪→ Lq(I, Y ).

Definition 8. We define the Sobolev-Bochner space for p ∈ [1,+∞]

W 1,p(I;X) =
{
u : I → X;u ∈ Lp(I;X); ut ∈ Lp(I;X)

}
, ‖u‖W 1,p(I;X) = ‖u‖Lp(I;X) + ‖ut‖Lp(I;X).

Definition 9. For α ∈ (0, 1] we denote C0,α(I,X) = {u ∈ C(I,X); [u]0,α < +∞} where

[u]0,α = sup
s,t∈I,s 6=t

‖u(t)− u(s)‖X
|t− s|α

.

We denote ‖ · ‖0,α = ‖ · ‖L∞(I,X) + [·]0,α.

Remark 8. The space (C0,α(I,X), ‖·‖0,α) is a Banach space. They are called Hölder spaces. [1, p.254].

Theorem 14 (13-embedding). Let p ∈ (1,+∞], α = 1− 1/p. Then W 1,p(I,X) ↪→ C0,α(I,X).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the second lecture 3.3.2017
In the definition (7) we claimed: u ∈ Lp(I,X), ut ∈ Lq(I, Y ) means that there is a Banach space

Z such that X ↪→ Z, Y ↪→ Z, i.e. u ∈ Lp(I, Z) and it has a weak derivative ut ∈ Lq(I, Z). Moreover
u ∈ Lp(I,X), ut ∈ Lq(I, Y ). We will often have X ↪→ Y = Z.

Can we say something more about relation of X and Y ?
From (9) we see that for a.e. t ∈ I we get u(t) = u0 +

∫ t
0 ut(s) d s. We can find u1 ∈ X and t0 ∈ I

so that u(t) = u1 +
∫ t
t0
ut(s) d s so u− u1 ∈ C(I, Y ). Hypothesis: u− u1 ∈ Lp(I,X ∩ Y ) where X ∩ Y

is equipped with the norm ‖ · ‖X + ‖ · ‖Y .
Conversely, we approximate u by uk ∈ C∞(I,X) so that uk → u in Lp(I,X), uk)t → ut in Lq(I, Y )

and (uk)t ∈ C∞(I, Y ). Then (uk)t ∈ C∞(I,X ∩ Y ) and we get that ut ∈ cl(C∞(I,X ∩ Y )) in Lq(I, Y ).
Since X ∩ Y is dense in cl(X ∩ Y ) in Y we get that ut = (u− u1)t ∈ Lq(I, cl(X ∩ Y )inY ).

Consequently we define space X̃ = X ∩Y and Ỹ = cl(X ∩Y ) in Y and we see that for any function

u there is u1 ∈ X such that u− u1 ∈ Lp(I, X̃), (u− u1)t ∈ L1(I, Ỹ ) and X̃
Ỹ

= Ỹ .
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Definition 10. Let X be separable, reflexive, densely embedded into a Hilbert space H. By Gelfand
triple we mean X ↪→ H ∼= H∗ ↪→ X∗.

Remark 9. Note that since X ↪→ H then the restriction of any functional h ∈ H∗ belongs to X∗. We
denote this restriction by R : H∗ → X∗.

Moreover, since X is dense in H, if x∗ ∈ R(H∗), i.e. ∃C > 0, ∀x ∈ X : |x∗(x)| ≤ C‖x‖H there is a
unique h∗ ∈ H∗ such that R(h∗) = x∗.

Thanks to identification of H with H∗ (via Riesz theorem), we have also “embedding” ι : X → X∗

defined by
〈ιu, v〉X∗,X = (v, u)H u, v ∈ X

where (·, ·)H is the scalar product in H. In this sense, duality 〈·, ·〉X,X∗ can be seen as a generalization
of (·, ·)H .

Theorem 15 (15-Continuous representative.). Let (X,H,X∗) be Gelfand triple, p ∈ (1,+∞), X = {u :
I → X;u ∈ Lp(I,X), ut ∈ Lq(I, Y )} with a norm ‖ · ‖X = ‖ · ‖Lp(I,X) + ‖(·)t‖Lq(I,Y ). Let u ∈ Lp(I;X),

ut ∈ Lp
′
(I;X∗), where p, p′ are Hölder conjugate. Then:

1. X is a Banach space, X ↪→ C(I;H) (in the sense of representative); in particular, there is C > 0
such that for any u ∈ X there is ũ(t) such that

‖ũ‖C(I;H) ≤ C
(
‖u(t)‖Lp(I;X) + ‖ d

dt
u(t)‖

Lp′ (I;X∗)

)
and u(t) = ũ(t) a.e. in I.

2. function t 7→ ‖u(t)‖2H is weakly differentiable with d
dt‖u(t)‖2H = 2

〈
d
dtu(t), u(t)

〉
X∗,X

a.e. In par-
ticular

‖ũ(t2)‖2H = ‖ũ(t1)‖2H + 2

∫ t2

t1

〈
d

dt
u(t), u(t)

〉
X∗,X

dt

for any t1, t2 ∈ I, where ũ(t) is the continuous representative.

If u, v ∈ X we have for all t, s ∈ I, t > s

(u(t), v(t))− (u(s), v(s)) =

∫ t

s
2 〈ut(τ), v(τ)〉+ 〈vt(τ), u(τ)〉 d τ.

Remark 10. Note that, by Theorem 8, u and ut belong to mutually dual spaces.

Lemma 16 (16-Ehrling.). Let Y ↪→↪→ X ↪→ Z. Then for any a > 0 there is C > 0 such that

∀u ∈ Y : ‖u‖X ≤ a‖u‖Y + C‖u‖Z

Theorem 17 (Aubin-Lions lemma.). Let Y ↪→↪→ X ↪→ Z, where Y , Z are reflexive, separable. Let
p, q ∈ (1,∞), I bounded. Define X = {u : I → X;u ∈ Lp(I;Y ), ut ∈ Lq(I;Z)} with a norm ‖u‖X =
‖u‖Lp(I,Y ) + ‖ut‖Lq(I,Z). Then X ↪→↪→ Lp(I,X).

Lemma 18 (18). Let p ∈ [1,+∞). Then

• Lp(I, Lp(Ω)) = Lp(I × Ω). More precisely, for u ∈ Lp(I, Lp(Ω)) there is a representative ũ ∈
Lp(I × Ω) and vice versa.
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• W 1,p(I, Lp(Ω)) = {u : I → Lp(Ω);u, ut ∈ Lp(I, Lp(Ω))} = {u : I× → Ω→ R;u, ut ∈ Lp(I × Ω)}.

• Lp(I,W 1,p(Ω) = {u : I → W 1,p(Ω);u,∇u ∈ Lp(I, Lp(Ω))} = {u : I× → Ω → R;u,∇u ∈
Lp(I × Ω)}.

Remark 11. By [John C. Oxtoby: Measure and Category, Theorem 14.4] there is a set M ⊂ R2 such
that for every x ∈ R every section Mx = {y ∈ R; (x, y) ∈M} is countable, i.e. null set, but the set M is
of a nonzero measure. By Fubini theorem it follows that the set M cannot be measurable. Consequently,
the identification in the last lemma cannot be done pointwisely for arbitrary representative of a class of
the functions in Lp(I, Lp(Ω)). A suitable representative must be chosen.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the third lecture 3.3.2017

2 Linear parabolic PDE’s of the second order

by [1, Chapter 7]

Assumption 1. In this chapter we assume: Ω ⊂ Rd open, bounded, with C1 boundary, I = (0, T ),
Q = I × Ω,

• f ∈ L2(I,W 1,2
0 (Ω)∗),

• aij , bi, c ∈ L∞(Q), aij = aji for i, j ∈ {1, . . . , d},

• there is θ > 0 such that for all ξ ∈ Rd and a.e. (t, x) ∈ Q: (Aξ, ξ) ≥ θ|ξ|2.

• Lu = −
∑d

i,j=1 ∂j(a
ij∂iu) +

∑d
i=1 b

i∂iu+ cu

• g ∈ L2(Ω)

We will study the following initial-boundary value problem

ut + Lu = f, in Q,

u = 0, in I × ∂Ω,

u = g, in {0} × Ω,

(1)

Definition 11. We say that u ∈ L2(I,W 1,2
0 (Ω)) ∩ C(I, L2(Ω)) with ut ∈ L2(I, (W 1,2

0 (Ω))∗) is a weak
solution to the problem (1) (with b.c. and i.c.) if u(0) = g and

∀ϕ ∈ D(I,W 1,2
0 (Ω)) :

∫
Q

(−uϕt +
d∑

i,j=1

aij∂iu∂jϕ+
d∑
i=1

bi∂iuϕ+ cuϕ− fϕ) = 0 (2)

Remark 12. We define a mapping L : W 1,2
0 (Ω)→ (W 1,2

0 (Ω))∗ by

∀v ∈W 1,2
0 (Ω) : (Lu)(v) =

∫
Ω
A∇u · ∇v + (b · ∇u+ cu)v. (3)

If u ∈ L2(I,W 1,2
0 (Ω)) ∩ C(I, L2(Ω)) with ut ∈ L2(I, (W 1,2

0 (Ω))∗) then the equation (2) is equivalent to

the equation in W 1,2
0 (Ω)∗

ut + Lu = f, a.e. in I. (4)
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Remark 13. The equation

∀v ∈ D([0, T ),W 1,2
0 (Ω)) :

∫
Q
−uvt +A∇u · ∇v + (b · ∇u+ cu)v =

∫
Q
fv +

∫
Ω
gv(0) (5)

is equivalent to (2) with the initial condition u(0) = g.

Theorem 19. [20] Under Assumption 1 there is a weak solution to (1) (with b.c. and i.c.). This
solution is unique and depends continuously on f and g. It satisfies the estimate

‖u‖L∞(I,L2(Ω)) + ‖u‖
L2(I,W 1,2

0 (Ω))
+ ‖ut‖L2(I,W 1,2

0 (Ω)∗) ≤ C(‖f‖
L2(I,W 1,2

0 (Ω)∗) + ‖g‖L2(Ω),

C is independent of u, f and g.

Definition 12. Let {wk} we a ON basis of L2(Ω) and OG basis of W 1,2
0 (Ω), e.g. normalized eigen-

functions of Dirichlet Laplacian, m ∈ N. We introduce the approximation of the problem (1) as follows.
We look for dkm : [0, T )→ R such that it satisfies for k ∈ {1, . . . ,m}

dkm(0) = (g, wk) (6)

(dkm)′(t) = 〈f, wk〉 −
∫

Ω
A∇um∇wk + (b · ∇um + cum)wk. (7)

The approximation of u is um =
∑m

k=1 d
k
mwk.

Lemma 20. There is a solution to the problem (6) and (7) on [0, T ) such that dkm ∈W 1,2(I).

Lemma 21 (Gronwall lemma.). Let y(t), g(t) be nonnegative (scalar) functions, y(t) continuous and
g(t) integrable, such that

y(t) ≤ K +

∫ t

0
g(s)y(s) ds ∀t ∈ I

Then

y(t) ≤ K exp

(∫ t

0
g(s) ds

)
∀t ∈ I

Lemma 22 (22-Apriori estimates). There is C > 0 independent of um, m, f and g such that

‖um‖L∞(I,L2(Ω)) + ‖um‖L2(I,W 1,2
0 (Ω))

+ ‖(um)t‖L2(I,W 1,2
0 (Ω)∗) ≤ C(‖f‖

L2(I,W 1,2
0 (Ω)∗) + ‖g‖L2(Ω),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the fourth lecture

Lemma 23 (23). We can extract a subsequence {vk} = {umk
} of {um} such that

vk ⇀ u in L2(I,W 1,2
0 (Ω))

(vk)t ⇀ ut in L2(I,W 1,2
0 (Ω))∗

Remark 14. We can also get vk → u in L2(I, Lq(Ω)) for any q ∈ [2, 2∗) by Aubin-Lions theorem.

Remark 15. To get regularity we want to use as a test function functions u, ut, utt, ∆u.

Remark 16. There are two approaches to regularity: 1) get uniqueness and then construct a regular
solution. It follows that any (the unique) solution is regular. 2) take any weak solution and show that
it is regular. Sometimes one can show that the regularity implies uniqueness.
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Theorem 24 (24). Let moreover to the assumptions of Theorem 19 it holds g ∈ W 1,2
0 (Ω), f ∈

L2(I, L2(Ω)), ∂Ω is C∞, A, b, c ∈ C∞(Ω) depend only on x ∈ Ω. Then the unique weak solution u
of (1) satisfies

u ∈ L2(I,W 2,2(Ω)) ∩ L∞(I,W 1,2
0 (Ω)), ut ∈ L2(I, L2(Ω))

together with the estimate

‖u‖L2(I,W 2,2(Ω)) + ‖u‖
L∞(I,W 1,2

0 (Ω))
+ ‖ut‖L2(I,L2(Ω)) ≤ C(‖f‖L2(I,L2(Ω)) + ‖g‖

W 1,2
0

).

The constant C > 0 is independent of u, f and g.

Remark 17. Strategy of the proof: use the same approximation as in the proof of Theorem 19. Moreover
test the approximated problem with ut and then move ut to the right hand side and use stationary theory
on time levels.

Lemma 25 (25-Apriori estimates). There is C > 0 independent of um, m, f and g such that

‖um‖L∞(I,W 1,2(Ω)) + ‖(um)t‖L2(I,L2(Ω)∗) ≤ C(‖f‖L2(I,L2(Ω)∗) + ‖g‖
W 1,2

0 (Ω)
),

Two interesting Lemmas that were not presented in the lecture follow.

Lemma. [3, Theorem II.2.9] Let f : I → X be Bochner integrable. The for a.e. t ∈ I

lim
h→0
−
∫ t+h

t
‖f(s)− f(t)‖X d s = 0 and −

∫ t+h

t
f(s) d s = f(t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the fifth lecture

Lemma. [2, Corollary 28] (Banach-Alaoglu for normed spaces). Let X be a normed linear space. Then
(BX∗ , w

∗) is compact. If X is separable, (BX∗ , w
∗) is moreover metrizable.

Remark. The previous lemma is used e.g. to extract weakly∗ convergent subsequences from the bounded
sequences in L∞(I, L2(Ω)) and L∞(I,W 1,2

0 (Ω)) since L1(I, L2(Ω))∗ = L∞(I, L2(Ω)),

L1(I,W 1,2
0 (Ω)∗)∗ = L∞(I,W 1,2

0 (Ω)), L1(I, L2(Ω)) and L1(I,W 1,2
0 (Ω)) are separable.

Theorem 26. If moreover to assumptions of Theorem 24 the assumptions g ∈W 2,2(Ω), ft ∈ L2(, L2(Ω))
holds then the unique weak solution of the problem (1) u satisfies u ∈ L∞(I,W 2,2(Ω)), ut ∈ L∞(I, L2(Ω))∩
L2(I,W 1,2

0 (Ω)), utt ∈ L2(I,W 1,2
0 (Ω))∗ and the estimate

‖u‖L∞(I,W 2,2(Ω))+‖ut‖L∞(I,L2(Ω))+‖ut‖L2(I,W 1,2
0 (Ω))

+‖utt‖L2(I,W 1,2
0 (Ω))∗ ≤ C(‖g‖W 2,2(Ω)+‖f‖W 1,2(I,L2(Ω)))

holds.

Lemma 27. [1, Section 7.5, Problem 6] If fn is bounded in L∞(I, L2(Ω)) and fn ⇀ f in L2(I, L2(Ω))
then

‖f‖L∞(I,L2(Ω)) ≤ sup
m∈N
‖fm‖L∞(I,L2(Ω)).

Lemma 28. [1, Section 7.5, Problem 9] There is α, β > 0 such that for all u ∈W 2,2(Ω) ∩W 1,2
0 (Ω)

α‖u‖2W 2,2(Ω) ≤ 〈Lu,−∆u〉+ β‖u‖2L2(Ω).
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Remark. In Theorems 24 and 26 we needed that Tr(g) = 0. It is so called compatibility condition of
zeroth order. It causes that Tr(u) can be continuous. The complementarity condition of the first order
reads f(0)− Lg ∈W 1,2

0 (Ω) causing that Tr(ut) can be continuous up to t = 0.

Remark. If data are smooth and satisfy complementarity condition one can prove higher regularity
than in Theorems 24 and 26, see [1].

Remark. For parabolic problems regularity is a local notion. If Q2R(t0, x0) = (t0 − (2R)2, t0) ×
U(x0, 2R) ⊂ Q and data are regular in Q2R(t0, x0) then the weak solution is regular in QR(t0, x0).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the sixth lecture

3 Linear hyperbolic PDE’s of the second order

In this section we follow [1, Chapter 7.2.1-7.2.4].

Assumption 2. In this chapter we assume: Ω ⊂ Rd open, bounded, with C1 boundary, I = (0, T ),
Q = I × Ω,

• f ∈ L2(I, L2(Ω)),

• aij , bi, c ∈ C1(Q), aij = aji for i, j ∈ {1, . . . , d},

• there is θ > 0 such that for all ξ ∈ Rd and a.e. (t, x) ∈ Q: (Aξ, ξ) ≥ θ|ξ|2.

• Lu = −
∑d

i,j=1 ∂j(a
ij∂iu) +

∑d
i=1 b

i∂iu+ cu

• g ∈W 1,2
0 (Ω), h ∈ L2(Ω)

We will study the following initial-boundary value problem

utt + Lu = f, in Q,

u = 0, in I × ∂Ω,

ut(0) = h, u = g, in {0} × Ω,

(8)

Definition 13. We say that u ∈ L∞(I,W 1,2
0 (Ω)) with ut ∈ L∞(I, L2(Ω)) and utt ∈ L2(I, (W 1,2

0 (Ω))∗)
is a weak solution to the problem (8) if u(0) = g, ut(0) = h and

∀ϕ ∈ D(I,W 1,2
0 (Ω)) :

∫
Q

(uϕtt +

d∑
i,j=1

aij∂iu∂jϕ+

d∑
i=1

bi∂iuϕ+ cuϕ− fϕ) = 0 (9)

Remark 18. We recall the mapping L : W 1,2
0 (Ω)→ (W 1,2

0 (Ω))∗ defined by

∀v ∈W 1,2
0 (Ω) : (Lu)(v) =

∫
Ω
A∇u · ∇v + (b · ∇u+ cu)v (10)

(it depends on t ∈ I through mappings A, b and c). If u ∈ L∞(I,W 1,2
0 (Ω)) with ut ∈ L∞(I, L2(Ω)) and

utt ∈ L2(I, (W 1,2(Ω)∗) then the equation (9) is equivalent to the equation in W 1,2
0 (Ω)∗

utt + Lu = f, a.e. in I. (11)

9



Remark 19. If u ∈ L∞(I,W 1,2
0 (Ω)) with ut ∈ L∞(I, L2(Ω)) and utt ∈ L2(I, (W 1,2(Ω)∗), the equation

∀v ∈ D([0, T ),W 1,2
0 (Ω)) :

∫
Q
uvtt +A∇u · ∇v + (b · ∇u+ cu)v =

∫
Q
fv +

∫
Ω
hv(0)−

∫
Ω
gvt(0) (12)

is equivalent to (9) with the initial condition u(0) = g and ut(0) = h.

Theorem 29. [29] Under Assumption 2 there is a weak solution to (8). It satisfies the estimate

‖u‖
L∞(I,W 1,2

0 (Ω))
+ ‖ut‖L∞(I,L2(Ω)) + ‖utt‖L2(I,W 1,2

0 (Ω)∗) ≤ C(‖f‖L2(I,L2(Ω)) + ‖g‖W 1,2(Ω) + ‖h‖L2(Ω)),

C is independent of u, f , g and h.

Theorem. [Correction of Theorem 19] Any weak solution u of (1) satisfies

‖u‖L∞(I,L2(Ω)) + ‖u‖
L2(I,W 1,2

0 (Ω))
+ ‖ut‖L2(I,W 1,2

0 (Ω)∗) ≤ C(‖f‖
L2(I,W 1,2

0 (Ω)∗) + ‖g‖L2(Ω),

C is independent of u, f and g.
Consequently, the weak solution of (1) is unique.

Theorem 30. [30] The weak solution of (8) is unique.

Remark 20. The equation (9) cannot be tested with ut since it does not belong to the correct regularity
space.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the eighth lecture

Theorem 31 (31). Let moreover to the assumptions of Theorem 29 A, b, c be smooth and independent
of t, g ∈ W 2,2(Ω) ∩ W 1,2

0 (Ω), h ∈ W 1,2
0 (Ω), f ∈ W 1,2(I, L2(Ω)). Let u be a unique weak solution

of the problem (8). Then u ∈ L∞(I,W 2,2(Ω)), ut ∈ L∞(I,W 1,2
0 (Ω)), utt ∈ L∞(I, L2(Ω)) and uttt ∈

L2(I, (W 1,2(Ω)∗) and it satisfies the estimate

‖u‖L∞(I,W 2,2(Ω)) + ‖ut‖L∞(I,W 1,2(Ω))+‖utt‖L∞(I,L2(Ω)) + ‖uttt‖L2(I,W 1,2
0 (Ω)∗)

≤ C(‖f‖W 1,2(I,L2(Ω)) + ‖g‖W 2,2(Ω) + ‖h‖W 1,2(Ω)).
(13)

Theorem 32 (32). [4, Theorem 7.2.6] Assume m ∈ N, g ∈ Wm+1,2(Ω), h ∈ Wm,2(Ω), (∂/∂t)kf ∈
L2(I,Wm−k,2(Ω)) for k ∈ {1, . . . ,m}. Let compatibility conditions hold

g0 = g ∈W 1,2
0 (Ω), h0 = h ∈W 1,2

0 (Ω)

∀l ∈ N, 2l ≤ m : g2l = (
∂2l−2

∂t2l−2
f)(0)− Lg2l−2 ∈W 1,2

0 (Ω)

∀l ∈ N, 2l + 1 ≤ m : g2l+1 = (
∂2l−1

∂t2l−1
f)(0)− Lh2l−1 ∈W 1,2

0 (Ω).

(14)

Then (∂/∂t)ku ∈ L∞(I,Wm+1−k,2(Ω)) for k ∈ {1, . . . ,m+ 1}.

Corollary. Assume g, h ∈ C∞(Ω), f ∈ C∞(Q) and the compatibility conditions (14) hold for every
l ∈ N. Then the unique weak solution of (8) satisfies u ∈ C∞(Q).

Further we assume b = 0, c = 0 in Q and A is smooth independent of t. We fix x0 ∈ Ω and assume
existence of a function q : Ω→ [0,+∞) such that

10



• q ∈ C∞(Ω \ {x0}),

• q(x0) = 0,

• A∇q · ∇q = 1 in Ω \ {x0}.
Example 1. If A = Id we define q = |x− x0|.

Further we fix t0 ∈ I and define

C = {(x, t) ∈ Q, q(x) < t0 − t},
Ct = {x ∈ Ω, q(x) < t0 − t} for t ∈ [0, t0].

Remark 21. For t ∈ [0, t0) the set Ct has smooth boundary.

Theorem 33 (33-Coarea formula). [4, par.C.3] Let u : Rd → R be Lipschitz, for a.e. r ∈ R the set
{x ∈ Rd;u(x) = r} be a smooth, d−1 dimensional hypersurface in Rd, f : Rd → R, f ∈ C(Rd)∩L1(Rd).
Then ∫

Rd

f =

∫ ∞
−∞

∫
{x∈Rd;u(x)=r}

f

|∇u|
dSdr,

∂

∂r

∫
x∈Rd;u(x)<r}

f =

∫
{x∈Rd;u(x)=r}

f

|∇u|
dS.

Corollary. A particular case of Theorem 33 is a sferical Fubini theorem. It corresponds to the case
u(x) = |x|.
Theorem 34 (34). Let u be a smooth weak solution of the problem (8), (t0, x0) ∈ Q, C ⊂ Q. If
u = ut = 0 on C0, f = 0 on C then u = 0 on C.

Remark 22. To prove Theorem 34 we do not need to know boundary values.

Corollary. If u1 and u2 are two smooth solutions of (8) that coincide in C0 then u1 = u2 in C.

Homework 10. Show that Theorem 34 holds for weak solutions. Find minimal assumptions on regu-
larity of A. Hypothesis: It is enough to assume A ∈ C(Rd).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the ninth lecture (28.4.2017)

4 Semigroup theory

4.1 Lecture by doc. Pražák

Text copied from http://www.karlin.mff.cuni.cz/~prazak/vyuka/Pdr2/

Up to now we considered evolution PDEs: d
dtu − ∆u + · · · . The rest of lectures is more close to

functional analysis.

Motivation:

Let us have the equation x′ = ax, where x (0) = 1 . . . the solution is eat, an exponential function.
Generalization: a ← A ∈ Rn×n: x′ = Ax, x (0) = x0 the solution is etAx0, a matrix exponential
function. Goal: generalization to general Banach space, the study of equations of the type

(4.1)
d

dt
x = Ax, x (0) = x0, x ∈ X,

where X is a Banach space, A : X → X is a linear operator, e. g., A = ∆. How to define a general
exponential function etA? The power series is suitable only for bounded operators. Problem: ∆ is
unbounded operator,

∑∞
n=0

tnAn

n! in general does not make sense. Remark: −∆ : W 1,2
0 → W−1,2 is

bounded, but in different spaces.
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Idea:

A is “well unbounded” (i. e., bounded from above), then etA will be possible to define for t > 0.

Notation: [Unbounded operator]

• X . . . Banach space with respect to ‖·‖.

• L (X) = {L : X → X is linear continuous operator} is a Banach space, ‖L‖L(X) = sup x∈X
‖x‖=1

‖Lx‖,

• Unbounded operator is the couple (A,D (A)), where D (A) ⊂⊂ X is a subspace (domain of
definition of A), A : D (A)→ X is linear.

Def.: [Semigroup, c0-semigroup]

The function S(t) : [0;∞)→ L (X) is called a semigroup, iff

1. S(0) is identity

2. S(t)S(s) = S(t+ s), ∀t, s ≥ 0

3. If moreover S(t)x→ x, t→ 0+ for ∀x ∈ X fixed, we call S (t) a c0-semigroup.

Remark:

• c0-semigroup . . . abstract exponential. Possible definitions of standard exponential: either a

solution of x′ = ax, x (0) = 1 or a power series eat =
∑∞

n=0
(at)n

n! = limn→∞
(
1 + at

n

)n
, or a

solution of functional equation: f (x+ y) = f (x) f (y) + continuity and f (·) is nonzero. Then
,,S(t) = eta“, c0-semigroup is a suitable candidate for exponential.

• stronger assumption (3′) ‖S(t)− I‖L(X) → 0, t → 0+ (so called uniform continuity) implies

S(t) = etA for some linear continuous operator A, see ex. 5.1.

Lemma 35. [Exponential estimates, continuity in time of c0-semigroup]
Let S(t) be a c0-semigroup in X. Then

1. ∃M ≥ 1, ω ≥ 0 s. t. ‖S(t)‖L(X) ≤M · eωt for ∀t ≥ 0.

2. t 7→ S(t)x is continuous [0,∞)→ X for ∀x ∈ X fixed.

Proof:

1. we claim: ∃M ≥ 1, ∃δ > 0 s. t. ‖S(t)‖L(X) ≤ M , ∀t ∈ [0, δ]: by contradiction: if not, then

∃tn → 0+ s. t. ‖S(tn)‖L(X) → +∞, but S(tn)x → x for ∀x ∈ X fixed due to the part (3)
of semigroup definition and so ‖S(tn)x‖ is bounded. That is a contradiction to the principle of
uniform boundednes, see functional analysis (a set of operators is bounded in operator norm iff
‖S(tn)x‖ is bounded for ∀x).
Set ω = 1

δ lnM , i. e.. M = eωδ, then for t ≥ 0 arbitrary it holds that t = nδ + ε, ε ∈
[0, δ), n ∈ N. Then ‖S(t)‖L(X) =

∥∥S( δ + δ + · · ·+ δ︸ ︷︷ ︸
n×

+ε
)∥∥
L(X)

= ‖S(δ) · · ·S(δ)S(ε)‖L(X) ≤

‖S(δ)‖nL(X) ‖S(ε)‖L(X) ≤M · M
n︸︷︷︸

= eωnδ

≤M · eωt.
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2. continuity: in 0+ we have due to part (3) of definiton of semigroup. Continuity (from the right
and from the left) in t > 0 remains:
Continuity from the right: S(t+ h)x = S(t)S(h)x︸ ︷︷ ︸

→x

→ S(t)x, h → 0+ due to the property (3),

S(t) ∈ L (X).
Continuity from the left: (WLOG h < t) S(t− h)x− S(t)x︸ ︷︷ ︸

S(t−h)S(h)x

= S(t− h) [x− S(h)x]. Estimate:

‖S(t− h)x− S(t)x‖ ≤ ‖S(t− h)‖L(X)︸ ︷︷ ︸
≤Meωt, independent of h due to the first part

→ 0 due to (3)︷ ︸︸ ︷
‖x− S(h)x‖, h→ 0+.

Def.: [Generator of a semigroup]

An unbounded operator (A,D (A)) is called a generator of semigroup S(t) iff

Ax = lim
h→0+

1

h
(S(h)x− x) , D (A) =

{
x ∈ X, lim

h→0+

1

h
(S(h)x− x) exists v X

}
.

Remark:

it is easy to show that the operator defined by this formula is linear and D (A) ⊂ X is a linear subspace.

Theorem 36. [Basic properties of a generator]
Let (A,D (A)) be a generator of S(t), a c0-semigroup in X. Then:

1. x ∈ D (A) =⇒ S(t)x ∈ D (A) for ∀t ≥ 0,

2. x ∈ D (A) =⇒ AS(t)x = S(t)Ax = d
dtS(t)x for ∀t ≥ 0 (in t = 0 only from the right),

3. x ∈ X, t ≥ 0 =⇒
∫ t

0 S(s)xds ∈ D (A), A
(∫ t

0 S(s)xds
)

= S(t)x− x.

Proof:

1. x ∈ D (A), t ≥ 0 given,
1

h

( =S(h+ t) = S(t)S(h)due to (2)︷ ︸︸ ︷
S(h)S(t)x− S(t)x

)
︸ ︷︷ ︸

(∗)

?→ y =⇒ S(t)x ∈ D (A) , AS(t)x = y

(∗) =
1

h
(S(t)S(h)x− S(t)x) = S(t)

(
1

h
(S(h)x− x)

)
︸ ︷︷ ︸

→Ax

→ S(t)Ax

2. x ∈ D (A) . . . AS(t)x = S(t)Ax see part 1, d
dtS(t)x = S(t)Ax from the right for ∀t ≥ 0, see first

part
(

1
h (S(t+ h)x− S(t)x)→ S(t)Ax

)
, h→ 0+.

From the left? S(t−h)x−S(t)x
−h → S(t)Ax as h→ 0+ for t > 0 fixed? S(t−h)x−S(t)x

−h = S(t− h)
[
x−S(h)x
−h

]
−

S(t)Ax = S(t− h)
[
x−S(h)x
−h

]
− S(t− h)S(h)Ax

?
→ 0: S(t− h)︸ ︷︷ ︸

L. 4.1, 1: bounded in ‖·‖L(X)

{[S(h)x− x
h

]
︸ ︷︷ ︸

→Ax

−S(h)Ax︸ ︷︷ ︸
→Ax due to (3)

}
→ 0

as in L. 4.1, 2.
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3. Denote y =
∫ t

0 S(s)xds, x ∈ X for t > 0 fixed.

1

h
(S(h) y − y) =

1

h

(
S(h)

∫ t

0
S(s)xds︸ ︷︷ ︸∫ t

0 S(s+ h)xds, subst. – a shift by h

−
∫ t

0
S(s)xds

)

=
1

h

(∫ t+h

h
S(s)xds−

∫ t

0
S(s)xds

)

=
1

h

∫ t+h

t
S(s)xds− 1

h

∫ h

0
S(s)xds

h→0+→︸ ︷︷ ︸
derivative of continuous integrand (L. 4.1) w. r. t. upper bound

S(t)x−
= x︷ ︸︸ ︷

S(0)x

Therefore y ∈ D (A), Ay = S(t)x− x, which was to be proven.

Remark:

The theorem states:

1. D (A) is invariant w. r. t. S(t).

2. S(t), A commute in v D (A), moreover t 7→ S(t)x is a classical solution of d
dtx = Ax, x (0) = x0,

if x ∈ D (A).

Def.: [Closed operator]

We say that an unbounded operator (A,D (A)) is closed, iff: un ∈ D (A), un → u, Aun → v =⇒ u ∈
D (A) and Au = v.

Remark:

it is easy to show that (A,D (A)) is closed ⇐⇒ D (A) is complete (i. e., Banach) with respect to the
norm ‖u‖+ ‖Au‖, the so-called graph norm.

Remark:

unbounded, but closed operators: natural property of derivative in different function spaces, examples:

1. X = L1 (I,X), A : u (t) 7→ d
dtu (t), D (A) = W 1,1 (I,X) . . . see chap. 1: statement (see

ex. 2.1): un (t) ∈W 1,1 (I,X) , un (t)→ u (t) v L1 (I,X), d
dtun (t)→ g (t) v L1 (I,X) =⇒ u (t) ∈

W 1,1 (I,X), d
dtu (t) = g (t). This is equivalent to closedness of (A,D (A)).

2. X = C1 ([0, 1]) . . . theorem from analysis: fn (t) ∈ C1 ([0, 1]), fn (t) ⇒ f (t) v [0, 1], d
dtfn (t) ⇒

d
dtg (t) v [0, 1] =⇒ f (t) ∈ C1 ([0, 1]), d

dtf (t) = g (t). That is equivalent to closedness of “ d
dt” in

C ([0, 1]) = X with the definition domain C1 ([0, 1]).

Theorem 37. [Density and closedness of generator] Let (A,D (A)) be a generator of a c0-semigroup
S(t) in X. Then D (A) is dense in X and (A,D (A)) is closed.
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Proof:

Density . . . x ∈ X given. x = limh→0+
1

h

∫ h

0
S(s)xds︸ ︷︷ ︸
∈D (A) dle V.4.1.3

(continuity of integrand), i. e., we have elements

from the definition domain which approximate given element.

Closedness . . . xn ∈ D (A) given, xn → x, Axn → y
?

=⇒ x ∈ D (A) , Ax = y. Observe:
s 7→ S(s)xn is C1 since d

dtS(s)xn = S(s)Axn due to Th.4.1, 2 and due to Newton-Leibnitz we have

S(h)xn − S(0)xn =
∫ h

0
d
dsS(s)xnds =

∫ h
0 S(s)Axnds. Take a limit n→∞. LHS → S(h)x− x, RHS

. . . exchange of lim and
∫

: Axn → y, therefore ‖S(s)Ax− S(s) y‖ ≤ ‖S(s)‖L(X)︸ ︷︷ ︸
bounded independently of s ∈ [0, h]

‖Axn − y‖, uniform

convergence. Therefore by the limit we obtain 1
h (S(h)x− x) = 1

h

∫ h
0 S(s) yds, take h→ 0+. RHS → y

(continuity of integrand), i. e., LHS → y or in other words x ∈ D (A), Ax = y, which was to be proven.

Remark:

Theorem 4.2, proof of closedness: S(h)xn − xn =
∫ h

0 S(s)Axnds, xn ∈ D (A) is needed. In Th. 4.1,

3 we already have S(h)x − x = A
(∫ h

0 S(s)xds
)

, x ∈ X. Wouldn’t it be possible to shift A into the

integral straight away?
Problem: does it hold that A

(∫
I f (s) ds

)
=
∫
I Af (s) ds? For continuous operators A it holds, see

ex. 1.1. For closed operators A it is possible to prove, see ex. 5.3. It is not possible to use this argument
above as we are just proving the closedness of generator A.

Remark:

• Th. 4.1:(A,D (A)) is a generator of a semigroup S(t) =⇒ ∀x0 ∈ D (A) is x (t) = S(t)x0 a classical
solution of (4.1).

• Key problem: (A,D (A)) given,
?

=⇒ ∃c0-sg. S(t) s. t. A is a generator of S(t).

Lemma 38. [Uniqueness of a semigroup] Let S(t), S̃ (t) be c0-semigroups which have the same gener-
ator. Then S(t) = S̃ (t) for ∀t > 0.

Proof:

Trick: y (t) = S(T − t) S̃ (t)x, x ∈ D (A), check y (t) ∈ C ([0, T ] , X), y′ (t) = 0 ∀t ∈ (0, T ) =⇒
y (T ) = S̃ (T ) y (0) = S(T )x. D (A) is dense in X (Th. 4.2)

Def.: [Resolvent, resolvent set, spectrum]

Let (A,D (A)) be an unbounded operator. We define

resolvent set ρ (A) = {λ;λI −A→ X is one-to-one} ⊂ R (generally can be considered a subset of C),

resolvent R (λ,A) = (λI −A)−1 : X → D (A) , λ ∈ ρ (A),

spectrum σ (A) = {λ ∈ C, λI −A is not invertible}. Equivalently σ (A) = C\ρ (A).
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Remark:

• (A,D (A)) is closed =⇒ R (λ,A) ∈ L (X), since A is closed ⇐⇒ D (A) is Banach with graph
norm ‖x‖ + ‖Ax‖. Moreover by the closedness is t A : D (A) → X continuous. Banach theorem
on open mapping: inversion is continuous, i. e., R (λ,A) : X → D (A) is continuous.

• the following relations hold:

(i) AR (λ,A)x = λR (λ,A)x− x ∀x ∈ X,
(ii) R (λ,A)Ax = λR (λ,A)x− x ∀x ∈ D (A) ,

(iii) R (λ,A)x−R (µA)x = (µ− λ)R (λ,A)R (µ,A)x ∀x ∈ X,

where (iii) is so-called resolvent identity.

Proof of (i):

AR (λ,A)x = [(A− λI) + λI]R (λ,A)x = − (λI −A)R (λ,A)X︸ ︷︷ ︸
−x

+λR (λ,A)x.

The other relations are proven similarly, (i)-(ii) =⇒ AR (λ,A)x = RA (λ,A)x, x ∈ D (A). Heuristics:
R (λ,A) = 1

λ−A .

Lemma 39. [Formula for the resolvent by Laplace transform]
Let (A,D (A)) be a generator of c0-semigroup S(t); let ‖S(t)‖L(X) ≤ Meωt. Then λ ∈ ρ (A) for

∀λ > ω and the resolvent can be expressed as R (λ,A)x =
∫∞

0 e−λtS(t)xdt, ‖R (λ,A)‖L(X) ≤
M
λ−ω .

Proof:

WLOG: ω = 0, (see ex. 6.2) since c0-sg. generated by (A,D (A)) ⇐⇒ S̃ (t) = e−ωtS(t) is c0-sg.

generated by
(
Ã,D

(
Ã
))

where Ã = A− ωI, D
(
Ã
)

= D (A). Moreover R
(
λ, Ã

)
= R (λ+ ω,A).

Therefore ‖S(t)‖L(X) ≤M , λ > 0
?

=⇒ λ ∈ ρ (A). Denote R̃x =
∫∞

0 e−λtS(t)xdt (Laplace transform
of semigroup S(t)), x ∈ X, λ > 0 fixed. Integral defined: integrand continuous (L. 4.1), ‖integrand‖ ≤
e−λtM ‖x‖ ∈ L1 (0,∞),∥∥∥R̃x∥∥∥ ≤ ∫∞0 e−λtM ‖x‖ dt = M

λ ‖x‖, i. e., R̃ ∈ L (X),
∥∥∥R̃∥∥∥

L(X)
≤ M

λ .

We will show that R̃x ∈ D (A):

1

h
[S(h)− I] R̃x =

1

h

[∫ ∞
0

e−λt S(h)S(t)︸ ︷︷ ︸
S(h+t)

x− e−λtS(t)x dt

]
,

Substution in first integral:
∫∞
h e−λ(t−h)S(t)x, ±

∫ h
0 e
−λ(t−h)S(t)x, together:

=
eλh − 1

h

∫ ∞
0

e−λtS(t)x dt︸ ︷︷ ︸
R̃x

−e
λh

h

∫ h

0
e−λtS(t)x dt

Take h→ 0+: → λR̃x− x.

16



I. e., R̃x ∈ D (A), AR̃x = λR̃x−x, ∀x ∈ X, in other words (λI −A) R̃x = x, i. e. λI−A : D (A)→
X is onto.

Is injective? Let x ∈ D (A) be fixed,

AR̃x = A

(∫ ∞
0

e−λtS(t)x

)
Ex. 5.4, A closed (Th. 4.2.)

=

∫ ∞
0

A
(
e−λtS(t)x

)
dt

(exchange op. and sg: Th. 4.1, 2) =

∫ ∞
0

e−λtS(t)Axdt = R̃Ax

, i. e. AR̃ = R̃A in D (A) =⇒ R̃ (λI −A)x = λR̃x − R̃AX
AR̃x=λR̃x−x

= x, i. e., ∀x ∈ D (A) :
R̃ (λI −A)x = x . . . λI −A is injective! I. e., R̃ = R (λ,A), the proof is done.

Def.: [Semigroup of contractions]

We say that S(t) is a semigroup of contractions, if ‖S(t)‖L(X) ≤ 1, ∀t ≥ 0

Theorem 40. [Hille–Yosida (for contractions)]
Let (A,D (A)) be an unbounded operator. Then it is equivalent:

1. ∃c0-semigroup of contractions, which is generated by (A,D (A)).

2. (A,D (A)) is closed, D (A) is dense in X, λ ∈ ρ (A) for ∀λ > 0 and it holds that

‖R (λ,A)‖L(X) ≤
1

λ
.

Homework 11. 1. Prove Lemma 38: If c0-semigroups S(t) and S̃(t) have the same generator, then
S(t) = S̃(t) for all t ≥ 0.

Hint. For a fixed τ > 0 and x ∈ D(A), show that the function y(t) = S(τ − t)S̃(t)x is constant on
[0, τ ].

2. Fill the gap in proof of Lemma 39: show that (A,D(A)) is the generator of S(t) if and only if
(Ã,D(Ã)) is the generator of S̃(t), where S̃(t) = e−ωtS(t) and Ã = A− ωI with D(Ã) = D(A).

Also show that in this situation R(λ, Ã) = R(λ+ ω,A), whenever λ ∈ ρ(Ã) ⇐⇒ λ+ ω ∈ ρ(A).

Hint. It is enough to prove just one implication.

3. Verify the resolvent identity

R(λ,A)x−R(µ,A)x = (µ− λ)R(λ,A)R(µ,A)x

for all x ∈ X, and λ, µ ∈ ρ(A).

Hint. Deduce first formally using R(λ,A) = 1
λ−A .

4.2 Follow-up of the course by PK

Remark 23 (Generalized Hille-Yosida theorem). Let M > 0, ω ∈ R. Then (A,D(A)) generates a
c0 semigroup satisfying an estimate ‖S(t)‖L(X) ≤ MeΩt for all t > 0 iff (A,D(A)) is closed, densely
defined, for all λ > ω: λ ∈ ρ(A) and for all n ∈ N ‖Rn(λ,A)‖L(X) ≤M/(λ− ω)n.
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Remark 24 (Lumer-Philips theorem). [5, Theorem 4.3,Section 1.4] If for all x ∈ D(A), λ > 0 the
inequality ‖λx − Ax‖ ≥ λ‖x‖ holds and there is λ0 > 0 such that λ0I − A : D(X) → X is onto, then
(A,D(A)) generates a c0 semigroup of contractions.

If (A,D(A)) generates a c0 semigroup of contractions on X, then for all x ∈ D(A), λ > 0 the
inequality ‖λx−Ax‖ ≥ λ‖x‖ holds and λ ∈ ρ(A).

Remark 25. If (A,D(A)) generates a c0 semigroup S of contractions on X, x0 ∈ D(A), then u : t →
S(t)x0 solves the PDE ut = Au in (0,+∞), u(0) = x0. Moreover, u ∈ C([0,+∞), X)∩C1([0,+∞), X),
Au ∈ C([0,+∞), X).

If x0 ∈ X \ D(A) we in general do not get the same statement. There are 2 possibilities

1. introduce a new weaker notion of solution, i.e. solution of the problem is t→ S(t)x0.

Definition 14. (it was not mentioned in the lecture) Let (A,D(A)) generates a c0 semigroup S
of contractions on X, x0 ∈ X. We call u : t→ S(t)x0 a mild solution of the problem ut = Au in
(0,+∞) with the initial condition x0 ∈ X.

2. introduce a semigroup with better properties—differentiable semigroups, see [5, Section 2.4, The-
orem 4.7].

Assumption 3. We assume:

• Ω ⊂ Rd open, bounded, with smooth boundary.

• aij , bi, c ∈ C∞(Ω) and are independent of t for i, j ∈ {1, . . . , d},

• there is θ > 0 such that for all ξ ∈ Rd and a.e. (t, x) ∈ Q: (Aξ, ξ) ≥ θ|ξ|2.

• Lu = −
∑d

i,j=1 ∂j(a
ij∂iu) +

∑d
i=1 b

i∂iu+ cu

Theorem 41. Let Assumption 3 hold. Define X = L2(Ω), D(−L) = W 2,2(Ω) ∩ W 1,2
0 (Ω). Then

(−L,D(−L)) generates a c0-semigroup.

Remark 26. Remark 25 together with Theorem 41 gives existence of a mild solution of the problem
ut = −Lu in (0,+∞) with the initial condition u(0) ∈ L2(Ω).

Homework 12. Let X = L2(Ω). We set S(0) = I and for t > 0 we define S(t) : u ∈ X → S(t)u ∈ X
by

∀x ∈ Rd : S(t)u(x) =
( 1

4πt

) d
2

∫
Rd

e−
|x−y|2

4t u(y) d y.

Show that S is a c0 semigroup on X and that its generator is the Laplace operator ∆.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the lecture (12.5.2017)
Further we want to study the problem

ut = Au+ f in (0, T ),

u(0) = u0 ∈ X,
(15)

where f : (0, T )→ X is integrable, (A,D(A)) an unbounded operator, generator of a c0 semigroup S.
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Definition 15. [5, Definition 2.1, Section 4.2] A function u : [0, T ] → X is a classical solution of
the problem (15) if u ∈ C([0, T ), X) ∩ C1((0, T ), X) and for all t ∈ (0, T ) u(t) ∈ D(A) and (15) holds
pointwisely.

Remark 27. Any classical solution u of (15) satisfies

u(t) = S(t)u0 +

∫ T

0
S(t− s)f(s)ds. (16)

Definition 16. Let (A,D(A)) be a generator of a c0 semigroup S, u0 ∈ X, f ∈ L1(0, T,X). Then
u : [0, T ]→ X, u ∈ C([0, T ], X) satisfying for all t ∈ (0, T ) the equality (16) is called a mild solution of
the problem (15).

Theorem 42 (42). Let X be a c0 semigroup and (A,D(A)) be its generator. If u0 ∈ D(A), f ∈
C1([0, T ], X) then the mild solution of (15) is the classical one.

Corollary (of Theorems 41 and 42). Under Assumption 3 if f ∈ L1(0, T, L2(Ω)), u0 ∈ L2(Ω), S is the
semigroup constructed in Theorem 41, there is a mild solution of the problem ut+Lu = f in (0, T ) with
u(0) = u0. If moreover f ∈ C1([0, T ], L2(Ω)) and u0 ∈W 2,2(Ω) ∩W 1,2

0 (Ω) then the mild solution is the
classical one.

Now we want to concentrate to the wave equation

utt + Lu = f in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u = g, ut = h in {0} × Ω,

which can be reformulated to

ut = v, vt = −Lu+ f in (0, T )× Ω,

u = 0, v = 0 on (0, T )× ∂Ω,

u = g, v = h in {0} × Ω.

(17)

Theorem 43. Let Assumption 3 hold with A symmetric, b = 0, c ≥ 0 on Ω. We set X = W 1,2
0 (Ω) ×

L2(Ω), with the scalar product 〈〈(u, v), (f, g)〉〉 =
∫

ΩA∇u∇f+cuf+vg and the corresponding norm ‖·‖X .

We set D(Ã) = W 2,2(Ω) ∩W 1,2
0 (Ω) ×W 1,2

0 (Ω) and for all (u, v) ∈ D(Ã) we set Ã(u, v) = (v,−Lu).
Then (Ã,D(Ã)) is a generator of a c0 semigroup of contraction on X.

Corollary. Under Assumption 3 if f ∈ L1(0, T, L2(Ω)), g ∈ W 1,2
0 (Ω), h ∈ L2(Ω), S is the semi-

group constructed in Theorem 43, there is a mild solution of the problem (17). If moreover f ∈
C1([0, T ], L2(Ω)) and g ∈ W 2,2(Ω) ∩ W 1,2

0 (Ω), h ∈ W 1,2
0 (Ω) then the mild solution is the classical

one.

5 Nonlinear parabolic equations of second order

In this section we want to consider a nonlinear parabolic problem

ut − div a(∇u) + f(u) = h in I × Ω,

u = u0 in {0} × Ω,

u = 0 on I × ∂Ω.

(18)

As usually I = (0, T ), T > 0, Ω ⊂ Rd, Q = I × Ω. Given are functions a : Rd → Rd, f : R → R and
data u0 : Ω→ R, h : Q→ R. We search for the unknown function u : Q→ R.
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Assumption 4. Let us assume

• I = (0, T ), T > 0, Ω ⊂ Rd with a smooth ∂Ω, p ∈ (1,+∞),

• a : Rd → Rd satisfies a ∈ C(Rd), a(0)=0,

∃α > 0, ∀ξ ∈ Rd : α|ξ|p ≤ a(ξ) · ξ
∃β > 0,∀ξ ∈ Rd : |a(ξ)| ≤ β(|ξ|p−1 + 1)

∀ξ1, ξ2 ∈ Rd : 0 ≤ (a(ξ1)− a(ξ2)) · (ξ1 − ξ2)

• f : R→ R satisfies

∃γ > 0, q ∈ [0, p− 1],∀w ∈ R : |f(w)| ≤ γ(|w|q + 1)

• h ∈ (Lp(I,W 1,p
0 (Ω)))∗, u0 ∈ L2(Ω).

Definition 17. We say that u ∈ Lp(I,W 1,p
0 (Ω) si a weak solution of the problem (18) if u(0) = u0 and

∀ϕD(I,W 1,p(Ω)) :

∫
Q
−uϕt + a(∇u) · ∇ϕ+ f(u)ϕ =

∫
I
〈h, ϕ〉.

Homework 13. Show that if u is a weak solution of the problem (18), the initial condition is well
defined.

Alternatively show that is u is a weak solution of the problem (18) then u ∈ C([0, T ], L2(Ω)).

Example 2. Let S ∈ N .Show that there is a ON basis of L2(Ω) such that it is also a OG basis of
W s,2

0 (Ω). It consists e.g. from the solutions uλ ∈W s,2
0 (Ω) of the problem

∀ϕ ∈W s,2
0 (Ω) :

∫
Ω
∇su : ∇sϕ = λ

∫
Ω
uϕ.

The problem corresponds to the eigenvalue problem (−1)s∆su = λu in Ω with suitable boundary condi-
tions.

Recall Minty Browder’s trick from PDE’s 1. See, e.g., [4, Section 9.1].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . end of the lecture (19.5.2017)
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