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A UNIFIED THEORY FOR SOME NON-NEWTONIAN FLUIDS
UNDER SINGULAR FORCING∗
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Abstract. We consider a model of steady, incompressible non-Newtonian flow with neglected
convective term under external forcing. Our structural assumptions allow for certain nondegenerate
power-law or Carreau-type fluids. Within our setting, we provide the full-range theory, namely,
existence, optimal regularity, and uniqueness of solutions, not only with respect to forcing belonging
to Lebesgue spaces, but also with respect to their refinements, namely, the weighted Lebesgue spaces,
with weights in a respective Muckenhoupt class. The analytical highlight is derivation of existence
and uniqueness theory for forcing with its regularity well below the natural duality exponent, via
estimates in weighted spaces. It is a generalization of [M. Buĺıček, L. Diening, and S. Schwarzacher,
Anal. PDE, 9 (2016), pp. 1115–1151] to incompressible fluids. Moreover, two technical results,
needed for our analysis, may be useful for further studies. They are the solenoidal, weighted, biting
div-curl lemma and the solenoidal Lipschitz approximations on domains.
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lemma
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1. Introduction. In a bounded domain Ω ⊂ Rn with a C1 boundary, we con-
sider the following stationary nonlinear Stokes system:

−divS(x, ε(v)) +∇π = −div f in Ω,

div v = 0 in Ω,

v = 0 on ∂Ω,

(1.1)

where v : Ω → Rn describes the unknown velocity of the fluid, π : Ω → R describes
the unknown pressure, and f : Ω→ Rn×n is the given forcing. The nonlinear stress
tensor is a prescribed, matrix-valued mapping S : Ω × Rn×n → Rn×n. We use the
notation ε(v) = 1

2 (∇v +∇T v).
We will introduce a setting which allows us for f ∈ Lq(Ω) with any q ∈ (1,∞)

to provide the full-range theory related to (1.1), namely, existence, regularity, and
uniqueness of its solutions (hence the eponymous ‘unified theory’) in an arbitrary
space dimension.
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4242 M. BULÍČEK, J. BURCZAK, AND S. SCHWARZACHER

Succinctly, it will suffice that S is monotone and linear-at-infinity (i.e., uniformly
in x, S(x, η) → µ η as η → ∞ for some µ > 0) and S(x, η) · η has quadratic
growth. Typically, the precise restrictions related to uniqueness will be actually
slightly stronger. For detailed assumptions, we refer to section 1.2.

Observe that for S(x, η) ·η growing quadratically, in case f 6∈ L2(Ω), the operator
f 7→ ε(v) related to (1.1) is no longer coupled via duality. In simpler words, v cannot
be expected to remain an admissible test function. Therefore, the standard monotone
operator theory fails. This is the analytic reason for calling such f a rough forcing
and the related solutions a very weak solution. Providing the “unified theory” for
rough forcings is the focal point of our article.

Within our assumptions, system (1.1) models a steady flow of such incompressible
non-Newtonian fluids with neglected inertial forces (no convective term) that behave
asymptotically Newtonian for large shear rates. This includes famous models of in-
compressible non-Newtonian fluids, such as (nondegenerate) power-law fluids as well
as Carreau-type fluids. For instance, we allow for S(x, η) = s(x, |η|)η with

(1.2)
s(x, |η|) = µ+ (ν0 + ν1|η|2)

p−2
2 for p ∈ (1, 2] and µ > 0, ν0, ν1 ≥ 0,

s(x, |η|) = min {µ, (ν0 + ν1|η|2)
p−2
2 } for p ∈ (2,∞] and µ > 0, ν0, ν1 ≥ 0.

An important example among the substances described via stresses as above is blood,
paint, or ketchup. For a discussion of the physical model see Málek, Rajagopal, and
Růžička [28] and Málek and Rajagopal [29].

The analysis for such fluids was initiated by Ladyzhenskaya [25, 26] and Lions [27].
In case of partial differential systems inspired by non-Newtonian flows, as our (1.1),
there is no general local C1,α smoothness result of the homogeneous problem, since
the system depends merely on the symmetric part of the gradient.1 This distinguishes
the non-Newtonian models from, unless similar, nonlinear partial differential systems
with a p-Laplace structure. As far as we know, the best available regularity results
for steady non-Newtonian models are higher regularity related to testing, roughly
speaking, with ∆u and the related partial regularity; see, for instance, Bildhauer and
Fuchs [3] and Breit and Fuchs [10]. In the case of quadratic growths, Fuchs and
Seregin were able to prove boundedness of gradients; see [23, 24]. However, nonlinear
Calderón–Zygmund theory for non-Newtonian flows is generally not provided for f ∈
Lq(Ω) with large q’s, compare Diening and Kaplický [16], even in the case of quadratic
growths. Therefore, the regularity theory for (1.1) with high-integrable forcings is also
interesting for us.

1.1. Context and main novelties. First, let us recall the case of the classical
steady Stokes system with a rough forcing

−∆v +∇π = div f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

(1.3)

1In case of dependence on the full gradient, i.e., for p-Laplace type equations, a special struc-
ture of the system was revealed that allows providing local C1,α smoothness; see, for instance, the
seminal work by Uhlenbeck [45]. This structure is sometimes referred to as the Uhlenbeck structure.
Interestingly, for p > 2 this result was announced earlier by Uraltseva, compare Remark 2, p. 221
in [46].
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The existence of a solution (v, p) to (1.3), as well as its uniqueness and optimal
regularity

(1.4) f ∈ Lq(Ω) =⇒ ∇v ∈ Lq(Ω), π ∈ L̊q(Ω),

for q ∈ (1,∞) is classical. (The circle above Lq denotes null mean values and disam-
biguates the pressure.) The first such result is due to Cattabriga [14], where the case
of three space dimensions and smooth, bounded domain is considered. For further
results (all space dimensions and more general domains), we refer to Borchers and
Miyakawa [6, section 3] and [7] as well as Solonnikov [38] with their references.

Equations and systems with a more complex structure do not allow us to build
such a unified theory as (1.4) with q ∈ (1,∞). Recall that even a linear, elliptic,
homogeneous equation can have a nonsmooth solution v such that ∇v /∈ L2, as long
as its bounded coefficients are nonsmooth; see Serrin [37]. This, compared with the
fact that a linear, homogeneous equation with bounded coefficients admits a smooth
solution v as long as ∇v ∈ L2, indicates that the case of ∇v ∈ Lq, q < 2, is peculiarly
interesting.

If the studied problem becomes nonlinear and vectorial, even smooth coefficients
and smooth forcing do not ensure existence of smooth solutions; recall Šverák and
Yan [39] with its references. In fact, the existence or regularity theory is available only
for special cases, where the nonlinearity has an appropriate structure. Its canonical
examples are monotonicity for the existence theory and the Uhlenbeck structure for
regularity. It is important to observe that, up to now, both of them are insufficient to
obtain existence (all the more — optimal regularity, even if the notion of optimality
is clear) of solutions to problems with rough forcing, i.e., of the type div f with
integrability of f substantially below the duality exponent dictated by the energy
estimate.

In this paper we develop, under suitable assumptions on the nonlinear shear stress
S, the unified theory for (1.1), as follows:

(i) Existence of its solutions, for forcing within the entire integrability range
q ∈ (1,∞), including the difficult case of q’s below the duality exponent
(equal 2 within our structure).

(ii) Optimal regularity estimates and uniqueness of solutions.
The existence part and its methodology is the main novelty here. Our results gen-
eralize the ones of Buĺıček, Diening, and Schwarzacher [11] to incompressible steady
flows with no inertial forces.

We find at least two of our technical results, needed to accomplish the main
goal, to be interesting by themselves. These are the solenoidal, weighted, biting div-
curl lemma, potentially useful for identification of limits of nonlinearities appearing
in mathematical fluid dynamics, as well as our version of the solenoidal Lipschitz
approximation lemma.

1.2. Main result. For a tensor Q ∈ Rn×n, its symmetrization is denoted by

Qs = Q+QT

2 . We provide existence of a solution to (1.1), with f ∈ Lq(Ω) for all q ∈
(1,∞), with the related optimal regularity estimate, under the following assumptions.

Assumption 1.1. Let S(·, ·) : Ω×Rn×n → Rn×n be a Carathéodory mapping such
that for positive numbers c0, c1, c2, µ it holds that

c0|Qs|2 − c2 ≤ S(x,Qs) ·Q, |S(x,Qs)| ≤ c1|Q|+ c2,

0 ≤ (S(x,Qs)− S(x, P s)) · (Q− P ),
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as well as it is linear-at-infinity, i.e.,

lim
|Qs|→∞

|S(x,Qs)− µQs|
|Qs|

= 0(1.5)

for all Q,P ∈ Rn×n and uniformly in x.

The obtained solution is unique among distributional solutions, in case one addi-
tionally has the following.

Assumption 1.2. Tensor S verifies

0 < (S(x,Qs)− S(x, P s)) · (Q− P )

and

lim
|Qs|→∞

∣∣∣∣∂S(x,Qs)

∂Qs
− µId

∣∣∣∣ = 0(1.6)

for all Qs 6= P s ∈ Rn×n and uniformly in x.

Remark 1.3 (admissible stress tensors). The canonical stress tensors admissible
by Assumption 1.1 are

S(x, η) = s(x, |η|)η, with 0 ≤ s(x, λ) ≤ C, lim
λ→∞

s(x, λ) = µ,(1.7)

as long as they are monotonous. Both Assumptions 1.1 and 1.2 are satisfied by the
introductory example (1.2).

We are ready to state our main results. The definitions of notions used in their
formulations (most of them standard) can be found in section 2.2.

Theorem 1.4. Let S satisfy Assumption 1.1 and ∂Ω ∈ C1. If f ∈ Lq(Ω) with
1 < q <∞, then (1.1) admits a weak solution (v, π) ∈W 1,q

0 (Ω)× L̊q(Ω).

Moreover, for any (v, π) ∈ W 1,s
0 (Ω) × L̊s(Ω) with an s > 1, solving (1.1), the

following estimate holds:

(1.8) ‖∇v‖Lq(Ω) + ‖π‖Lq(Ω) ≤ C
(

1 + ‖f‖Lq(Ω)

)
.

The constant depends on q, the C1-property of Ω, and the quantities in Assump-
tion 1.1.

If Assumption 1.2 is additionally fulfilled, then (v, π) solving (1.1) is unique in
W 1,q

0 (Ω)× L̊q(Ω).

Theorem 1.4 as stated is complete, since it gives at once existence, optimal integra-
bility, and uniqueness. However, for q < 2, the Lq-a-priori information is not enough
to develop an existence theory. To this end, we need to derive more accurate esti-
mates, namely in weighted Lebesgue spaces. An additional benefit of this technique
is that one immediately obtains the following generalization of Theorem 1.4 over the
weighted Lebesgue spaces with the Muckenhoupt weight Aq. Let us notice that due to
nonlinearity of our problem, there necessarily appears an additive constant in (1.8).

Theorem 1.5. Let S satisfy Assumption 1.1 and ∂Ω ∈ C1. If f ∈ Lqω(Ω) with
1 < q <∞ and ω ∈ Aq, then (1.1) admits a solution (v, π) ∈W 1,q

0,ω(Ω)× L̊qω(Ω).

Moreover, for any (v, π) ∈ W 1,s
0,ω̃(Ω) × L̊sω̃(Ω) solving (1.1), with an s > 1 and

ω̃ ∈ As, the following estimate holds:

(1.9) ‖∇v‖Lqω(Ω) + ‖π‖Lqω(Ω) ≤ C
(

1 + ‖f‖Lqω(Ω)

)
.
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The constant depends on q, Aq, the C1-property of Ω, and the quantities in Assump-
tion 1.1.

If Assumption 1.2 is additionally fulfilled, then (v, π) solving (1.1) is unique in
W 1,q

0,ω(Ω)× L̊qω(Ω).

Let us remark that Theorem 1.5 is optimal with respect to weighted spaces, since
the Laplace operator is continuous in weighted Lebesgue spaces Lqω, as long as ω ∈ Aq,
q ∈ (1,∞); see, for instance, Sawyer [35, Theorem A]. Observe that our Theorem 1.5
covers the entire range q ∈ (1,∞).

Let us present a short heuristics, explaining why weighted estimates are essential
for an existence theory in the case of rough data. Namely, by the choice of a proper
weight, the estimate (1.9) (utilized for a regularised problem) implies that both ε(v)
and S(·, ε(v)) are in a weighted L2

ω space (uniformly in a regularization). This fact
establishes a duality relation between ε(v) and S(·, ε(v)) which is unavailable in case
of rough data within the standard Lebesgue spaces. Exploited correctly, this duality
will eventually allow us to adapt a very weak version of the Minty trick.

Remark 1.6 (measure-valued forcings are included). Since forcing of (1.1) is in a
divergence form, we indeed cover cases of a very general forcing, for instance, bounded
Radon measures. Indeed, for a vector-valued bounded Radon measure µ, let us solve
−div∇h = µ. Hence ∇h ∈ Lr with any r ∈ [1, n

n−1 ), so ∇h = f is within the scope
of Theorems 1.4 and 1.5.

For the sake of completeness and to demonstrate the generality of our approach,
let us finally present the respective result for systems with inhomogeneous boundary
conditions and prescribed compressibility d. Namely, let us consider

(1.10)

−divS(x, ε(v)) +∇π = −div f in Ω,

div v = d in Ω,

γ(v) = g on ∂Ω,

where γ is the trace operator. In the result below, T qω(Ω) denotes the weighted trace
space; see section 2.2. The following holds.

Corollary 1.7. Let f, d ∈ Lqω(Ω), g ∈ T qω(Ω) with 1 < q < ∞, ω ∈ Aq, and let

S satisfy Assumption 1.1. Then (1.1) admits a solution (v, π) ∈ W 1,q
ω (Ω) × L̊qω(Ω).

Moreover, if any solution of (1.10) for an s > 1 enjoys (v, π) ∈ W 1,s(Ω) × L̊s(Ω),
γ(v) = g, then it satisfies

(1.11) ‖∇v‖Lqω(Ω) + ‖π‖Lqω(Ω) ≤ C(1 + ‖f‖Lqω(Ω) + ‖d‖Lqω(Ω) + ‖g‖T̂ qω(Ω)).

The constant C depends on q, Aq, the C1-property of Ω, and the quantities in As-
sumption 1.1.

If Assumption 1.2 additionally holds, then (v, π) solving (1.1) is unique in
(γ−1(g) +W 1,q

0 (Ω))× L̊qω(Ω).

Finally, let us state the following remark.

Remark 1.8 (a slight relaxation of assumptions). In Assumptions 1.1 and 1.2 the
linearity-at-infinity can be relaxed. Indeed, in place of (1.5) it suffices to require that

for an ε0(c0, c1, c2) and a m0 > 0 it holds that |S(x,Qs)−µQs|
|Qs| ≤ ε0 for all |Q| ≥ m0.

Analogously (1.6) can be replaced by
∣∣∂S(x,Qs)

∂Qs − µId
∣∣ ≤ ε0 for all |Q| ≥ m0.
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1.3. Main technical results. Let us gather in this section two technical results
that we would like to highlight as potentially useful in mathematical fluid dynamics.
First is the solenoidal, weighted, biting div-curl lemma, which is a solenoidal version
of Theorem 2.6 of [11], itself being a far generalization of the original Murat–Tartar
result; see [31, 32, 41, 42].

Theorem 1.9 (solenoidal, weighted, biting div–curl lemma). Let Ω ⊂ Rn denote
an open, bounded set. Assume that for a given q ∈ (1,∞) and ω ∈ Aq, there is a
sequence of measurable, tensor-valued functions ak, sk : Ω → Rn×n, k ∈ N, such that
k-uniformly

(1.12) ‖ak‖Lqω(Ω) + ‖sk‖
Lq
′
ω (Ω)

≤ C.

Furthermore, assume that for every bounded sequence {ck}∞k=1 in W 1,∞
0 (Ω) and for

every bounded solenoidal sequence {dk}∞k=1 in W 1,∞
0,div (Ω) such that

∇ck ⇀∗ 0 weakly∗ in L∞(Ω), ∇dk ⇀∗ 0 weakly∗ in L∞(Ω)

one has

lim
k→∞

∫
Ω

sk · ∇dk dx = 0,(1.13)

lim
k→∞

∫
Ω

aki ∂xjc
k − akj ∂xick dx = 0 for all i, j = 1, . . . , n(1.14)

and that

(1.15) tr(ak) converges pointwisely almost everywhere in Ω.

Then, there exists a (nonrelabeled) subsequence (ak, bk) and a nondecreasing sequence
of measurable subsets Ωj ⊂ Ω, with |Ω \ Ωj | → 0 as j →∞, such that

ak ⇀ a weakly in L1(Ω),(1.16)

sk ⇀ s weakly in L1(Ω),(1.17)

ak · skω ⇀ a · s ω weakly in L1(Ωj) for all j ∈ N.(1.18)

The proof of Theorem 1.9, presented in section 4, relies among others on the
following fine-tuning of the solenoidal Lipschitz truncations.

Theorem 1.10 (solenoidal Lipschitz approximations on domains). Let Ω ⊂ Rn
and s > 1. Let g ∈W 1,s

0,div(Ω). Then for any λ > 1 there exists a solenoidal Lipschitz

truncation gλ ∈W 1,∞
div (Ω) such that

gλ = g and ∇gλ = ∇g in {M(∇g) ≤ λ} ∩ Ω,(1.19)

|∇gλ| ≤ |∇g|χ{M(∇g)≤λ} + C λχ{M(∇g)>λ} almost everywhere.(1.20)

Further, if ∇g ∈ Lpω(Ω) for some 1 ≤ p <∞ and ω ∈ Ap, then∫
Ω

|∇gλ|pω dx ≤ C
∫

Ω

|∇g|pω dx,∫
Ω

|∇(g − gλ)|pω dx ≤ C
∫

Ω∩{M(∇g)>λ}
|∇g|pω dx,

(1.21)

where the constant C depends on (Ap(Ω),Ω, N, p).

The proof of Theorem 1.10 can be found in section 4.
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1.4. Further research. Let us point out the significance of our results for future
research, particularly the flexibility of the developed existence scheme.

First, consider the full Navier–Stokes analogue of (1.1). It involves an additional
convective term. However, in three dimensions, it is possible to treat it as a right-hand
side with respect to a priori estimates and as a compact perturbation with respect
to the existence analysis. This will be presented in our future work. For results on
existence of solutions to steady non-Newtonian Navier–Stokes flows with nonrough
forcing, see Diening, Málek, and Steinhauer [18] and Buĺıček et al. [12].

Another generalization is related to considering degeneracies, for instance, the
degenerate power-law model S(x,Q) = ν|Q|p−2

Q. Recently, it has become possible
to establish an existence theory for the related p-Laplace system; see Buĺıček and
Schwarzacher [13]. Even though it holds only for exponents q being close to the
natural exponent p, it is the first existence proof for degenerate systems below the
duality exponent. A generalization to degenerate fluids seems achievable. It would
also match the regularity theory available for the degenerate Stokes systems; compare
Diening and Kaplický [16] and Diening, Kaplický, and Schwarzacher [17].

Finally, we wish to emphasize that the very weak weighed duality relation dis-
covered here has a considerable potential for numerical schemes and their analysis.

2. Preliminaries.

2.1. Structure of the paper. This section gathers certain auxiliary tools for
the proofs. Section 3 presents an a priori type estimate: in Theorem 3.1, we provide
a quantitative regularity estimate (1.8), under an additional assumption that the
solution of (1.1) belongs to a certain Ls(Ω) regularity class, s > 1. This result relies
on a regularity theory for weighted linear Stokes that we partially needed to provide
in this paper as well. Section 4 contains proofs of the main technical results, namely,
of Theorems 1.9 and 1.10. Finally, section 5 provides proofs of our main theorems,
presented in section 1.2.

2.2. Basic notation and definitions.

2.2.1. Function spaces. For p ∈ [1,∞) and ω being a weight, i.e., a measurable
function that is almost everywhere finite and positive, let us define the weighted
Lebesgue space Lpω(Ω) and its norm ‖·‖Lpω as

Lpω(Ω) :=

{
f : Ω→ Rn; measurable, ‖f‖Lpω :=

(∫
Ω

|u(x)|pω(x) dx

) 1
p

<∞
}
.

The space L̊pω(Ω) contains all functions f ∈ Lpω(Ω) with
∫

Ω
f dx = 0.

The weighted Sobolev space W 1,p
ω (Ω) consists of all functions where both the

distributional derivative ∇f and f are in Lpω(Ω).
The homogeneous Sobolev space Ŵ 1,p

ω (Ω) is the space of all functions such that
∇f ∈ Lpω(Ω) (and f belongs to the natural embedded space; Ŵ 1,p

ω (Ω) 6= W 1,p
ω (Ω) only

in unbounded domains).
Since weights may have a certain impact on the exact shape of trace space, one

typically defines it only semiexplicitly as γ(W 1,p
ω (Ω)∩W 1,1(Ω)), where γ : W 1,1(Ω)→

L1(∂Ω) is the canonical trace operator. In case of an unbounded domain, one addi-
tionally localizes the domain by an intersection with a ball. For more details, compare
Fröhlich [21, section 3.3] and [22] with their references. The zero trace subspaces of
W 1,p
ω (Ω) and Ŵ 1,p

ω (Ω) are denoted by W 1,p
0,ω(Ω) and Ŵ 1,p

0,ω(Ω), respectively. For brevity,

we will write T qω(U) for γ(W 1,p
ω (Ω)∩W 1,1(Ω)) and T̂ qω(U) for γ(Ŵ 1,p

ω (Ω)∩W 1,1
loc (Ω)).
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All the mentioned spaces are Banach spaces. In the case considered here, namely,
the case of Muckenhoupt weights ω ∈ Ap and p ∈ (1,∞), the above defined spaces
are additionally reflexive and separable. These and more properties are discussed in
Stein [40, Chapter 3], for instance. Moreover, by (2.8) below, we find in the case
of Muckenhoupt weights ω ∈ Ap that W 1,p

ω (Ω) ⊂ W 1,1(Ω) and Ŵ 1,p
ω (Ω) ⊂ W 1,1

loc (Ω);

hence functions that are bounded in W 1,p
ω (Ω), Ŵ 1,p

ω (Ω) possess weak derivatives and
well-defined traces.

Finally, W 1,q
0,div ,ω(Ω) is defined as the closure of C∞0,div(Ω) (the smooth, compactly

supported, and solenoidal functions) with respect to the W 1,q
ω -norm.

For any vector- or tensor-valued f ∈ L1
loc(Rn) we define its Hardy–Littlewood

maximal function Mf in a standard manner as follows:

Mf(x) := sup
R>0

−
∫
BR(x)

|f(y)|dy,

where BR(x) denotes a ball with radius R centered at x ∈ Rn.

2.2.2. A notion of solution. Let us introduce the standard definition.

Definition 2.1 (distributional solution). A couple (v, π) ∈W 1,1
0,div(Ω)×L1(Ω) is

a distributional solution to (1.1) iff for any ϕ ∈ C∞0 (Ω) it holds that∫
Ω

S(x, ε(v))∇ϕ− π divϕ =

∫
Ω

f∇ϕ.

An analogous definition, with natural modifications, will be used for the inhomo-
geneous problem.

In the following, we will sometimes call (v, π) a weak solution, provided it belongs
to the optimal regularity class (with respect to regularity of f).

2.3. An algebraic lemma. Let us begin with an algebraic lemma, which can
be found as Lemma 4.1 in Buĺıček, Diening, and Schwarzacher [11].

Lemma 2.2. Let S fulfill Assumptions 1.1 and 1.2. Then for every δ > 0 there
exists C such that for all x ∈ Ω and all Q,P ∈ Rn×n there holds

(2.1) |S(x,Q)− S(x, P )− µ(Q− P )| ≤ δ|Q− P |+ C(δ).

2.4. Muckenhoupt weights. To provide optimal regularity and to mimic the
L2 duality, we resort to L2

ω with a weight ω from the Muckenhoupt class.

Definition 2.3. For p ∈ [1,∞), we say that a weight ω belongs to the Mucken-
houpt class Ap iff there exists a positive constant A such that for every ball B ⊂ Rk
it holds that(

−
∫
B

ω dx

)(
−
∫
B

ω−(p′−1) dx

) 1
p′−1

≤ A if p ∈ (1,∞),(2.2)

Mω(x) ≤ Aω(x) if p = 1.(2.3)

We denote by Ap(ω) the smallest constant A for which the inequality (2.2), respec-
tively, (2.3), holds.
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2.4.1. Basic properties. For 1 ≤ p ≤ q < ∞ it holds that Ap ⊂ Aq. The
maximum ω1 ∨ ω2 and minimum ω1 ∧ ω2 of two Ap-weights is again an Ap-weight.
For p = 2, since 1

ω1∧ω2
≤ 1

ω1
+ 1

ω2
almost everywhere, we have straightforwardly

(2.4) −
∫
B

(ω1 ∧ ω2) dx −
∫
B

1

ω1 ∧ ω2
dx ≤ A2(ω1) +A2(ω2).

For ω ∈ Aq, q ∈ (1,∞) we will write ω′ = ω−
1
q−1 . Hölder inequality gives

ω ∈ Aq ⇐⇒ ω′ ∈ Aq′ .

2.4.2. Relation to the maximal function. Due to the celebrated result of
Muckenhoupt [30], we know that ω ∈ Ap for 1 < p <∞ is equivalent to the existence
of a constant A′, such that for all f ∈ Lpω(Rn)

(2.5)

∫
|Mf |pω dx ≤ A′

∫
|f |pω dx.

Another link between the maximal function and Ap-weights is given by the next
lemma.

Lemma 2.4. Let f ∈ L1
loc(Rn) be such that Mf < ∞ almost everywhere in Rn.

Then for all α ∈ (0, 1) we have (Mf)α ∈ A1. Furthermore, for all p ∈ (1,∞) and all
α ∈ (0, 1) there holds (Mf)−α(p−1) ∈ Ap.

For a proof, see pp. 229–230 in Torchinsky [43] and p. 5 in Turesson [44]. Lemma
2.4 implies that

(2.6) g ∈ Ls(Ω) for an s ∈ (1, 2) =⇒ g ∈ L2
ω1

(Ω) with ω1 = (Mg)s−2 ∈ A2,

because2∫
g2(Mg)s−2 dx ≤

∫
gs dx ≤

∫
(Mg)2(Mg)s−2 dx ≤ A′

∫
g2(Mg)s−2 dx.(2.7)

Finally, we will also need that for every p ∈ (1,∞) and ω ∈ Ap, there exists an
s ∈ (1,∞) depending only on Ap(ω), such that Lpω(Ω) ↪→ Lsloc(Ω). Moreover, the
related inequality

(2.8)

(
−
∫
B

|f |s dx

) 1
s

≤ C(Ap(ω))

(
−
∫
B

ω dx

) 1
p
(∫

B

|f |pω dx

) 1
p

holds. See formula (3.5) from [11].

2.4.3. A miracle of extrapolation. The seminal work by Rub́ıo de Francia
[34] implies that if a linear operator is bounded between Lp0ω for a p0 ∈ (1,∞) and
every ω ∈ Ap0 , then it is also bounded for Lpω for every p ∈ (1,∞) and every ω ∈ Ap.
We will refer to this fact as a “miracle of extrapolation”; compare Theorem 1.4 of the
monograph [15] by Cruz-Uribe, Martell, and Pérez and its references.

2.5. Very weak compactness. Since we were unable to locate an exact refer-
ence, we provide proof of the following very weak compactness result.

Lemma 2.5. For ω ∈ Aq it holds that Lqω ↪→ (W 1,q′

ω′,0)∗, with the embedding being
(sequentially) compact.

2Here and in what follows, when we deal with maximal function and a function defined on a
domain, we extend the function over the full space by 0.
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Proof. Let us pick a uniformly bounded sequence gj ∈ Lqω(Ω), ‖gj‖Lqω(Ω) ≤ c.

Since Lqω(Ω) is reflexive, the weak compactness implies that on a subsequence gj ⇀ g.
By subtracting the limit, we may assume with no loss of generality that g ≡ 0. By

the dual norm definition, we find ψi ∈ W 1,q′

ω′,0(Ω), such that ‖ψj‖W 1,q′
ω′,0(Ω)

= 1 and

‖gj‖(W 1,q′
ω′,0(Ω))∗

≤ 2〈gj , ψj〉. Moreover, we find by Theorem 2.3 in [22] a convergent

(nonrelabeled) subsequence ψj → ψ, in Lq
′

ω′(Ω). This implies, by the weak-strong cou-
pling, that ‖gj‖(W 1,q′

ω′,0(Ω))∗
≤ 2〈gj , ψj〉 → 0 on a subsequence, which is the (sequential)

compactness of our embedding.

2.6. Convergence tools. In order to identify the limit correctly, we will use
the following biting lemma.

Lemma 2.6. Let Ω be a bounded domain in Rn and let {vk}∞n=1 be a bounded
sequence in L1(Ω). Then there exists a nondecreasing sequence of measurable subsets
Ωj ⊂ Ω with |Ω \ Ωj | → 0 as j →∞ such that for every j ∈ N and every ε > 0 there
exists a δ > 0 such that for all A ⊂ Ωj with |A| ≤ δ and all n ∈ N the following holds:

(2.9)

∫
A

|vk|dx ≤ ε.

The Chacon’s biting lemma from Ball and Murat [2] has as its the thesis weak-L1

precompactness, which implies the thesis of Lemma 2.6 in view of the Dunford–Pettis
theorem.

3. Regularity estimate. The main result of this section is Theorem 3.1 below.
It shows that any distributional solution (v, π) to (1.1) enjoys an optimal regularity
estimate, provided additionally ∇v, π ∈ Ls(Ω), for an s > 1. The relation between q,
ω, the right-hand side f , and s will become clear in the next section.

Theorem 3.1. Let Ω be a bounded domain with ∂Ω ∈ C1 and let S satisfy As-
sumption 1.1. Let f ∈ Lqω(Ω) with 1 < q < ∞, ω ∈ Aq, s ∈ (1,∞), and S satisfy
Assumption 1.1. Then any distributional solution of (1.1) that enjoys additionally
(v, π) ∈W 1,s

0 (Ω)× Ls(Ω) satisfies

(3.1) ‖∇v‖Lqω(Ω) + ‖π − 〈π〉‖Lqω(Ω) ≤ C
(

1 + ‖f‖Lqω(Ω)

)
.

Analogously for the inhomogeneous case, if d ∈ Lqω(Ω) and g ∈ T qω(Ω), then any distri-
butional solution of (1.10) that enjoys additionally (v, π) ∈W 1,s(Ω)×Ls(Ω), γ(u) = g,
satisfies

(3.2) ‖∇v‖Lqω(Ω) + ‖π − 〈π〉‖Lqω(Ω) ≤ C
(

1 + ‖f‖Lqω(Ω) + ‖d‖Lqω(Ω) + ‖g‖T̂ qω(Ω)

)
,

where all constants depend only on Assumption 1.1, Aq(ω), q, and on the modulus of
continuity of ∂Ω.

The proof of Theorem 3.1 occupies the end of this section. As the main ingredient
of its proof, we need the following.

3.1. Lq
ω-theory for linear Stokes.

Lemma 3.2. Let Ω be a bounded domain with ∂Ω ∈ C1 and let (w, p) ∈W 1,q
ω (Ω)×

Lqω(Ω) be a distributional solution to

(3.3)

−div (ε(w)) +∇p = −divF in Ω,

divw = d in Ω,

γ(w) = g on ∂Ω.
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Then for any F, d ∈ Lqω(Ω) and g ∈ T qω(Ω) with q ∈ (1,∞) and ω ∈ Aq

(3.4) ‖w‖W 1,q
ω (Ω) + ‖p− 〈p〉‖Lqω(Ω) ≤ C

(
‖F‖Lqω(Ω) + ‖d‖Lqω(Ω) + ‖g‖T̂ qω(Ω)

)
,

where C = C(q, Aq(ω), ∂Ω).

We could not find the exact reference concerning the case of a bounded domain,
so we provide the proof.

Proof. Let U be either the full space Rn or the half-space Rn+. Recall that by

Ŵ 1,q
ω (U) we denote the homogeneous Sobolev space. In view of Theorems 5.1 and

5.2 by Fröhlich [21] (cases of Rn and Rn+, respectively), for every f ∈ (Ŵ 1,q′

0,ω′(U))∗,

d ∈ Lqω(U), and g ∈ T̂ qω(U), the problem

(3.5)

−div (ε(w)) +∇p = f in U,

−divw = d in U

(γ(w) = g on Rn−1 in case of U = Rn+)

admits a unique weak solution (w, p) ∈ Ŵ 1,q
ω (U)× Lqω(U) that enjoys the estimate

(3.6) ‖∇w‖Lqω(U) + ‖p‖Lqω(U) ≤ C
(
‖f‖

(Ŵ 1,q′
0,ω′ (U))∗

+ ‖d‖Lqω(U) + ‖g‖T̂ qω(U)

)
,

where the term involving g naturally appears only for the half-space, C = C(q,Aq,Ω),
q ∈ (1,∞), and ω ∈ Aq. In particular, for f = −divF , where F ∈ Lqω(U)

(3.7) ‖∇w‖Lqω(U) + ‖p‖Lqω(U) ≤ C
(
‖F‖Lqω(U) + ‖d‖Lqω(U) + ‖g‖T̂ qω(U)

)
,

so our thesis follows.3

Hence to finish our proof, we are left with performing the last step: from full space
and half space to a bounded domain. Unluckily, the available results (see Fröhlich
[22] or Schumacher [36]) do not cover the needed case of weak forcing divF , F ∈ Lqω,
so let us provide some details of this last step.

Recall that our goal here is merely the optimal regularity and not existence. Hence
in what follows, we assume to have a distributional solution of a considered problem
and we aim at showing (3.7) for that w.

First, let us consider a distributional solution to problem (3.5) on Ω = E being
a bent half-space with a small bend and with g = 0. By a small bend we mean that
there exists smooth Σ : Rn+ 3 x̃ → E 3 x having the form Σ(x̃1, . . . x̃n−1, x̃n) =
(x̃1, . . . x̃n−1, x̃n + σ(x̃1, . . . x̃n−1)) with small derivatives of σ (Σ being a small per-
turbation of identity). The distributional formulation of (3.5)∫

E

wixjϕ
i
xj − pϕ

i
xi =

∫
E

f iϕi,∫
E

wiψxi =

∫
E

dψ

translates for new functions w ◦Σ = w̃, etc., via a straightforward computation, with
an observation that a change of variables is volume-preserving, into

3 In fact, the cited results from [21] consider ∇w in place of ε(w) in the problem formulation.
The same result, which we need here, holds for (3.5) by a redefinition of the pressure to p− divw.
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∫
Rn+

(w̃ix̃j−σx̃j w̃
i
x̃n)(ϕ̃ix̃j−σx̃j ϕ̃

i
x̃n)1{j<n} + w̃ix̃n ϕ̃

i
x̃n − p̃

(
(ϕ̃ix̃i − σx̃i ϕ̃

i
x̃n)1{i<n} + ϕ̃nx̃n

)
=

∫
Rn+
f̃ iϕ̃i,∫

Rn+
w̃i(ψ̃x̃i − σx̃i ψ̃x̃n)1{i<n} + w̃nψ̃x̃n =

∫
Rn+
d̃ψ̃

(no summation over repeated n’s), i.e., after reordering∫
Rn+
w̃ix̃j ϕ̃

i
x̃j − p̃ϕ̃

i
x̃i =

∫
Rn+
σx̃j w̃

i
x̃n ϕ̃

i
x̃j1{j<n}

+ (w̃ix̃jσx̃j − w̃
i
x̃nσ

2
x̃j − p̃σx̃i)1{j<n}ϕ̃

i
x̃n + f̃ iϕ̃i,∫

Rn+
w̃iψ̃x̃i =

∫
Rn+

(
d̃− (w̃iσx̃i1{i<n})x̃n

)
ψ̃.

This shows that (w̃, p̃) solves distributionally

−div (∇w̃) +∇p̃ = −divB + f̃ in Rn+,
−div w̃ = D in Rn+,
γ(w̃) = 0 on Rn−1

with

Bij =

{
σx̃j w̃

i
x̃n

for j < n,

(w̃ix̃jσx̃j − w̃
i
x̃n
σ2
x̃j
− p̃σx̃i)1{j<n} for j = n,

and
D = d̃− (w̃iσx̃i1{i<n})x̃n .

Hence we can use (3.7) on Ω = Rn+ for (w̃, p̃) and data −divB + f̃ , D. It gives,
after taking into account the form of B,D,

‖∇w̃‖Lqω(Rn+) + ‖p̃‖Lqω(Rn+) ≤ c‖f̃‖(Ŵ 1,q′
0,ω′ (R

n
+))∗

+ c(|∇σ|∞ + |∇σ|2∞)(‖∇w̃‖Lqω(Rn+) + ‖p̃‖Lqω(Rn+)) + c‖d̃‖Lqω(Rn+) + |∇2σ|2∞‖w̃‖Lqω(Rn+).

Smallness of the bend, i.e., of derivatives of σ in relation to c = c(q, Aq,Rn+),
implies then

(3.8) ‖∇w̃‖Lqω(Rn+) + ‖p̃‖Lqω(Rn+) ≤ c‖f̃‖(Ŵ 1,q′
0,ω′ (R

n
+))∗

+ c‖d̃‖Lqω(Rn+) + δ‖w̃‖Lqω(Rn+).

Since Σ is a small, volume-preserving perturbation of identity, (3.8) gives for (w, p)
solving problem (3.5) with data f, d, g = 0 on Ω = E being a bended half-space with
a small bend

(3.9) ‖∇w‖Lqω(E) + ‖p‖Lqω(E) ≤ c(‖f‖(Ŵ 1,q′
0,ω′ (E))∗

+ ‖d‖Lqω(E) + ‖w‖Lqω(E)).

Next, let us consider a distributional solution (w, p) to our target problem (3.3), still
with g = 0. For a cutoff function η with a small support and an arbitrary test function,
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vector valued ϕ and scalar valued ψ, we have that∫
V

wixj (ϕ
iη)xj − p(ϕiη)xi =

∫
V

F ij(ϕiη)xj ,∫
V

wi(ψη)xi =

∫
V

dψη

for V being either the little-banded half-space E, when we localize near the boundary
∂Ω, or Rn, when we localize away from the boundary. Observe that due to our
assumption that ∂Ω ∈ C1 and ∂Ω is compact, we can always find a small absolute
number δ such that the intersection Bδ ∩ ∂Ω can be described with local coordinates
σ, such that ‖∇σ‖∞ is conveniently small for any Bδ ⊂ Rn. We introduce a partition
of unity ηk on Ω, where ηk have support on a Bδ and a number c. The localized
functions w̄ = wηk, p̄ = pηk − c satisfy distributionally

−div (∇w̄) +∇p̄ = h− divH in V,

−div w̄ = wiηkxi + d̄ in V

(w̄ = 0 on ∂E in case of V = E),

where

hi = F ijηxj + wixjη
k
xj + pηkxi , Hij = wiηkxj + F ijηk.

Estimates (3.6), (3.9) give

‖∇w̄‖Lqω(V ) + ‖p̄‖Lqω(V )

≤ C(ηk, q, Aq,Ω)

(
‖F‖Lqω(Ω)+‖d‖Lqω(Ω)+‖w‖Lqω(Ω)+‖∇w‖(Ŵ 1,q′

0,ω′ (Ω))∗
+‖p‖

(Ŵ 1,q′
0,ω′ (Ω))∗

)
.

Hence, summing over k and using the weighted Poincaré inequality (see Theorem 2.3
of [22]) and choosing c = 〈p〉Ω, we arrive at

(3.10)

‖w‖W 1,q
ω (Ω) + ‖p− 〈p〉‖Lqω(Ω)

≤ C(q, Aq,Ω)

(
‖F‖Lqω(Ω) + ‖w‖Lqω(Ω) + ‖d‖Lqω(Ω) + ‖p‖

(Ŵ 1,q′
0,ω′ (Ω))∗

)
.

To conclude, we need to show that (3.10) implies the thesis (3.4). To this end we will
use the classical Agmon–Douglis–Nirenberg reasoning by contradiction. Recall that
we work, by assumption, with (w, p) ∈ W 1,q

ω (Ω)× Lqω(Ω). Assume that (3.4) is false,
i.e., that there is a sequence (wj , pj) ∈W 1,q

ω (Ω)×Lqω(Ω), Fj , dj ∈ Lqω(Ω) solving (3.3)
such that

Cj := ‖wj‖W 1,q
ω (Ω) + ‖pj − 〈pj〉‖Lqω(Ω) ≥ j(‖Fj‖Lqω(Ω) + ‖dj‖Lqω(Ω)).

Due to linearity of (3.3), Wj :=
wj
Cj

and Pj :=
pj−〈pj〉
Cj

solve (3.3) with force Rj :=
Fj
Cj

and compressibility Dj :=
dj
Cj

. Observe we have 〈Pj〉 = 0. Hence we have by our

above assumption

1 = ‖Wj‖W 1,q
ω (Ω) + ‖Pj‖Lqω(Ω) ≥ j

(
‖Rj‖Lqω(Ω) + ‖Dj‖Lqω(Ω)

)
.
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It means that we can find a (nonrelabeled) subsequence and respective limits:

∇Wj → ∇W∞ weakly in Lqω(Ω), strongly in (W 1,q′

0,ω′(Ω))∗,

Wj →W∞ weakly in W 1,q
ω (Ω), strongly in Lqω(Ω),

Pj → P∞ weakly in Lqω(Ω), strongly in (W 1,q′

0,ω′(Ω))∗,

Rj → 0, Dj → 0 strongly in Lqω(Ω),

where the first two strong limits follow from compact embeddings W 1,q
ω ↪→ Lqω ↪→

(W 1,q′

0,ω′)
∗; see Theorem 2.3 of [22] for the former and Lemma 2.5 for the latter.

Moreover, taking limit j →∞ in (3.3) solved by (Wj , Pj), with data Rj , Dj , 0, we
see that (W∞, P∞) = (0, 0) in view of uniqueness of the zero solution (with zero mean
pressure) to (3.3). The uniqueness of the zero solution follows, for instance, from the
fact that within Muckenhoupt weights we have for a bounded Ω that Lpω(Ω) ↪→ Ls(Ω)
for a certain s > 1. Consequently, we can use a classical uniqueness theorem in Ls,
which can be found, for instance, in section 3 of Borchers and Miyakawa [6]. Hence

1 = ‖Wj‖W 1,q
ω (Ω) + ‖Pj‖Lqω(Ω)

≤ C(q, Aq,Ω)
(
‖Rj‖Lqω(Ω) + ‖Wj‖Lqω(Ω) + ‖Dj‖Lqω(Ω) + ‖Pj‖(W 1,q′

0,ω,(Ω))∗

) j→0

→ 0,

which contradicts (3.10).
We have reached the thesis (3.4) for g = 0. In order to include the nonhomo-

geneous case g 6= 0, recall that the trace space T qω(Ω) (or its homogeneous version
T̂ qω(Ω)) is defined via the existence of an extension γ−1 : T qω(Ω)→ W 1,q

ω (Ω), which is
linear and bounded). Therefore (3.3) can be transferred into (w̃, p) := (w − γ−1g, p),
which is a solution to the following system:

−div (εw̃) +∇p = −div (F − εγ−1g) in Ω,

div w̃ = d− div (γ−1g) in Ω,

γ(w̃) = 0 on ∂Ω,

and the result can be achieved using the estimate for homogeneous boundary
data.

3.2. Proof of Theorem 3.1. Recall for section 2.4 that due to the miracle
of extrapolation, it is sufficient to prove the desired estimates in the case L2

ω(Ω),
with ω ∈ A2. By our assumption, (v, π) solves (1.1) and ∇v, π ∈ Ls(Ω) for some
s ∈ (1,∞). Due to boundedness of Ω, we can assume without loss of generality that
s ∈ (1, 2]. The first idea behind our estimate is to approximate ω by ωj such that
∇v, π ∈ L2

ωj (Ω). By (2.7), we have for ω̃1 = (M∇v)s−2 ∈ A2 and ∇u ∈ L2
ω1

(Ω) as

well as for ω̃2 = (Mp)s−2 ∈ A2 and π ∈ L2
ω2

(Ω). Let us take ω̃3 = min {ω̃1, ω̃2} and
ωj = min {jω̃3, ω}. Obviously, ∇u ∈ L2

ωj (Ω) and f ∈ L2
ωj (Ω). But moreover, by (2.4),

we find that A2(ωj) ≤ A2(ω)+A2(ω3), since Aq(ω1) = Aq(jω3) directly by definition.
For this ωj we perform now the following a priori estimate.

Let us rewrite (1.1) as a distributional formulation of the linear Stokes problem

(3.11)

∫
Ω

µ ε(v) · ∇ϕ+ πdivϕdx =

∫
Ω

(f − S(x, ε(v)) + µ ε(v)) · ∇ϕ.

Since ∇v ∈ L2
ωj , we can use an estimate of Lemma 3.2 and Assumption 1.1 to provide

the following absorption with C = C(A2(ω) +A2(ω3),Ω):
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‖∇v‖2L2
ωj

(Ω) + ‖π − 〈π〉‖2L2
ωj

(Ω) ≤ C
∫

Ω

|f |2ωj + |S(x, ε(v))− µ ε(v)|2ωj

≤C
∫

Ω

(|f |2+2c21m
2+2c22 + 2µ2m2)ωj+C

∫
{|ε(v)|≥m}

|S(x, ε(v))−µε(v)|2

|ε(v)|2
|ε(v)|2ωj .

Due to the assumed linearity-at-infinity we can find such m = m0 that the last
summand on the right-hand side. above does not exceed half of the first of the left-
hand side. Consequently

‖∇v‖L2
ωj

(Ω) + ‖π − 〈π〉‖L2
ωj

(Ω) ≤ C(A2(ω) +A2(ω3), µ,Ω)

(
1 + ‖f‖L2

ωj
(Ω)

)
.(3.12)

Observe that the above constant is j-uniform. Next, we let j → ∞ in (3.12). For
the right-hand side, we use the fact that ωj ≤ ω, and for the left-hand side we use
the monotone convergence theorem (notice here that ωj ↗ ω since ω3 < ∞ almost
everywhere). Consequently

‖∇v‖L2
ω(Ω) + ‖π − 〈π〉‖L2

ω(Ω) ≤ C(A2(ω) +A2(ω3),Ω)
(

1 + ‖f‖L2
ω(Ω)

)
.(3.13)

This implies the quantitative estimate, but with C still depending on A2(ω3). There-
fore we use from (3.13) only the qualitative information ∇v, π ∈ L2

ω and redo the
absorption for ω alone. Consequently one gets the desired estimate with dependence
on A2(ω) alone. Therefore the extrapolation [15, Theorem 1.4] can be applied and
the theorem is proved.

4. Proofs of the technical results. This section contains proofs of Theo-
rem 1.9 (solenoidal, biting, weighted div-curl lemma) and Theorem 1.10 (solenoidal
Lipschitz truncations). Let us begin with the latter, since it is needed in the proof of
the former.

4.1. Lipschitz truncations. Since even the optimal regularity of (1.1) for q < 2
is insufficient for u to be a test function, we resort to Lipschitz truncations. It is a
standard tool by now, originally developed in Acerbi and Fusco [1] and Frehse, Málek,
and Steinhauer [20] (see also Diening, Málek, and Steinhauer [18]). Recently a further
advance was provided that is important for the fluid dynamics considerations, namely,
a solenoidal Lipschitz truncation; compare Breit, Diening, and Fuchs [8] and Breit,
Diening, and Schwarzacher [9]. Let us present weighted estimates for the solenoidal
Lipschitz truncations developed in [9] and fine-tune them for our purposes.

Lemma 4.1 (solenoidal Lipschitz approximation on balls). Let B ⊂ Rn be a
ball and s > 1. Let g ∈ W 1,s

0,div (B). Then, for all λ > λ0, there exists a Lipschitz

truncation gλ ∈W 1,∞
0,div (2B) such that

gλ = g and ∇gλ = ∇g in {M(∇g) ≤ λ} ⊂ 2B,(4.1)

|∇gλ| ≤ |∇g|χ{M(∇g)≤λ} + C λχ{M(∇g)>λ} almost everywhere.(4.2)

Further, if ∇g ∈ Lpω(Ω) for some 1 ≤ p <∞ and ω ∈ Ap, then∫
2B

|∇gλ|pω dx ≤ C
∫
B

|∇g|pω dx,∫
2B

|∇(g − gλ)|pω dx ≤ C
∫
B∩{M(∇g)>λ}

|∇g|pω dx,
(4.3)

where the constant C depends on (Ap(Ω),Ω, N, p) and λ0 = c(s, n)
(
−
∫
B
|∇g|s dx

) 1
s .

D
ow

nl
oa

de
d 

10
/0

4/
17

 to
 1

95
.1

13
.3

0.
25

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Proof. All statements except for (4.3) are already contained in [9, Lemma 4.3
and Theorem 4.4]. Please observe, that although the construction there is done in the
three-dimensional case, the arguments are in fact valid in all dimensions by replacing
the inverse-curl operator with its n-dimensional analogue as defined in Remark 2.18
in [9].

The first inequality of (4.3) follows directly from the second, so it is enough to
prove the latter.

Let us extend both g and gλ by 0 outside B and 2B, respectively. It follows
from (4.1) and (4.2) that

(4.4)
‖∇(g − gλ)‖Lpω(Rn) = ‖∇(g − gλ)χ{M(∇g)>λ}‖Lpω(Rn)

≤ ‖∇g χ{M(∇g)>λ}‖Lpω(B)
+ C ‖λχ{M(∇g)>λ}‖Lpω(Rn)

.

The second term will be handled by a Calderón–Zygmund-type covering argument.
As {M(∇g) > λ} ⊂ 2B is open, for every x ∈ {M(∇g) > λ} there is a ball Br(x)(x) ⊂
{M(∇g) > λ} such that

λ < −
∫
Br(x)

|∇g|dx ≤ 2λ.(4.5)

These balls cover {M(∇g) > λ}. Next, using the Besicovich covering theorem,
we extract from this cover a countable subset Bi which is locally finite, i.e.,

#{j ∈ N; Bi ∩Bj 6= ∅} ≤ C(n).(4.6)

In the following, for a measurable set A we write |A|ω =
∫
A
ωdx. Using (4.5), (2.2),

and (4.6), we have the following estimate:

‖λχ{M(∇g)>λ}‖
p

Lpω(Rn)
= λp|{M(∇g) > λ}|ω ≤

∑
i

λp|Bi|ω ≤
∑
i

(
−
∫
Bi

|∇g| dx
)p
|Bi|ω

≤
∑
i

−
∫
Bi

|∇g|pω dx
(
−
∫
Bi

ω−(p′−1) dx

) 1
p′−1

|Bi|ω ≤ Ap(ω)
∑
i

∫
Bi

|∇g|pω dx

≤ C(n)Ap(ω)

∫
{M(∇g)>λ}

|∇g|pω dx = C(n)Ap(ω)

∫
B

|∇g|pχ{M(∇g)>λ}ω dx.

This directly leads to the inequality

‖λχ{M(∇g)>λ}‖Lpω(Rn)
≤ C(n)Ap(ω)

1
p ‖∇g χ{M(∇g)>λ}‖Lpω(B)

,

which used in (4.4) finishes the proof of the desired estimate (4.3).

Next, we provide a proof of Theorem 1.10. We lose the zero trace of its counterpart
on balls from the preceding Lemma 4.1 but deal with Lipschitz truncation on general
domains Ω.

Proof of Theorem 1.10. We use the construction of [9, section 4]. The fact that g
has zero trace in a ball is used only in Lemmas 4.2 and 4.3 there, so all other results
can be directly applied to our situation. The construction of gλ and Lemma 4.1 of
[9] are valid in all dimensions and for a general domain Ω with no changes, except for
the replacing of the inverse-curl operator with the n-dimensional analogue, as defined
in Remark 2.18 of [9]. Moreover, by using for general Ω the local estimates intended
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for balls in [9], one loses only information of the zero trace, but all estimates hold
and the solenoidality is preserved. For instance, the argument in the proof of Lemma
4.3 implies in our case that gλ ∈ W 1,1

div (Ω) (no zero trace). Moreover, the proof of
Theorem 4.4 of [9] implies all the above assertions needed by us, with the exception
of (1.21). These weighted estimates follow from redoing the argument in Lemma 4.1,
by replacing B there with Ω.

4.2. Solenoidal, generalized div-curl lemma. Let us focus now on the proof
of Theorem 1.9. It is divided into several steps for clarity.

4.2.1. Preliminary Step 0. First, by the reflexivity and separability of Lqω, L
q′

ω

together with the assumption (1.12) and due to the embedding Lq
′

ω (Ω) ↪→ L1+δ(Ω)
(compare with (2.8)), we find a subsequence

(4.7) sk ⇀ s weakly in Lq
′

ω (Ω) ∩ L1(Ω), ak ⇀ a weakly in Lqω(Ω) ∩ L1(Ω).

In the following, it remains to show (1.18). Since we aim to show convergence on
a (large) subset of Ω we may assume without loss of generality that ∂Ω is C∞-smooth.

4.2.2. Step 1. Reduction to the nonsolenoidal case. Let us consider the
linear Stokes problem

(4.8)
−div (ε(wk)) +∇pk = −div sk in Ω,

divw = 0 in Ω

with homogeneous boundary values. Lemma 3.2 and assumption (1.12) imply that

(4.9) ‖∇wk‖
Lq
′
ω (Ω)

+ ‖pk‖
L̊q
′
ω (Ω)

≤ C
(

1 + ‖sk‖
Lq
′
ω (Ω)

)
≤ C.

Hence assumption (1.12) and the embedding (2.8) implies that we may pass to a
subsequence, such that

pk ⇀ p weakly in Lq
′

ω (Ω).(4.10)

Let us consider bk =: sk+pkId. Assume for a moment that for every bounded sequence
{ck}∞k=1 in W 1,∞

0 (Ω) such that

∇ck ⇀∗ 0 weakly∗ in L∞(Ω)

one has

(4.11) lim
k→∞

∫
Ω

bk · ∇ck dx = 0.

Then, making in the nonsolenoidal, weighted, biting div-curl lemma, i.e., Theorem
2.6 of [11], the choices

ak =: ak, bk =: bk,

we see via our assumptions and (4.9) that the assumptions of the nonsolenoidal lemma
are satisfied. Its thesis implies existence of a subsequence such that

ak ⇀ a weakly in L1(Ω),(4.12)

bk ⇀ b weakly in L1(Ω),(4.13)

ak · bkω ⇀ a · b ω weakly in L1(Ωj) for all j ∈ N.(4.14)
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Due to (4.7), we identify b = s + pId. Finally, assumption (1.15) gives, after
decreasing Ωj slightly, via Egoroff’s theorem

(4.15) pkId · akω = pk tr(ak)ω ⇀ p tr(a)ω = pId · aω weakly in L1(Ωj),

thanks to (4.10), uniqueness of the limiting a, and the strong-weak coupling.
Subtracting from (4.14) with bk =: sk + pkId and b = s+ pId the formula (4.15)

we arrive at (1.18). The limits (1.16), (1.17) are given as (4.7) and (4.12).
Consequently, we are left with justifying the compactness condition (4.11). Since

the first equation of (4.8) can be rewritten as

(4.16) div bk = div∇wk,

the condition (4.11) is equivalent to the strong-L1 precompactness of ∇wk. We will
accomplish this in the following three steps.

4.2.3. Step 2. Solenoidal truncations. Let us use Theorem 1.10 to truncate
solenoidally wk at height λ, producing wk,λ. For the following dual forcing given by

Q(η) := |η|q
′−2η,

let us consider the following auxiliary linear Stokes problem:

(4.17)
−div (ε(zk,λ)) +∇tk,λ = −divQ(∇wk,λ) in Ω,

div zk,λ = 0 in Ω

with null boundary values. Boundedness of Q(∇wk,λ) for a fixed λ and Lemma 3.2
imply that for any finite p one has

‖zk,λ‖W 1,p
0,div

+ ‖tk,λ‖Lp ≤ C(λ)

and the regularity is inherited by the limiting equation with respect to k →∞, which
reads

(4.18)
−div (ε(zλ)) +∇tλ = −div Qλ in Ω,

div zλ = 0 in Ω

with null boundary values. The above Qλ denotes the Lqω weak limit of Q(∇wk,λ)
(since Q(∇wk), hence Q(∇wk,λ) is k-uniformly bounded in Lqω).

For a non relabeled subsequence of Qλ, let us immediately denote its Lqω weak
limit by Q0.

4.2.4. Step 3. A nonweighted weak-L1 limit for truncations. Our aim
in this step is to show, for a fixed λ (possibly, again on a nonrelabeled subsequence),
that for k →∞

(4.19) Q(∇wk,λ) · ∇wk ⇀ Qλ · ∇w weakly in L1(Ω).

Due to (4.9) and boundedness of ∇wk,λ, we see that Q(∇wk,λ) · ∇wk is k-uniformly
Lq
′

ω ⊂ L1+δ integrable, hence equi-integrable. Consequently, it possesses a weakly-L1

converging subsequence. Now, to identify it with Qλ · ∇w, it suffices to show that for
all η ∈ D(Ω) we have

(4.20) lim
k→∞

∫
Ω

Q(∇wk,λ) · ∇wk η =

∫
Ω

Qλ · ∇w η.
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Let us write∫
Ω

Q(∇wk,λ)·∇wkη =

∫
Ω

(Q(∇wk,λ)−ε(zk,λ))·∇wkη+

∫
Ω

ε(zk,λ)·∇wkη =: Ik,λ+IIk,λ.

One has

Ik,λ =

∫
Ω

(
Q(∇wk,λ)−ε(zk,λ)

)
·∇(wkη) dx−

∫
Ω

(
Q(∇wk,λ)−ε(zk,λ)

)
·
(
wk ⊗∇η

)
dx

=

∫
Ω

tk,λdiv (wkη) dx−
∫

Ω

(
Q(∇wk,λ)− ε(zk,λ)

)
·
(
wk ⊗∇η

)
dx

=

∫
Ω

tk,λwk∇η dx−
∫

Ω

(
Q(∇wk,λ)− ε(zk,λ)

)
·
(
wk ⊗∇η

)
dx,

where for the second equality above we used (4.17) and for the last one solenoidality
of wk. We have obtained formulas with a coupling of wk, strong converging in Lq

′

ω ⊂
L1+δ, and the remainders weak converging in Lp with any finite p. Hence we can pass
to the limit and recover it by reverse equalities as follows:

lim
k→∞

Ik,λ =

∫
Ω

tλw∇η dx−
∫

Ω

(Qλ − ε(z)) · (w ⊗∇η) dx

=

∫
Ω

tλdiv (wkη) dx−
∫

Ω

(Qλ − ε(z)) · (w ⊗∇η) dx

=

∫
Ω

(Qλ − ε(zλ)) · ∇w η.

Function wkη with the Bogovskii correction4 is admissible in (4.17). Therefore we
can write for IIk,λ

IIk,λ =

∫
Ω

ε(wk) · ∇(zk,λη)dx−
∫

Ω

ε(wk) · (zk,λ ⊗∇η)dx

=

∫
Ω

ε(wk) · ∇(zk,λη − Bog(zk,λ ⊗∇η))dx+

∫
Ω

ε(wk) · ∇
(
Bog(zk,λ ⊗∇η)

)
dx

−
∫

Ω

∇wk · (zk,λ ⊗∇η)dx

=

∫
Ω

sk · ∇(zk,λη − Bog(zk,λ ⊗∇η))dx+

∫
Ω

∇wk · ∇
(
Bog(zk,λ ⊗∇η)

)
dx

−
∫

Ω

∇wk · (zk,λ ⊗∇η)dx,

where for the second equality above we used, this time, (4.8). We use our assumption
(1.14) to pass to the limit in the first term above. For the last two terms, we invoke
continuity of the Bogovskii operator in Lp spaces to pass to the respective limits,
thanks to the strong-weak coupling. Using for the limit (4.8) to reverse, we see that

lim
k→∞

IIk,λ =

∫
Ω

ε(zλ) · ∇w η.

Putting together limits for Ik,λ and IIk,λ, we obtain (4.20), thus (4.19).

4Compare Bogovskii [4, 5] and Diening, Růžička, and Schumacher [19].

D
ow

nl
oa

de
d 

10
/0

4/
17

 to
 1

95
.1

13
.3

0.
25

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4260 M. BULÍČEK, J. BURCZAK, AND S. SCHWARZACHER

4.2.5. Step 4. A weighted weak-L1 biting limit. Our goal here is to show
that Q(∇wk) · ∇wkω tends to Q0 · ∇w ω weakly in L1(Ω); in fact, we will have to
decrease Ω slightly. Recall that (4.19) does not involve a weight ω. Therefore, we
decompose an arbitrary ω ∈ Aq′ as follows:

ω =
ω

1 + δω
+

δω2

1 + δω

with the former summand bounded for any δ > 0. Let us write
(4.21)
Q(∇wk) · ∇wkω −Qλ · ∇w ω

=
(
Q(∇wk,λ) · ∇wk −Qλ · ∇w

)
ω + (Q(∇wk)−Q(∇wk,λ)) · ∇wk ω

=
(
Q(∇wk,λ) · ∇wk −Qλ · ∇w

) ω

1 + δω
+
(
Q(∇wk,λ) · ∇wk −Qλ · ∇w

) δω21{ω≤λ}

1 + δω

+
(
Q(∇wk,λ) · ∇wk −Qλ · ∇w

) δω21{ω>λ}

1 + δω
+ (Q(∇wk)−Q(∇wk,λ)) · ∇wk ω

=: IIIk,λδ + IV k,λδ + V k,λδ + V Ik,λ.

We will deal with IIIk,λδ and IV k,λδ directly via (4.19). Indeed, (4.19) extends auto-
matically to its weighted version, as long as the involved weight is bounded. There-
fore, as for fixed λ, δ the respective weights are bounded, we have for an arbitrary
ψ ∈ L∞(Ω)

(4.22) lim
k→∞

∫
IIIk,λδ ψ = 0, lim

k→∞

∫
IV k,λδ ψ = 0.

In relation to V k,λδ we write, using the Hölder inequality,
(4.23)∫

V k,λδ ψ ≤ ‖ψ‖∞
∫ (
|Q(∇wk,λ)||∇wk|+ |Qλ||∇w|

) δω21{ω>λ}

1 + δω

≤ ‖ψ‖∞‖Q(∇wk,λ)‖Lq
δω21{ω>λ}

1+δω

‖∇wk‖
Lq
′
δω21{ω>λ}

1+δω

+ ‖ψ‖∞
∫
|Qλ||∇w|

δω2

1 + δω

≤ ‖ψ‖∞‖∇w
k‖2Lq′ω1{ω>λ}

+ ‖ψ‖∞
∫
|Qλ||∇w|

δω2

1 + δω
,

where for the second inequality we used growth of Q, (1.21) and δω2

1+δω ≤ ω almost
everywhere.

Let us apply the biting lemma, Lemma 2.6, on the sequence |∇wk|q
′

ω; compare
(4.9). Consequently, there is a sequence Ωj such that |Ω\Ωj | → 0 and for any K ⊂ Ωj
it holds that

(4.24)

∫
K

|∇wk|q
′

ω ≤ ε

k-uniformly, as long as |K| ≤ δε,j . The Chebyshev inequality for ω, integrable by
definition, indicates that the role of K may play {ω > λ} for sufficiently large λ, as
long as we restrict ourselves to Ωj in (4.22) and (4.23). Indeed, in tandem with the
above application of the biting lemma, for every j and ε there exists λεj , such that
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{w>λ}∩Ωj

|∇vk|q
′

ω ≤ ε for every λ ≥ λεj .(4.25)

Consequently, a restriction to Ωj does not change (4.22) and allows us to write via
use of (4.25) in (4.23) that for any ε and each λ ≥ λεj

(4.26)

∫
Ωj

V k,λδ ψ ≤ Cε+ C(‖ψ‖∞)

∫
Ωj

|Qλ||∇w|
δω2

1 + δω
.

Since |Qλ||∇w| δω
2

1+δω ≤ |Qλ||∇w|ω with the latter integrable via the Hölder inequality,
the Lebesgue dominated convergence used for the last summand of (4.26) implies
altogether

(4.27) lim sup
δ→∞

lim sup
k→∞

∫
Ωj

V k,λδ ψ ≤ Cε+ 0.

Finally, let us focus on V Ik,λ of (4.21). We deal with it using again the biting
lemma, together with the weak-L1 estimate for the maximal function

|{M(∇wk) > λ}| ≤
c‖∇wk‖L1(Ω)

λ
≤ C

λ
,

which indicates that here the role of the biting set K may play {M(∇wk) > λ} for
sufficiently large λ. Indeed, in tandem with the above application of the biting lemma,
for every j and ε there exists λεj , such that∫

{M(∇wk)>λ}∩Ωj

|∇wk|q
′

ω ≤ ε for every λ ≥ λεj .(4.28)

Let us use Theorem 1.10 to write

∣∣∣∫
Ωj

(Q(∇wk)−Q(∇wk,λ)) · ∇wk ω ψ
∣∣∣

=
∣∣∣∫
{M(∇(wk))>λ}∩Ωj

(Q(∇wk)−Q(∇wk,λ)) · ∇wk ω ψ
∣∣∣

≤ C‖ψ‖∞

(∫
Ω

|∇wk,λ|q
′

ω + |∇wk|q
′

ω

) 1
q
(∫
{M(∇(wk))>λ}∩Ωj

|∇(wk)|q
′

ω

) 1
q′

,

(4.29)

where, for the inequality, we used growth of Q.
Putting together (4.29) and (4.28) we see that for every j and ε there exists λεj

such that

(4.30)
∣∣∣∫

Ωj

V Ik,λψ
∣∣∣ ≤ C‖ϕ‖∞ε 1

q′ for every λ ≥ λεj .

Altogether, integrating (4.21) over Ωj , taking in its right-hand side

lim sup
λ→∞

lim sup
δ→∞

lim sup
k→∞

,

and using (4.22), (4.27), and (4.30), we see that for any j it holds that

(4.31) Q(∇wk) · ∇wkω ⇀ Q0 · ∇w ω weakly in L1(Ωj).
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4.2.6. Step 5. Justifying the compactness condition (4.11) via weighted
monotonicity. Finally, (4.31) together with radial unboundedness (coercivity) and
strict monotonicity of Q imply

∇wk → ∇w a.e. in Ωj .

For more details on this step, compare, for instance, pp. 52–53 of the book by
Roub́ıček [33]. The diagonal argument gives us a subsequence such that

∇wk → ∇w a.e. in Ω.

This together with (4.9) implies uniform integrability and hence via the Vitali’s the-
orem L1 strong sequential precompactness of ∇wk.

The proof of Theorem 1.9 is complete.

5. Proofs of main results. This section is dedicated to the proofs of Theo-
rem 1.4, Theorem 1.5, and Corollary 1.7. Theorem 1.4 is a special case of Theo-
rem 1.5, so let us focus on the latter. The main ingredients of its proof are a priori
estimates provided by Theorem 3.1, limit identification by Theorem 1.9, and weighed
considerations that allow us to provide optimal regularity.

5.1. Existence. Step 1. Approximate problems. Recall that an arbitrary
f ∈ Lqω(Ω) with ω ∈ Aq, 1 < q < ∞, is a force of the considered problem (1.1). We
have by (2.8) that f ∈ Ls0(Ω) for an s0 ∈ (1, 2). Formula (2.6) with α = 2−s0 implies
that (Mf)s0−2 ∈ A2, hence also ω0 := (1 +Mf)s0−2 belongs to A2. Consequently we
have f ∈ L2

ω0
(Ω); compare (2.7).

Let us define fk := fχ{|f |<k}. Then

fk → f strongly in L2
ω0

(Ω) ∩ Ls0(Ω) ∩ Lqω(Ω).(5.1)

For our fk ∈ L2(Ω) we can use the standard monotone operator theory to find vk ∈
W 1,2

0 (Ω) satisfying

(5.2)

∫
Ω

S(x, ε(vk)) · ∇ϕ =

∫
Ω

fk · ∇ϕ for all ϕ ∈W 1,2
0,div (Ω).

It is equivalent to finding (vk, πk) ∈W 1,2
0 (Ω)× L̊2(Ω) solving weakly (1.1).

By Theorem 3.1 (used three times, for Lqω(Ω), Ls0(Ω) and for L2
ω0

(Ω)), we find
that uniformly in k
(5.3)

‖∇vk‖Lqω(Ω) + ‖πk‖Lqω(Ω) ≤ C(1 + ‖fk‖Lqω(Ω)) ≤ C(1 + ‖f‖Lqω(Ω)),

‖∇vk‖L2
ω0

(Ω) + ‖πk‖L2
ω0

(Ω) + ‖∇vk‖Ls0 (Ω) + ‖πk‖Ls0 (Ω) ≤ C(1 + ‖fk‖L2
ω0

(Ω)) ≤ Cf .

5.2. Existence. Step 2. Limit passage. Using the estimate (5.3), the reflex-
ivity of the corresponding spaces, the unique identification of the limit v in W 1,1(Ω),
and the growth of Assumption 1.1, we obtain for a (nonrelabeled) subsequence

vk ⇀ v weakly in W 1,s0
0 (Ω),(5.4)

(∇vk, πk) ⇀ (∇v, π) weakly in L2
ω0

(Ω) ∩ Ls0(Ω) ∩ Lqω(Ω),(5.5)

S(x, ε(vk)) ⇀ S0 weakly in L2
ω0

(Ω) ∩ Ls0(Ω) ∩ Lqω(Ω).(5.6)
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Hence the lower weak semicontinuity implies via (5.3)

(5.7)
‖∇v‖Lqω(Ω) + ‖π‖Lqω(Ω) ≤ C(1 + ‖f‖Lqω(Ω)),

‖∇v‖Ls0 (Ω) + ‖∇v‖L2
ω0

(Ω) ≤ Cf .

Convergences (5.6) and (5.1) used in (5.2) imply∫
Ω

S0 · ∇ϕ =

∫
Ω

f · ∇ϕ for all ϕ ∈W 1,∞
0,div (Ω).(5.8)

Hence, to complete the proof of Theorem 1.5, it remains to identify the limit
properly, i.e., to show

S0(x) = S(x,∇v(x)) in Ω,(5.9)

because then the optimal regularity will be given by the first line of (5.7).

5.3. Existence. Step 3. Limit identification. This is the central part of
our proof. Its crucial part will follow from the solenoidal, weighted, biting div-curl
lemma, i.e., Theorem 1.9.

Recall that the classical way of identifying the limit in nonlinear problems, namely,
use of monotonicity and dealing with the most nonlinear part via the equation, is
impossible in our very weak setting, since one cannot use u as a test function in (5.8).

Observe also that taking the weighed limits is crucial to end up with optimal
regularity related to f (recall our weight ω0 is related to Mf).

Let us use Theorem 1.9 with the following choices:

q = q′ = 2, ω = ω0, ak = ∇vk, sk = S(·, ε(vk)).

The uniform boundedness assumption (1.12) is satisfied thanks to (5.3). The compact-
ness assumption (1.13) holds thanks to the weak formulation (5.2) with dk as the test
function. Finally, the compensation assumptions (1.14), (1.15) hold automatically,
since our ak is a gradient of a solenoidal function.

Thesis of Theorem 1.9 provides thence, for a nonrelabeled subsequence and a
nondecreasing sequence of measurable subsets Ωj ⊂ Ω with |Ω \ Ωj | → 0 as j → ∞,
that

(5.10) S(·, ε(vk)) · ∇vkω0 ⇀ S0 · ∇v ω0 weakly in L1(Ωj).

The last needed step, from (5.10) to (5.9), will be performed via monotonicity.
Let us take any B ∈ L2

ω0
(Ω). Using (5.10), (5.5), and (5.6), we get

(5.11)
(S(x, ε(vk))−S(x,B))·(∇vk−B)ω0 ⇀ (S0−S(x,B))·(∇u−B)ω0 weakly in L1(Ωj).

Monotonicity of S implies that the limit is signed as well, thus

(5.12)

∫
Ωj

(S0 − S(x,B)) · (∇v −B)ω0 dx ≥ 0

for any j ∈ N. Consequently

∞ >

∫
Ω

(S0 − S(x,B)) · (∇v −B)ω0 ≥
∫

Ω\Ωj
(S0 − S(x,B)) · (∇v −B)ω0.
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Observe that the integrals above are well defined due to (5.5), (5.6), and the assumed
growth of S. Therefore, recalling that |Ω \ Ωj | → 0 as j → ∞, we let j → ∞ and
obtain

∞ >

∫
Ω

(S0 − S(x,B)) · (∇v −B)ω0 dx ≥ 0 for all B ∈ L2
ω0

(Ω).

Choosing B := ∇u− εG with an arbitrary G ∈ L∞(Ω), we get

∞ >

∫
Ω

(S0 − S(x,∇v − εG)) ·Gω0 dx ≥ 0.

Finally, using the Lebesgue dominated convergence theorem, Assumption 1.1 (growth
and continuity), we let ε→ 0+ to deduce∫

Ω

(S0 − S(x,∇v)) ·Gω0 dx ≥ 0.

Choosing

G := − S0 − S(x,∇v)

1 + |S0 − S(x,∇v)|
and utilizing that ω0 is strictly positive almost everywhere in Ω, we arrive at validity
of (5.9) a.e. in Ω. Consequently∫

Ω

S(x,∇v) · ∇ϕ =

∫
Ω

f · ∇ϕ for all ϕ ∈W 1,∞
0,div (Ω)(5.13)

with estimate (5.7).
We have ended the proof of the existence part of Theorem 1.5. The estimate (1.9)

is given by Theorem 3.1. Hence, to conclude the proof of Theorem 1.5, we are left
with showing its uniqueness statement.

5.4. Uniqueness. Recall that now the tensor S satisfies additionally Assump-
tion 1.2. A difference between two solutions u1 and u2 to (1.1) with the same force
f ∈ Lqω(Ω) satisfies

(5.14)

∫
Ω

(
S(x, ε(v1))− S(x, ε(v2))

)
· ∇ϕdx = 0

with the admissible class of ϕ dictated by the optimal Lqω-regularity of v1, v2; see
(1.9). Hence, if we could have chosen ϕ = v1 − v2, the assumed strict monotonicity
would imply v1 = v2. Therefore in the case Lqω(Ω) ⊂ L2(Ω) the proof is finished. But
generally, we find that f ∈ Ls0(Ω), merely for some s0 ∈ (1, 2]; compare section 5.1.
Such Ls0-regularity seems insufficient, since possibly s0 < 2. Nevertheless, we will be
able to show that ∇(v1 − v2) ∈ L2(Ω) via the weighted estimates and conclude the
uniqueness using this extra regularity for the difference.

To begin with, let us recall that f ∈ L2
ω0

(Ω) for ω0 = (1 +Mf)s0−2 and therefore
also ∇v1,∇v2 ∈ L2

ω0
(Ω). Let us rewrite the identity (5.14) into the form

(5.15)

∫
Ω

(ε(v1− v2))∇ϕ = µ−1

∫
Ω

(
µ ε(v1)−S

(
x, ε(v1)

)
−
(
µ εv2−S(x, ε(v2))

)
∇ϕ,

which is valid for all ϕ ∈W 1,∞
0,div (Ω).
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Let wj := min {1, (jω0)} and observe that ε(v1 − v2) ∈ L2
ωj (Ω) for a fixed j,

since ε(v1 − v2) ∈ L2
ω0

(Ω) in view of the previous subsection. Moreover, Ap(ωj) ≤
max(1, Ap(ω0)) in view of definition 2.3 and basic properties of weights stated in
subsection 2.4.1. Consequently, we can use the linear maximal regularity Lemma 3.2
to obtain
(5.16)∫

Ω

|ε(v1 − v2)|2ωj ≤ Cµ−1

∫
Ω

∣∣µ ε(v1)− S(x, ε(v1))−
(
µ ε(v2)− S(x, ε(v2))

)∣∣2 ωj
with finite right-hand side and j-independent C of, the latter due to Ap(ωj) ≤
max(1, Ap(ω0)). Next, using the estimate (2.1) of Lemma 2.2 in (5.16), we find that
for any δ > 0 ∫

Ω

|ε(v1 − v2)|2ωj ≤ Cµ−1δ

∫
Ω

|ε(v1 − v2)|2ωj + C(δ)ωj .(5.17)

Thus, setting δ := µ
2C yields∫

Ω

|ε(v1 − v2)|2ωj ≤ C(δ)

∫
Ω

ωj ≤ C,(5.18)

where the last inequality follows from the fact that Ω is bounded and ωj ≤ 1. Hence,
letting j → ∞ in (5.18), together with ωj ↗ 1 (which follows from the fact that
ω0 > 0 almost everywhere) and the monotone convergence theorem, implies∫

Ω

|ε(v1 − v2)|2 ≤ C.

Hence, via the Korn inequality, we see that v1 − v2 ∈ W 1,2
0 (Ω). Consequently, using

structural Assumption 1.2 on S, we have that (for details, see [11])∫
Ω

|S(x, ε(v1))− S(x, ε(v2))|2 ≤ C.

Therefore, (5.14) holds for all ϕ ∈ W 1,2
0,div (Ω), including ϕ := v1 − v2. The strict

monotonicity finishes the proof of the uniqueness of v. Recalling that we have fixed
the mean value of the pressure to 0, the uniqueness part of Theorem 1.5 is provided.

The entire Theorem 1.5 is now proved.

5.5. Proof of Corollary 1.7. The proof of Corollary 1.7 follows the lines of the
proof of Theorem 1.5, with rather straightforward modifications related to involved
inhomogeneities. More precisely, in Steps 1 and 2 of the proof of Theorem 1.5 we use
now the inhomogeneous estimate of Theorem 3.1. It implies weak convergence in the
respective spaces. To identify the limit (reconstruct the stress tensor) in Step 3, its
arguments can be shown for v−γ−1(g)−Bog(v−γ−1(g)), because the appearing extra
terms are converging due to the weak-strong coupling. The subsequent inequalities
can then be adapted immediately. The proof of the uniqueness is line by line the
same.
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[29] J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier—Stokes
equations and some of its generalizations, in Evolutionary Equations, C. Dafermos and
E. Feireisl, eds., Handb. Differ. Equ. 2, Elsevier, Amsterdam, 2005, pp. 371–459.

[30] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer.
Math. Soc., 165 (1972), pp. 207–226.
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[39] V. Šverák and X. Yan, Non-Lipschitz minimizers of smooth uniformly convex functionals,
Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 15269–15276.

[40] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory In-
tegrals, Princeton University Press, Princeton, NJ, 1993.
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