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2 A. JUNGEL

1. MoTIvATION

Entropy dissipation methods have been developed recenttwéstigate the qualitative be-
havior of solutions to nonlinear partial fterential equations (PDEs) and to derive explicit or
even optimal constants in functional inequalities. Theapyt was introduced by Rudolf Clau-
sius in 1865 as a state function in thermodynamics. Latedwligi Boltzmann, Josiah W. Gibbs,
and James C. Maxwell gave a statistical physics interpogtati entropy. In particular, Ludwig
Boltzmann defined in 1877 the entropy of a system, e.g. camgisf ideal gas patrticles, to be
proportional to the logarithm of the number of micro-staiethe system. Claude Shannon devel-
oped in 1948 a concept of information entropy measuringrmédion, choice, and uncertainty
in order to quantify the statistical nature of phone-lirgnsils.

The notion of entropy plays a fundamental role also in PDBre Loosely speaking, an
entropy (in the mathematical sense) is a quantity (Lyapdanegtional) which is non-increasing
along the trajectories of an evolution equation. The entrdigsipation is the negative time
derivative of the entropy. The concept of entropy was exaeroly Lax in 1973 to hyperbolic
conservation laws [31] and by DiPerna in 1985 [17] to the fauork of compensated compact-
ness. In kinetic theory, the entropy provides a priori eatas which were used for an existence
analysis (DiPerna-Lions 1989 [18]) and for compactnesdtes hydrodynamic limits (Bardos-
Golse-Levermore 1993 [3], Golse-Levermore 2005 [22], &3sint-Raymond 2004 [23]). The
Boltzmann entropy is employed to derive some informationualtbe long-time behavior of
the solutions to the Boltzmann equation and their decay (Btesvillettes-Villani 2001 [16]). In
particular, connections to logarithmic Sobolev ineqiggi{Gross 1975 [24], Del Pino-Dolbeault
[14]) and to stochastic fusion processes (Bakry-Emery 1983) were discovered. Thbhastic
ansatz was re-interpreted by Toscani in 1997 [39] for kmEtikker-Planck dfusion using the
notions of entropy and entropy dissipation.

The goal of these lecture notes is to introduce some aspeetgropy dissipation methods
which give insight in the structure of nonlinear PDEs anddbealitative behavior of their solu-
tions. In order to understand the idea of the methods, weidenBrst a simple example, the
heat equation

=AU Uu(-,0)=up=>0 ian, t>0,

whereT9 is the d-dimensional torus. It is well known that for integrable negative initial
dataug, there exists a smooth nonnegative solution satisfjlﬂt;ggj(x,t)dx: de Up(X)dx =: T

for all t > 0. We normalize the initial mass by settiig= U/meas(®). For simplicity, we write
u(t) = u(-,t). Thenu(t) is a function depending on the spatial variabig) : T — R. We introduce
the following functionals:

Hl[u]:dequg(%)dx, Hz[u]:%de(u—U)zdx

Observe that both functions are nonnegative. Indeed, &meegitary inequality log+1/z—1>0
for all z> 0 implies that, taking = u/w,

Osde(ulog(%)+w—u)dx:Ldulog(%)dx+ﬁdwdx—deudx: Hi.
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We claim thatH; andH> are both Lyapunov functionals along the solutions of the bgaa-
tion. First, we consideld,. By integration by parts, we find that

(1.1) %[u(t)]:f(u—U)utdx:f(u—U)Audx:—f IVul?dx <0,
Td Td Td

and thusH» is a Lyapunov functional along solutions to the heat equatithe expression on
the right-hand side is, up to the sign, the dissipation ofethigopyH,. This term allows us to
deduce more than just the monotonicityttf. For this, we need the Poincaré inequality

(1.2) ||u—U||fz(Q) < Cp||Vu||f2(Q) for all ue HY(Q),

whereQ c RY is a bounded domain. The Poincaré cons@is the inverse of the first non-
vanishing eigenvalue of the Laplace operator with homogeseNeumann boundary condi-
tions (Dautray-Lions 1988 [12], Corollary 3, p. 131). For sodomains, the consta@p can
be determined explicitly or can at least be estimated. Fstaimce, for bounded convex do-
mains,Cp < C(d)diam(@Q)/meas{2) with C(d) > 0 only depending on the space dimension 3
(Dautray-Lions [12], Proposition 3, p. 132); for boundedwex domains with Lipschitz bound-
ary,Cp < diam(@Q)/r (Payne-Weinberger 1960 [34]; Bebendorf 2003 [4]); fbe T9 (with unit
measure)Cp = 1/(27). The Poincaré inequality helps to relate the entrbpyto the entropy
dissipation. Indeed, combining (1.1) and (1.2), we infatth

dH, _ _ ~
~g¢ (U] = =lIVUlFy ) < ~CEHIU=TilF ) = ~2C5 Ha.
By the Gronwall inequality (or just integrating thisfidirential inequality),

(1.3) lu(t) ~ TlE e = Halu(t)] < Ha[uole™/“",  t>0.

Hence, the solution of the heat equation converges ih4mrm exponentially fast to the steady
stateu with explicit rate JCp.

Remark 1.1. This result is not surprising. Indeed, by semigroup theasy,can writeu as the
series

u(t) = Z e~ (uo, v )  2vks
k=1
whereuy is thek-th (normalized) eigenfunction teA with periodic boundary conditionsiy
is the corresponding eigenvalue with increasipg— o ask — oo, and ,-), 2 is the L? scalar

product. The first eigenfunction is constant and the corresponding eigenvalyeanishes.
Therefore, sinc@ = (Up, v1)| 201,

(o]
=112 — 2t 2 —2ot 2
Ut = T2y = €2 (U0 0% < € luliZ -
k=2

The convergence rate = 1/Cp is the same as in (1.3). O



4 A. JUNGEL

The strength of entropy dissipation methods is that suclhydpooperties can be derived in
other “norms” too which might be less acessible to semigtbapry and that nonlinear equations
can be treated as well. We illustrate the first statement bypeing the derivative off;:

(1.4) %[u(t)] _ fT d(log(%)+1)utdx

:_f V(Iog(g)+l)-VudX: —4f IV Vul2dx
Td w Td

Again, we need an expression relating the entidpyand the entropy dissipation. This is phrased
by the logarithmic Sobolev inequality (which will be proveelow, see Corollary 3.6 and the
following comments)

fulogidxsqfwmzdx for all Vue HY(Q), u>0,
Q w Q

whereQ c R%is a bounded domain. {& = T (with unit measure), the constadt equals ¥(272)
(Rothaus 1980 [35], Weissler 1980 [41], Dolbeault-Geniitgel 2006 [19]). This shows that

%[U(t)] < 4C[1H1 and Hifu(t)] < Hl[Uo]e_4t/C'-, t>0.

The solution converges in the “norm” &f; exponentially fast to its constant steady state with
rate 4C..

The above example shows that the entropy dissipation meites@nted above consists of the
following ingredients:

e an entropy functional,
e an entropy dissipation inequality, and
¢ arelation between the entropy and the entropy dissipation.

Entropy methods are important tools not only to prove thedttme behavior of solutions to
evolution equations. In fact, inequalities (1.1) and (J#vide a priori estimates, which can be
used in proving thglobal-in-time existencef weak solutions. Employing other entropy func-
tionals, theregularity of solutions may be proven. We will show below that an entrothod
can substitute theninimuryimaximum principlén systems of equations. This is of importance
since the classical maximum principle for elliptic or pashid second-order equations generally
does not hold in such situations. Furthermore, fetional inequalitiesvith explicit constants
can be proven.

In the following section we will specify which entropy fummhals are of interest. The above
technique will be explained for Fokker-Planck equationsiore detail in Section 3. Variants of
entropy methods will be presented in Section 4.

2. B~TrROPIES

We define the notions of entropy and entropy dissipation arelgpme examples of entropies
for the heat equation and the Boltzmann transport equation.
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2.1. Definitions. We start with some definitions. Throughout this section Xdie a Banach
space and le@: D(A) — X be some (possibly nonlinear) operator defined on its dorDé#).
We assume that there exists a smooth funady: D(A) — R satisfying

(2.5) w+Au=0 inQ,t>0, u(0)=up,

whereug € D(A). The regularity conditions can be relaxed but they simptife subsequent
arguments. We assume that the stationary equaticn0O possesses a steady stateu), € D(A).

Definition 2.1 (Lyapunov functional) Let H: D(A) — R be a functional satisfying
C:j—:l[u(t)] <0 forallt>0.

Then we call H d.yapunov functionahlong the trajectory (t).

As we stated already in the introduction, an entropy is aiipégapunov functional. In the
literature, there does not exist a standardized definiticentropy. We give in the following a
possible definition (taken from [32]) but we will use in thdseture notes the term “entropy”
also without verification or as being a convex, nonnegatiaplunov functional.

Definition 2.2 (Entropy) We call the functional HD(A) — R anentropyof (2.5)if the following
conditions are satisfied:

e His a Lyapunov functional;
e His convex;
e There exists a continuous functidn: R — R such that®(0) = 0 and

(2.6) d(u,Us) < ®(H[u] —H[uw]) forall ue D(A).

Definition 2.3 (Entropy dissipation)Let H be an entropy of2.5)and let u be a (smooth) solu-
tion to this equation. Then thentropy dissipatiom is defined as

D[u(®)] = —O('j—':[u(t)], t>0.

We call an entropy to be df-th orderif it contains partial derivatives ok-th order. For
instance, the following functionals may be zeroth-orddrapies:

1
u“d 0 1
T o a0t

H1[u]:fgu(logu—1)dx,

Ha[u] =

Ho[u] :fQ(u—Iogu)dx

When we wish to prove the decay rate of a solutigt) to the stationary state.,, it is more
appropriate to defineelative entropiese.g.

Ho[u] = _1 f(u“—uf;)dx, a>0,a#1,
ala—1) Jo

Hl[u]:fulogidx,
Q Uoo
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but also other definitions are possible. Candidates of fidgicentropies are:

Eo[u] = fQ IVu®’??dx,  a >0,

Eo[u]:f|VIogu|2dx
Q

SometimesE; is called the energy of the equation. The functiokalis referred to as the
Fisher informatiorsince it plays an important role in information theory. Onaymalso consider
second-order entropies, e.g.

Folu] = f IAUY?Pdx, @ >0,
Q

but the computations with these functionals become oftepniagolved, and we will not consider
such functionals here.

2.2. The heat equation revisited. We apply the definitions of the previous subsection to the
solution to the heat equation with periodic boundary cood,

(2.7) k=AU inT% t>0, u(0)=up>O0.
To simplify the presentation, we assume that the initialidets smooth and satisfiq,?d Up(X)dx
= 1. The (constant) steady state of (2.7) is given by
1
U = ————
meas(9) Jrd
By the maximum principle, the solutiax(t) is positive. We wish to prove the following result.

Ugd x.

Proposition 2.4. The functionals H, defined in Section 2.1, are Lyapunov functionalX@).
Furthermore, H is an entropy for(2.7)in the sense of Definition 2.2.

The first claim is easily proved by integration by parts:
dH 1 1
=~ | uwludx=—— | u*lAudx= —f u*2|Vul?dx < 0,
dt  a-1 Jyd a—1 Jrd Td

wherea # 0,1. An analogous computation shows that such an inequatitylalds wherm = 0
ora = 1. In order to show thaltl; is even an entropy we need an auxiliary result, the Csiszar-
Kullback inequality.

Lemma 2.5(Csiszar-Kullback) LetQ c RY be a domain and let fg € L1(Q) satisfy >0, g > 0,
and [, fdx= [, gdx= 1. Furthermore, lets € C1(R) satisfy

$(9) = p(1)+¢'(1)(s— 1) +y*(s— 1) Liseyy
for all se R and somey > 0, wherela is the characteristic function on AR. Finally, let

ol = [ ol Jocx



ENTROPY DISSIPATION METHODS FOR NONLINEAR PDES 7

Then

4

y2
The assumptions apare satisfied ify e C2(R) andg¢”’(s) > 2y > 0 for 0< s< 1 andg’’(s) > 0

else. The classical Csiszar-Kullback inequality [11, 3@b&ined fors(s) = s(logs— 1)+ 1 with

I = gllixey < \BHLT] - Hyla).

Notice that the optimal constant i¢2 instead ofV8. For generalizations of Lemma 2.5 we refer
to Carrillo-Jiingel-Markowich-Toscani-Untereiter 200}, [Section 4.2.

£ =gii2sqy < =5 (Hol 1= Hylgl).

Proof. The proof is taken from [32]. SinceEandg have both mass one, we find that
It =gl = [ If=gldxs [ [f-glax
{f<g} {f>g)
:f (g—f)dx+f fdx—f gdx
{f<g} {f>g} {f>g}
:f (g—f)dx+(1—f fdx)—(l—f gdx)
{f<g} {f<g} {f<g}

=2 f (g—f)dx
{f<g}
Hence, by the Cauchy-Schwarz inequality and the condﬁzcydx: 1,

f foo2 12 12
||f—g|||_1(Q) :Zj{‘f<g}'a—1‘gd)(§ 2<f{‘f<g} 5—1‘ ng) (Lng)

1/2
:2([ /
{f<g}

f o2
— —1‘ gdx) .
9
Now we employ the assumption g@rto conclude that

Holf1-Holo] = [ (o) - oo [ (0@, ~g+72(; - 1) orc)ix

f 2 'y2
= ’1ff— dx+ 2f — 1) gdx> |1 —glI?, .
#'(1) | (F=g)dx+y {f<g}(g )9 7T dllig)

In the last step, we usef fdx= [, gdx O

Proof of Proposition 2.4Sinces— s(logs— 1) is convex, the functionaH;[u] is convex too.
The solution to the heat equation satisf&zsu(t)dx: 1 for all t > 0, andu. = 1/meas(d).
Hence,

Hl[u]—Hl[uoo]:f ulogudx—f uoologuoodx:f ulogudx-logue
Td Td Td

:f ulogudx—loguoof udx:f ulogidx
Td Td Td Uoo
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By Lemma 2.5 withp(s) = slogsandy = 1/ V2, we infer that

1
Hi[u] — Hi[Us] > é“u— Uoo“El(Td)’

i.e., Hy satisfies (2.6) withib(s) = V8s. O

2.3. The homogeneous Boltzmann equationThe entropyH; plays a key role in the homo-
geneous Boltzmann equation modeling a rarefied mono-atoasc i describes the temporal
change of the probability to find molecules of a given velpeit Let f(v,t) be the probabil-
ity density at timet > 0 to find molecules with velocity € RY. The homogeneous Boltzmann
equation is derived under the assumptions that the moleoubee freely and that they exchange
momentum and energy in binary elastic collisions. d.a@hdw be the velocities of two molecules
before a collision, and* andw* the post-collisional velocities. Elastic collisions cenge mo-
mentum and energyj, i.e.

(2.8) vrw=v 4w, [P +|w? =P+ w

These aral + 1 equations for the@unknownsv* andw*. Therefore, the solutions are given in
terms ofd — 1 parameters. For instance, the solutions can be expressed a

1
vt = é(v+w+|v—w|n), w' = E(u+w—|v—w|n),

wheren € $%1 is a parameter on the unit sphere. Under these assumptioltsmBan derived
in 1872 [5] the equation

of

(2.9) =N = fR d fg _ Blo—ul (") (")~ ) f (w)dudn

The nonnegative functioB(z v) is the Boltzmann collision kernel which depends on the siali
angle viav = (v—w) -n/lv—wl|. The right-hand side can be split into a gain and a loss tetme. T
loss term involvingf (v) f (w) counts all collisions in which a particle with velocityencounters
another particle with velocity. After the collision, the particle will generally changs Vielocity,
resulting in less particles with velocity When particles with velocities" andw* collide, one
particle may acquire the velocity resulting in a gain of particles with that velocity. Thives
the gain term involving (v*) f (w™).

The Boltzmann equation can be written in a weak form. Indeedtiplying the equation
by a smooth test functio®(v) and employing the changes of variablesu — (v*,w*) and
(v,w) — (w,v) (here we omit some details on how to modify the parametesee Villani 2003
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[40]), we obtain
fRd Q(f)®(v)dv = fRd ‘fRd fd_l B(lv — w|, n)(f (™) f(w™) = f(v) f (w))P(v)dvdwdn

- fRd fRd fd_l B(lv—wl,n) f (v) f (w)(®(v*) — @(v))dvdwdn

:%fRdfRded_lB(lv—wl,n)f(v)f(w)

(2.10) X (O*) + ®(w*) — O(v) — ®(w))dvdwdn.
Symmetrizing this expression once more, it follows that

[Lanowa=-3 [ [ [ s-uni@)iw)-1ofw

(2.11) X (P*) + O(w*) — D(v) — ®(w))dvdwdn.
As a consequence of (2.10), wheneesatisfies
(2.12) O(v) + O(w) = ")+ P(w*) forallv,w,n,

it holds formally g
d_tJI;d f(v,1)D(v)dv = jl;d Q(f)@(v)dv = 0.

By momentum and energy conservation (2.8), this holds truehfe functions®(v) = 1, vj,
w?/2 (j = 1,...,d). It can be shown that all solutions to (2.12) are linear cimaitions of these
functions (see the book of Cercignani-lliner-Pulvirent9498], pp. 36-42). This yields the
conservation laws of the Boltzmann equation,

d 1.2 _
i [, oo e s =o

expressing conservation of mass, momentum, and energg gith
The weak form (2.11) is used to prove that

Hq[f] :fRdeogfdv

is an entropy for the Boltzmann equation on the spgaa# probability densitied (v) satisfying

p? 1
ff(v)dvzl, ff(v)vdv:O, ff(v)—dv:—.
Rd Rd Rd 2 2

Theorem 2.6(Boltzmann’s H theorem)The functional H is an entropy (in the sense of Defini-
tion 2.2) for the homogeneous Boltzmann equatibf) on the domain U.

Proof. The proof is taken from [32]. First, we observe thhtis a Lyapunov functional. Indeed,
taking®(v) = log f(v) in (2.11), we find that

x (log(f (v) f (")) = log(f (v) f (w)))(f (") f (") - f (v) f (w))dvdwdn < O,
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sincex — logx is strictly increasing and the expression under the integraonnegative.
Next, we need to determine the steady sfateWe claim that the Maxwellian

foo(v) = (21) V2 exp(-1vf?/2)
is the unique stationary solution to the Boltzmann equattarst, we observe that for € U,

d 1, d
Rdf|og foodv = —fRd f(§|og(2n)+§|v| ) = 5

:_9|Og(2ﬂ)(2ﬂ)—d/2 f e—|u|2/2dv_}(2ﬂ)—d/2 f
2 Rd 2 R

:1 :1

_ ~d/2o-i2/2(d Lo
- Rd(271) e /2( 5100(27) - Sl )d

log(2r) — %

)
e 1!%/2)512dy
d

= | fologfudy = H[fo].
RY

Then, withp = f/f,, we have

Ha[ f] - H1[ fso] :v&d f(logf —log foo)dv:v][delog(p)foodv:\[qub(p)foodv,

whereg(s) = slogs. We apply Jensen’s inequality to the integral with meadiwya to obtain

Hl[f]—Hl[foo]2¢>(fdefoodv):(fdefoodv)log(fdefmdv):O,

sincefdefoodv = fRd fdv = 1. Equality holds if and only ith(o = 0 or p(v) = 1 or f(v) = fe(v)
for all v € RY. Thus, fo, minimizesH;.
Finally, the Csiszar-Kullback inequality (Lemma 2.5)

2
I = fullugeay < ~(Hal ] - Ha[ fe])"?

shows property (2.6) with the distance induced bylth@orm. O

3. FOkKER-PLANCK EQUATIONS

Fokker-Planck equations are driftfilision equations of the form
U = div(Vf(u) +uvV),

wheref(u) is some nonlinearity and a potential. First, we analyze the long-time asymptotics
of the linear Fokker-Planck equation (i.E(u) = u) and show relations to a specific functional
inequality, the logarithmic Sobolev inequality. Secoritg £ntropy technique is extended to
nonlinear Fokker-Planck equations.
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3.1. Relaxation to self-similarity. We consider the heat equation but now in the whole space,
(3.13) k=AU inRY t>0, u0)=up>0 inRY, f Ugdx = 1.
Rd
The solutionu(t) > 0 can be written explicity:
1 2
ux,t) = ——— [ e ¥/ yy)dy.
() = oo |, o)y

In particular, it is strictly positive and conserves ma&g,u(t)dx: 1 for all t > 0. From this
formula follows thatu(t) — 0 in L*(Q) ast — co. Furthermore, the functional

H1i[u] = fRd u(logu—1)dx

is a Lyapunov functional along solutianto (3.13). However,

HIUW] < [ | uloglu®eydx= g IuOlm(oy -~

and entropy estimates seem to be not applicable. In fastigmot surprising, since the only
(integrable) steady state to (3.13)uis = 0, and this function has not unit mass. The entropy is
useful to study the relaxation of the solution to the satfikir solution

(- )
(2n(2t + 1))d/2 2(2+1)”
i.e., we wish to analyze how fasit) — U(t) decays to zero. Clearly, this gives much more
information than just the fact tha(t) — 0 ast — co.

For this, we transform the variables,{) to makeU stationary in these coordinates. We set
y=Xx/V2t+1,s=log v2t+1, and

o(y, ) = eu(e’y, 3(e°-1)), yeRY s>0.

(3.14) U(xt) = xeRY, t>0,

Then

Z—l; = de’Su+ ™55V u+ e7%?Su; = do + V, 0 + Ayv = div, (V0 + yo),
and the function satisfies the Cauchy problem
(3.15) vs=div(Vo+yv) inRY, s>0, v(0)=up.

This equation is of Fokker-Planck type with a quadratic po&V(y) = %|y|2. The self-similar
solution in the new coordinates becomes

M(y) = (2t +1)%2U (x.t) = (2r) V272,

which we call the Maxwellian (see Section 2.3). Itis the wigteady state to (3.15). We choose
functionsv from the domain

X= {v € Ll(Rd) 10>0, |yl°v, vlogv € Ll(Rd), fd vdy = 1}.
R!
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In this setting, we work with the relative entropy
1
Hi[o] = f vlog—dy = f vlogudy + = f (dlog(27) + |yI?)udy.
Rd M Rd 2 RY

Theorem 3.1(Exponential decay for the Fokker-Planck equatidrdt uy € L1(RY) be nonnega-
tive and satisfyfRd updx = 1. Letv be the solution t¢3.15) Then, with H as defined above,

(3.16) 0< H1[v(s)] < € %H4[ug] forall s> 0.
Moreover,y(s) converges exponentially fast to the Maxwellian M,
(3.17) llv(S) = Mll_1gay < €% y/8H1[uo] for all s> 0.

Proof. We differentiate, employ (3.13), and integrate by parts:

dH; _ 1 2
Geb1 = [ vslogocy+ 5 [ Pty

:—f Vlogv~(Vv+yv)dy—}f Viyl? - (Vo+ yv)dy
RY 2 Rd

\vj 2
= _f (| d +2y-Vo+ Iylzv)dy = —f v|V|Ogv+y|2dy <0.
Rd Rd

v

Hence,H1 is a Lyapunov functional. Another formulation of the righand side is, after inte-
grating by parts in the mixed term and usiﬁ%g vdx=1,

dH
d—l[v(s)] =- f (4V Vol? - 2dv + [yv)dy = - f (41V Vol + y[v)dx— 2d.
S Rd Rd
Now, assume that the following inequality holds:

(3.18) 2 f v Vol’dy > f ,vlogudy +d(1+log V2n).
R R

Then we find that

M o = -2 [ vtogody— | (wi*+diog(@n)ecy = 2Hsle(s]

By Gronwall’s inequality, we infer (3.16). Estimate (3.18)a consequence of (3.16) and the
Csiszar-Kullback inequality. O

Before we discuss (3.18), we go back to the original variabMstice that the self-similar
solution can be written in terms of the Maxwellian as follows

U(xt) = (2t+1)"92M((2t + 1)"Y%x).
The left-hand side of (3.17) writes after the substitutjea (2t + 1)"1/?x as
llo(S) = Ml 1gay = IU(t) = U Ol 2ga),
whereas the right-hand side is formulated as
e y/BH1[uo] = (2t + 1)™/2 y/8Ha[ug].

Thus, we have shown the following result.



ENTROPY DISSIPATION METHODS FOR NONLINEAR PDES 13

Corollary 3.2 (Relaxation to self-similarity)Let wy € L1(R%) be nonnegative and has unit mass,
fRd updx= 1. Let U be defined i3.14)and let t) be the solution t§3.13) Then

V8H1[Uo]
lut) —U @) 1pdy < ———— forallt>0.
( ) ( ) Ll(R ) \/m
It remains to prove (3.18) written far= f2:
(3.19) f f2log f2dx+d(1+log \/Z)szf IV f12dx
Rd Rd

for f e HY(RY), f >0, Il 2rey = 1. This inequality is called thiegarithmic Sobolev inequality
It was first formulated by Federbush in 1969 [21] and exptblig Gross in 1975 [24]. We will
give a proof in the next subsection.

3.2. The Fokker-Planck equation and logarithmic Sobolev inequaty. The approach of the
previous subsection has the drawback that the equililbradioperty relies on the logarithmic
Sobolev inequality which needs to be proven separately. efti@py method can be modified
in such a way thabothstatements — equilibration property and logarithmic Sebatequality —
can be proved simultaneously. To this end, we consider htklighore general Fokker-Planck
equation than in the previous subsection:

(3.20) U =div(Vu+uvV) inRY t>0, u(0)= .

As in the previous subsection, we assume that the initialrdat € L1(RY) is nonnegative and
has unit mass. The potenti(x) is assumed to be smooth and satisfiesJing, V(X) = co. The
Fokker-Planck equation possesses the steady state

0= VU + U VV = Us(VIOogUs + V).

Hence, ifu, > 0, logus + V is constant. Thus). is given by
-1
(3.21) Uo(x) =Ze V0, Z=( f eVWay) "
Rd

In order to introduce the entropy, lgt: [0, ) — [0,) be a smooth and convex function satis-
fying ¢(1) = ¢’(1) = 0. An example for such a function is given bys) = s(logs—1)+1, s> 0.
Then we introduce the entropy functional:

(3.22) Hylu] = fR d ¢(ui)uoodx

(o)

The entropy is a Lyapunov functional for the Fokker-Planglation:

Proposition 3.3. Let ¢ be defined as above. Then i$ a Lyapunov functional for the Fokker-
Planck equatior{3.20)
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Proof. Using the expressio¥iu+uVV = Vu- VIogus = UsV(U/Us), We compute
dHy ,( U ,( U
57 L] = jl;d¢ (E)utdx_ —fRd Vo (@) -(VU+uvV)dx

0 U u u B ,,0 U u |2
== [ IV V(g et=— [ ¢ (o) v
Since¢ is convex, the right integral is nonnegative and hedé¢;[u(t)]/dt < 0. O
The idea of the entropy method here is to computestmndime derivative ofHs. This is
due to Bakry and Emery 1983 [2]. L&[u(t)] = —dHg[u(t)]/dt > O be the entropy dissipation.
Notice thatDy[u(t)] = 0 if and only if u(t) = Ue.

Lemma 3.4. Let V2V(x) — AI be positive semi-definite uniformly ineRY for somel > 0. Let
¢ € C*([0, =0)) be convex such thdy¢” is concave. Then, along solution@)to (3.20)

dDy
F[u(t)] < =2ADg[u(t)] fort>0.
As a consequence of this lemmaDi§[uo] < oo, we have exponential decay with raté 2
Dy[u(t)] < € >"Dylug], t>0.
Proof. The proof is due to Arnold-Markowich-Toscani-Unterreigf01 [1] but the idea goes

back to Bakry-Emery 1983 [2]. Let= U/u.. Then the Fokker-Planck equation can be written
equivalently agy = uzlu = uzldiv(us, Vo). The proof of Proposition 3.3 shows that

Dolul = [ ¢ ()VpPusdx
Rd

We calculate, as in [32],

(3.23) %[U(t)]=f 5t¢"(,0)|V,0|2UoodX+2f ¢" (0)Vp - 9tVpusdx
dt Rd Rd

The first integral equals
fR 0 )V pPudx= fR " )V pPeliv(u V)
= [, 7@ G)TpP)- Touix

=- jlé ) (¢"" (P)IVpl* + 24" (0)VpV2pVp) UsodX.
For the second integral, we observe that

Vo-Vpi = Vp-V(Ap—Vp-VV) = div(V?p - Vp) + V2|2 = VpV2VVp — VpV2pVV.



ENTROPY DISSIPATION METHODS FOR NONLINEAR PDES 15

Using VpV2VVp > 1|Vp|? und integrating by parts in the term involving the divergenthe
second integral becomes

Zjl;d ¢" (0)Vp - 0{VpUs,dXx < —2/lfRd¢”(p)|Vp|2umdx
+2 fR ) ¢ (0)(div(VZpVp) +|V?p|? = VoV2pVV)Ueed X
= —2ADy[u] +2 fR ) ¢ (0)(IV?0[% = VpV2pVV)Uusdx
~2 f V2oV pVUedx— 2 f ¢ (0)VpV2pVpdx
Rd Rd

= —2ADy[u] +2 f 3" (0)|V20|PUsod X— 2 f ¢ (0)VpV2pVpdx,
Rd Rd

where we use&u. + U, VV = 0. Inserting these expressions into (3.23), we infer that

dD,
d—f[u(t)] < —21Dy[u] - fR L@ IVl +49" (0)VpVpVp+ 26" (0)IVpl)ueodx

We claim that our assumptions @nmply that the last integrand is pointwise nonnegative. In-
deed, the convexity o gives¢”” > 0, and the convavity of " is equivalent top’"’¢" —
2(¢”"")? = 0. These conditions ensure that the quadratic form

Q(X, y) — ¢//// X2 _ 4¢///Xy + 2¢//y2, X,y € R,

is nonnegative. Hence, by the Cauchy-Schwarz inequality,

¢ (0)Vpl* + 48" (0)VpV2Vp + 24 (0) V2o |2
> ¢ (0)IVpl* = 4" (0)IV2pllIV I + 26" () V2l [
= Q(IV?l.[IVpll?) > O.
This proves the claim. -

Now we can prove the exponential decay-yfu(t)].

Theorem 3.5(Exponential decay il). Let u be the solution to the Fokker-Planck equation
(3.20) let ¢ satisfy the conditions of Lemma 3.4, and lgth¢ defined by3.22) Then

Hy[u(t)] < e *"Hy[uo] forallt > 0.
Moreover, ifp satisfies the assumptions of Lemma 2.5 (Csiszar-Kullbackiaiiy) then

[IU(t) - Usoll1rdy < Cg A/Ho[Uole™™  forallt >0,
where the constant£> 0 only depends oun.
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Proof. In the following, we present only a formal proof. The calt¢idas can be made rigorous
by suitable but tedious density arguments, see Arnold-Maigh-Toscani-Unterreiter 2001 [1].
We rewrite the inequality of Lemma 3.4:

- DOt > 24000001 = 212 qu), 150
dt =Sl dt ’ '

Integrating both sides ithe (1, ), we obtain
(3.24) Dylu(r)] —tli_)ngo Dy[u(t)] > 2A(Hg[u(7)] —tli_)n;) Hy[u(®)]).
Next, we show that the limits vanish implying that

dH,

—gt @] = ~Dy[u(®)] < —21H,[u(7)].

This gives the first claim.
The entropy dissipatioB, is nonnegative, nonincreasing as a functiom, @nd it holds

fo ) Dy[u(t)]dt < Dy[ug] fo et < oo,
Hence,Dy[u(t)] converges to zero ds— co. SinceDy[u(t)] > 0, we find that
0= lim Dy[u(t)] = D¢[tILrQO u(t)].
The functionalD, vanishes exactly at,,, which shows that lif, . u(t) = u... Therefore,
lim Ho[u(t)] = H¢[t|Lrgo u(t)| = Hy[ueo] =0,

and it remains to apply the Gronwall inequality.
By the Csiszar-Kullback inequality (Lemma 2.5),

2 2 2 L
IU0) ~ Uelageey < Halu()] = Holte] = = \JHolu(®] < = \[Holuole™,
which shows the second claim. O

It seems that in the above proof, we did not use the logardtBobolev inequality. In fact,
we did. Reformulating (3.24), we see that this inequalitedgiivalentto a convex Sobolev
inequality.

Corollary 3.6 (Convex Sobolev inequality)Let ue L1(R%) be nonnegative and has unit mass,
let V andg satisfy the conditions of Lemma 3.4. Furthermore, letae given by3.21) Then

u 1 ,,( U u,|2 1
(3.25) H¢[u]:fRd¢(i)umdxgﬂfRd¢ (ﬁ)‘v(ﬁ)‘ o= = Dy[u].
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Let V(x) = 3IxI? andg(s) = s(logs— 1)+ 1. Thend = 1, Ux(X) = (27)"%2exp(-Ix2/2) is the

Maxwellian introduced in Section 3.1, and a calculatiorvehthat, usin%d udx= fRd UodX=1,

1
H¢[u]:f ulogudx—f uloguoodx:f ulogudx+glog(27r)+—f Ix[2udx
Rd Rd Rde 2 2 Rd
us|_ u 2 ) 5
D¢[u]:f —‘v—‘ dx:f (4V VU2 + 2x- Vu+ [x2u)d x
rRd U Uso Rd

:4f |V\/G|2dx—2d+f IX[2udx
Rd Rd

Inserting these expressions in the convex Sobolev inggyalk5), we find that

f ulogudx+glog(27r)+d§2f IV Vul2dx,
Rd 2 Rd

which is exactly the logarithmic Sobolev inequality (3.18hus, the above proof simultaneously
shows the exponential decay of the Fokker-Planck soluaoiaisthe convex Sobolev inequality.

Remark 3.7. In bounded domains without confining potential, the lodpamiic Sobolev inequal-
ity is a consequence of the Sobolev and Poincaré inequalifiris argument is due to Stroock
[37], and a short proof is given by Desvillettes and Felll@2[15]. More precisely, le® c RY

be a bounded domain ance H1(Q) such that

Hu— L ud><1

lullLage) < Csliullyigy

L2() < CP||VU||L2(Q),

where Yq=1/2-1/d. Then the logarithmic Sobolev inequality

2
2 u 2
u“lo dx< Cp||Vu
fg g(”u”iz Jdx< CLIVUIZ
@)

holds for some constafl > 0 which depends of2 andd. O

3.3. Nonlinear Fokker-Planck equations. The arguments of the previous subsection can be
generalized to nonlinearftlisions. We consider the nonlinear Fokker-Planck equation
(3.26) U =div(Vi(u)+uvV) inQ,t>0, u(0)=up=>0.
Here,Q c RY is either a bounded domain with smooth boundarf2es RY. In the former case,
we impose no-flux boundary conditions,

(Vf(u)+uvV)-v=0 onoQ.

The initial datum satisfiegg € L1(Q), and we sefQ updx=: M > 0. To fix the ideas, we assume

that the potential is quadrati¥/(x) = %lxl2 (1 > 0), but more general choices are possible (as
long as the potential is convex; see Carrillo-Jingel-Matkbviroscani-Unterreiter 2001 [7]).
The nonlinar function is assumed to be smooth, strictlygasmg, and (0) = 0. Again, to avoid
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technicalities, we choosH(s) = s™ with m> 1. We notice that the stationary solutions to (3.26)
are the compactly supported Barenblatt profiles,

m-1 51/(m-1)
2m |X| )+
wherez, = max0, z} denotes the positive part a€ R. The constanN can be determined from
the mass condition, for giveM > 0,

fuodx fN——ll VD g

In the following, we explain the main ideas of the entropymeetfor the whole-space situation
Q =R only and proceed as in [32]. In principle, the strategy of phevious subsection can
be extended to the nonlinear equation but there are somaasdditechnical diiculties. One
difficulty is thatu,, may vanish, which makes it impossible to introduce the redagntropy as
in (3.22). Therefore, one has to resort to the less convealsolute entropy

um—l 1 9
H[u] :fRdu(m_1+§|x| )dx

H*[u] = H[u] - H[Us].
Furthermore, we introduce the functitn [0,c0) — R by h’(u) = f’(z)/z andh(0) = 0. In the
present casdy(u) = (m/(m-1))u™ L. This definition is motivated by the fact that (3.26) can be
formulated ask = div(uV(h(u) + V)).
The main result is as follows.

(3.27) Uso(X) = (N =

2

and the diference

Theorem 3.8(Exponential decay)Let u> 0 satisfying Hu] < co. Then
(3.28) H*[u] < il f ulV(h(u) + V)|?dx
2/1 Rd

Let ut) be a smooth solution #8.26) where Hug] < c0. Then there exists a constant@ such
that

H[u®] <Ce®", Dlu®)] <Ce®", |lu(t) - Uooll 150y < CE™
for t > 0, where Qu(t)] = —dH[u(t)]/dt is the entropy dissipation of H.

We give only a sketch of the proof. There are a number fiifcdilties to overcome in the rig-
orous proof (which can be found in [7]). First, since the soluto the porous-medium equation
is generally only Holder continuous and not as smooth asdhgign to the heat equation, the
solutions to (3.26) have to be approximated by smooth antdiy@$&unctions. Second, one has
to justify that the boundary terms vanish in the integragibg parts, which is not trivial due to
the potential which does not vanish|as— .

Proof. The proof is divided in several steps. We assume that (3. @8gsses a smooth positive
solutionu(t).
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Step 1: Entropy dissipatioiWe compute the entropy dissipation:

D[u(t)] = - fR d(%uwu g|x|2 Jurdx = — fR Luv(h(u) +V)Pdx< 0.
=h(u) =V(X)

Step 2: Second entropy dissipatiomhe computation ofiD[u(t)]/dt is involved. We just
remark that a straight-forward computation gives

2m
m-1

d—D[u(t)] =-21 f u[v(h(u) + V)?dx— R(t) = —24D[u(t)] - 2—'mR(t),
dt Rd m-1
where
R(t) = f v (h(w) +V)V2U™ LV (h(u) + V)dx+ (m-1) f ) u™?div(uv (h(u) + V))I?dx
R R
By several integrations by parts, it follows that

(m-1)
m

R(t) = fR UM(A(W) + V))2dx+ mT_l fR ) u™Iv2(h(u) + V)[I?dx> 0.

Therefore,
dD
(3.29) E[u(t)] <-2AD[u(t)], t>0.
Step 3: Functional inequalityntegration of (3.29) yields

D[u(t)] < D[ugle™?!, t>0,

from which (3.28) follows as in the linear case; see the paidfheorem 3.5. Here, one has to
prove thatD[u(t)] — 0 ast — o which is not obvious.

Step 4: Convergence in thé horm. This part of the proof is surprisingly fiicult due to the
lack of positivity of the steady stat®,. The idea is to estimate tHe' norm of u— u., first for
steady states.,, whose support is contained in some ball and then to conteob#havior ofu
outside the support af,,. Here, the definition of the entrogy* is needed. For details, we refer
to [32, Section 1.7]. |

In Section 3.2, we have shown that the linear Fokker-Plaggkagon is related to a convex
Sobolev inequality, including the logarithmic Sobolevdnelity; see Corollary 3.6. One may
ask if the nonlinear Fokker-Planck equation is related torefional inequality too. The answer
is yes and the corresponding inequality is the Gagliardeierg inequality.

Theorem 3.9(Gagliardo-Nirenberg inequality)_et% < p< 1. Then there exists¢> 0 only
depending on p and d such that for alk HL(RY) N L2P(RY),

16 whered = dd—p)

0 _
L2p(Rd)’ 1+ p)(2p+d(1-p)

L2(RY)

llwll_p+1(rdy < CollVul| [Jwll €(0,1).
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Proof. The proof is not diicult but technical. The idea is to insert the explicit express for
h(u), V(x), andu., into the relation (3.28) between the entropy and the entthgsipation. A
computation leads to

fumdst |Vum‘1/2|2dx+B(f udx)y,
Rd Rd RY

for some positive constangs B, y and withm= (p+1)/(2p) > 1. Next, definingi(x) = 19/™y(1x)
and passing to the new integration variapke 1x, a suitable choice of gives

J]%d oMdx < C(jl;d |va_1/2|2dy)/‘(jl;d vdy)Y(l_'u),

Finally, the choicev = v™ /2 yields the result. Thus, we divide the proof into three steps
Step 1: Reformulation of3.28) ChoosingV(x) = %|x|2, the right-hand side of (3.28) becomes

2
fuIV(h(u)+V)|2dx:f ulqum‘Hx' dx
Rd Rd m-1

2
:(l) f u|Vum‘1|2dx+f ulx%dx+ 2m f ux- vu™ldx
m-1 Rd Mm—1 Jgd
vu™1212dx fuxzdx foVumdx
(m 1/2 fl | " Rd X i Rd

By integration by parts, the last integral writes as

Zf x-Vumdx:—Zf div(x)umdx:—2df umdx
Rd Rd Rd

Therefore, (3.28) is equivalent to

f( um1+2u|x| Jdx-H[ua] = H*[u]s%f u[v(h(u) + V)|?dx
— Rd

3 1 m
- E(m—l/z

2 1

) VU™ 1220 x+ —f ux?dx—d | u™dx
RY 2 RY Rd

Rearranging terms on both sides leads to

(3.30) (d+i1) f uMdx < ( 1% f IVU™ Y220 X+ H[Uso].

It remains to computél[u.]. The steady stata. is the Barenblatt profile (3.27). With the
transformationy = x/ VN, we obtain

m—1 5\1/(m-1) 2m 1/(m-1)
Uso(X) = (N - Wb(lz)+ = Nl/(WI)(l— m|y|2)+ :

=Um(y)
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Using|x|? = N|y|2 anddx = N%2dy, we compute

1 1
Hluol = —— | uMdx+= | |x2us.dx
[Uco] m_lfRdoo +5 |,
1

1
= ——_N™(M-D) f Unn(y)Mdx+ =NV f X Um(y)dx
m-1 Rd 2 Re

1

1 1/m
= = _NM/(m-D+d/2 f Unm(y)"dy + = NY/(m-D+1+d/2 f 1yPUm(y)dy
m-1 Rd 2 R

_ 1 1
— NM/(m-1)+d/2 _f Um(y)mdy+—f PUm(y)dy .
m-1 Jgd 2 Jpd

=:Km
whereK, > 0 is a constant which depends only mnFurthermore, we have

f U (X)X = NY/(M-1)+/2 f Un(y)dy.
Rd Rd

Solving forN gives

N (m-1)+d/2 _ ( f

R

m/(m-1)+d/2
1/(m-1)+d/2’

Um(y)dy)_y( f uoo(x)dx)y, wherey :=
d RA
Therefore, setting

Lmi= ([, Untode)

which is another constant only dependingroit follows that

H[Uo] = Lin( fR U ()" = Lo fR Jud)’,

sinceu(t) has the same massas. Going back to (3.30), we have shown that

(3.31) f uMdx < Af IVu™1/212d x+ B(f udx)y,
Rd Rd Rd

where

1 1 -1 m 2 1 -1
A::E(d+m_1) <m—1/2)’ B::(d+m_1) L.

Step 2: OptimizationWe optimize (3.31) by defining a functiarby u(x) = 19My(1x), A > 0.
Then, substituting = Ax with dy = 29dx,

fR d uM(x)dx = A9 fR d oM(AX)dx = fR d o™ (y)dy,

f u(x)dx = A9/m f p(Ax)dx = 29/m-d f o(y)dy,

Rd Rd Rd

f |qum—1/2|2dXz/1d(2m—1)/mf /12|Vyvm_l/2|2/l_ddy:/ld_d/m+2f |VyUm_l/2|2dy
Rd Rd Rd
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Inequality (3.31) can be written in terms o&s

f Jgly < A0-0/me2 p f 1V,0™Y/2 2l 4474/ g f vdy)y.
Rd Rd Rd

L
::AO ::BO

Ww choose an appropriate> 0 which minimizes the right-hand side. The minimum of the
function f(1) = 22Ag + A ™°Bg with a = d —d/m+2, b = y(d —d/m) is given by1* = cA; /@)
xBE/ @ wherec = (b/a)V/@+D). Choosingl = 4. in the above inequality, we arrive at

f v™Mdy < A%Ag + /IEBO
Rd
< CaA(—)a/(a+b)+1Ba(@)l/(a+b) +C_b b/(a+b) B(—)b/(a+b)+l

< maxc?, c‘b}Ag/ (a+b) BY (a+b)

where
b yd(m-1) a  dim-1)+2m

a+b  (y+Ld(m-1)+2m" a+b (y+21)d(m-1)+2m’
Hence, there existS1 > 0 only depending od andm such that

b/(a+h) ya/(a+b)
Mdy < C fv m-1/2,2 fd .
fRdv y < Cy ™ y) N )

Step 3: TransformatiorChanging the function te := v™%/2 = y1/(2P) wherep = 1/(2m-1),
we infer that™ = w2™@™1) = )P+l andy = w? @™ = 42P and hence,

041 5, \b/(a+b) 2pq. \Y/(@th) 2b/(a+b),  ,2pya/(a+b)
fRdw dy SCl(‘[Rd Vol dy) ( Rdw dy) B ClIIVw”Lz(Rd) ||w”'-z”(Rd) ’

Taking the p+ 1)-th root, we conclude that

lwll prarey < Cy (p+1)||Vw||igégj)+b)(p+l))”w||igggé§§a+b)(p+1))’
and the theorem follows faZo = C}/** and6 = 2b/((a+ b)(p + 1)). _

4. FURTHER APPLICATIONS
In this section we discuss some additional topics.

4.1. Systematic entropy construction method.In Lemma 3.4 we have proved an estimate for
the time derivative of the entropy dissipation. The proob@sed on suitable integrations by
parts. One may ask if the integrations by parts can be madensgtic. This is indeed possible;
see Jungel-Matthes 2006 [26].

In order to motivate the method, we consider the thin-filmagigun

(4.32) U = —(Puwdyx, UG0)=Ug inT, t>0,

whereTY is the one-dimensional torus. This equation models the fibavthin liquid along a
solid surface with film heighti(x, t) (for 8 = 2 or = 3) or the thin neck of a Hele-Shaw flow in the
lubrication approximation (fg8 = 1); see the review of Myers 1998 [33]. We wish to determine
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Lyapunov functional#,[u] = 1/(a(e - 1)) [Lu*dx « # 0,1, andHs[u] = [Lu(logu-1)dx We
assume that there exists a smooth positive solutitn(4.32) and compute formally:

dH, 10 s
m [u(t)] :—fu 1utdx:fu B2 U d X
Q’—l T T

It is reasonable to eliminate the third-order derivativariiggrating by parts:

dHq [u(®)] = (e +8-2) fm: U A-302uydx— fT U202 dx

(4.33) o

The second integral on the right-hand side has a good sigrth&dirst integral, we observe that
U2Uxx = U3/3 and integrate by parts again:

H 1

d YTut)] = -Z(e+8-2)a+B8-3) f U 4uddx— f U202 dx.

Thus,H,[u] is a Lyapunov functional for the thin-film equation it ¢ 83— 2)(a +8-3) > 0 or,
equivalently, 2< o+ g < 3. Is this condition optimal? No, it is not. The reason is thatsecond
integral can be used to estimate the first integral even wheipositive. The optimal result is as
follows.

Proposition 4.1 (Lyapunov functionals for the thin-film equationl)et , 8 > 0 such that% <
a+pB < 3and let Yt) be a smooth positive solution (4.32) Then H,[u] is a Lyapunov functional
for (4.32)

Before we prove the proposition, we explain the entropy cacibn method. We wish to
prove that the entropy dissipati@n, = —dH,[u] /dtis nonnegative. First, we need to systematize
integration by parts. The first integration by parts leadiong4.33) consists in the following
identity:

(4.34) D, = — f U P 2UgydX = (@ + 8- 2) f U -3U2uyd X+ f U202 dx.
T T T

This can be written equivalently as

o= [ (s -2 ) (22 B 2= [ (%) ax=0

u u u u u u

Thus, (4.34) is equivalent to
D,=D,+c-12 withc=1.
This expression is trivial since = 0, but after expandindp, both sides of the equation have

different forms. We call; an integration-by-parts formula. How many formulas do €xiEhere
are two other integrals:

1= [ o e [ () axo

T

= (s g 1)t oo Uooon (o apthony
3= [ U ((asp- D) B 2000 [ (st

u u
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The number of integration-by-parts formulas is determibgall integersps, p2, and pz such
that 1 p1+2- po+ 3- p3 =3, and thus

(P1. P2, p3) € {(3,0,0).(1.1,0).(0.0, 1)},

and there are exactly three such formulas. We concludalhadssible integrations by parts are
given by the linear combinations

D, =D, +c1lyi+Colo+c3ls3.

Again, this expression is trivial sinde = I> = I3 = 0. The goal is to find constants, ¢y, cz e R
such that the right-hand side is nonnegative:

(4.35) dcy,co,c3€R: Dy+cli+Colo+c3l3 > 0.

Our main idea to prove such an inequality is to identify thevdgivesuy/u, uxy/u, etc. with the
polynomial variableg, &, etc.:

1 6Ku

:Gﬁ’ kENO.

&k

Settings = (£1,£2,¢3,¢4),
D, correspondsto S(¢) = —&1€3,

I corresponds to Ty(¢) = (a + 8- 3)¢] +3¢5&,,

I, corresponds to Ta(¢) = (@ +B8—2)é2¢, +£5 + &163,
I3 corresponds to T3(¢) = (@ +B—1)é183 + 4.

We call T; shift polynomials since they allow us to “shift” partial deatives. ThenD, > 0 is
proved if we are able to show that

(4.36) Jcy,cp,cz3eR: VEERY: (S+ciT1+CoTo+C3T3)(E) > 0.

Such problems are called polynomial decision problems kvare well known in real algebraic
geometry. It was shown by Tarksi in 1951 [38] that they canl@ygs treated in the following
way:
A gquantified statement about polynomials can be reduced toaatijer-free
statement about polynomials in an algorithmic way.

Solution algorithms for the above quantifier eliminatioolgem have been implemented, for in-
stance, iMathematica. There are also tools specialized on quantifier eliminatika QEPCAD
(Quantifier Elimination using Partial Cylindrical AlgebcaDecomposition), see Collins-Hong
1991 [10]. The advantage of these algorithms is that thetisalis complete and exact. The
disadvantage is that the complexity of the algorithms isbiipexponential in the number of
variablest andc;. An alternative approach is given by the sum-of-squaresS{S@ethod. This
method tries to write the polynomial as a sum of squares. e&er may be not complete since
there are polynomials which are nonnegative but which cabeaavritten as a sum of squares.
Fortunately, for the above decision problem, we can sohdiréctly without going into real
algebraic geometry.
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Notice that problems (4.35) and (4.36) are not equivalerdesive estimate the integrands in
(4.36) which is stronger than estimating the integrals iB%% However, it is possible to prove,
at least in specific situations (for instance, for the omaatisional thin-film equation), that no
estimates are lost [26].

Now, we are able to prove the above proposition.

Proof of Proposition 4.1We need to prove that, for some choicecpffor all ¢ € R4,
(S+cC1T1+CoT2+CaTa)(é) = Ca(a+B—3)eT +(3cy + Coa +5— 2))5é2
+ Cgf% +(C2+c3(a+B—1)-1)é183+ €3¢ > 0.

The variablet, appears only in the termsés which is indefinite. Therefore, we tales = 0.
Furthermore &3 only appears in the teryé3 which is also indefinite. We choose = 1 to
eliminate this term. It remains to show that there exists R such that

(S+c1T1+1-T2+0-T3)(¢) = cl(a+,8—3)§‘1‘+(301+ (a+,8—2))§f§2+§§ >0.
We employ the following elementary result (see Jingel-Megt2006 [26] for a proof).

Lemma 4.2. The inequality
aué] +atetr +agts > 0
is satisfied for al(£1,&) € R? if and only if

either a&>0, 4yya3—a5>0, or ag=0,a=0, a; >0.
Since the coféicient forg% is positive, the nonnegativity is guaranteed if and only if

0<4ajag—a5 = 4ci(a+B-3)— (@ +B-2+3c1)?

1 2 8 5
=-9(c+ §(a+ﬁ)) —gla+p)?+a+p) -4
Choosing the maximizing valug = —(a +8)/9, this inequality is satisfied if and only if
0< —8(a+pB)*+36(a+p)— 36.

The roots of the polynomial — —8x2+36x—36 arex; = 3/2 andxy = 3. Therefore, the inequal-
ity is valid if and only if 2 < a + 8 < 3, which proves the claim. O

In the following, we discuss some extensions and genetairof the entropy construction
method.

Entropy dissipation estimates.Estimates of the entropy dissipation are very useful tovderi
a priori estimates which are needed, for instance, in th&@xce or long-time analysis.

Proposition 4.3(Entropy dissipation estimated)eta, 8> 0 be such thatg <a+B<3and let
u(t) be a smooth positive solution (4.32) Then there exist8 < ¢ < 1 depending only o and
[ such that

dH,

dt

[u(®)] +c¢ fT U242 dx < 0.
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Proof. The idea is to identify the integraf|, u**#~2uZ,dx with a polynomial and to apply the
entropy construction method. In the present c&&) = g%, and thus, we have to show:

dcy,cp,c3€R, c>0: Vée R*: (S+c1Tr+cT2+c3T3—cP)(é) = 0.

As in the proof of the previous proposition, we choaege- 0 andc,; = 1. Then our problem
reduces to

Jcp €R, ¢>0:V(£1,8) e R?:
ci(a+B-3) +(3c1 + (@ +B-2)E2+ (L-0)é2 > 0.
A necessary condition for nonnegativityds 1. Then Lemma 4.2 gives the additional condition
0<4daya3—a5
= —9(01 + é((l +2¢)(a +B) — 60))2 + é((l +2¢)(a +B) — 60)2 —(a+B-2)>.
We chooses; such that the first bracket vanishes:

0< é((1+ 20)(a+ ) —6c)2— (a +,8—2)2

= S 1)@ +H) - (@ +H)2+ ) ~3(c+ 1)

This inequality is satisfied of and only if
3(1-c¢)
2+C
If we choose% < a+p < 3, there existg > 0 such that this inequality holds. O

<a+B<3

In a similar way, we can prove that, f§r< a + B3 < 3, there existg > 0 such that
d

;“[u(t)]+c f U@P/2)2 dx<0
T

d

;a[u(t)]+c fT U@B4tdx < 0.

Higher-order entropies. Another extension of the method concerns higher-ordeopigs,
like the first-order entropies

E.[u(t)] = fT (u*?)2dx, > 0.

Taking the time derivative, we find that
T =2 [ (@Bt -2 [ @D
dt Q Q 2

- fg;(ua/ 2t ZH Py xdx
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Thus, we have to find all integration-by-parts rules invodya total of six derivatives. It can be
seen that there are seven integration-by-parts formwasggseven shift polynomials. Some of
the shift polynomials do not need to be taken into accouk, li

T(¢) = (a+B-1)51é5+ &6,
since the terngs is indefinite. Eventually, the decision problem becomes
oo eR:IVEER3:  (a+B-5)cre + (501 + (a +B - 4)C)E e + 3Co£265
+(3(a® 50 +6) + )33 + (20— A)éréobs +E5 2 0.

It can be solved by employing the following lemma whose piof be found in Jingel-Matthes
2006 [26].

Lemma 4.4. Let the real polynomial
P(é1,£2,£3) = ané] + B éo + Aotz + uéats + Bst1éoba+ &5
be given. Then the quantified formula
Vé1,62,63€ R P(61,£2,€3) 20
is equivalent to the quantifier free formula
eitherdas—aZ >0 and 4dajay—aal—a3—ajas +axagas > 0
orday—aZ=2a-azas=0 and 4a;-a3>0.

The resultis displayed in 4.1. (The same result has beemlfficgh by Laugesen 2005 using a
different method.) Notice that there is always a trivial firstesrentropy corresponding to= 2,
Ez[u] = [.ufdx We summarize the result in the following proposition.

o
3

N| o1

N w

B

1 2 3 4
Ficure 4.1. Values otr andg providing an entropy for the one-dimensional thin-
film equation.

Proposition 4.5 (First-order entropies for the thin-film equation)et (@, 8) € R? be an element
of the gray region of Figure 4.1. Then,H] is a Lyapunov functional fof4.32)
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Multi-dimensional equations. So far, we have discussed the one-dimensional case only. In
principle, the above strategy can be generalized in a $tifailgvard way to multi-dimensional
equations. In this situation, we introduce polynomial abhes for all the partial derivatives and
shift polynomials for all integration-by-parts formulag differentiating products in all variables.
Practically, this strategy is useless since it leads torpmtyial expressions in many variablgs
and a huge number of shift polynomidls. A better approach is not to incorporate all products
of diszerential expressions but only those which have “symmetrgpeprties, likgVu|/u, Au/u,
or V<u/u.

As an example, we consider the Derrida-Lebowitz-SpeehRBDLSS) equation

(4.37) U+ V2 (uV2logu)=0, u(-0)=up>0 inTY t>0.

HereV2u denotes the Hessian ofndA: B= Y ; Ajj Bjj for two matricesA = (Ajj) andB = (Bjj).
The functionu(x,t) models the electron density in a quantum semiconductoticiwelectron-
lattice interactions are strong; see Degond-Méhats-Rifegt&905 [13] for a derivation. It was
shown in Jingel-Matthes 2008 [27] that there exists a naxthe@gweak solution to (4.37). We
assume that is positive and smooth to simplify the presentation. Theiargnts can be made
rigorous for nonnegative weak solutions; see Jungel-Matg908 [27].

We differentiate formally the entropy functional

MU =~ [ wdx a0

yielding, after integration by parts,

1 1
Do = — —— | v lwdx=—— | uv?u*Y):v2logudx
a-1 a-1 Td

We setu = v? which is possible since > 0. Then a tedious computation shows that

V2|2 Vo V& V Vol*
Da:4f 2“(M—Z(z a)—”—”—” +(3- 201)| 4 Jdx
Td v? v

This motivates us to introduce the functiahst, u, respectively, by

Vo 1A 2 Vv V2 Vo
=" A=37 (epf= o
v do v Vv
andp > 0 by
d
2 12 _ 2 2 2\, 2
V%7 = (d2? + 5= u® + 7)o

It can be shown thai is well defined. This follows from the inequality

2\ 2
a1
which is proved in Jingel-Matthes 2008 [27]. The inteddalis expressed by these functions as

Do = f v?*(dA® + iuz +p%=2(2- @)1+ )6+ (3— 2a)494)dx
Td d - 1

V202 > (d/12
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It turns out that just two integration-by-parts formulas atfficient to prove the nonnegativity
od D,, for certaina:

Iy = f VPV~ AV
T

Iy = f div(e®* 3| Vu?Vu)dx,
Td

wherel denotes the unit matrix iR%9. In view of the periodic boundary conditiong,= 1, = 0.
The goal is to find constants, ¢; € R such that

D,=Dg,+cil1+colo > 0.
In terms of the above variables, this sum can be written as

Do = f v?[dA%(1- (d—1)c1) + 26%(2( — 1)(1— (d— 1)c1) + (d - 2)co - 2)
Td

+Q(60, u,p)]dx,

whereQ is a polynomial ir9, u, andp with codficients depending oty andc; not not oni. We
choose to eliminatd from the above integrand (although this may be not the optainaice).
Thus, we choosec(, ¢,) as the solution to the linear system

1-(d-1)c1=0, 2(@-1)(1-(d-1)c1)+(d-2)c2—2=0.
With this choice, the polynomidD can be estimated by
Q(6, 11, p) = bap® + 20oub? + b3 + bap? > bru® + 2bou6? + b6,

sinceby = d(d+2)(d-1) > 0. Here,bs, by, andbg are codicients which depend only ashand

a. Itremains to determine the conditions on thesdfodents such that the quadratic polynomial
in u andé? is nonnegative. A computation shows that this is the caseifG< 2(d+ 1)/(d + 2).
We have proved the following result.

Theorem 4.6(Entropies for the DLSS equatian)etd>1,0<a <2(d+1)/(d+2). Then H,[u]
is a Lyapunov functional fof4.37)

4.2. Entropy variables and cross-difusion systems.In the previous sections, we have con-
sidered scalar PDEs only. Stronly coupled systems of PD&snaich more diicult to treat
since some standard tools available for scalar equatioagifmum principle for second-order
equations, regularity theory) often cannot be used. Ingégion, we show how the concept of
entropy can help to analyze crossfdsion systems. These are systems of parabolic or elliptic
PDEs whose diusion matrix is dense (i.e., it is neither diagonal nor &gtinal). We consider
only those systems which possess a logarithmic entropy€tmon will become clear later).

To fix ideas, let us investigate a model from population dyigam_etu, v be the densities of
two competing species. Their dynamics is governed by théragty equations

u+divly;=0, un+div],=0 inQ, t>0,

whereQ c RY is a bounded domain. For simplicity, we neglect source tdohkotka-\olterra
type). We assume that the fluy is completely defined by thef@iusion of the two species: the
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self-diffusion @+ v)Vu and the cross-fiusionuVe. The basic idea is that the primary cause of
dispersal is migration to avoid crowding instead of justi@m motion (modeled by theftiision
termavu). In particular, the spatial variation of the competitinmesies,Vu, influences the flux
of speciesl. Similarly, we definel, = (b+u)Vv+ovVu. This leads to the following system:

(4.38) a%ﬂ)-mv«a:” u )VCj):O inQ, t>0.

b+u
We supplement this system by initial and homogeneous Neninanndary conditions:
(4.39) u(-,0)=ug, u(-,0)=vg INQ, Vu-y=Vo-y=0 o0noQ, t>0,

wherev denotes the exterior unit normal vectordQ. Equations (4.38)-(4.39) are a simplified
version of a population model first suggested by Shigesadaalkaki, and Teramoto 1979 [36].
This model has attracted the attention of many mathemasigace it may have spatial pattern
exhibiting segregation of species.

There are a number of mathematical problems. First, thesion matrix is generally neither
symmetric nor positive definite, and hence, even the latdikie existence of solutions is not
obvious. Second, the strong coupling prohibits the apftinaof the maximum or minimum
principle such that the positivity of the population delesitu andv cannot be proved. The
solution to these problems is to employ the concept of egtrdbe entropy is defined by

H[u,v]:jg;h[u,v]dx:fg(u(logu—l)+v(logv—l))dx,

whereh[u, v] is the entropy density. This is indeed a Lyapunov functi@iece
d—H[u,u] = f(utlogu+vtlogu)dx
dt Q

:—f(((a+v)Vu+qu).%+((b+u)Vu+vVu).@)dX
Q v

= _4f @V VUul? + bV vl + |V Vuo[?)dx < 0.
Q

The estimate provided! bounds for/u and /.
These bounds make only sense dndv are nonnegative. This problem can be overcome by
introducing the so-called entropy variables, which syminethe above system:

—a—h—lo u z—a—h—lo
y_au_ g’ _av_ gU'

In the new variables, system (4.38) reads as ~

&\ . ((ag+etr @ y\\
a0 a2 25 )o(l) <o

It turns out that the new ffusion matrix

ad +e/t? e/t?
B(y,2) = gtz be? + e/ +2
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is symmetric and positive definite:
X" Bx = a€/x2 + bexs + & %(x1 + X2)% > minfae/,beA}||x||*  for all x = (x1,%2)" € R%.

(Notice, however, thaB is not uniformly positive definite iny andz) Thus, if we are able
to prove the existence dfoundedsolutions §,2z) to (4.40), the functionsi = ¢ andv = € are
automatically positive and solutions to the original sys{g.38).

Summarizing, the cross4tlision system (4.38) can be “symmetrized”, by a change of un-
knowns, and it possesses an entropy functional. Both piepete not a coincidence but they
are related. In fact, it is well known from the theory of hylpelic conservation laws that the
existence of a symmetric formulation is equivalent to thestexice of an entropy functional;
see Kawashima and Shizuta 1988 [29]. Interestingly, theltre§ Kawashima and Shizuta also
includes parabolic systems.

Using the above tools, the global-in-time existence of tsmhs can be proved.

Theorem 4.7(Global existence of solutions to (4.38)LetoQ be smooth, g vp € L*(Q2), Up >0,
vo > 0, and a, b> 0. Then there exists a weak solutino) to (4.38)(4.39)satisfying up > 0in
Qx(0,00) and

U, vt € Libo(0,00, (H(Q))), v e Lk (0,00, WHH(Q)), U, v e LIV¥(0, 00, WH43(Q)),
where s= 1+d?/(2d + 2).

Proof. The proof is lengthy; therefore, we give only the main idedie complete proof is
given in Chen-Jingel 2006 [9]. We write (4.40) symbolicalty fdw); — div(B(w)Vw) = 0 for
w=(y,2) e R2and f(w) = (&, €.
¢ Definition of the approximated systerfihe system is approximated in time by a back-
ward Euler scheme and in space by a Galerkin method (alieehatone may add a
regularizing term\™(u, v) with sufficiently largem € N):

i(f(wh) — f(h) - div(BWk)Vw) =0 inQ, Vuk-v=0 ondQ,

wherewh approximateso(x,tx), tx = kat, andN € N is the dimension of the Galerkin
space. Employing the convexity df, it is possible to show a discrete version of the
entropy inequality:

HwK] + PK < H[wk ™,

and PKI contains thd_2 norm ofVv u"N andVv \/% Solving this recursive inequality, we
find a priori bounds for,/uh and \/% in HY(Q).
e Existence for the approximated systeiie idea is to apply the Leray-Schauder fixed-

point theorem. For this, the approximate system is lineariZor giveri € L*(Q;R?),
solve

i(f(wh) — fk) - div(B@)VwK) =0 inQ, VuK-v=0 onsQ.

SinceB is symmetric and positive definite, the existence of wealtsmis to this linear
problem follows from the Lax-Milgram lemma. This defines fireed-point operator



32 A. JUNGEL

w w"N on appropriate spaces. (They have been chosen suobﬁhat""(Q;Rz).) The

discrete entropy inequality provides the uniform estinmeteded to apply the fixed-point
theorem.

e Derivation of uniform estimatesThe entropy inequality also gives a priori estimates
uniform in the approximation parametedsandat. Then, by the Gagliardo-Nirenberg
inequality, further estimates fany = (le) in some Sobolev spaces can be proved. Denot-
ing by 92! the discrete time derivative, it is possible to concludenfithe approximated
equations that alsf'wy is uniformly bounded in some suitable space.

e Limitin the approximation parameteFEinally, we pass to the limit in the approximation
parameter®N andat. In order to obtain strong convergenceuoﬁ, we apply the Aubin
lemma in the version of Dreher-Jiingel 2012 [20]. This lemmaws that, if some ap-
propriate estimates on the (discrete) temporal and spkaralatives orwy are available,

a subsequence ab{) converges strongly in some Lebesgue spacel $atp a function
w, asN — oo andat — 0. The dfficulty is to prove thaB(wn)Vwy converges td®(w)Vw.
This is done by using the estimates derived from the Gagli&idenberg inequality and
weak compactness results. The limit functios: (u,v) is shown to be a solution to the
original system (4.38)-(4.39).

This finishes the proof. O

In the above example, the entropy method allows us to pravadnnegativity of the density
without applying any maximum principle. One may ask if thare difusion systems for which
not only lower bounds but also upper bounds can be proved dityntlethod. This is indeed
the case. As an example, we consider a tumor-growth model.adsteme that the tumor is
described by the volume fractions of the tumor cell,t), the extra-cellular matrix (ECM)
m(x,t), and wateiw(x,t). The ECM consists of a complex mixture of carbohydrates antems
(e.g. collagen) providing structural support to the ceapposing that the mixture is saturated,
we havew = 1-c—m. Jackson and Byrne 2002 [25] derived from a fluiddynamicat@ggh the
following (simplified) difusion system:

(4.41) at(r‘;) - div(A(c, m)V(r(;)) -0 inQ, t>0,

where

A(c,m):(c(l_c) —Acm )

—cm  Sm(1—m)

is the difusion matrix,3 > 0 is the ratio of the ECM to the cell pressure constants@mdR®
is a bounded domain. The equations are supplemented bgl iaitd homogeneous boundary
conditions forc andm,

c(,0)=cgp, mM(,0)=my, Vc-v=Vm-y=0 o0noQ, t>0.

More precisely, the original model is posed on a one-dinm@raiintervall, assuming some sym-
metry of the tumor, but the above generalization does nopticate the problem.
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We claim that the following entropy functional is a Lyapurfonctional:
H= f hdx= f (c(logc-1)+m(logm-1)+(1-c—-m)(log(1-c—m)—1))dx
Q Q

The entropy density is the sum of the logarithmic entropies of the three phases, and
w = 1-c—m. We diferentiate formally:

O|—H—f(clo ¢ imlog—2 )dx
dt ~ Jo\" 9T com M™%

3 (1-m)Vc+cVm
_—L((c(l—c)Vc—,chVm)- Si-c-m

mvc+(1-c)Vm
m(l-c—m) )dx

+(—cmvc+am(l—m)Vm)-

= f (Ve +BIVmP)dx.
Q

Inspired by the above considerations, it is reasonablettodace the entropy variables
y:a—hzlog ¢ z:a—h:og m
ac l-c-m’ om l-c-m’
Converselyc andm can be interpreted as functions ¢f%), given by

e
c(y,2) = Tro+e m(y,2) =

In the new variables, system (4.41) can be written as
C : 2m-1v (Y| —
(5] -ow[aemcey 5 ) <o

sinceV(y,2)" = V?hV(c,m)™, whereV?h is the Hessian of the entropy density. The new matrix
B = A(c,m)V?h has a rather complicated structure but it can be shown thesitmmetric and
positive definite as long as> 0, m> 0, andc+ m< 1. The interesting feature of this change of
unknowns is that the exponential transformation not ontjales the positivity of the volume
fractions but also an upper bound since

1+e/+€e%

c(y,2 <1, m(y,2<1, and c(y,2+m(y,2) <1
Therefore, applying similar proof techniques as above cameprove the global-in-time existence
of solutions ¢, m) satisfying the above lower and upper bounds; see Jing&de82012 [28].
5. SJMMARY AND OPEN PROBLEMS

In these lecture notes, we have investigated various aspeentropy dissipation methods for
evolution equations. Generally|lift) is a (smooth) solution to the evolution equatigr Au= 0,
whereA is some diferential operator, the aim is to derive identities of theetyp

dH
S [U®]+D[u®] =0, t>0,
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and to show that the entropy dissipatiBpu] is nonnegative or that it can be estimated from
below by some integrd? > O containing squared derivativesut):

CL—T[u(t)] +P<0, t>0.

We have shown that this estimate may have a number of conseegie

The entropy functionaH[u] is a Lyapunov functional.

The estimate o yields a priori estimates in certain Sobolev spaces.

If the entropy dissipation can be estimated from below byesamltiple of the (relative)
entropy,D[u] > AH[u], the Gronwall inequality implies expontial decay of théusimns
to the steady state.

For convex entropiesi[u], the inequalityD[u] > AH[u] often corresponds to a convex
Sobolev inequality which can be proved simultaneously withtime decay property.
The entropy construction method may help to prove inedasaldf the typelH/dt+ P <0
or D[u] > AH[u].

If a diffusion system possesses an entropy functional, the foriomlat the entropy
variables usually leads to a symmetric and positive defufiff@sion matrix, which is
useful for an existence analysis.

If a diffusion system possesses a logarithmic entropy functidragntropy variables are
of exponential type such that the nonnegativity or e€rbounds can be proved.

Entropy dissipation methods are still under investigatand there is a number of open prob-
lems. We mention some of them:

e The entropy construction method has been applied to soaie-dimensional equations

(we have just mentioned the DLSS equation as an example)dnat is still no systematic
formulation of the method in the multi-dimensional case.e Tifficulty is to define a
reduced number of polynomial variables corresponding twalgves like|Vul|/u, Au/u,
V2u/u, etc. and to select the useful integration-by-parts foasul

Entropy variables help to derive entropy dissipation iradijes for certain cross-tiu-
sion systems, namely those which possess a logarithmigmnifhe reason is that these
systems can be understood from thermodynamic principlesvifich the logarithmic
entropy plays an importantrole. Are there other (impoitantropy functionals for cross-
diffusion systen¥sCan this be made more general?

The energy-transport system

U+AUT)=0, 3UT)+3AUT?)=0 inQ, t>0,

describes the evolution of the particle densitgnd particle temperatuf® in a thermo-
dynamic difusion system. This system possesses the entropy functional

H[u]:j;ulog(%)dx

The global-in-time existencef solutions to this system (with initial and boundary con-
ditions) is an open problem. Thefficulty is to control the temperature in regions where
the particle density vanishes.
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e Consider the (simplified) Navier-Stokes equations with dgrdependent viscosity,
pt+div(pu) =0, (pu);+div(pu®u)+ Vp = 2vdiv(pD(u)) InQ, t>0,

wherep is the particle density) the velocity,v > 0 the viscosity constant, arfd(u) =
%(VuT + Vu) the symmetric velocity gradient. Assuming appropriatermary condi-
tions, the energy identity for this system reads as

d P, 2 f 24y _
dtfg(zlul +p(logp 1))dx+v Q,oIID(U)II dx=0.

Surprisingly, the system possesses another energy igdotind by Bresch-Desjardins
2004 [6]:

d (p 2
d—tfg(§|u+2V|ogp| +p(logp - 1))dx

+v f (4V VP + 2 1vuT - vui?)dx = o.
0 2

The question is why are there two energy (entropy) idesttiés the reason related to
a “Noether symmetry”? Are there other fluiddynamical modetsch possesseveral
energy identitie® This is important for the analysis of such equations.

e For numerical purposes, the evolution equations are dizeckin time and space. In
order to obtain stable andfzient numerical schemes, it is desirable to design nunlerica
approximations which possess as many properties of thencanis problem as possible.
In particular, entropy-stable, entropy-dissipating, @oditivity-preserving schemes are
needed. To what extend entropy tools can be generalizéiddcete entropy dissipation
method8
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