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2 A. JÜNGEL

1. Motivation

Entropy dissipation methods have been developed recently to investigate the qualitative be-
havior of solutions to nonlinear partial differential equations (PDEs) and to derive explicit or
even optimal constants in functional inequalities. The entropy was introduced by Rudolf Clau-
sius in 1865 as a state function in thermodynamics. Later, Ludwig Boltzmann, Josiah W. Gibbs,
and James C. Maxwell gave a statistical physics interpretation of entropy. In particular, Ludwig
Boltzmann defined in 1877 the entropy of a system, e.g. consisting of ideal gas particles, to be
proportional to the logarithm of the number of micro-statesof the system. Claude Shannon devel-
oped in 1948 a concept of information entropy measuring information, choice, and uncertainty
in order to quantify the statistical nature of phone-line signals.

The notion of entropy plays a fundamental role also in PDE theory. Loosely speaking, an
entropy (in the mathematical sense) is a quantity (Lyapunovfunctional) which is non-increasing
along the trajectories of an evolution equation. The entropy dissipation is the negative time
derivative of the entropy. The concept of entropy was extended by Lax in 1973 to hyperbolic
conservation laws [31] and by DiPerna in 1985 [17] to the framework of compensated compact-
ness. In kinetic theory, the entropy provides a priori estimates which were used for an existence
analysis (DiPerna-Lions 1989 [18]) and for compactness results in hydrodynamic limits (Bardos-
Golse-Levermore 1993 [3], Golse-Levermore 2005 [22], Golse-Saint-Raymond 2004 [23]). The
Boltzmann entropy is employed to derive some information about the long-time behavior of
the solutions to the Boltzmann equation and their decay rates(Desvillettes-Villani 2001 [16]). In
particular, connections to logarithmic Sobolev inequalities (Gross 1975 [24], Del Pino-Dolbeault
[14]) and to stochastic diffusion processes (Bakry-Emery 1983) were discovered. The stochastic
ansatz was re-interpreted by Toscani in 1997 [39] for kinetic Fokker-Planck diffusion using the
notions of entropy and entropy dissipation.

The goal of these lecture notes is to introduce some aspects of entropy dissipation methods
which give insight in the structure of nonlinear PDEs and thequalitative behavior of their solu-
tions. In order to understand the idea of the methods, we consider first a simple example, the
heat equation

ut = ∆u, u(·,0)= u0 ≥ 0 in Td, t > 0,

whereTd is the d-dimensional torus. It is well known that for integrable nonnegative initial
datau0, there exists a smooth nonnegative solution satisfying

∫
Td u(x, t)dx =

∫
Td u0(x)dx =: u

for all t > 0. We normalize the initial mass by settingw = u/meas(Td). For simplicity, we write
u(t)= u(·, t). Thenu(t) is a function depending on the spatial variable,u(t) :Td→R. We introduce
the following functionals:

H1[u] =
∫

Td
ulog

(u
w

)
dx, H2[u] =

1
2

∫

Td
(u−u)2dx.

Observe that both functions are nonnegative. Indeed, the elementary inequality logz+1/z−1≥ 0
for all z> 0 implies that, takingz= u/w,

0≤
∫

Td

(
ulog

(u
w

)
+w−u

)
dx=

∫

Td
ulog

(u
w

)
dx+

∫

Td
wdx−

∫

Td
udx= H1.
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We claim thatH1 andH2 are both Lyapunov functionals along the solutions of the heat equa-
tion. First, we considerH2. By integration by parts, we find that

(1.1)
dH2

dt
[u(t)] =

∫

Td
(u−u)utdx=

∫

Td
(u−u)∆udx= −

∫

Td
|∇u|2dx≤ 0,

and thus,H2 is a Lyapunov functional along solutions to the heat equation. The expression on
the right-hand side is, up to the sign, the dissipation of theentropyH2. This term allows us to
deduce more than just the monotonicity ofH2. For this, we need the Poincaré inequality

(1.2) ‖u−u‖2
L2(Ω) ≤CP‖∇u‖2

L2(Ω) for all u ∈ H1(Ω),

whereΩ ⊂ Rd is a bounded domain. The Poincaré constantCP is the inverse of the first non-
vanishing eigenvalue of the Laplace operator with homogeneous Neumann boundary condi-
tions (Dautray-Lions 1988 [12], Corollary 3, p. 131). For some domains, the constantCP can
be determined explicitly or can at least be estimated. For instance, for bounded convex do-
mains,CP ≤C(d)diam(Ω)/meas(Ω) with C(d) > 0 only depending on the space dimensiond≥ 3
(Dautray-Lions [12], Proposition 3, p. 132); for bounded convex domains with Lipschitz bound-
ary,CP ≤ diam(Ω)/π (Payne-Weinberger 1960 [34]; Bebendorf 2003 [4]); forΩ = Td (with unit
measure),CP = 1/(2π). The Poincaré inequality helps to relate the entropyH2 to the entropy
dissipation. Indeed, combining (1.1) and (1.2), we infer that

dH2

dt
[u(t)] = −‖∇u‖2

L2(Td)
≤ −C−1

P ‖u−u‖2
L2(Ω) = −2C−1

P H2.

By the Gronwall inequality (or just integrating this differential inequality),

(1.3) ‖u(t)−u‖2
L2(Td)

= H2[u(t)] ≤ H2[u0]e−2t/CP, t > 0.

Hence, the solution of the heat equation converges in theL2 norm exponentially fast to the steady
stateu with explicit rate 1/CP.

Remark 1.1. This result is not surprising. Indeed, by semigroup theory,we can writeu as the
series

u(t) =
∞∑

k=1

e−λkt(u0, vk)L2vk,

wherevk is the k-th (normalized) eigenfunction to−∆ with periodic boundary conditions,λk
is the corresponding eigenvalue with increasingλk→∞ ask→∞, and (·, ·)L2 is theL2 scalar
product. The first eigenfunctionv1 is constant and the corresponding eigenvalueλ1 vanishes.
Therefore, sinceu= (u0, v1)L2v1,

‖u(t)−u‖2
L2(Ω) =

∞∑

k=2

e−2λkt(u0, vk)
2
L2 ≤ e−2λ2t‖u0‖2L2(Ω).

The convergence rateλ2 = 1/CP is the same as in (1.3). �
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The strength of entropy dissipation methods is that such decay properties can be derived in
other “norms” too which might be less acessible to semigrouptheory and that nonlinear equations
can be treated as well. We illustrate the first statement by computing the derivative ofH1:

dH1

dt
[u(t)] =

∫

Td

(
log

(u
w

)
+1

)
utdx(1.4)

= −
∫

Td
∇
(
log

(u
w

)
+1

)
· ∇udx= −4

∫

Td
|∇
√

u|2dx.

Again, we need an expression relating the entropyH1 and the entropy dissipation. This is phrased
by the logarithmic Sobolev inequality (which will be provenbelow, see Corollary 3.6 and the
following comments)

∫

Ω

ulog
u
w

dx≤CL

∫

Ω

|∇
√

u|2dx for all
√

u ∈ H1(Ω), u≥ 0,

whereΩ ⊂Rd is a bounded domain. IfΩ= T (with unit measure), the constantCL equals 1/(2π2)
(Rothaus 1980 [35], Weissler 1980 [41], Dolbeault-Gentil-Jüngel 2006 [19]). This shows that

dH1

dt
[u(t)] ≤ 4C−1

L H1 and H1[u(t)] ≤ H1[u0]e−4t/CL , t > 0.

The solution converges in the “norm” ofH1 exponentially fast to its constant steady state with
rate 4/CL.

The above example shows that the entropy dissipation methodpresented above consists of the
following ingredients:

• an entropy functional,
• an entropy dissipation inequality, and
• a relation between the entropy and the entropy dissipation.

Entropy methods are important tools not only to prove the long-time behavior of solutions to
evolution equations. In fact, inequalities (1.1) and (1.4)provide a priori estimates, which can be
used in proving theglobal-in-time existenceof weak solutions. Employing other entropy func-
tionals, theregularity of solutions may be proven. We will show below that an entropymethod
can substitute theminimum/maximum principlein systems of equations. This is of importance
since the classical maximum principle for elliptic or parabolic second-order equations generally
does not hold in such situations. Furthermore, newfunctional inequalitieswith explicit constants
can be proven.

In the following section we will specify which entropy functionals are of interest. The above
technique will be explained for Fokker-Planck equations inmore detail in Section 3. Variants of
entropy methods will be presented in Section 4.

2. Entropies

We define the notions of entropy and entropy dissipation and give some examples of entropies
for the heat equation and the Boltzmann transport equation.
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2.1. Definitions. We start with some definitions. Throughout this section, letX be a Banach
space and letA : D(A)→ X be some (possibly nonlinear) operator defined on its domainD(A).
We assume that there exists a smooth functionu(t) : D(A)→ R satisfying

(2.5) ut +Au= 0 inΩ, t > 0, u(0)= u0,

whereu0 ∈ D(A). The regularity conditions can be relaxed but they simplify the subsequent
arguments. We assume that the stationary equationAu= 0 possesses a steady state 0≤ u∞ ∈D(A).

Definition 2.1 (Lyapunov functional). Let H : D(A)→ R be a functional satisfying

dH
dt

[u(t)] ≤ 0 for all t > 0.

Then we call H aLyapunov functionalalong the trajectory u(t).

As we stated already in the introduction, an entropy is a specific Lyapunov functional. In the
literature, there does not exist a standardized definition of entropy. We give in the following a
possible definition (taken from [32]) but we will use in theselecture notes the term “entropy”
also without verification or as being a convex, nonnegative Lyapunov functional.

Definition 2.2 (Entropy). We call the functional H: D(A)→R anentropyof (2.5)if the following
conditions are satisfied:

• H is a Lyapunov functional;
• H is convex;
• There exists a continuous functionΦ : R→ R such thatΦ(0)= 0 and

(2.6) d(u,u∞) ≤ Φ
(
H[u] −H[u∞]

)
for all u ∈ D(A).

Definition 2.3 (Entropy dissipation). Let H be an entropy of(2.5)and let u be a (smooth) solu-
tion to this equation. Then theentropy dissipationD is defined as

D[u(t)] = −dH
dt

[u(t)], t > 0.

We call an entropy to be ofk-th order if it contains partial derivatives ofk-th order. For
instance, the following functionals may be zeroth-order entropies:

Hα[u] =
1

α(1−α)

∫

Ω

uαdx, α > 0, α , 1,

H1[u] =
∫

Ω

u(logu−1)dx,

H0[u] =
∫

Ω

(u− logu)dx.

When we wish to prove the decay rate of a solutionu(t) to the stationary stateu∞, it is more
appropriate to definerelative entropies, e.g.

Hα[u] =
1

α(α−1)

∫

Ω

(uα−uα∞)dx, α > 0, α , 1,

H1[u] =
∫

Ω

ulog
u

u∞
dx,
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but also other definitions are possible. Candidates of first-order entropies are:

Eα[u] =
∫

Ω

|∇uα/2|2dx, α > 0,

E0[u] =
∫

Ω

|∇ logu|2dx.

Sometimes,E2 is called the energy of the equation. The functionalE1 is referred to as the
Fisher informationsince it plays an important role in information theory. One may also consider
second-order entropies, e.g.

Fα[u] =
∫

Ω

|∆uα/2|2dx, α > 0,

but the computations with these functionals become often very involved, and we will not consider
such functionals here.

2.2. The heat equation revisited.We apply the definitions of the previous subsection to the
solution to the heat equation with periodic boundary conditions,

(2.7) ut = ∆u in Td, t > 0, u(0)= u0 > 0.

To simplify the presentation, we assume that the initial datum is smooth and satisfies
∫
Td u0(x)dx

= 1. The (constant) steady state of (2.7) is given by

u∞ =
1

meas(Td)

∫

Td
u0dx.

By the maximum principle, the solutionu(t) is positive. We wish to prove the following result.

Proposition 2.4. The functionals Hα, defined in Section 2.1, are Lyapunov functionals to(2.7).
Furthermore, H1 is an entropy for(2.7) in the sense of Definition 2.2.

The first claim is easily proved by integration by parts:

dHα
dt
=

1
α−1

∫

Td
uα−1utdx=

1
α−1

∫

Td
uα−1∆udx= −

∫

Td
uα−2|∇u|2dx≤ 0,

whereα , 0,1. An analogous computation shows that such an inequality also holds whenα = 0
or α = 1. In order to show thatH1 is even an entropy we need an auxiliary result, the Csiszár-
Kullback inequality.

Lemma 2.5(Csiszár-Kullback). LetΩ⊂Rd be a domain and let f ,g ∈ L1(Ω) satisfy f≥ 0, g > 0,
and

∫
Ω

f dx=
∫
Ω
gdx= 1. Furthermore, letφ ∈C1(R) satisfy

φ(s) ≥ φ(1)+φ′(1)(s−1)+γ2(s−1)21{s<1}

for all s ∈ R and someγ > 0, where1A is the characteristic function on A⊂ R. Finally, let

Hφ[ f ] =
∫

Ω

φ
( f
g

)
gdx.
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Then

‖ f −g‖2
L1(Ω) ≤

4

γ2

(
Hφ[ f ] −Hφ[g]

)
.

The assumptions onφ are satisfied ifφ ∈C2(R) andφ′′(s) ≥ 2γ2 > 0 for 0< s< 1 andφ′′(s) ≥ 0
else. The classical Csiszár-Kullback inequality [11, 30] isobtained forφ(s) = s(logs−1)+1 with

‖ f −g‖L1(Ω) ≤
√

8(Hφ[ f ] −Hφ[g]).

Notice that the optimal constant is
√

2 instead of
√

8. For generalizations of Lemma 2.5 we refer
to Carrillo-Jüngel-Markowich-Toscani-Untereiter 2001 [7], Section 4.2.

Proof. The proof is taken from [32]. Sincef andg have both mass one, we find that

‖ f −g‖L1(Ω) =

∫

{ f<g}
| f −g|dx+

∫

{ f≥g}
| f −g|dx

=

∫

{ f<g}
(g− f )dx+

∫

{ f≥g}
f dx−

∫

{ f≥g}
gdx

=

∫

{ f<g}
(g− f )dx+

(
1−

∫

{ f<g}
f dx

)
−

(
1−

∫

{ f<g}
gdx

)

= 2
∫

{ f<g}
(g− f )dx.

Hence, by the Cauchy-Schwarz inequality and the condition
∫
Ω
gdx= 1,

‖ f −g‖L1(Ω) = 2
∫

{ f<g}

∣∣∣∣
f
g
−1

∣∣∣∣gdx≤ 2
(∫

{ f<g}

∣∣∣∣
f
g
−1

∣∣∣∣
2
gdx

)1/2(∫

Ω

gdx
)1/2

= 2
(∫

{ f<g}

∣∣∣∣
f
g
−1

∣∣∣∣
2
gdx

)1/2
.

Now we employ the assumption onφ to conclude that

Hφ[ f ] −Hφ[g] =
∫

Ω

(
φ
( f
g

)
−φ(1)

)
gdx≥

∫

Ω

(
φ′(1)

( f
g
−1

)
g+γ2

( f
g
−1

)2
g1{ f<g}

)
dx

= φ′(1)
∫

Ω

( f −g)dx+γ2
∫

{ f<g}

( f
g
−1

)2
gdx≥ γ

2

4
‖ f −g‖2

L1(Ω).

In the last step, we used
∫
Ω

f dx=
∫
Ω
gdx. �

Proof of Proposition 2.4.Sinces 7→ s(logs− 1) is convex, the functionalH1[u] is convex too.
The solution to the heat equation satisfies

∫
Ω

u(t)dx = 1 for all t > 0, andu∞ = 1/meas(Td).
Hence,

H1[u] −H1[u∞] =
∫

Td
ulogudx−

∫

Td
u∞ logu∞dx=

∫

Td
ulogudx− logu∞

=

∫

Td
ulogudx− logu∞

∫

Td
udx=

∫

Td
ulog

u
u∞

dx.
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By Lemma 2.5 withφ(s) = slogs andγ = 1/
√

2, we infer that

H1[u] −H1[u∞] ≥ 1
8
‖u−u∞‖2L1(Td)

,

i.e.,H1 satisfies (2.6) withΦ(s) =
√

8s. �

2.3. The homogeneous Boltzmann equation.The entropyH1 plays a key role in the homo-
geneous Boltzmann equation modeling a rarefied mono-atomic gas. It describes the temporal
change of the probability to find molecules of a given velocity v. Let f (v, t) be the probabil-
ity density at timet > 0 to find molecules with velocityv ∈ Rd. The homogeneous Boltzmann
equation is derived under the assumptions that the molecules move freely and that they exchange
momentum and energy in binary elastic collisions. Letv andw be the velocities of two molecules
before a collision, andv∗ andw∗ the post-collisional velocities. Elastic collisions conserve mo-
mentum and energy, i.e.

(2.8) v+w = v∗+w∗, |v|2+ |w|2 = |v∗|2+ |w∗|2.

These ared+1 equations for the 2d unknownsv∗ andw∗. Therefore, the solutions are given in
terms ofd−1 parameters. For instance, the solutions can be expressed as

v∗ =
1
2

(v+w+ |v−w|n), w∗ =
1
2

(v+w− |v−w|n),

wheren ∈ Sd−1 is a parameter on the unit sphere. Under these assumptions, Boltzmann derived
in 1872 [5] the equation

(2.9)
∂ f
∂t
= Q( f ) =

∫

Rd

∫

Sd−1
B(|v−w|,n)

(
f (v∗) f (w∗)− f (v) f (w)

)
dwdn.

The nonnegative functionB(z, ν) is the Boltzmann collision kernel which depends on the collision
angle viaν = (v−w) ·n/|v−w|. The right-hand side can be split into a gain and a loss term. The
loss term involvingf (v) f (w) counts all collisions in which a particle with velocityv encounters
another particle with velocityw. After the collision, the particle will generally change its velocity,
resulting in less particles with velocityv. When particles with velocitiesv∗ andw∗ collide, one
particle may acquire the velocityv, resulting in a gain of particles with that velocity. This gives
the gain term involvingf (v∗) f (w∗).

The Boltzmann equation can be written in a weak form. Indeed, multiplying the equation
by a smooth test functionΦ(v) and employing the changes of variables (v,w) 7→ (v∗,w∗) and
(v,w) 7→ (w,v) (here we omit some details on how to modify the parametern; see Villani 2003
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[40]), we obtain∫

Rd
Q( f )Φ(v)dv =

∫

Rd

∫

Rd

∫

Sd−1
B(|v−w|,n)

(
f (v∗) f (w∗)− f (v) f (w)

)
Φ(v)dvdwdn

=

∫

Rd

∫

Rd

∫

Sd−1
B(|v−w|,n) f (v) f (w)

(
Φ(v∗)−Φ(v)

)
dvdwdn

=
1
2

∫

Rd

∫

Rd

∫

Sd−1
B(|v−w|,n) f (v) f (w)

×
(
Φ(v∗)+Φ(w∗)−Φ(v)−Φ(w)

)
dvdwdn.(2.10)

Symmetrizing this expression once more, it follows that∫

Rd
Q( f )Φ(v)dv = −1

4

∫

Rd

∫

Rd

∫

Sd−1
B(|v−w|,n)

(
f (v∗) f (w∗)− f (v) f (w)

)

×
(
Φ(v∗)+Φ(w∗)−Φ(v)−Φ(w)

)
dvdwdn.(2.11)

As a consequence of (2.10), wheneverΦ satisfies

(2.12) Φ(v)+Φ(w) = Φ(v∗)+Φ(w∗) for all v,w,n,

it holds formally
d
dt

∫

Rd
f (v, t)Φ(v)dv =

∫

Rd
Q( f )Φ(v)dv = 0.

By momentum and energy conservation (2.8), this holds true for the functionsΦ(v) = 1, v j ,
|v|2/2 ( j = 1, . . . ,d). It can be shown that all solutions to (2.12) are linear combinations of these
functions (see the book of Cercignani-Illner-Pulvirenti 1994 [8], pp. 36-42). This yields the
conservation laws of the Boltzmann equation,

d
dt

∫

Rd
f (v, t)(1, v, 12|v|

2)dv = 0,

expressing conservation of mass, momentum, and energy of the gas.
The weak form (2.11) is used to prove that

H1[ f ] =
∫

Rd
f log f dv

is an entropy for the Boltzmann equation on the spaceU of probability densitiesf (v) satisfying
∫

Rd
f (v)dv = 1,

∫

Rd
f (v)vdv = 0,

∫

Rd
f (v)
|v|2

2
dv =

1
2
.

Theorem 2.6(Boltzmann’s H theorem). The functional H1 is an entropy (in the sense of Defini-
tion 2.2) for the homogeneous Boltzmann equation(2.9)on the domain U.

Proof. The proof is taken from [32]. First, we observe thatH1 is a Lyapunov functional. Indeed,
takingΦ(v) = log f (v) in (2.11), we find that

dH1

dt
[ f ] = −1

4

∫

Rd

∫

Rd

∫

Sd−1
B(|v−w|,n)

×
(
log( f (v∗) f (w∗))− log( f (v) f (w))

)(
f (v∗) f (w∗)− f (v) f (w)

)
dvdwdn≤ 0,
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sincex 7→ logx is strictly increasing and the expression under the integral is nonnegative.
Next, we need to determine the steady statef∞. We claim that the Maxwellian

f∞(v) = (2π)−d/2exp(−|v|2/2)

is the unique stationary solution to the Boltzmann equation.First, we observe that forf ∈ U,
∫

Rd
f log f∞dv = −

∫

Rd
f
(d
2

log(2π)+
1
2
|v|2

)
dv = −d

2
log(2π)− 1

2

= −d
2

log(2π) (2π)−d/2
∫

Rd
e−|v|

2/2dv
︸                     ︷︷                     ︸

=1

−1
2

(2π)−d/2
∫

Rd
e−|v|

2/2|v|2dv
︸                          ︷︷                          ︸

=1

= −
∫

Rd
(2π)−d/2e−|v|

2/2
(d
2

log(2π)− 1
2
|v|2

)
dv

=

∫

Rd
f∞ log f∞dv = H1[ f∞].

Then, withρ = f / f∞, we have

H1[ f ] −H1[ f∞] =
∫

Rd
f (log f − log f∞)dv =

∫

Rd
ρ log(ρ) f∞dv =

∫

Rd
φ(ρ) f∞dv,

whereφ(s) = slogs. We apply Jensen’s inequality to the integral with measuref∞dv to obtain

H1[ f ] −H1[ f∞] ≥ φ
(∫

Rd
ρ f∞dv

)
=

(∫

Rd
ρ f∞dv

)
log

(∫

Rd
ρ f∞dv

)
= 0,

since
∫
Rd ρ f∞dv =

∫
Rd f dv = 1. Equality holds if and only ifφ(ρ = 0 or ρ(v) = 1 or f (v) = f∞(v)

for all v ∈ Rd. Thus, f∞ minimizesH1.
Finally, the Csiszár-Kullback inequality (Lemma 2.5)

‖ f − f∞‖L1(Rd) ≤
2
γ

(
H1[ f ] −H1[ f∞]

)1/2

shows property (2.6) with the distance induced by theL1 norm. �

3. Fokker-Planck equations

Fokker-Planck equations are drift-diffusion equations of the form

ut = div(∇ f (u)+u∇V),

where f (u) is some nonlinearity andV a potential. First, we analyze the long-time asymptotics
of the linear Fokker-Planck equation (i.e.f (u) = u) and show relations to a specific functional
inequality, the logarithmic Sobolev inequality. Second, the entropy technique is extended to
nonlinear Fokker-Planck equations.
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3.1. Relaxation to self-similarity. We consider the heat equation but now in the whole space,

(3.13) ut = ∆u in Rd, t > 0, u(0)= u0 ≥ 0 inRd,

∫

Rd
u0dx= 1.

The solutionu(t) ≥ 0 can be written explicity:

u(x, t) =
1

(4πt)d/2

∫

Rd
e−|x−y|

2/(4t)u0(y)dy.

In particular, it is strictly positive and conserves mass,
∫
Rd u(t)dx= 1 for all t > 0. From this

formula follows thatu(t)→ 0 in L∞(Ω) ast→∞. Furthermore, the functional

H1[u] =
∫

Rd
u(logu−1)dx

is a Lyapunov functional along solutionu to (3.13). However,

H[u(t)] ≤
∫

Rd
u(t) log‖u(t)‖L∞(Ω)dx= log‖u(t)‖L∞(Ω)→−∞,

and entropy estimates seem to be not applicable. In fact, this is not surprising, since the only
(integrable) steady state to (3.13) isu∞ = 0, and this function has not unit mass. The entropy is
useful to study the relaxation of the solution to the self-similar solution

(3.14) U(x, t) =
1

(2π(2t+1))d/2
exp

(
− |x|2

2(2t+1)

)
, x ∈ Rd, t > 0,

i.e., we wish to analyze how fastu(t) −U(t) decays to zero. Clearly, this gives much more
information than just the fact thatu(t)→ 0 ast→∞.

For this, we transform the variables (x, t) to makeU stationary in these coordinates. We set
y = x/

√
2t+1, s= log

√
2t+1, and

v(y, s) = edsu
(
esy, 12(e2s−1)

)
, y ∈ Rd, s> 0.

Then
∂v

∂s
= dedsu+edses∇xu+edse2sut = dv+∇yv+∆yv = divy(∇yv+yv),

and the functionv satisfies the Cauchy problem

(3.15) vs= div(∇v+yv) in Rd, s> 0, v(0)= u0.

This equation is of Fokker-Planck type with a quadratic potential V(y) = 1
2|y|

2. The self-similar
solution in the new coordinates becomes

M(y) = (2t+1)d/2U(x, t) = (2π)−d/2e−|y|
2/2,

which we call the Maxwellian (see Section 2.3). It is the unique steady state to (3.15). We choose
functionsv from the domain

X =
{
v ∈ L1(Rd) : v ≥ 0, |y|2v, v logv ∈ L1(Rd),

∫

Rd
vdy = 1

}
.
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In this setting, we work with the relative entropy

H1[v] =
∫

Rd
v log

v

M
dy =

∫

Rd
v logvdy+

1
2

∫

Rd

(
d log(2π)+ |y|2

)
vdy.

Theorem 3.1(Exponential decay for the Fokker-Planck equation). Let u0 ∈ L1(Rd) be nonnega-
tive and satisfy

∫
Rd u0dx= 1. Letv be the solution to(3.15). Then, with H1 as defined above,

(3.16) 0≤ H1[v(s)] ≤ e−2sH1[u0] for all s> 0.

Moreover,v(s) converges exponentially fast to the Maxwellian M,

(3.17) ‖v(s)−M‖L1(Rd) ≤ e−s
√

8H1[u0] for all s> 0.

Proof. We differentiate, employ (3.13), and integrate by parts:
dH1

ds
[v(s)] =

∫

Rd
vs logvdy+

1
2

∫

Rd
|y|2vsdy

= −
∫

Rd
∇ logv · (∇v+yv)dy− 1

2

∫

Rd
∇|y|2 · (∇v+yv)dy

= −
∫

Rd

( |∇v|2
v
+2y · ∇v+ |y|2v

)
dy = −

∫

Rd
v|∇ logv+y|2dy ≤ 0.

Hence,H1 is a Lyapunov functional. Another formulation of the right-hand side is, after inte-
grating by parts in the mixed term and using

∫
Rd vdx= 1,

dH1

ds
[v(s)] = −

∫

Rd

(
4|∇
√
v|2−2dv+ |y|2v

)
dy = −

∫

Rd

(
4|∇
√
v|2+ |y|2v

)
dx−2d.

Now, assume that the following inequality holds:

(3.18) 2
∫

Rd
|∇
√
v|2dy ≥

∫

Rd
v logvdy+d(1+ log

√
2π).

Then we find that
dH1

ds
[v(s)] ≥ −2

∫

Rd
v logvdy−

∫

Rd
(|y|2+d log(2π))vdy = 2H1[v(s)].

By Gronwall’s inequality, we infer (3.16). Estimate (3.17) is a consequence of (3.16) and the
Csiszár-Kullback inequality. �

Before we discuss (3.18), we go back to the original variables. Notice that the self-similar
solution can be written in terms of the Maxwellian as follows:

U(x, t) = (2t+1)−d/2M
(
(2t+1)−1/2x

)
.

The left-hand side of (3.17) writes after the substitutiony = (2t+1)−1/2x as

‖v(s)−M‖L1(Rd) = ‖u(t)−U(t)‖L1(Rd),

whereas the right-hand side is formulated as

e−s
√

8H1[u0] = (2t+1)−1/2
√

8H1[u0].

Thus, we have shown the following result.
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Corollary 3.2 (Relaxation to self-similarity). Let u0 ∈ L1(Rd) be nonnegative and has unit mass,∫
Rd u0dx= 1. Let U be defined in(3.14)and let u(t) be the solution to(3.13). Then

‖u(t)−U(t)‖L1(Rd) ≤
√

8H1[u0]
√

2t+1
for all t > 0.

It remains to prove (3.18) written forv = f 2:

(3.19)
∫

Rd
f 2 log f 2dx+d(1+ log

√
2π) ≤ 2

∫

Rd
|∇ f |2dx

for f ∈ H1(Rd), f ≥ 0, ‖ f ‖L2(Rd) = 1. This inequality is called thelogarithmic Sobolev inequality.
It was first formulated by Federbush in 1969 [21] and exploited by Gross in 1975 [24]. We will
give a proof in the next subsection.

3.2. The Fokker-Planck equation and logarithmic Sobolev inequality. The approach of the
previous subsection has the drawback that the equilibration property relies on the logarithmic
Sobolev inequality which needs to be proven separately. Theentropy method can be modified
in such a way thatbothstatements – equilibration property and logarithmic Sobolev inequality –
can be proved simultaneously. To this end, we consider a slightly more general Fokker-Planck
equation than in the previous subsection:

(3.20) ut = div(∇u+u∇V) in Rd, t > 0, u(0)= u0.

As in the previous subsection, we assume that the initial datum u0 ∈ L1(Rd) is nonnegative and
has unit mass. The potentialV(x) is assumed to be smooth and satisfies lim|x|→∞V(x) =∞. The
Fokker-Planck equation possesses the steady state

0= ∇u∞+u∞∇V = u∞(∇ logu∞+V).

Hence, ifu∞ > 0, logu∞+V is constant. Thus,u∞ is given by

(3.21) u∞(x) = Ze−V(x), Z =
(∫

Rd
e−V(y)dy

)−1
.

In order to introduce the entropy, letφ : [0,∞)→ [0,∞) be a smooth and convex function satis-
fying φ(1)= φ′(1)= 0. An example for such a function is given byφ(s) = s(logs−1)+1, s> 0.
Then we introduce the entropy functional:

(3.22) Hφ[u] =
∫

Rd
φ
( u
u∞

)
u∞dx.

The entropy is a Lyapunov functional for the Fokker-Planck equation:

Proposition 3.3. Let φ be defined as above. Then Hφ is a Lyapunov functional for the Fokker-
Planck equation(3.20).



14 A. JÜNGEL

Proof. Using the expression∇u+u∇V = ∇u−∇ logu∞ = u∞∇(u/u∞), we compute

dHφ
dt

[u(t)] =
∫

Rd
φ′

( u
u∞

)
utdx= −

∫

Rd
∇φ′

( u
u∞

)
· (∇u+u∇V)dx

= −
∫

Rd
φ′′

( u
u∞

)
∇
( u
u∞

)
· ∇

( u
u∞

)
u∞dx= −

∫

Rd
φ′′

( u
u∞

)∣∣∣∣∇
( u
u∞

)∣∣∣∣
2
u∞dx.

Sinceφ is convex, the right integral is nonnegative and hence,dHφ[u(t)]/dt≤ 0. �

The idea of the entropy method here is to compute thesecondtime derivative ofHφ. This is
due to Bakry and Emery 1983 [2]. LetDφ[u(t)] = −dHφ[u(t)]/dt ≥ 0 be the entropy dissipation.
Notice thatDφ[u(t)] = 0 if and only ifu(t) = u∞.

Lemma 3.4. Let∇2V(x)−λI be positive semi-definite uniformly in x∈ Rd for someλ > 0. Let
φ ∈C4([0,∞)) be convex such that1/φ′′ is concave. Then, along solutions u(t) to (3.20),

dDφ
dt

[u(t)] ≤ −2λDφ[u(t)] for t > 0.

As a consequence of this lemma, ifDφ[u0] <∞, we have exponential decay with rate 2λ:

Dφ[u(t)] ≤ e−2λtDφ[u0], t > 0.

Proof. The proof is due to Arnold-Markowich-Toscani-Unterreiter2001 [1] but the idea goes
back to Bakry-Emery 1983 [2]. Letρ = u/u∞. Then the Fokker-Planck equation can be written
equivalently asρt = u−1

∞ ut = u−1
∞ div(u∞∇ρ). The proof of Proposition 3.3 shows that

Dφ[u] =
∫

Rd
φ′′(ρ)|∇ρ|2u∞dx.

We calculate, as in [32],

(3.23)
dDφ
dt

[u(t)] =
∫

Rd
∂tφ
′′(ρ)|∇ρ|2u∞dx+2

∫

Rd
φ′′(ρ)∇ρ ·∂t∇ρu∞dx.

The first integral equals
∫

Rd
∂tφ
′′(ρ)|∇ρ|2u∞dx=

∫

Rd
φ′′′(ρ)|∇ρ|2div(u∞∇ρ)dx

= −
∫

Rd
∇
(
φ′′′(ρ)|∇ρ|2

)
· ∇ρu∞dx

= −
∫

Rd

(
φ′′′′(ρ)|∇ρ|4+2φ′′′(ρ)∇ρ∇2ρ∇ρ

)
u∞dx.

For the second integral, we observe that

∇ρ · ∇ρt = ∇ρ · ∇(∆ρ−∇ρ · ∇V) = div(∇2ρ · ∇ρ)+ |∇2ρ|2−∇ρ∇2V∇ρ−∇ρ∇2ρ∇V.
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Using ∇ρ∇2V∇ρ ≥ λ|∇ρ|2 und integrating by parts in the term involving the divergence, the
second integral becomes

2
∫

Rd
φ′′(ρ)∇ρ ·∂t∇ρu∞dx≤ −2λ

∫

Rd
φ′′(ρ)|∇ρ|2u∞dx

+2
∫

Rd
φ′′(ρ)

(
div(∇2ρ∇ρ)+ |∇2ρ|2−∇ρ∇2ρ∇V

)
u∞dx

= −2λDφ[u] +2
∫

Rd
φ′′(ρ)

(
|∇2ρ|2−∇ρ∇2ρ∇V

)
u∞dx

−2
∫

Rd
∇2ρ∇ρ∇u∞dx−2

∫

Rd
φ′′′(ρ)∇ρ∇2ρ∇ρdx

= −2λDφ[u] +2
∫

Rd
φ′′(ρ)|∇2ρ|2u∞dx−2

∫

Rd
φ′′′(ρ)∇ρ∇2ρ∇ρdx,

where we used∇u∞+u∞∇V = 0. Inserting these expressions into (3.23), we infer that

dDφ
dt

[u(t)] ≤ −2λDφ[u] −
∫

Rd

(
φ′′′′(ρ)|∇ρ|4+4φ′′′(ρ)∇ρ∇2ρ∇ρ+2φ′′(ρ)|∇2ρ|2

)
u∞dx.

We claim that our assumptions onφ imply that the last integrand is pointwise nonnegative. In-
deed, the convexity ofφ gives φ′′ ≥ 0, and the convavity of 1/φ′′ is equivalent toφ′′′′φ′′ −
2(φ′′′)2 ≥ 0. These conditions ensure that the quadratic form

Q(x, y) = φ′′′′x2−4φ′′′xy+2φ′′y2, x, y ∈ R,

is nonnegative. Hence, by the Cauchy-Schwarz inequality,

φ′′′′(ρ)|∇ρ|4+4φ′′′(ρ)∇ρ∇2ρ∇ρ+2φ′′(ρ)|∇2ρ|2

≥ φ′′′′(ρ)|∇ρ|4−4φ′′′(ρ)‖∇2ρ‖|∇ρ|2+2φ′′(ρ)‖∇2ρ‖2

= Q(|∇2ρ|,‖∇ρ‖2) ≥ 0.

This proves the claim. �

Now we can prove the exponential decay ofHφ[u(t)].

Theorem 3.5(Exponential decay inL1). Let u be the solution to the Fokker-Planck equation
(3.20), let φ satisfy the conditions of Lemma 3.4, and let Hφ be defined by(3.22). Then

Hφ[u(t)] ≤ e−2λtHφ[u0] for all t > 0.

Moreover, ifφ satisfies the assumptions of Lemma 2.5 (Csiszár-Kullback inequality) then

‖u(t)−u∞‖L1(Rd) ≤Cφ
√

Hφ[u0]e−λt for all t > 0,

where the constant Cφ > 0 only depends onφ.
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Proof. In the following, we present only a formal proof. The calculations can be made rigorous
by suitable but tedious density arguments, see Arnold-Markowich-Toscani-Unterreiter 2001 [1].
We rewrite the inequality of Lemma 3.4:

−
dDφ
dt

[u(t)] ≥ 2λDφ[u(t)] = −2λ
dHφ
dt

[u(t)], t > 0.

Integrating both sides int ∈ (τ,∞), we obtain

(3.24) Dφ[u(τ)] − lim
t→∞

Dφ[u(t)] ≥ 2λ
(
Hφ[u(τ)] − lim

t→∞
Hφ[u(t)]

)
.

Next, we show that the limits vanish implying that

dHφ
dt

[u(τ)] = −Dφ[u(τ)] ≤ −2λHφ[u(τ)].

This gives the first claim.
The entropy dissipationDφ is nonnegative, nonincreasing as a function oft, and it holds

∫ ∞

0
Dφ[u(t)]dt≤ Dφ[u0]

∫ ∞

0
e−2λtdt<∞.

Hence,Dφ[u(t)] converges to zero ast→∞. SinceDφ[u(t)] ≥ 0, we find that

0= lim
t→∞

Dφ[u(t)] = Dφ
[

lim
t→∞

u(t)
]
.

The functionalDφ vanishes exactly atu∞, which shows that limt→∞u(t) = u∞. Therefore,

lim
t→∞

Hφ[u(t)] = Hφ
[

lim
t→∞

u(t)
]
= Hφ[u∞] = 0,

and it remains to apply the Gronwall inequality.
By the Csiszár-Kullback inequality (Lemma 2.5),

‖u(t)−u∞‖L1(Rd) ≤
2
γ

√
Hφ[u(t)] −Hφ[u∞] =

2
γ

√
Hφ[u(t)] ≤ 2

γ

√
Hφ[u0]e−λt,

which shows the second claim. �

It seems that in the above proof, we did not use the logarithmic Sobolev inequality. In fact,
we did. Reformulating (3.24), we see that this inequality isequivalentto a convex Sobolev
inequality.

Corollary 3.6 (Convex Sobolev inequality). Let u∈ L1(Rd) be nonnegative and has unit mass,
let V andφ satisfy the conditions of Lemma 3.4. Furthermore, let u∞ be given by(3.21). Then

(3.25) Hφ[u] =
∫

Rd
φ
( u0

u∞

)
u∞dx≤ 1

2λ

∫

Rd
φ′′

( u0

u∞

)∣∣∣∣∇
( u
u∞

)∣∣∣∣
2
u∞dx=

1
2λ

Dφ[u].
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Let V(x) = 1
2|x|

2 andφ(s) = s(logs−1)+1. Thenλ = 1, u∞(x) = (2π)−d/2exp(−|x|2/2) is the
Maxwellian introduced in Section 3.1, and a calculation shows that, using

∫
Rd udx=

∫
Rd u∞dx= 1,

Hφ[u] =
∫

Rd
ulogudx−

∫

Rd
ulogu∞dx=

∫

Rde
ulogudx+

d
2

log(2π)+
1
2

∫

Rd
|x|2udx,

Dφ[u] =
∫

Rd

u2
∞
u

∣∣∣∣∇
u

u∞

∣∣∣∣
2
dx=

∫

Rd

(
4|∇
√

u|2+2x · ∇u+ |x|2u
)
dx

= 4
∫

Rd
|∇
√

u|2dx−2d+
∫

Rd
|x|2udx.

Inserting these expressions in the convex Sobolev inequality (3.25), we find that
∫

Rd
ulogudx+

d
2

log(2π)+d ≤ 2
∫

Rd
|∇
√

u|2dx,

which is exactly the logarithmic Sobolev inequality (3.19). Thus, the above proof simultaneously
shows the exponential decay of the Fokker-Planck solutionsand the convex Sobolev inequality.

Remark 3.7. In bounded domains without confining potential, the logarithmic Sobolev inequal-
ity is a consequence of the Sobolev and Poincaré inequalities. This argument is due to Stroock
[37], and a short proof is given by Desvillettes and Fellner 2007 [15]. More precisely, letΩ ⊂ Rd

be a bounded domain andu ∈ H1(Ω) such that
∥∥∥∥u−

∫

Ω

udx
∥∥∥∥

L2(Ω)
≤CP‖∇u‖L2(Ω),

‖u‖Lq(Ω) ≤CS‖u‖H1(Ω),

where 1/q= 1/2−1/d. Then the logarithmic Sobolev inequality
∫

Ω

u2 log
( u2

‖u‖2
L2(Ω)

)
dx≤CL‖∇u‖2

L2(Ω)

holds for some constantCL > 0 which depends onΩ andd. �

3.3. Nonlinear Fokker-Planck equations. The arguments of the previous subsection can be
generalized to nonlinear diffusions. We consider the nonlinear Fokker-Planck equation

(3.26) ut = div(∇ f (u)+u∇V) in Ω, t > 0, u(0)= u0 ≥ 0.

Here,Ω ⊂ Rd is either a bounded domain with smooth boundary orΩ = Rd. In the former case,
we impose no-flux boundary conditions,

(∇ f (u)+u∇V) · ν = 0 on∂Ω.

The initial datum satisfiesu0 ∈ L1(Ω), and we set
∫
Ω

u0dx=: M > 0. To fix the ideas, we assume
that the potential is quadratic,V(x) = λ2 |x|

2 (λ > 0), but more general choices are possible (as
long as the potential is convex; see Carrillo-Jüngel-Markowich-Toscani-Unterreiter 2001 [7]).
The nonlinar function is assumed to be smooth, strictly increasing, andf (0)= 0. Again, to avoid
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technicalities, we choosef (s) = sm with m> 1. We notice that the stationary solutions to (3.26)
are the compactly supported Barenblatt profiles,

(3.27) u∞(x) =
(
N−m−1

2m
|x|2

)1/(m−1)

+
,

wherez+ =max{0,z} denotes the positive part ofz∈ R. The constantN can be determined from
the mass condition, for givenM > 0,

M =
∫

Ω

u0dx=
∫

Ω

(
N−m−1

2m
|x|2

)1/(m−1)

+
dx.

In the following, we explain the main ideas of the entropy method for the whole-space situation
Ω = Rd only and proceed as in [32]. In principle, the strategy of theprevious subsection can
be extended to the nonlinear equation but there are some additional technical difficulties. One
difficulty is thatu∞ may vanish, which makes it impossible to introduce the relative entropy as
in (3.22). Therefore, one has to resort to the less convenient absolute entropy

H[u] =
∫

Rd
u
( um−1

m−1
+
λ

2
|x|2

)
dx,

and the difference

H∗[u] = H[u] −H[u∞].

Furthermore, we introduce the functionh : [0,∞)→ R by h′(u) = f ′(z)/z andh(0) = 0. In the
present case,h(u) = (m/(m−1))um−1. This definition is motivated by the fact that (3.26) can be
formulated asut = div(u∇(h(u)+V)).

The main result is as follows.

Theorem 3.8(Exponential decay). Let u≥ 0 satisfying H[u] <∞. Then

(3.28) H∗[u] ≤ 1
2λ

∫

Rd
u|∇(h(u)+V)|2dx.

Let u(t) be a smooth solution to(3.26), where H[u0] <∞. Then there exists a constant C> 0 such
that

H[u(t)] ≤Ce−2λt, D[u(t)] ≤Ce−2λt, ‖u(t)−u∞‖L1(Rd) ≤Ce−λt

for t > 0, where D[u(t)] = −dH[u(t)]/dt is the entropy dissipation of H.

We give only a sketch of the proof. There are a number of difficulties to overcome in the rig-
orous proof (which can be found in [7]). First, since the solution to the porous-medium equation
is generally only Hölder continuous and not as smooth as the solution to the heat equation, the
solutions to (3.26) have to be approximated by smooth and positive functions. Second, one has
to justify that the boundary terms vanish in the integrations by parts, which is not trivial due to
the potential which does not vanish as|x| → ∞.

Proof. The proof is divided in several steps. We assume that (3.26) possesses a smooth positive
solutionu(t).
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Step 1: Entropy dissipation.We compute the entropy dissipation:

D[u(t)] = −
∫

Rd

( m
m−1

um−1

︸      ︷︷      ︸
=h(u)

+
λ

2
|x|2

︸︷︷︸
=V(x)

)
utdx= −

∫

Rd
u|∇(h(u)+V)|2dx≤ 0.

Step 2: Second entropy dissipation.The computation ofdD[u(t)]/dt is involved. We just
remark that a straight-forward computation gives

dD
dt

[u(t)] = −2λ
∫

Rd
u|∇(h(u)+V)|2dx− 2m

m−1
R(t) = −2λD[u(t)] − 2m

m−1
R(t),

where

R(t) =
∫

Rd
u∇(h(u)+V)∇2um−1∇(h(u)+V)dx+ (m−1)

∫

Rd
um−2|div(u∇(h(u)+V))|2dx.

By several integrations by parts, it follows that

R(t) =
(m−1)2

m

∫

Rd
um(∆(h(u)+V))2dx+

m−1
m

∫

Rd
um‖∇2(h(u)+V)‖2dx≥ 0.

Therefore,

(3.29)
dD
dt

[u(t)] ≤ −2λD[u(t)], t > 0.

Step 3: Functional inequality.Integration of (3.29) yields

D[u(t)] ≤ D[u0]e−2λt, t > 0,

from which (3.28) follows as in the linear case; see the proofof Theorem 3.5. Here, one has to
prove thatD[u(t)]→ 0 ast→∞ which is not obvious.

Step 4: Convergence in the L1 norm. This part of the proof is surprisingly difficult due to the
lack of positivity of the steady stateu∞. The idea is to estimate theL1 norm ofu−u∞ first for
steady statesu∞ whose support is contained in some ball and then to control the behavior ofu
outside the support ofu∞. Here, the definition of the entropyH∗ is needed. For details, we refer
to [32, Section 1.7]. �

In Section 3.2, we have shown that the linear Fokker-Planck equation is related to a convex
Sobolev inequality, including the logarithmic Sobolev inequality; see Corollary 3.6. One may
ask if the nonlinear Fokker-Planck equation is related to a functional inequality too. The answer
is yes and the corresponding inequality is the Gagliardo-Nirenberg inequality.

Theorem 3.9(Gagliardo-Nirenberg inequality). Let 1
2 < p < 1. Then there exists C0 > 0 only

depending on p and d such that for allw ∈ H1(Rd)∩L2p(Rd),

‖w‖Lp+1(Rd) ≤C0‖∇w‖θL2(Rd)
‖w‖1−θ

L2p(Rd)
, whereθ =

d(1− p)
(1+ p)(2p+d(1− p))

∈ (0,1).
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Proof. The proof is not difficult but technical. The idea is to insert the explicit expressions for
h(u), V(x), andu∞ into the relation (3.28) between the entropy and the entropydissipation. A
computation leads to

∫

Rd
umdx≤ A

∫

Rd
|∇um−1/2|2dx+B

(∫

Rd
udx

)γ
,

for some positive constantsA, B, γ and withm= (p+1)/(2p)> 1. Next, definingu(x)= λd/mv(λx)
and passing to the new integration variabley = λx, a suitable choice ofλ gives

∫

Rd
vmdx≤C

(∫

Rd
|∇vm−1/2|2dy

)µ(∫

Rd
vdy

)γ(1−µ)
.

Finally, the choicew = vm−1/2 yields the result. Thus, we divide the proof into three steps.
Step 1: Reformulation of(3.28). ChoosingV(x) = 1

2|x|
2, the right-hand side of (3.28) becomes

∫

Rd
u|∇(h(u)+V)|2dx=

∫

Rd
u
∣∣∣∣

m
m−1

∇um−1+ x
∣∣∣∣
2
dx

=
( m
m−1

)2
∫

Rd
u|∇um−1|2dx+

∫

Rd
u|x|2dx+

2m
m−1

∫

Rd
ux· ∇um−1dx

=
( m
m−1/2

)2
∫

Rd
|∇um−1/2|2dx+

∫

Rd
u|x|2dx+2

∫

Rd
x · ∇umdx.

By integration by parts, the last integral writes as

2
∫

Rd
x · ∇umdx= −2

∫

Rd
div(x)umdx= −2d

∫

Rd
umdx.

Therefore, (3.28) is equivalent to
∫

Rd

( um

m−1
+

1
2

u|x|2
)
dx−H[u∞] = H∗[u] ≤ 1

2

∫

Rd
u|∇(h(u)+V)|2dx

=
1
2

( m
m−1/2

)2
∫

Rd
|∇um−1/2|2dx+

1
2

∫

Rd
u|x|2dx−d

∫

Rd
umdx.

Rearranging terms on both sides leads to

(3.30)
(
d+

1
m−1

)∫

Rd
umdx≤ 1

2

( m
m−1/2

)2
∫

Rd
|∇um−1/2|2dx+H[u∞].

It remains to computeH[u∞]. The steady stateu∞ is the Barenblatt profile (3.27). With the
transformationy = x/

√
N, we obtain

u∞(x) =
(
N−m−1

2m
|x|2

)1/(m−1)

+
= N1/(m−1)

(
1− 2m

m−1
|y|2

)1/(m−1)

+︸                     ︷︷                     ︸
=:Um(y)

.
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Using |x|2 = N|y|2 anddx= Nd/2dy, we compute

H[u∞] =
1

m−1

∫

Rd
um
∞dx+

1
2

∫

Rd
|x|2u∞dx

=
1

m−1
Nm/(m−1)

∫

Rd
Um(y)mdx+

1
2

N1/(m−1)
∫

Rd
|x|2Um(y)dx

=
1

m−1
Nm/(m−1)+d/2

∫

Rd
Um(y)mdy+

1
2

N1/(m−1)+1+d/2
∫

Rd
|y|2Um(y)dy

= Nm/(m−1)+d/2
(

1
m−1

∫

Rd
Um(y)mdy+

1
2

∫

Rd
|y|2Um(y)dy

)

︸                                                   ︷︷                                                   ︸
=:Km

,

whereKm> 0 is a constant which depends only onm. Furthermore, we have
∫

Rd
u∞(x)dx= N1/(m−1)+d/2

∫

Rd
Um(y)dy.

Solving forN gives

Nm/(m−1)+d/2 =
(∫

Rd
Um(y)dy

)−γ(∫

Rd
u∞(x)dx

)γ
, whereγ :=

m/(m−1)+d/2
1/(m−1)+d/2

,

Therefore, setting

Lm :=
(∫

Rd
Um(y)dy

)−γ
,

which is another constant only depending onm, it follows that

H[u∞] = Lm

(∫

Rd
u∞(x)dx

)γ
= Lm

(∫

Rd
udx

)γ
,

sinceu(t) has the same mass asu∞. Going back to (3.30), we have shown that

(3.31)
∫

Rd
umdx≤ A

∫

Rd
|∇um−1/2|2dx+B

(∫

Rd
udx

)γ
,

where

A :=
1
2

(
d+

1
m−1

)−1( m
m−1/2

)2
, B :=

(
d+

1
m−1

)−1
Lm.

Step 2: Optimization.We optimize (3.31) by defining a functionv by u(x) = λd/mv(λx), λ > 0.
Then, substitutingy = λx with dy = λddx,

∫

Rd
um(x)dx= λd

∫

Rd
vm(λx)dx=

∫

Rd
vm(y)dy,

∫

Rd
u(x)dx= λd/m

∫

Rd
v(λx)dx= λd/m−d

∫

Rd
v(y)dy,

∫

Rd
|∇xu

m−1/2|2dx= λd(2m−1)/m
∫

Rd
λ2|∇yvm−1/2|2λ−ddy = λd−d/m+2

∫

Rd
|∇yvm−1/2|2dy.
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Inequality (3.31) can be written in terms ofv as
∫

Rd
vmdy ≤ λd−d/m+2 A

∫

Rd
|∇yvm−1/2|2dy

︸                   ︷︷                   ︸
=:A0

+λ−γ(d−d/m) B
(∫

Rd
vdy

)γ

︸         ︷︷         ︸
=:B0

.

Ww choose an appropriateλ > 0 which minimizes the right-hand side. The minimum of the
function f (λ) = λaA0+ λ

−bB0 with a = d−d/m+2, b = γ(d−d/m) is given byλ∗ = cA−1/(a+b)
0

×B1/(a+b)
0 , wherec= (b/a)1/(a+b). Choosingλ = λ∗ in the above inequality, we arrive at

∫

Rd
vmdy ≤ λa

∗A0+λ
b
∗B0

≤ caA−a/(a+b)+1
0 Ba/(a+b)

0 +c−bAb/(a+b)
0 B−b/(a+b)+1

0

≤max{ca,c−b}Ab/(a+b)
0 Ba/(a+b)

0 ,

where
b

a+b
=

γd(m−1)
(γ+1)d(m−1)+2m

,
a

a+b
=

d(m−1)+2m
(γ+1)d(m−1)+2m

.

Hence, there existsC1 > 0 only depending ond andmsuch that
∫

Rd
vmdy ≤C1

(∫

Rd
|∇yvm−1/2|2dy

)b/(a+b)(∫

Rd
vdy

)γa/(a+b)
.

Step 3: Transformation.Changing the function tow := vm−1/2 = v1/(2p), wherep= 1/(2m−1),
we infer thatvm= w2m/(2m−1) = wp+1 andv = w2/(2m−1) = w2p, and hence,∫

Rd
wp+1dy ≤C1

(∫

Rd
|∇w|2dy

)b/(a+b)(∫

Rd
w2pdy

)γa/(a+b)
=C1‖∇w‖2b/(a+b)

L2(Rd)
‖w‖2pγa/(a+b)

L2p(Rd)
.

Taking the (p+1)-th root, we conclude that

‖w‖Lp+1(Rd) ≤C1/(p+1)
1 ‖∇w‖2b/((a+b)(p+1))

L2(Rd)
‖w‖2pγa/((a+b)(p+1))

L2p(Rd)
,

and the theorem follows forC0 =C1/(p+1)
1 andθ = 2b/((a+b)(p+1)). �

4. Further applications

In this section we discuss some additional topics.

4.1. Systematic entropy construction method.In Lemma 3.4 we have proved an estimate for
the time derivative of the entropy dissipation. The proof isbased on suitable integrations by
parts. One may ask if the integrations by parts can be made systematic. This is indeed possible;
see Jüngel-Matthes 2006 [26].

In order to motivate the method, we consider the thin-film equation

(4.32) ut = −(uβuxxx)x, u(·,0)= u0 in T, t > 0,

whereTd is the one-dimensional torus. This equation models the flow of a thin liquid along a
solid surface with film heightu(x, t) (for β= 2 orβ= 3) or the thin neck of a Hele-Shaw flow in the
lubrication approximation (forβ = 1); see the review of Myers 1998 [33]. We wish to determine
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Lyapunov functionalsHα[u] = 1/(α(α−1))
∫
T

uαdx, α , 0,1, andH1[u] =
∫
T

u(logu−1)dx. We
assume that there exists a smooth positive solutionu to (4.32) and compute formally:

dHα
dt

[u(t)] =
1
α−1

∫

T

uα−1utdx=
∫

T

uα+β−2uxxxuxdx.

It is reasonable to eliminate the third-order derivative byintegrating by parts:

(4.33)
dHα
dt

[u(t)] = −(α+β−2)
∫

T

uα+β−3u2
xuxxdx−

∫

T

uα+β−2u2
xxdx.

The second integral on the right-hand side has a good sign. For the first integral, we observe that
u2

xuxx= u3
x/3 and integrate by parts again:

dHα
dt

[u(t)] = −1
3

(α+β−2)(α+β−3)
∫

T

uα+β−4u4
xdx−

∫

T

uα+β−2u2
xxdx.

Thus,Hα[u] is a Lyapunov functional for the thin-film equation if (α+ β−2)(α+ β−3) ≥ 0 or,
equivalently, 2≤ α+β ≤ 3. Is this condition optimal? No, it is not. The reason is thatthe second
integral can be used to estimate the first integral even when it is positive. The optimal result is as
follows.

Proposition 4.1 (Lyapunov functionals for the thin-film equation). Let α, β > 0 such that32 ≤
α+β≤ 3 and let u(t) be a smooth positive solution to(4.32). Then Hα[u] is a Lyapunov functional
for (4.32).

Before we prove the proposition, we explain the entropy construction method. We wish to
prove that the entropy dissipationDα =−dHα[u]/dt is nonnegative. First, we need to systematize
integration by parts. The first integration by parts leadingto (4.33) consists in the following
identity:

(4.34) Dα = −
∫

T

uα+β−2uxxxuxdx= (α+β−2)
∫

T

uα+β−3u2
xuxxdx+

∫

T

uα+β−2u2
xxdx.

This can be written equivalently as

I2 =

∫

T

uα+β
(
(α+β−2)

(ux

u

)2uxx

u
+

(uxx

u

)2
+

ux

u
uxxx

u

)
dx=

∫

T

(
uα+β

ux

u
uxx

u

)
x
dx= 0.

Thus, (4.34) is equivalent to
Dα = Dα+c · I2 with c= 1.

This expression is trivial sinceI2 = 0, but after expandingI2, both sides of the equation have
different forms. We callI2 an integration-by-parts formula. How many formulas do exist? There
are two other integrals:

I1 =

∫

T

uα+β
(
(α+β−3)

(ux

u

)4
+3

(ux

u

)2uxx

u

)
dx=

∫

T

(
uα+β

(ux

u

)3)
x
dx= 0,

I3 =

∫

T

uα+β
(
(α+β−1)

ux

u
uxxx

u
+

uxxxx

u

)
=

∫

T

(
uα+β

uxxx

u

)
x
= 0.
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The number of integration-by-parts formulas is determinedby all integersp1, p2, andp3 such
that 1· p1+2 · p2+3 · p3 = 3, and thus

(p1, p2, p3) ∈
{
(3,0,0), (1,1,0), (0,0,1)

}
,

and there are exactly three such formulas. We conclude thatall possible integrations by parts are
given by the linear combinations

Dα = Dα+c1I1+c2I2+c3I3.

Again, this expression is trivial sinceI1 = I2 = I3 = 0. The goal is to find constantsc1, c2, c3 ∈ R
such that the right-hand side is nonnegative:

(4.35) ∃c1,c2,c3 ∈ R : Dα+c1I1+c2I2+c3I3 ≥ 0.

Our main idea to prove such an inequality is to identify the derivativesux/u, uxx/u, etc. with the
polynomial variablesξ1, ξ2, etc.:

ξk =
1
u
∂ku

∂xk
, k ∈ N0.

Settingξ = (ξ1, ξ2, ξ3, ξ4),

Dα corresponds to S(ξ) = −ξ1ξ3,
I1 corresponds to T1(ξ) = (α+β−3)ξ41+3ξ21ξ2,

I2 corresponds to T2(ξ) = (α+β−2)ξ21ξ2+ ξ
2
2+ ξ1ξ3,

I3 corresponds to T3(ξ) = (α+β−1)ξ1ξ3+ ξ4.

We call T j shift polynomials since they allow us to “shift” partial derivatives. ThenDα ≥ 0 is
proved if we are able to show that

(4.36) ∃c1,c2,c3 ∈ R : ∀ξ ∈ R4 : (S+c1T1+c2T2+c3T3)(ξ) ≥ 0.

Such problems are called polynomial decision problems which are well known in real algebraic
geometry. It was shown by Tarksi in 1951 [38] that they can be always treated in the following
way:

A quantified statement about polynomials can be reduced to a quantifier-free
statement about polynomials in an algorithmic way.

Solution algorithms for the above quantifier elimination problem have been implemented, for in-
stance, inMathematica. There are also tools specialized on quantifier elimination, like QEPCAD
(Quantifier Elimination using Partial Cylindrical Algebraic Decomposition), see Collins-Hong
1991 [10]. The advantage of these algorithms is that the solution is complete and exact. The
disadvantage is that the complexity of the algorithms is doubly exponential in the number of
variablesξi andci. An alternative approach is given by the sum-of-squares (SOS) method. This
method tries to write the polynomial as a sum of squares. The answer may be not complete since
there are polynomials which are nonnegative but which cannot be written as a sum of squares.
Fortunately, for the above decision problem, we can solve itdirectly without going into real
algebraic geometry.
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Notice that problems (4.35) and (4.36) are not equivalent since we estimate the integrands in
(4.36) which is stronger than estimating the integrals in (4.35). However, it is possible to prove,
at least in specific situations (for instance, for the one-dimensional thin-film equation), that no
estimates are lost [26].

Now, we are able to prove the above proposition.

Proof of Proposition 4.1.We need to prove that, for some choice ofc j, for all ξ ∈ R4,

(S+c1T1+c2T2+c3T3)(ξ) = c1(α+β−3)ξ41+
(
3c1+c2(α+β−2)

)
ξ21ξ2

+c2ξ
2
2+

(
c2+c3(α+β−1)−1

)
ξ1ξ3+c3ξ4 ≥ 0.

The variableξ4 appears only in the termc3ξ4 which is indefinite. Therefore, we takec3 = 0.
Furthermore,ξ3 only appears in the termξ1ξ3 which is also indefinite. We choosec2 = 1 to
eliminate this term. It remains to show that there existsc1 ∈ R such that

(S+c1T1+1 ·T2+0 ·T3)(ξ) = c1(α+β−3)ξ41+
(
3c1+ (α+β−2)

)
ξ21ξ2+ ξ

2
2 ≥ 0.

We employ the following elementary result (see Jüngel-Matthes 2006 [26] for a proof).

Lemma 4.2. The inequality
a1ξ

4
1+a2ξ

2
1ξ2+a3ξ

2
2 ≥ 0

is satisfied for all(ξ1, ξ2) ∈ R2 if and only if

either a3 > 0, 4a1a3−a2
2 ≥ 0, or a3 = 0, a2 = 0, a1 ≥ 0.

Since the coefficient forξ22 is positive, the nonnegativity is guaranteed if and only if

0≤ 4a1a3−a2
2 = 4c1(α+β−3)− (α+β−2+3c1)2

= −9
(
c1+

1
9

(α+β)
)2
− 8

9
(α+β)2+4(α+β)−4.

Choosing the maximizing valuec1 = −(α+β)/9, this inequality is satisfied if and only if

0≤ −8(α+β)2+36(α+β)−36.

The roots of the polynomialx 7→ −8x2+36x−36 arex1 = 3/2 andx2 = 3. Therefore, the inequal-
ity is valid if and only if 3

2 ≤ α+β ≤ 3, which proves the claim. �

In the following, we discuss some extensions and generalizations of the entropy construction
method.

Entropy dissipation estimates.Estimates of the entropy dissipation are very useful to derive
a priori estimates which are needed, for instance, in the existence or long-time analysis.

Proposition 4.3(Entropy dissipation estimates). Letα, β > 0 be such that32 < α+β ≤ 3 and let
u(t) be a smooth positive solution to(4.32). Then there exists0< c< 1 depending only onα and
β such that

dHα
dt

[u(t)] +c
∫

T

uα+β−2u2
xxdx≤ 0.
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Proof. The idea is to identify the integral
∫
T

uα+β−2u2
xxdx with a polynomial and to apply the

entropy construction method. In the present case,P(ξ) = ξ22, and thus, we have to show:

∃c1,c2,c3 ∈ R, c> 0 : ∀ξ ∈ R4 : (S+c1T1+c2T2+c3T3−cP)(ξ) ≥ 0.

As in the proof of the previous proposition, we choosec3 = 0 andc2 = 1. Then our problem
reduces to

∃c1 ∈ R, c> 0 :∀(ξ1, ξ2) ∈ R2 :

c1(α+β−3)ξ41+
(
3c1+ (α+β−2)

)
ξ21ξ2+ (1−c)ξ22 ≥ 0.

A necessary condition for nonnegativity isc< 1. Then Lemma 4.2 gives the additional condition

0≤ 4a1a3−a2
2

= −9
(
c1+

1
9
(
(1+2c)(α+β)−6c

))2
+

1
9
(
(1+2c)(α+β)−6c

)2− (α+β−2)2.

We choosec1 such that the first bracket vanishes:

0≤ 1
9
(
(1+2c)(α+β)−6c

)2− (α+β−2)2

=
4
9

(c−1)
(
(α+β)−3

)(
(α+β)(2+c)−3(c+1)

)
.

This inequality is satisfied of and only if

3(1−c)
2+c

≤ α+β ≤ 3.

If we choose3
2 < α+β ≤ 3, there existsc> 0 such that this inequality holds. �

In a similar way, we can prove that, for3
2 < α+β < 3, there existsc> 0 such that

dHα
dt

[u(t)] +c
∫

T

(
u(α+β)/2)2

xxdx≤ 0

dHα
dt

[u(t)] +c
∫

T

(
u(α+β)/4)4

xdx≤ 0.

Higher-order entropies. Another extension of the method concerns higher-order entropies,
like the first-order entropies

Eα[u(t)] =
∫

T

(uα/2)2
xdx, α > 0.

Taking the time derivative, we find that

dEα
dt

[u(t)] = 2
∫

Ω

(uα/2)x(u
α/2)txdx= −2

∫

Ω

(uα/2)xx
α

2
uα/2−1utdx

= −α
∫

Ω

(uα/2)xxu
α/2−1(uβuxxx)xdx.
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Thus, we have to find all integration-by-parts rules involving a total of six derivatives. It can be
seen that there are seven integration-by-parts formulas giving seven shift polynomials. Some of
the shift polynomials do not need to be taken into account, like

T(ξ) = (α+β−1)ξ1ξ5+ ξ6,

since the termξ6 is indefinite. Eventually, the decision problem becomes

∃c1,c2 ∈ R : ∀ξ ∈ R3 : (α+β−5)c1ξ
6
1+

(
5c1+ (α+β−4)c2

)
ξ41ξ2+3c2ξ

2
1ξ

2
2

+
(1

2(α2−5α+6)+c2
)
ξ31ξ3+ (2α−4)ξ1ξ2ξ3+ ξ

2
3 ≥ 0.

It can be solved by employing the following lemma whose proofcan be found in Jüngel-Matthes
2006 [26].

Lemma 4.4. Let the real polynomial

P(ξ1, ξ2, ξ3) = a1ξ
6
1+a2ξ

4
1ξ2+a3ξ

3
1ξ3+a4ξ

2
1ξ

2
2+a5ξ1ξ2ξ3+ ξ

2
3

be given. Then the quantified formula

∀ξ1, ξ2, ξ3 ∈ R : P(ξ1, ξ2, ξ3) ≥ 0

is equivalent to the quantifier free formula

either4a4−a2
5 > 0 and 4a1a4−a1a2

5−a2
2−a2

3a4+a2a3a5 ≥ 0

or 4a4−a2
5 = 2a2−a3a5 = 0 and 4a1−a2

3 ≥ 0.

The result is displayed in 4.1. (The same result has been found first by Laugesen 2005 using a
different method.) Notice that there is always a trivial first-order entropy corresponding toα = 2,
E2[u] =

∫
T

u2
xdx. We summarize the result in the following proposition.
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Figure 4.1. Values ofα andβ providing an entropy for the one-dimensional thin-
film equation.

Proposition 4.5(First-order entropies for the thin-film equation). Let (α,β) ∈ R2 be an element
of the gray region of Figure 4.1. Then Hα[u] is a Lyapunov functional for(4.32).
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Multi-dimensional equations. So far, we have discussed the one-dimensional case only. In
principle, the above strategy can be generalized in a straightforward way to multi-dimensional
equations. In this situation, we introduce polynomial variables for all the partial derivatives and
shift polynomials for all integration-by-parts formulas by differentiating products in all variables.
Practically, this strategy is useless since it leads to polynomial expressions in many variablesξk
and a huge number of shift polynomialsT j . A better approach is not to incorporate all products
of differential expressions but only those which have “symmetry” properties, like|∇u|/u, ∆u/u,
or∇2u/u.

As an example, we consider the Derrida-Lebowitz-Speer-Spohn (DLSS) equation

(4.37) ut +∇2 : (u∇2 logu) = 0, u(·,0)= u0 ≥ 0 in Td, t > 0.

Here∇2u denotes the Hessian ofu andA : B=
∑

i, j Ai j Bi j for two matricesA= (Ai j ) andB= (Bi j ).
The functionu(x, t) models the electron density in a quantum semiconductor in which electron-
lattice interactions are strong; see Degond-Méhats-Ringhofer 2005 [13] for a derivation. It was
shown in Jüngel-Matthes 2008 [27] that there exists a nonnegative weak solution to (4.37). We
assume thatu is positive and smooth to simplify the presentation. The arguments can be made
rigorous for nonnegative weak solutions; see Jüngel-Matthes 2008 [27].

We differentiate formally the entropy functional

Hα[u(t)] =
1

α(α−1)

∫

Td
uαdx, α , 0,1,

yielding, after integration by parts,

Dα = −
dHα
dt

[u] = − 1
α−1

∫

Td
uα−1utdx=

1
α−1

∫

Td
u∇2(uα−1) : ∇2 logudx.

We setu= v2 which is possible sinceu≥ 0. Then a tedious computation shows that

Dα = 4
∫

Td
v2α

(‖∇2v‖2

v2
−2(2−α)∇v

v

∇2v

v

∇v
v
+ (3−2α)

|∇v|4

v4

)
dx.

This motivates us to introduce the functionsθ, λ, µ, respectively, by

θ =
|∇v|
v
, λ =

1
d
∆v

v
, (λ+µ)θ2 =

∇v
v

∇2

v

∇v
v
,

andρ ≥ 0 by

‖∇2v‖2 =
(
dλ2+

d
d−1

µ2+ρ2
)
v2.

It can be shown thatρ is well defined. This follows from the inequality

‖∇2v‖2 ≥
(
dλ2+

d
d−1

µ2
)
v2,

which is proved in Jüngel-Matthes 2008 [27]. The integralDα is expressed by these functions as

Dα =
∫

Td
v2α

(
dλ2+

d
d−1

µ2+ρ2−2(2−α)(λ+µ)θ2+ (3−2α)θ4
)
dx.
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It turns out that just two integration-by-parts formulas are sufficient to prove the nonnegativity
od Dα for certainα:

I1 =

∫

Td
div

(
v2α−2(∇2v−∆vI)∇v

)
dx,

I2 =

∫

Td
div

(
v2α−3|∇v|2∇v

)
dx,

whereI denotes the unit matrix inRd×d. In view of the periodic boundary conditions,I1 = I2 = 0.
The goal is to find constantsc1, c2 ∈ R such that

Dα = Dα+c1I1+c2I2 ≥ 0.

In terms of the above variables, this sum can be written as

Dα =
∫

Td
v2α

[
dλ2(1− (d−1)c1)+λθ2

(
2(α−1)(1− (d−1)c1)+ (d−2)c2−2

)

+Q(θ,µ,ρ)
]
dx,

whereQ is a polynomial inθ, µ, andρ with coefficients depending onc1 andc2 not not onλ. We
choose to eliminateλ from the above integrand (although this may be not the optimal choice).
Thus, we choose (c1,c2) as the solution to the linear system

1− (d−1)c1 = 0, 2(α−1)(1− (d−1)c1)+ (d−2)c2−2= 0.

With this choice, the polynomialQ can be estimated by

Q(θ,µ,ρ) = b1µ
2+2b2µθ

2+b3θ
4+b4ρ

2 ≥ b1µ
2+2b2µθ

2+b3θ
4,

sinceb4 = d(d+2)(d−1)≥ 0. Here,b1, b2, andb3 are coefficients which depend only ond and
α. It remains to determine the conditions on these coefficients such that the quadratic polynomial
in µ andθ2 is nonnegative. A computation shows that this is the case if 0< α < 2(d+1)/(d+2).
We have proved the following result.

Theorem 4.6(Entropies for the DLSS equation). Let d≥ 1, 0< α < 2(d+1)/(d+2). Then Hα[u]
is a Lyapunov functional for(4.37).

4.2. Entropy variables and cross-diffusion systems.In the previous sections, we have con-
sidered scalar PDEs only. Stronly coupled systems of PDEs are much more difficult to treat
since some standard tools available for scalar equations (maximum principle for second-order
equations, regularity theory) often cannot be used. In thissection, we show how the concept of
entropy can help to analyze cross-diffusion systems. These are systems of parabolic or elliptic
PDEs whose diffusion matrix is dense (i.e., it is neither diagonal nor tridiagonal). We consider
only those systems which possess a logarithmic entropy (thereason will become clear later).

To fix ideas, let us investigate a model from population dynamics. Letu, v be the densities of
two competing species. Their dynamics is governed by the continuity equations

ut +div Ju = 0, vt +div Jv = 0 inΩ, t > 0,

whereΩ ⊂ Rd is a bounded domain. For simplicity, we neglect source terms(of Lotka-Volterra
type). We assume that the fluxJu is completely defined by the diffusion of the two species: the
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self-diffusion (a+ v)∇u and the cross-diffusionu∇v. The basic idea is that the primary cause of
dispersal is migration to avoid crowding instead of just random motion (modeled by the diffusion
terma∇u). In particular, the spatial variation of the competiting species,∇v, influences the flux
of speciesu. Similarly, we defineJv = (b+u)∇v+ v∇u. This leads to the following system:

(4.38) ∂t

(
u
v

)
−div

((
a+ v u
v b+u

)
∇

(
u
v

))
= 0 inΩ, t > 0.

We supplement this system by initial and homogeneous Neumann boundary conditions:

(4.39) u(·,0)= u0, u(·,0)= v0 in Ω, ∇u · ν = ∇v · ν = 0 on∂Ω, t > 0,

whereν denotes the exterior unit normal vector to∂Ω. Equations (4.38)-(4.39) are a simplified
version of a population model first suggested by Shigesada, Kawasaki, and Teramoto 1979 [36].
This model has attracted the attention of many mathematicians since it may have spatial pattern
exhibiting segregation of species.

There are a number of mathematical problems. First, the diffusion matrix is generally neither
symmetric nor positive definite, and hence, even the local-in-time existence of solutions is not
obvious. Second, the strong coupling prohibits the application of the maximum or minimum
principle such that the positivity of the population densities u and v cannot be proved. The
solution to these problems is to employ the concept of entropy. The entropy is defined by

H[u, v] =
∫

Ω

h[u, v]dx=
∫

Ω

(
u(logu−1)+ v(logv−1)

)
dx,

whereh[u, v] is the entropy density. This is indeed a Lyapunov functional since

dH
dt

[u, v] =
∫

Ω

(ut logu+ vt logv)dx

= −
∫

Ω

(
((a+ v)∇u+u∇v) · ∇u

u
+ ((b+u)∇v+ v∇u) · ∇v

v

)
dx

= −4
∫

Ω

(
a|∇
√

u|2+b|∇
√
v|2+ |∇

√
uv|2

)
dx≤ 0.

The estimate providesH1 bounds for
√

u and
√
v.

These bounds make only sense ifu andv are nonnegative. This problem can be overcome by
introducing the so-called entropy variables, which symmetrize the above system:

y =
∂h
∂u
= logu, z=

∂h
∂v
= logv.

In the new variables, system (4.38) reads as ´

(4.40) ∂t

(
ey

ez

)
−div

((
aey+ey+z ey+z

ey+z bez+ey+z

)
∇

(
y

z

))
= 0.

It turns out that the new diffusion matrix

B(y,z) =

(
aey+ey+z ey+z

ey+z bez+ey+z

)
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is symmetric and positive definite:

x⊤Bx= aeyx2
1+bezx2

2+ey+z(x1+ x2)2 ≥min{aey,bez}‖x‖2 for all x= (x1, x2)⊤ ∈ R2.

(Notice, however, thatB is not uniformly positive definite iny and z.) Thus, if we are able
to prove the existence ofboundedsolutions (y,z) to (4.40), the functionsu = ey andv = ez are
automatically positive and solutions to the original system (4.38).

Summarizing, the cross-diffusion system (4.38) can be “symmetrized”, by a change of un-
knowns, and it possesses an entropy functional. Both properties are not a coincidence but they
are related. In fact, it is well known from the theory of hyperbolic conservation laws that the
existence of a symmetric formulation is equivalent to the existence of an entropy functional;
see Kawashima and Shizuta 1988 [29]. Interestingly, the result of Kawashima and Shizuta also
includes parabolic systems.

Using the above tools, the global-in-time existence of solutions can be proved.

Theorem 4.7(Global existence of solutions to (4.38).). Let∂Ω be smooth, u0, v0 ∈ L∞(Ω), u0≥ 0,
v0 ≥ 0, and a, b> 0. Then there exists a weak solution(u, v) to (4.38)-(4.39)satisfying u,v ≥ 0 in
Ω× (0,∞) and

ut, vt ∈ L1
loc(0,∞; (Hs(Ω))′), uv ∈ L1

loc(0,∞;W1,1(Ω)), u, v ∈ L4/3
loc (0,∞;W1,4/3(Ω)),

where s= 1+d2/(2d+2).

Proof. The proof is lengthy; therefore, we give only the main ideas.The complete proof is
given in Chen-Jüngel 2006 [9]. We write (4.40) symbolically as f (w)t − div(B(w)∇w) = 0 for
w = (y,z) ∈ R2 and f (w) = (ey,ez).

• Definition of the approximated system:The system is approximated in time by a back-
ward Euler scheme and in space by a Galerkin method (alternatively, one may add a
regularizing term∆m(u, v) with sufficiently largem∈ N):

1
△t

(
f (wk

N)− f (wk−1
N )

)
−div(B(wk

N)∇wk
N) = 0 inΩ, ∇wk

N · ν = 0 on∂Ω,

wherewk
N approximatesw(x, tk), tk = k△t, andN ∈ N is the dimension of the Galerkin

space. Employing the convexity off , it is possible to show a discrete version of the
entropy inequality:

H[wk
N] +Pk

N ≤ H[wk−1
N ],

andPk
N contains theL2 norm of∇

√
uk

N and∇
√
vkN. Solving this recursive inequality, we

find a priori bounds for
√

uk
N and

√
vkN in H1(Ω).

• Existence for the approximated system:The idea is to apply the Leray-Schauder fixed-
point theorem. For this, the approximate system is linearized. For giveñw ∈ L∞(Ω;R2),
solve

1
△t

(
f (wk

N)− f (wk−1
N )

)
−div(B(w̃)∇wk

N) = 0 inΩ, ∇wk
N · ν = 0 on∂Ω.

SinceB is symmetric and positive definite, the existence of weak solutions to this linear
problem follows from the Lax-Milgram lemma. This defines thefixed-point operator
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w̃ 7→ wk
N on appropriate spaces. (They have been chosen such thatwk

N ∈ L∞(Ω;R2).) The
discrete entropy inequality provides the uniform estimateneeded to apply the fixed-point
theorem.
• Derivation of uniform estimates:The entropy inequality also gives a priori estimates

uniform in the approximation parametersN and△t. Then, by the Gagliardo-Nirenberg
inequality, further estimates forwN = (wk

N) in some Sobolev spaces can be proved. Denot-
ing by ∂△t

t the discrete time derivative, it is possible to conclude from the approximated
equations that also∂△t

t wN is uniformly bounded in some suitable space.
• Limit in the approximation parameter:Finally, we pass to the limit in the approximation

parametersN and△t. In order to obtain strong convergence ofwk
N, we apply the Aubin

lemma in the version of Dreher-Jüngel 2012 [20]. This lemma shows that, if some ap-
propriate estimates on the (discrete) temporal and spatialderivatives onwN are available,
a subsequence of (wN) converges strongly in some Lebesgue space, sayL2, to a function
w, asN→∞ and△t→ 0. The difficulty is to prove thatB(wN)∇wN converges toB(w)∇w.
This is done by using the estimates derived from the Gagliardo-Nirenberg inequality and
weak compactness results. The limit functionw = (u, v) is shown to be a solution to the
original system (4.38)-(4.39).

This finishes the proof. �

In the above example, the entropy method allows us to prove the nonnegativity of the density
without applying any maximum principle. One may ask if thereare diffusion systems for which
not only lower bounds but also upper bounds can be proved by that method. This is indeed
the case. As an example, we consider a tumor-growth model. Weassume that the tumor is
described by the volume fractions of the tumor cellsc(x, t), the extra-cellular matrix (ECM)
m(x, t), and waterw(x, t). The ECM consists of a complex mixture of carbohydrates and proteins
(e.g. collagen) providing structural support to the cells.Supposing that the mixture is saturated,
we havew = 1−c−m. Jackson and Byrne 2002 [25] derived from a fluiddynamical approach the
following (simplified) diffusion system:

(4.41) ∂t

(
c
m

)
−div

(
A(c,m)∇

(
c
m

))
= 0 inΩ, t > 0,

where

A(c,m) =

(
c(1−c) −βcm
−cm βm(1−m)

)

is the diffusion matrix,β > 0 is the ratio of the ECM to the cell pressure constants andΩ ⊂ Rd

is a bounded domain. The equations are supplemented by initial and homogeneous boundary
conditions forc andm,

c(·,0)= c0, m(·,0)=m0, ∇c · ν = ∇m· ν = 0 on∂Ω, t > 0.

More precisely, the original model is posed on a one-dimensional intervall, assuming some sym-
metry of the tumor, but the above generalization does not complicate the problem.
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We claim that the following entropy functional is a Lyapunovfunctional:

H =
∫

Ω

hdx=
∫

Ω

(
c(logc−1)+m(logm−1)+ (1−c−m)(log(1−c−m)−1)

)
dx.

The entropy densityh is the sum of the logarithmic entropies of the three phasesc, m, and
w = 1−c−m. We differentiate formally:

dH
dt
=

∫

Ω

(
ct log

c
1−c−m

+mt log
m

1−c−m

)
dx

= −
∫

Ω

((
c(1−c)∇c−βcm∇m

)
· (1−m)∇c+c∇m

c(1−c−m)

+
(
−cm∇c+βm(1−m)∇m

)
·m∇c+ (1−c)∇m

m(1−c−m)

)
dx

= −
∫

Ω

(|∇c|2+β|∇m|2)dx.

Inspired by the above considerations, it is reasonable to introduce the entropy variables

y =
∂h
∂c
= log

c
1−c−m

, z=
∂h
∂m
= log

m
1−c−m

.

Conversely,c andmcan be interpreted as functions of (y,z), given by

c(y,z) =
ey

1+ey+ez, m(y,z) =
ez

1+ey+ez.

In the new variables, system (4.41) can be written as

∂t

(
c
m

)
−div

(
A(c,m)(∇2h)−1∇

(
y

z

))
= 0,

since∇(y,z)⊤ = ∇2h∇(c,m)⊤, where∇2h is the Hessian of the entropy density. The new matrix
B= A(c,m)∇2h has a rather complicated structure but it can be shown that itis symmetric and
positive definite as long asc> 0, m> 0, andc+m< 1. The interesting feature of this change of
unknowns is that the exponential transformation not only provides the positivity of the volume
fractions but also an upper bound since

c(y,z) < 1, m(y,z) < 1, and c(y,z)+m(y,z) < 1.

Therefore, applying similar proof techniques as above, onecan prove the global-in-time existence
of solutions (c,m) satisfying the above lower and upper bounds; see Jüngel-Stelzer 2012 [28].

5. Summary and open problems

In these lecture notes, we have investigated various aspects of entropy dissipation methods for
evolution equations. Generally, ifu(t) is a (smooth) solution to the evolution equationut+Au= 0,
whereA is some differential operator, the aim is to derive identities of the type

dH
dt

[u(t)] +D[u(t)] = 0, t > 0,
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and to show that the entropy dissipationD[u] is nonnegative or that it can be estimated from
below by some integralP≥ 0 containing squared derivatives ofu(t):

dH
dt

[u(t)] +P≤ 0, t > 0.

We have shown that this estimate may have a number of consequences:

• The entropy functionalH[u] is a Lyapunov functional.
• The estimate onP yields a priori estimates in certain Sobolev spaces.
• If the entropy dissipation can be estimated from below by some multiple of the (relative)

entropy,D[u] ≥ λH[u], the Gronwall inequality implies expontial decay of the solutions
to the steady state.
• For convex entropiesH[u], the inequalityD[u] ≥ λH[u] often corresponds to a convex

Sobolev inequality which can be proved simultaneously withthe time decay property.
• The entropy construction method may help to prove inequalities of the typedH/dt+P≤ 0

or D[u] ≥ λH[u].
• If a diffusion system possesses an entropy functional, the formulation in the entropy

variables usually leads to a symmetric and positive definitediffusion matrix, which is
useful for an existence analysis.
• If a diffusion system possesses a logarithmic entropy functional, the entropy variables are

of exponential type such that the nonnegativity or evenL∞ bounds can be proved.

Entropy dissipation methods áre still under investigation, and there is a number of open prob-
lems. We mention some of them:

• The entropy construction method has been applied to somemulti-dimensional equations
(we have just mentioned the DLSS equation as an example) but there is still no systematic
formulation of the method in the multi-dimensional case. The difficulty is to define a
reduced number of polynomial variables corresponding to derivatives like|∇u|/u, ∆u/u,
∇2u/u, etc. and to select the useful integration-by-parts formulas.
• Entropy variables help to derive entropy dissipation inequalities for certain cross-diffu-

sion systems, namely those which possess a logarithmic entropy. The reason is that these
systems can be understood from thermodynamic principles for which the logarithmic
entropy plays an important role. Are there other (important) entropy functionals for cross-
diffusion systems? Can this be made more general?
• The energy-transport system

ut +∆(uT) = 0, 3
2(uT)t +

5
2∆(uT2) = 0 inΩ, t > 0,

describes the evolution of the particle densityu and particle temperatureT in a thermo-
dynamic diffusion system. This system possesses the entropy functional

H[u] =
∫

Ω

ulog
( u

T3/2

)
dx.

Theglobal-in-time existenceof solutions to this system (with initial and boundary con-
ditions) is an open problem. The difficulty is to control the temperature in regions where
the particle density vanishes.
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• Consider the (simplified) Navier-Stokes equations with density-dependent viscosity,

ρt +div(ρu) = 0, (ρu)t +div(ρu⊗u)+∇ρ = 2νdiv(ρD(u)) in Ω, t > 0,

whereρ is the particle density,u the velocity,ν > 0 the viscosity constant, andD(u) =
1
2(∇u⊤ +∇u) the symmetric velocity gradient. Assuming appropriate boundary condi-
tions, the energy identity for this system reads as

d
dt

∫

Ω

(ρ
2
|u|2+ρ(logρ−1)

)
dx+ ν

∫

Ω

ρ‖D(u)‖2dx= 0.

Surprisingly, the system possesses another energy identity, found by Bresch-Desjardins
2004 [6]:

d
dt

∫

Ω

(ρ
2
|u+2∇ logρ|2+ρ(logρ−1)

)
dx

+ ν

∫

Ω

(
4|∇√ρ|2+ ρ

2
‖∇u⊤−∇u‖2

)
dx= 0.

The question is why are there two energy (entropy) identities? Is the reason related to
a “Noether symmetry”? Are there other fluiddynamical modelswhich possessseveral
energy identities? This is important for the analysis of such equations.
• For numerical purposes, the evolution equations are discretized in time and space. In

order to obtain stable and efficient numerical schemes, it is desirable to design numerical
approximations which possess as many properties of the continuous problem as possible.
In particular, entropy-stable, entropy-dissipating, andpositivity-preserving schemes are
needed. To what extend entropy tools can be generalized todiscrete entropy dissipation
methods?
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