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Introduction

This manuscript contains the enriched lecture notes of my six-lesson short course for graduate
students on entropy methods, held at the Università di Pavia (Italy) around Christmas 2007.

Outline. These lecture notes are intended as a brief introduction to the various application
of entropy methods in the theory of nonlinear evolution equations. The emphasis is on the equi-
libration properties of the respective solutions, but it is also shown how entropies are used to
derive nonlinear functional inequalities and establish qualitative properties of the solutions. The
first lecture provides a brief sketch of the treatment of several easy but typical examples, like the
homogeneous Boltzmann and the radiative transfer equation. The second and third lecture, respec-
tively, cover Toscani’s approach to the Bakry-Émery method for linear and non-linear second-order
diffusions. The remaining three lectures are entirely devoted to a selection of results on the one-
dimensional thin film equation. Positivity properties are the topic of lectures four and five, while
lecture six deals with the equilibration of classical solutions.
In their current form, these notes contain noticeably more material than what has been covered
in the original material lectures at Pavia. Moreover, the problem sheets for the exercise classes
are included; most of the solutions have been incorporated into the main text.

Disclaimers. I do not claim completeness of these notes in any respect! The following pages
simply represent one (biased and narrow) selection of material from a research field that has been
heavily investigated for about a hundred years by now. I have decided to cover entropy methods
from the PDE point of view, thus more or less ignoring the numerous important applications in
probability theory. Likewise, kinetic theory — the cradle of entropy methods — is only briefly
touched. Also two of the “canonical” applications of entropy methods are excluded here: the
derivation of a priori estimates and the proof of smoothness properties. I found both subjects are
too technical to enter in these short notes.
Apart from the above, two more warnings are due:

• Most of the calculations in these notes are formal. As an excuse, let me point out that
the rigorous part of the proofs is usually both a painful and a boring issue. However, I
cite the original papers in which the full proofs can be found.
• Some of the results presented in the first half of the notes are a bit outdated in the sense

that there exist more elegant (and often more general) proofs by now, using Wasserstein
techniques that have been developed only recently. The whole topic of Wasserstein
methods is not touched here; the interested reader might want to have a look at [18, 1].

Additional Reading. The most complete and up-to-date collection of references for entropy
methods is most probably found in the still unpublished “encyclopedia” by Villani [35]. Moreover,
apart from numerous review articles on specific aspects of entropy methods, there are some short
lecture notes [2, 26] available on the web. The latter are comparable in their view on the topic,
but are much shorter and more focussed on a particular sub-topic.

Acknowledgements. I would like to thank the Dipartimento di Matematica of the Università
di Pavia for the kind hospitality during my one-year visit. In particular, I am in debt of Giuseppe
Savarè, who gave me this unique opportunity to hold a graduate lecture on a topic of my choice,
and in debt of Giuseppe Toscani, who taught me much of the material presented here in many,
many private discussions. Also, I want to thank all of the (up to eight) people who attended
the lecture, and in particular Giacomo, Luca, Sergio and Emanuele, who also participated in the
exercises from the beginning to the very end.



CHAPTER 1

Historical and Pedagogical Examples

1. A definition of entropies

Generally speaking, an entropy is a Lyapunov functional of a specific form. It is however hard
(and even somewhat artificial) to give a formal narrow definition of entropies that distinguishes
them from, say, energies.
In this lecture, we will be concerned with evolution equations

∂tu(t;x) = F
(
u(t;x)

)
(1.1)

that describe — in a wide sense of the word — the behavior of a particle density u(t;x) in some
domain Ω ⊂ Rd. The natural spaces to work with are subsets U of L1

+(Ω), the set of non-negative
integrable functions, representing the particle density at a given time. These subsets U may be
specified by additional integrability assumptions or constraints on moments. In particular, U
should be chosen so that there exists exactly one stationary density u∞ for (1.1). For instance,
we shall frequently use U = P(Ω), the space of probability densities on Ω.
There are two principal types of entropies which are considered here in detail. The first are absolute
entropies, which are defined through a function ψ : R≥0 × Ω→ R by

H[u] = Hψ[u] =
∫

Ω

ψ
(
u(x), x

)
dx.(1.2)

Naturally, ψ is chosen so that u∞ is the unique minimizer of Hψ on U . This kind of entropies will
be used e.g. in the context of nonlinear diffusion in lecture 3.
The second kind of entropies are relative ones, which are a little more special. Instead of the
Lebesgue measure on Ω, now the steady state u∞ is taken as reference measure. For a given
convex function φ : R≥0 → R,

H[u] = Hφ[u] =
∫

Ω

φ
(
ρ(x)

)
u∞(x)dx, ρ(x) =

u(x)
u∞(x)

.(1.3)

This definition, of course, is sensible only if the steady state is everywhere positive. Applications
of this entropy are found e.g. in the linear Bakry-Emery theory, see lecture 2.
Notice that any relative entropy corresponds to an absolute one via the identification

ψ(s, x) := φ
(
s/u∞(x)

)
u∞(x),

but not the other way around. Obviously, both types of entropy agree if Ω is some bounded
domain and u∞ is a constant. This, in fact, is the typical situation for the second part of the
lecture.
Apart from the principle types of entropies (1.2) and (1.3), we will occasinally consider further
functionals in the context of the thin film equation. These functionals are integrals which contain
spatial derivatives of u; however, we shall refer to them as energies rather than entropies.
Here are the two properties which we shall require in order to call the H in (1.2) or (1.3), respec-
tively, an entropy.

(1) Lyapunov Property H[u(t)] is non-increasing along solutions u(t) to (1.1), and the
entropy production

DH [u] := − d

dt
H[u]

is positive unless u(t) = u∞.

5



6 1. HISTORICAL AND PEDAGOGICAL EXAMPLES

(2) Equilibration Property H is convex as a functional on L1(Ω), and there is a constant
C > 0 such that

‖u− u∞‖L1 ≤ C ·
(
H[u]−H[u∞])1/2for all u ∈ U .

Finally, we introduce a concept of convergence that will frequently appear in our considerations.
An entropy functional H and DH , respectively, are said to converge exponentially at rate µ > 0 if

t 7→ eµt
(
H[u(t)]−H[u0]

)
, and t 7→ eµtD[u(t)]

are non-increasing with respect to time t ≥ 0 along all (sufficiently regular) solutions u : [0,∞)→
U to equation (1.1).
The rest of this introductionary lecture is devoted to examples, which are supposed to shed light
on this somewhat abstract definition.

2. Example: Gradient flow with convex potential

Here is a finite-dimensional toy model, which is simply included for pedagogical reasons. Let an
open domain U ⊂ Rn be given, with a smooth potential H : U → R on it. Assume that H
possesses a unique minimum u∞ ∈ U , and is λ-convex, i.e.

∇2H ≥ λ1

uniformly on U , with some positive number λ > 0.

Theorem 1.1. H is an entropy for its own gradient flow u̇ = −∇H(u). Moreover, H and DH

converge exponentially at rate 2λ.

Proof. The entropy production amounts to

DH [u(t)] = − d

dt
H[u(t)] = ‖∇H[u(t)]‖2 ≥ 0,

with equality only at the u = u∞. A Taylor expansion yields

H[u]−H[u∞] = ∇H[u∞]︸ ︷︷ ︸
=0

·(u− u∞) +
1
2

(u− u∞) · ∇2H(ũ) · (u− u∞)︸ ︷︷ ︸
≥λ‖u−u∞‖2

,

so that

‖u− u∞‖2 ≤
2
λ

(H[u]−H[u∞]).

This obviously proves the equilibration property of H on U ⊂ Rn (recall that there is no distinction
between the L1 and the L2-norm in finite dimensions).
In order to prove that H converges exponentially at rate 2λ, observe that by convexity,

H[u]−H[u∞] ≤ ∇H[u] · (u− u∞)− λ

2
‖u− u∞‖2

≤ 1
2λ
‖∇H[u]‖2 =

1
2λ
DH [u].

By Gronwall’s inequality, we conclude that exp(2λt)(H[u(t)]−H[u∞]) is non-increasing in time.
On the other hand,

d

dt
DH [u] = −2∇H(u) · ∇2H(u) · ∇H(u) ≤ −2λ

∥∥∇H(u)‖2 = −2λD[u],

proving monotonicity of exp(2λt)D[u(t)]. �

A trivial consequence of the proof is the a priori estimate

λ

2
‖u− u∞‖2 ≤ H[u(t)]−H[u∞] ≤ (H[u0]−H[u∞]) exp(−2λt).
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Moreover, this toy example shows that in general, entropies are not unique (even after identifying
trivial deformations of an existing entropy). For instance, also H̃[u] = 1

2‖u− u∞‖
2 is an entropy,

since H̃ is strictly convex along rays through the fixed point:

DH̃ = − d

dt
H̃[u(t)] = −∇H(u) · (u− u∞) = H[u]−H[u∞] +

λ

2
‖u− u∞‖2 ≥ 0,

with equality exactly for u = u∞.
However, we stress that the existence of an entropy does not imply that the flow is of gradient
type in a suitable metric. Consider, for example, on R2

u̇ = F (u) = −u+ λJu, λ ≥ 0, J =
(

0 −1
1 0

)
.(1.4)

Obviously, H[u] = u2
1 + u2

2 is an entropy, but there is no (positive) metric which generates F (u)
in (1.4) as a gradient flow unless λ = 0. Indeed, assume that there exists some metric tensor G(u)
such that G(u) · F (u) = −∇Φ(u) for a suitable potential Φ. It follows that ∇× (G(u) · F (u)) =
−∇× (∇Φ(u)) = 0, but

∇×
(
g11 g12

g12 g22

)
·
(
u1 + λu2

u2 − λu1

)
= (λg11 + g12)− (g12 − λg22) +O(‖u‖)

= λ(g11 + g22) +O(‖u‖ ).

For ‖u‖ small enough, the last expression is positive if λ > 0.

3. Example: The Boltzmann equation and the H-Theorem

The next example is more serious and is actually a simplification of the situation which gave birth
to the whole concept of entropies. Consider a d-dimensional tank with a well-mixed, mono-atomic
gas. The homogeneous Boltzmann equation describes the temporal change in the probability to
find molecules of a given velocity v ∈ Rd in the tank. The derivation of the Boltzmann equation
is based on the assumption that the molecules move freely, and exchange momentum and energy
in binary collisions. More precisely, when two atomes with (pre-collisional) velocities v and w,
respectively, collide with contact line parallel to n ∈ Sd−1, then the post-collisional velocities v∗

and w∗ are given by

v∗ =
1
2

(v + w + |v − w|n), w∗ =
1
2

(v + w − |v − w|n).(1.5)

These formulas follow from elementary geometric considerations under the further assumption
that the total momentum and the total energy are conserved in each individual interaction.
Denote by f(t; v) the probability density at time t > 0 to find a molecule with velocity v ∈ Rd.
Elementary considerations about the balance of gain and loss of atoms lead to the weak form of
the homogeneous Boltzmann equation,

d

dt

∫
Rd

Φ(v)f(v) dv =
∫∫∫

Rd×Rd×Sd−1
B(ν, |v − w|)

(
Φ(v∗) + Φ(w∗)− Φ(v)− Φ(w)

)
(1.6) (

f(v∗)f(w∗)− f(v)f(w)
)
dv dw dn(1.7)

which holds for any sufficiently regular test function Φ : Rd → R. Here v, w and v∗, w∗ are the
pre- and post-collisional velocities, respectively, for a collision with contact line n ∈ Sd−1; see (1.5).
The collision kernel B cannot be determined from the previous considerations; here we assume
that it only depends on the collision angle via

ν =
(v − w) · n
|v − w|

and the modulus of the velocity difference.
A priori, it is not clear if solutions f(t) to (1.6) tend to some limit f∞ as t → ∞. As individual
microscopic particle interactions are reversible, it is not clear that f(t) develops any trend at all.
However, Boltzmann’s H-Theorem states that (1.6) possesses an entropy.
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Before stating the H-Theorem, a comment is in place which parameters of the initial condition
f0 determine the shape of f∞. It is immediate to conclude that (1.6) preserves the total mass,
momentum and energy of the gas. Simply use the test functions Φ ≡ 1, Φ(v) = v and Φ(v) = |v|2,
for which the right-hand side of (1.6) is identically zero. And in fact, it is exactly these three
quantities which determine the shape of f∞. For convenience, we assume unit mass, zero total
momentum and temperature one (meaning that the second moment equals the number of spatial
dimensions d).

Theorem 1.2 (Boltzmann’s H-Theorem). The H-functional

H[f ] :=
∫
f(v) log f(v) dv(1.8)

is an entropy for the Boltzmann equation on the domain U ⊂ P(Rd) of probability densities f with
vanishing first moment and unit temperature.

Proof. Use Φ(v) = log f(v) as test function in (1.6):

DH [f(t)] = − d

dt
H[f(t)] =

∫∫∫
B(ν, |v − w|)

(
log(f(v∗)f(w∗))− log(f(v)f(w))

)
·(

f(v∗)f(w∗)− f(v)f(w)
)
dv dw dn.

Since x 7→ log x is a strictly increasing function, the expression under the integral is non-negative.
The integral vanishes iff f(v∗)f(w∗) = f(v)f(w) a.e.
Next, one needs to identify the unique stationary solution f∞. An initial guess (in agreement with
physical intuition) is provided by the Gaussian,

f∞(v) = (2π)−d/2 exp
(
− 1

2
|v|2
)
,

since it is formally a critical point of H[f ] under the given constraint. We show that f∞ is indeed
the unique minimizer.
To this end, we show that the H-functional is a relative entropy (1.3), defined by the convex
function φ(s) = s log s (up to an additive constant). To see this, observe that for f ∈ U ,∫

f(v) log f∞(v) dv = −
∫
f(v)(log

√
2π +

1
2
|v|2) dv = −1

2
− log

√
2π

=
∫
f∞(v) log f∞(v) dv = H[f∞].

Now introduce ρ = f/f∞, which satisfies
∫
ρ(v) f∞(v)dv = 1. Then

H[f ]−H[f∞] =
∫

Rd
ρ(v) log f(v) f∞(v)dv −

∫
Rd
ρ(v) log f∞(v) f∞(v)dv

=
∫

Rd
ρ(v) log ρ(v) f∞(v)dv.

By Jensen’s inequality,

H[f ]−H[f∞] ≥
(∫

ρ(v) f∞(v)dv
)

log
(∫

Rd
ρ(v) f∞(v)dv

)
= 0.

with equality exactly for ρ ≡ 1, i.e. for f ≡ f∞ ≡M . Finally, the relation

‖f − f∞‖L1 ≤ C ·
(
H[f ]−H[f∞]

)1/2(1.9)

is a particular case of the Csiszar-Kullback-inequality, which is proven in a more general setting
in the following Proposition 1.1. �

Proposition 1.1. Let Ω ⊂ Rd and u∞ : Ω → R+ be a strictly positive probability density on Ω.
Assume φ : R+ → R is smooth and convex with φ′′(1) > 0. For the relative entropy functional

Hφ[u] :=
∫

Ω

φ
( u
u∞

)
u∞dx(1.10)
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the Csiszar-Kullback inequality holds

‖u− u∞‖L1(Ω) ≤ C
(
Hφ[u]−Hφ[u∞]

)1/2(1.11)

for all probability densities u ∈ P(Ω).

Proof. First observe that smoothness, convexity, and φ′′(1) > 0 imply that

φ(s)− φ(1) ≥ φ′(1)(s− 1) + c(1− s)2

for all 0 < s < 1 with a suitable c > 0. Thus, since u∞(x)dx defines a probability measure on Ω,

Hφ[u]−Hφ[u∞] =
∫

Ω

(
φ
( u
u∞

)
− φ(1)

)
u∞dx(1.12)

≥ φ′(1)
∫

Ω

(u− u∞) dx︸ ︷︷ ︸
=0

+c
∫

Ω

( u
u∞
− 1
)2
u∞dx.(1.13)

The first integral above vanishes because u and u∞ have the same mass. A further consequence
of the latter fact is

‖u− u∞‖L1 = 2
∫
u<u∞

|u− u∞| dx = 2
∫
u<u∞

∣∣ u
u∞
− 1
∣∣ dx(1.14)

≤ 2
(∫

Ω

( u
u∞
− 1
)2
dx
)1/2

.(1.15)

A combination of these two estimates gives (1.11), with C = 1/c. �

In the particular case of Boltzmann’s H-functional, one has φ(s) = s log s with φ′′(1) = 0, so
Proposition 1.1 applies.
A question of big interest is how fast H[f(t)] decays along a generic solution. This question,
however, is suprisingly hard to answer. In general, one cannot expect exponential convergence of
f(t). Even in the easy situation where B(ν, |v−w|) only depends on ν, Bobylev constructed initial
data f0 such that the relaxation is exponential, but with an arbitrarily slow rate dependent on
f0. Later, he extended his result to basically all physically relevent kernels B; and his “violating”
initial conditions were even such that they have all moments bounded.

4. Example: The radiative transfer equation

After sufficiently many simplifications, the transfer of a radiative density u(x) ≥ 0 in a medium
Ω ⊂ Rd can be described by [24]

d

dt
u(x) = −u(x) +

∫
Ω

u(y)µ(dy),(1.16)

where µ is a given probability measure on Ω. Since (1.16) is linear in u and conserves the total
mass, there is no loss in generality to restrict attention to U = P(Ω) ⊂ L1

+(Ω).
The explicit solution for a given initial density u0 is easily found:

u(t;x) = e−tu0(x) + (1− e−t),(1.17)

which converges exponentially to u∞ ≡ 1.

Theorem 1.3. Any smooth, strictly convex function φ : R≥0 → R with φ′′(1) > 0 gives rise to an
entropy

Hφ[u] =
∫

Ω

φ(u(x))µ(dx)(1.18)

for the radiative transfer equation (1.16). Moreover, each Hφ converges at rate one, and thus

‖u(t)− u∞‖L1 ≤ Ce−t/2.



10 1. HISTORICAL AND PEDAGOGICAL EXAMPLES

Proof. First notice that by Jensen’s inequality,

Hφ[u]−Hφ[u∞] =
∫

Ω

φ(u(x))µ(dx)−
∫
φ(1)µ(dx) ≥ φ

(∫
u(x)µ(dx)

)
− φ(1) = 0.

The respective entropy production is

Dφ[u] = − d

dt
Eφ[u] = −

∫
Ω

φ′(u(x))∂tu(x)µ(dx)

=
∫∫

Ω×Ω

φ′(u(x))(u(x)− u(y))µ(dx)µ(dy)

=
1
2

∫∫
Ω×Ω

(
φ′(u(x))− φ′(u(y))

)
(u(x)− u(y))µ(dx)µ(dy).

By convexity of φ, the r.h.s., the integrand is non-negative, and by strict convexity, the integral is
zero iff u(x) = u(y) a.e. In fact, one can prove that

Hφ[u(t)]−Hφ[u∞] ≤ e−t
(
Hφ[u0]−Hφ[u∞])(1.19)

directly from here, without using the explicit formula (1.17). However, we shall take another route
here. Convexity of φ implies for arbitrary a, b, s ≥ 0

(φ′(a)− φ′(b))(a− b) = (φ′(a)− φ′(b))(a− s)− (φ′(a)− φ′(b))(b− s)
≥ φ(a)− φ(s)− φ′(b)(a− s)− φ′(a)(b− s) + φ(b)− φ(s).

Now choose a = u(x), b = u(y) and s = 1, then integrate w.r.t. µ(dx) and µ(dy). This gives∫∫
Ω×Ω

(
φ′(u(x))− φ′(u(y))

)
(u(x)− u(y))µ(dx)µ(dy) ≥ 2

∫
Ω

φ(u(x))µ(dx)− 2φ(1)(1.20)

= 2
(
Hφ[u]−Hφ[u∞]

)
.(1.21)

Thus immediately implies that H converges exponentially at unit rate, and further implies (1.19)
via Proposition 1.1. �

The preceeding proof, using the relation (1.20) rather than the explicit solution (1.17), seems
circumstantial. Nonetheless, there are at least two reasons to take this long way. The first is
that the radiative transfer equation (1.16) was indeed invented in [24] as a toy model to make the
entropy techniques completely explicit in one easy example. The second reason is this approach
allows for the following non-trivial generalization.
There is an equation closely related to (1.16), which is still easy but no longer explicitly solvable.
Typically, its solutions decay only sub-exponentially in general. For a given positive function
λ : Ω→ R, consider

∂tu(x) = −λ(x)u(x) +
∫

Ω

λ(y)u(y)µ(dy).

We shall assume that
∫

Ω
λ(x)−1µ(dx) = 1 and that M :=

∫
Ω
λ(x)−2µ(dx) < ∞. Also, we only

consider solutions with λ(x)u(x) ≤ K (notice that this property is propagated from the initial
condition to any time t > 0). As above, we find that for an arbitrary smooth and strictly convex
function φ,

Ẽφ[u] =
∫

Ω

φ
(
λ(x)u(x)

) µ(dx)
λ(x)

is an entropy. In fact,

D̃φ[u] = − d

dt
Ẽφ[u] =

∫∫
Ω×Ω

φ′
(
λ(x)u(x)

)[
λ(x)u(x)− λ(y)u(y)

]
µ(dx)µ(dy)

=
1
2

∫∫
Ω×Ω

[
φ′
(
λ(x)u(x)

)
− φ′

(
λ(y)u(y)

)]
·
[
λ(x)u(x)− λ(y)u(y)

]
µ(dx)µ(dy).
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Replace u in (1.20) by λu, and µ by µ/λ. Now split the integral over Ω×Ω into two parts I1 + I2,
where I1 corresponds to λ(x)λ(y) < ε, and I2 is the remainder. Then

I1 ≤
∫∫

λ(x)λ(y)<ε

φ′(K) ·Kµ(dx)µ(dy)
λ(x)λ(y)

≤ Kφ′(K)ε2
(∫

Ω

λ(x)−2µ(dx)
)2

= MKφ′(K)ε2.

On the other hand,

I2 ≤
∫∫

λ(x)λ(y)≥ε

[
φ′
(
λ(x)u(x)

)
− φ′

(
λ(y)u(y)

)]
·
[
λ(x)u(x)− λ(y)u(y)

] µ(dx)µ(dy)
λ(x)λ(y)

≤ 2
ε
D̃φ[u].

So, altogether, (1.20) leads to

H̃φ[u] ≤ 1
2

(I1 + I2) ≤ 1
2
MKφ′(K)ε2 +

1
ε
D̃φ[u].

With a choice ε = D̃φ[u]1/3, we arrive at

H̃φ[u] ≤ [MKφ′(K)/2 + 1]D̃φ[u]2/3.

This last line allows to relate H̃φ to its time derivative, thus proving an algebraic-in-time decay,

H̃φ[u] ≤ (A+Bt)−2,

with suitable constants A > 0, B > 0. By the same arguments as in the proof above, L1-decay at
the rate t−1 follows.

5. Example: The Fokker-Planck equation

The study of entropies reached a new quality when it was observed that an analogue of Boltz-
mann’s H-Theorem also holds for certain diffusion equations. Consider the simplest case, the heat
equation,

∂tu(t;x) = ∆u(t;x).(1.22)

It is easy to verify that Boltzmann’s H-functional also decays along solutions to (1.22). However,
one finds that H[u(t)] → −∞ as t → ∞. This is in accordance with the fact that the only
“steady state” of the heat equation on Rd is v∞ ≡ 0, which is not a probability density. Hence
the H-functional does not capture any interesting behavior of the free heat equation. Surprisingly,
it becomes extremely useful in the study of the fine asymptotics in the vicinity of the self-similar
solution

U(t;x) = (2π(2t+ 1))−d/2 exp(−1
2
x2/(2t+ 1)).

In order to capture such fine asymptotics, we move to a coordinate frame in which U becomes
stationary. Introduce the scaling factor σ(t) =

√
2t+ 1 and

y = x/σ, s = log σ, v(s; y) = σdu(t;x).

Then (1.22) turns into the Fokker-Planck equation,

∂sv(s; y) = ∆yu(s; y) +∇y · (yv(s; y)).(1.23)

This equation is mass preserving; we choose as domain for v the set of probability distributions with
finite temperature and entropy. The unique positive steady state is then given by the Gaussian
v∞ = M . In contrast to the Boltzmann equation, the Fokker-Planck equation preserves neither
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momentum nor energy in general. This forces us to work immediately with the relative version of
the entropy established in the proof of Theorem 1.2, i.e. define

H[v] :=
∫
ρ(y) log ρ(y)M(y) dy, ρ(y) = M(y)−1u(y), M(y) = (2π)−d/2e−|y|

2/2

=
∫
v(y) log v(y) dy +

1
2

∫ (
|y|2 + d log(2π)

)
v(y) dy.

For this, one has

Theorem 1.4. The just defined functional H is an entropy for the Fokker-Planck equation (1.23).
Moreover, H and DH converge exponentially at rate equal to two, and

‖v(s)−M‖L1 ≤ Ce−t,(1.24)

where C depends only on H[u0].

Proof. Recall that H[v] ≥ 0 by Jensen’s inequality, and H[v] = 0 exactly iff v = M . The
entropy production gives

DH [v] = − d

ds
H[v(s)] = −

∫
∂sv(y) log v(y) dy − 1

2

∫
|y|2∂sv(y) dy

=
∫
v(y)−1∇v(y) ·

(
∇v + yv(y)

)
dx+

∫
y · (∇v + yv(y)) dy

=
∫
v(y)−1∇v(y) dy + 2

∫
y · ∇v(y) dy +

∫
|y|2v(y) dy

=
∫
v(y)−1|∇v(y) + yv(y)|2 dy,

which is obviously non-negative and zero exactly for v = v∞. Moreover, one can write

DH [v] = 4
∫
|∇
√
v(y)|2 dy − 2d

∫
v(y) dy +

∫
|y|2u(y) dy.

The clue is that there exists a nice relation between H[v] and DH [v], the celebrated logarithmic
Sobolev inequality. The latter states that for any probability density u on Rd,∫

u(x) log u(x) dx+ d
(
1 + log

√
2π
)
≤ 2

∫
|∇
√
u(x)|2 dx.(1.25)

The proof of this inequality is one of the main issues in Lecture 2, see Corrollary 2.2. Substituting
u(x) = v(x) into (1.25), one establishes

H[v] ≤ 1
2
DH [v],

leading to the exponential decay of H. The L1-decay in (1.24) follows by Proposition 1.1. �

What about the equation (1.22) in the original variables? Undoing the scalings, one finds that

‖u(t)− U(t)‖L1 ≤
√

8E[u0]
2t+ 1

We note that the worst case is already achieved by comparing two self-similar solutions centered
at different points in space.
All of the above, however, is only the beginning of a long story. What happens if not an arbitrary
self-similar solution is taken for comparison, but one which is more adapted to the initial condition?
There are two parameters to play with: the center of mass and the shift in time. Adjusting those,
the convergence rate can be improved [3].
Furthermore, it was observed by McKean that also the main contribution of the entropy produc-
tion, i.e. the relative Fisher information

F [u] := DH [v] = 4
∫
|∇
√
v(y)|2 dy − d,
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constitutes a Lyapunov functional for (1.23). In principle, it can be used to estimate the conver-
gence of v(s) to v∞ in H1(Rd). The entropy production of F is explicit

DF [v] =
∫ (

v−1∇2v − v−2∇v ⊗∇v
)2
v dy − F [v] + d,

and one finds

F [v] ≤ 2DF [v],

hence also DH [v(s)] is exponentially decaying in time, at rate exp(−2s). What about the entropy
production of DH? It seems like one cannot go further, but so far, no counterexamples are known.

6. (Counter-)Example: Quantum Diffusion

Since the discussion in these notes is extremely formal, I feel obliged to point out that occasionally
one runs into analytical problems with the formal calculations. A very intricate example is provided
by the Quantum Diffusion equation [28],

∂tu(x) = −
(
u(x)(log u(x))xx

)
xx
, x ∈ T.(1.26)

A straight-forward formal calculation reveals that

H[u] :=
∫

T
u(x) log u(x) dx

is an entropy functional for (1.26). In fact, one can prove that for any initial condition u0 ≥ 0 with
E[u0] <∞, there exists a corresponding weak solution to (1.26) which dissipates H exponentially
in time.
In particular, there exists an entropy dissipating weak solution for the initial condition

ũ0(x) = sin2 x.

On the other hand, ũ0 constitutes a stationary solution to (1.26) in the sense that

ũ0(x)(log ũ0(x))xx = −2

for all x /∈ πZ. Hence, if the concept of solution is taken too weak, then entropies might not
behave as expected.
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7. Problems

Problem 1.1. Consider the ordinary differential equations ẋ = f(x) on R2.
(a) Assume f(x) = ∇H(x) is the gradient of a strictly convex function H : R2 → R≥0 with
∇2H ≥ λ1 for some λ > 0 and H(0) = 0. Show that H is an entropy for the correspond-
ing flow, and that both H and its entropy production DH decay like ≈ exp(−2λt) along
arbitrary solutions x(t). Does DH necessarily constitute an entropy by itself?

(b) Show that the flow for the vector field f defined by f(x1, x2) = −(x1 + x2, x2 − x1)
possesses an entropy, but is not the gradient flow of some smooth potential Φ : R2 → R
in a suitable smooth metric on R2.

Problem 1.2. The so-called BGK model is a linear version of the homogeneous Boltzmann equa-
tion. A solution is a time-dependent probability density f(t;x) on R satisfying

∂tf(t;x) = −1
τ

(
f(t;x)− P [f(t)](x)

)
.

Here τ > 0 is the relaxation time, and P is the projection on the Gaussians,

P [f ](x) = (2πT )−1/2 exp
(
(x− x̄)2/(2T )

)
,

where x̄ ∈ R, T > 0 are chosen s.t. f and P [f ] have the same first and second momentum.
Determine a suitable domain U on which Boltzmann’s H-functional constitutes an entropy for the
BGK model. Calculate the decay rate.

Problem 1.3. Consider the following extension of the radiative transfer equation for a time-
dependent probability density f(t;x) on the domain Ω ⊂ Rd:

∂tf(t;x) = −λ(x)f(t;x) +
∫

Ω

λ(y)f(t; y)µ(dy),

where µ is a fixed probability measure on Ω, and λ : Ω→ R+ is a given function with
∫

Ω
λ(x)−1µ(dx) =

1.
(a) Show that each smooth, strictly convex function φ : R≥0 → R with φ(1) = 0 and φ′(1) = 0

gives rise to an entropy via Eφ[f ] =
∫

Ω
φ
(
λ(x)f(x)

)
λ(x)−1µ(dx).

(b?) Under the additional assumption that
∫

Ω
λ(x)−2µ(dx) < +∞, show that each of the

previously defined entropies decays like ≈ t−3 along arbitrary solutions f(t), which are
bounded initially.



CHAPTER 2

Linear Diffusion

The topic of this lecture are estimates on the speed of equilibration for solutions to linear scalar
diffusion equation of second order. The notes for this lecture are divided into two parts: first,
the essentials of the original Bakry-Émery-method [7] are presented, and second, Toscani’s more
direct approach to the method is described. Only the second part was discussed in the course.
To have a rough idea of the method described in the following, recall Example 5 of the rescaled
heat equation from Lecture 1. The strategy for the proof of equilibration has been the following:

(1) Starting from the relative entropy H, calculate the dissiation DH .
(2) Relate DH to H by means of the logarithmic Sobolev inequality (1.25).
(3) Use Gronwall’s inequality to conclude decay of H, and hence equilibration of the solution.

The catch is that the logarithmic Sobolev inequality needs to be given a priori. This is a general
problem with this straightforward approach: the relation between the entropy functional and its
production, usually a non-linear and highly non-trivial functional inequality, needs to be known
from some other source. The ground-breaking idea of Bakry and Émery is a variation of the
scheme above, that delivers a proof of the correct functional inequality as a by-product.

(1) Given H, calculate the dissiation DH of H, and also the dissipation RH of DH .
(2) Relate RH to DH by means of some elementary (usually pointwise) functional inequality.
(3) Relate DH to H by integrating up (in time) the latter relation.
(4) Use the Gronwall argument to deduce decay of H and equilibration of the solution.

There are certain similarities of this procedure to the very basic example discussed in section 2.
In effect, the Bakry-Émery allows to decide if the functionals H in a certain class are λ-convex
along all solution trajectories of the given diffusion equation.

1. Functional inequalities on an interval — a warm up

The probably easiest equation for which the Bakry-Émery method leads to non-trivial results is
the heat equation

∂tu = uxx, u(0;x) = û(x),(2.1)

on the interval [0, 1] with homogeneous Neumann boundary conditions.

Theorem 2.1. Assume that φ : R≥0 → R≥0 is convex and s.t. (φ′′)−1/2 is concave, and let ψ be
such that

ψ′(s)2 = φ′′(s).

Then the following convex Sobolev inequality∫ 1

0

φ(û) dx− φ
(∫ 1

0

û dx
)
≤ 1

2π2

∫ 1

0

ψ(û)2
x dx,(2.2)

holds for all smooth, positive functions û on [0, 1].

Proof. Let us start from the special case of (2.2) with φ(s) = 1
2s

2 and ψ(s) = s,∫ 1

0

û2 dx−
(∫ 1

0

û dx
)2

≤ 1
π2

∫ 1

0

û2
x dx.(2.3)

This is the Poincaré inequality which we shall not prove again. Instead, we shall now generalize
it to other convex functions φ : R≥0 → R≥0.

15
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Define the l.h.s of (2.2) as Hφ[u], and let u be the unique solution to (2.1). One finds

Dφ[u] := − d

dt
Hφ[u] = −

∫
φ′(u)ut dx = −

∫
φ′(u)uxx dx =

∫
φ′′(u)u2

x dx =
∫
ψ(u)2

x dx

as first time derivative and

Rφ[u] := −1
2
d

dt
Dφ[u] = −

∫
ψ(u)xψ(u)xt dx =

∫
ψ(u)xxψ′(u)uxx dx

=
∫
ψ′(u)2u2

xx dx+
∫
ψ′′(u)ψ′(u)u2

xuxx dx

as second. The crucial step is to relate Rφ[u] to Dφ[u]. To this end, the expression

0 =
1
3

∫
(ψ′(u)ψ′′(u)u3

x)x dx

=
∫
ψ′′(u)ψ′(u)u2

xuxx dx+
1
3

∫
(ψ′′(u)2 + ψ′(u)ψ′′′(u))u4

x dx.

is added to Rφ[u], obviously without changing the value of the latter. Hence

Rφ[u] =
∫
ψ′(u)2u2

xx dx+ 2
∫
ψ′′(u)ψ′(u)uxxu2

x dx+
1
3

∫
(ψ′′(u)2 + ψ′(u)ψ′′′(u))u4

x dx.

On the other hand, one has

0 ≤ (ψ(u))2
xx = ψ′(u)2u2

xx + 2ψ′′(u)ψ′(u)uxxu2
x + ψ′′(u)2u4

x.

In combination with Poincaré’s inquality (2.3), one concludes

Dφ[u] ≤ 1
π2

Rφ[u],(2.4)

provided that
1
3
(
(ψ′′)2 + ψ′ψ′′′

)
≥
(
ψ′′
)2
.(2.5)

Since ψ′ = (φ′′)1/2 > 0, it is easy to see that (2.5) is equivalent to the concavity of (ψ′)−1 =
(φ′′)−1/2.
To finish the argument, rewrite (2.4) as

− d

dt
Hφ[u(t)] ≤ − 1

2π2

d

dt
Dφ[u(t)],

and integrate both sides from t = +∞ to t = 0. This yields

Hφ[u0]− lim
t→+∞

Hφ[u(t)] ≤ 1
2π2

(
Dφ[u0]− lim

t→∞
Dφ[u(t)]

)
.(2.6)

By standard theory, the solution u(t) to (2.1) converges to the homogeneous steady state u∞ ≡∫ 1

0
û(x)dx in C∞, implying that Dφ[u(t)] → 0 and Hφ[u(t)] → Hφ[u∞] as t → ∞. Substituting

these limits, (2.6) becomes (2.2). �

For example, φ(s) = s log s with ψ(s) = 2s1/2 is a possible choice, leading to a logarithmic Sobolev
inequality,

0 ≤
∫ 1

0

û log û dx−
(∫ 1

0

û dx
)

log
(∫ 1

0

û dx
)
≤ 2
π2

∫ 1

0

√
û

2

x dx.(2.7)

Moreover, the pairs φ(s) = sα/(α − 1) and ψ(s) = 2sα/2/
√
α are also allowed, when 1 < α < 2.

These yield Beckner’s interpolation inequalities,

0 ≤ 1
α− 1

[ ∫ 1

0

ûα dx−
(∫ 1

0

û dx
)α]
≤ 2
απ2

∫ 1

0

(√
ûα
)2
x
dx.(2.8)

Notice that from (2.8), one obtains both the Poincare inequality (2.3) for α ↗ 2, as well as the
logarithmic Sobolev inequality (2.7) for α↘ 1 as limit cases.



2. THE CARRÉ DU CHAMP 17

2. The Carré du Champ

The setting for the original method by Bakry and Émery has been a probabilistic one, which we
quickly review now. Everything below is very formal — but the situation in the original setting [7]
is hardly any better: the calculations in [7] are based on the “algebra assumption”, excluding more
or less all examples of practical interest. Fortunately, the formal ideas could be made rigorous
with a certain amount of effort [5].
Let a continuous, stationary Markov process be defined on the set C∞+ (Ω) of non-negative smooth
functions over a domain Ω ⊂ Rd. Essentially, this means that a semi-group Pt (with t ≥ 0) of
linear operators on C∞+ (Ω) is given,

P0[f ] = f, Ps ◦ Pt = Ps+t,

which can be represented in terms of probability transition kernels Kt,

Pt[f ](x) =
∫

Ω

f(y)Kt(x, dy).

Notice that Pt preserves the non-negativity of f , and leaves constant functions invariant. We
assume that the process allows for a unique invariant measure, i.e. there is precisely one probability
measure µ∞ such that ∫

Ω

f(x)µ∞(dx) =
∫

Ω

Pt(f(x))µ∞(dx) for all t ≥ 0.(2.9)

Introduce accordingly for f ∈ L1(µ∞) and g, h ∈ L2(µ∞) the notations

〈f〉 :=
∫
f(x)µ∞(dx), 〈f, g〉 := 〈fg〉.

Also, we assume ergodicity in the sense that

lim
t→∞

Pt(f) = f∞ ≡ 〈f〉,(2.10)

where we avoid to specify the precise meaning of convergence.
Moreover, there are two assumptions on the infinitesimal generator,

L[f ] := lim
t↘0

1
t

(
Pt[f ]− f

)
.

First, L is symmetric,

〈Lf, g〉 = 〈f, Lg〉.(2.11)

And second, L acts like a second order diffusion operator,

L[φ(f)] = φ′(f)Lf + φ′′(f)Γ(f, f),(2.12)

where Γ is the celebrated carré du champ,

Γ(f, g) =
1
2
(
L[fg]− f(Lg)− (Lf)g

)
.(2.13)

Proposition 2.1. The carre du champ operator Γ has the following properties:
• Γ is bilinear and symmetric.
• Γ satisfies the Leibniz rule,

Γ(fg, h) = fΓ(g, h) + gΓ(f, h).(2.14)

• Γ satisfies a chain rule in each argument,

Γ(φ(f), g) = φ′(f)Γ(f, g).(2.15)

• The scalar product 〈·〉 relates Γ and L by

〈φ(f), Lf〉 = −〈Γ(φ(f), f)〉.(2.16)
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Proof. Bilinearity and symmetry are obvious from the definition (2.13) and the properties
of L. In order to derive (2.14), use (2.12) with φ(s) = s3 and replace f by af + bg + ch, with
arbitrary functions f , g and h, and real numbers a, b and c. Then collect terms containing abc on
both sides of (2.12); equating those yields (2.14) after some manipulations. The rule (2.15) follows
at least for real analytic φ by using the previous rule (2.14) and a power series expansion of φ.
The last property (2.16) is again a consequence of the definition (2.13), the symmetry property
(2.11), and the fact that we integrate against the invariant measure µ∞. �

The canonical example to which the theory applies is the (generalized) Ornstein-Uhlenbeck process.
The generator L of the Markov semigroup Pt acts on functions f like

Lf(x) := ∇ ·
(
D(x)∇f)−D(x)∇V (x) · ∇f(x),

with an everywhere positive definite diffusion matrix D and a confinement potential V . We
assume Ω = Rd in order to avoid the discussion of boundary conditions (which is a highly non-
trivial matter, even in one spatial dimension, see e.g. [23]). By standard theory, the associated
linear parabolic equation

∂tf(t;x) = Lf(t;x)(2.17)

possesses (under mild assumptions on D and V ) a unique solution for each initial condition f0,
thus defining a semi-group Pt. The formally L2(Rd)-adjoint generator L∗ acts on the densities u
of measures µ(dx) = u(x)dx,

L∗u(x) = ∇ ·
(
D(x)(∇u(x) + u(x)∇V (x))

)
.

Provided exp(−V ) is integrable on Rd, the ajoint parabolic equation

∂tu(t;x) = L∗u(t;x)(2.18)

admits exactly one steady state u∞ of unit mass,

u∞(x) = Z−1 exp(−V (x)), Z :=
∫

Ω

exp(−V (x)) dx,

corresponding to the unique invariant measure µ∞(dx) = u∞(dx). Direct computations allow to
check both the symmetry property (2.11),

〈f, Lg〉 =
1
Z

∫
Rd
f∇ ·

(
D∇g)e−V dx− 1

Z

∫
Rd
fD(∇V · ∇g)e−V dx

= − 1
Z

∫
Rd
D(∇f · ∇g)e−V dx

= +
1
Z

∫
Rd
∇ · (D∇f)ge−V dx−

∫
Rd
D(∇f · ∇V )ge−V dx = 〈Lf, g〉,

as well as the “diffusion-operator”-property (2.12),

Lφ(f) = ∇ ·
(
Dφ′(f)∇f

)
−Dφ′(f)∇V · ∇f

= φ′(f)
(
∇ · (D∇f)−D∇V · ∇f

)
+ φ′′(f)D∇f · ∇f.

Thus, Proposition 2.1 applies to the associated carré du champ-operator

Γ(f, g) =
1
2

(
∇ ·
(
D∇(fg)

)
− f∇ ·

(
D∇g

)
− g∇ ·

(
D∇f

)
−D(x)∇V ·

(
∇(fg)− f∇g − g∇f

))
=

1
2

(
∇ ·
(
D(f∇g + g∇f)

)
− f∇ ·

(
D∇g

)
− g∇ ·

(
D∇f

))
= D∇f · ∇g.

In order to determine the equilibration properties of the Markov process Pt for (2.17), another
operator needs to be studied.



3. GAMMA-DEUX 19

3. Gamma-Deux

The gamma-operator is the first member in a hierarchy (the zeroth member being just the pointwise
product of functions). In the next iteration, one obtains

Γ2(f, g) =
1
2
(
LΓ(f, g)− Γ(Lf, g)− Γ(f, Lg)

)
.(2.19)

In these terms, the celebrated result of Bakry and Émery plainly reads:

Theorem 2.2. Assume that there exists some λ > 0 such that

Γ2(h, h) ≥ λ

2
Γ(h, h)(2.20)

for all non-negative functions h. Then the following convex Sobolev inequality holds w.r.t. the
invariant measure µ∞,∫

Ω

φ(g)µ∞(dx)− φ
(∫

Ω

g µ∞(dx)
)
≤ λ−1

∫
Ω

φ′′(g)Γ(g, g)µ∞(dx),(2.21)

provided φ is strictly convex and s.t. 1/φ′′ is concave.

The left-hand side of (2.21) represents the difference of two relative entropies. In particular,
choosing φ(s) = s log s in (2.21) yields the log-Sobolev inequality,∫

Ω

g log g µ∞(dx)− g∞ log g∞ ≤ λ−1

∫
Ω

Γ(g, g)
g

µ∞(dx),

whereas φ(s) = s2 leads to the Poincaré inequality,∫
Ω

(
g − g∞

)2
µ∞(dx) ≤ λ−1

∫
Ω

Γ(g, g)µ∞(dx).

Here g∞ ≡ 〈g〉 as in (2.10).
The proof of Theorem 2.2 is very computational. The strategy, however, is very similar to the one
used in the easy proof of Theorem 2.1. Denote by f = f(t) = Ptg the time-dependent family of
transformations of the given function f(0) = g under the Markov semi-group. The key idea is to
study the associated temporal evolution of the entropy

Hφ[f ] = 〈φ(f)〉.

Using rules (2.15) and (2.16), the first dissipation (at any instant of time) is given by

Dφ[f ] = − d

dt

∣∣
t=0

Hφ[Ptf ] = −〈φ′(f)Lf〉 = 〈Γ(φ′(f), f)〉 = 〈φ′′(f)Γ(f, f)〉,

and the second by

Rφ[f ] =
1
2
d2

dt2
∣∣
t=0

Hφ[Ptf ] = −1
2
〈φ′′′(f)Lf,Γ(f, f)〉 − 〈φ′′(f)Γ(Lf, f)〉.(2.22)

By a variety of formal manipulations — detailed below — it follows that

Rφ[f ] ≥ 〈φ′′(f)−1Γ2(φ′(f), φ′(f))〉.(2.23)

Assumption (2.20) allows to conclude that

Rφ[f ] ≥ λ

2
〈φ′′(f)−1Γ(φ′(f), φ′(f))〉 =

λ

2
〈φ′′(f)Γ(f, f)〉,

or, equivalently,

λDφ[f ] ≤ −1
2
d

dt
Dφ[f ],(2.24)

for all t ≥ 0. Under the further hypothesis that the ergodicity-convergence in (2.10) is strong
enough to conclude

lim
t→∞

Dφ[Ptg] = 0, lim
t→∞

Hφ[Ptg] = Hφ[g∞], g∞ = 〈g〉,
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a time-integration of (2.24) on t ∈ (0,∞) reveals

Hφ[g]−Hφ[g∞] ≤ 1
2λ
Dφ[g],(2.25)

which is nothing but (2.21). Hence, the main effort is the passage from the expression (2.22)
for Rφ[f ] to the other expression in (2.23). The basic tool is the following “change of variables
formula”.

Lemma 2.1. For any sufficiently smooth function ψ, and all f

Γ2(ψ(f), ψ(f)) = ψ′(f)2Γ2(f, f) + ψ′(f)ψ′′(f)Γ(f,Γ(f, f)) + ψ′′(f)2Γ(f, f)2.(2.26)

Proof. Applying the rule (2.12), (2.14) and (2.15) to the definition of Γ2, one verifies

Γ2(φ, φ) =
1
2
LΓ(φ, φ)− Γ(Lφ, φ)

=
1
2
L
(
(φ′)2Γ

)
− φ′Γ(φ′Lf, f)− φ′Γ(φ′′Γ, f)

= Γ
(
(φ′)2,Γ

)
+

1
2

(φ′)2LΓ +
1
2
L
(

(φ′)2
)
Γ

− (φ′)2Γ(Lf, f)− φ′(Lf)Γ(φ′, f)− φ′φ′′Γ(Γ, f)− φ′Γ(φ′′, f)Γ

= 2φ′φ′′Γ(f,Γ) +
1
2

(φ′)2LΓ + φ′φ′′(Lf)Γ +
(
φ′φ′′′ + (φ′′)2

)
Γ2

− (φ′)2Γ(Lf, f)− φ′φ′′(Lf)Γ− φ′φ′′Γ(Γ, f)− φ′φ′′′Γ2.

This is exactly the claim. �

In particular, relation (2.26) with ψ(s) = φ′(s) gives

〈φ′′(f)−1Γ2(φ′(f), φ′(f))〉 = 〈φ′′(f)Γ2(f, f)〉+ 〈φ′′′(f)Γ(f,Γ(f, f))〉+ 〈φ′′(f)−1φ′′′(f)2Γ(f, f)2〉.
(2.27)

Now, applying the symmetry property (2.11) and rule (2.15) to (2.22),

R[f ] = −1
2
〈Lf, φ′′′(f)Γ(f, f)〉 − 〈φ′′(f)Γ(f, Lf)〉

=
1
2
〈Γ(f, φ′′′Γ(f, f))〉

+ 〈φ′′Γ2(f, f)〉 − 1
2
〈φ′′(f), LΓ(f, f)〉

=
1
2
〈φ′′′(f)Γ(f,Γ(f, f))〉+

1
2
〈Γ(f, f)Γ(f, φ′′′(f))〉

+ 〈φ′′(f)Γ2(f, f)〉+
1
2
〈Γ(φ′′(f),Γ(f, f))〉

= 〈φ′′(f)Γ2(f, f)〉+ 〈φ′′′(f)Γ(f,Γ(f, f))〉+
1
2
〈φIV (f)Γ(f, f)2〉.

Hence, in view of (2.27), relation (2.23) holds true provided
1
2
φIV ≥ (φ′′)−1(φ′′′)2.(2.28)

But this condition is verified since φ is strictly convex and 1/φ′′ is concave. This concludes the
proof of Theorem 2.2.

4. Applications

4.1. Exponential convergence in entropy.

Corollary 2.1. Under the hypotheses of Theorem 2.2, each entropy Hφ and its respective pro-
duction Dφ converge exponentially at rate 2λ. Moreover,∥∥Pt[g]− g∞

∥∥
L1(µ∞)

≤
(∫

Ω

(
g − g∞

)2
dµ∞

)1/2

e−λt.(2.29)
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Proof. The exponential convergence is an immediate consequence of the estimates (2.25)
and (2.24), respectively. Moreover, choosing φ(s) = s2,∫

Ω

∣∣Pt[g]− g∞
∣∣ dµ∞ ≤ (∫

Ω

(
Pt[g]− g∞

)2
dµ∞

)1/2(∫
Ω

dµ∞

)1/2

=
(
Hφ[Ptg]−Hφ[g∞]

)1/2
,

which yields (2.29). �

4.2. Logarithmic Sobolev inequality. The probably most prominent application consists
in the derivation of the log-Sobolev inequality (1.25).

Corollary 2.2. All positive smooth functions h satisfy the following logarithmic Sobolev inequal-
ity ∫

Rd
h log

( h∫
h dx

)
dx+ d

(
1 +
√

2π
) ∫

Rd
h dx ≤ 2

∫
Ω

∣∣∇√h∣∣2 dx.(2.30)

Proof. Apply Theorem 2.2 to the “classical” Ornstein-Uhlenbeck process, which is (2.17)
with D ≡ 1 and V (x) = |x|2/2, i.e.

Lf = ∆f − x · ∇f.

The associated invariant measure µ∞(dx) = M(x)dx is the Gaussian,

M(x) =
1
Z
e−V (x) = (2π)−d/2 exp

(
− 1

2
|x|2
)
.

Direct calculations reveal

Γ(f, g) = ∇f · ∇g

and

Γ2(f, f) =
1
2

∆|∇f |2 −∇∆f · ∇f +∇f · ∇(x · ∇f)− 1
2
x · ∇|∇f |2

=
d∑

i,j=1

(
∂i∂jf

)2 + |∇f |2.

So (2.20) is satisfied with λ = 2. The inequality (2.21) with φ(s) = s log s provides the estimate∫
Rd

(gM) log
( g∫

gM dx

)
dx ≤ 2

∫
Rd

∣∣∇√g∣∣2M dx.(2.31)

Now substitute g = h/M . The left-hand side of (2.31) becomes∫
Rd
h log

( h∫
h dx

)
dx−

∫
Rd
h logM dx.

On the right-hand side, one finds

2
∫

Rd

∣∣ ∇√h− 1
2

√
h∇ logM

∣∣2 dx = 2
∫

Rd

∣∣∇√h∣∣2 dx+
1
2

∫
Rd
h
∣∣∇ logM

∣∣2 dx− ∫
Rd
∇h · ∇ logM dx.

Apply integration by parts to the last term, yielding

−
∫

Rd
∇h · ∇ logM dx = d

∫
Rd
h dx.

Finally, observing that∫
Rd
h
(

logM dx+
1
2

∣∣∇ logM
∣∣2) dx = d log

√
2π
∫

Rd
h dx,

it is evident that (2.31) indeed implies (2.30). �
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4.3. Convex Sobolev inequalities on the line.

Corollary 2.3. Let d = 1, and assume that the smooth potential V : R→ R satisfies
1
4
D−1D2

x −
1
2
Dxx +

1
2
DxVx +DVxx ≥ λ,(2.32)

with some λ > 0. Then the inequality∫
R
g log

( g∫
ge−V dx

)
e−V dx ≤ 2λ

∫
R

(√
g
)2
x
e−V dx(2.33)

holds for all smooth and positive g : R→ R.

The condition (2.32) — in its multi-dimensional generalization — has been used as characterization
of entropy-dissipating diffusion processes in [5].

Proof. Consider the Ornstein-Uhlenbeck process on the real line Ω = R, with

Lf = (Dfx)x −DVxfx.

By the preceeding calculations, Γ(f, g) = Dfxgx. Furthermore,

Γ2(f, f) =
1
2
(
D(Df2

x)x
)
x
− 1

2
DVx(Df2

x)x −Dfx(Dfx)xx +Dfx(DVxfx)x

= D2f2
xx +DDxfxfxx +

1
2

(D2
x −DDxx + 2D2Vxx +DDxVx)f2

x .

This is a quadratic form in fx and fxx; it is bounded from below by (λ/2)Γ(f, f) = (λ/2)f2
x iff

2D2(D2
x −DDxx + 2D2Vxx +DDxVx − λ) ≥ D2D2

x,

or, equivalently, iff (2.32) is true. Theorem 2.2 implies (2.33) with φ(s) = s log s. �

4.4. Hypercontractivity. One application must be mentioned in this context, since it stood
as the primary motivation at the very beginning of the theory: hypercontractivity estimates.

Corollary 2.4. Assume (2.20) holds. Let p > 1, and define q(t) = 1 + (p− 1) exp(λt). Then∥∥Ptg∥∥Lq(t) ≤ ∥∥g∥∥Lp(2.34)

holds for all non-negative functions g ∈ Lp(Ω).

Proof. Again, denote by f = f(t) = Ptg the temporal transformations of g under the semi-
group. We shall prove (2.34) by showing that

F (t) = log
(∥∥f(t)

∥∥
q(t)

)
=

1
q(t)

log〈f(t)q(t)〉

is non-increasing in time. Indeed, observe that

d

dt
F (t) = − q̇

q2
log〈fq〉+

q̇

q

〈fq log f〉
〈fq〉

+
〈fq−1Lf〉
〈fq〉

= −λ(q − 1)
q2〈fq〉

(
〈fq〉 log〈fq〉 − 〈fq log fq〉 − q2

λ(q − 1)
〈fq−1Lf〉

)
.

Now substitute f = h1/q. In view of (2.16) in combination with (2.15),

−〈fq−1Lf〉 = (q − 1)〈fq−2Γ(f, f)〉 =
q − 1
q2
〈h(q−2)/q

(
h(1−q)/q)2︸ ︷︷ ︸

=h−1

Γ(h, h)〉.

Altogether,

d

dt
F (t) = −λ(q − 1)

q2〈h〉
(
〈h〉 log〈h〉 − 〈h log h〉+ λ−1〈h−1Γ(h, h)〉

)
,

and the term inside the round brackets is non-negative by (2.21) with φ(s) = s log s. �
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4.5. Extensions and limitation of the method. Since the discovery of its relation to
hypercontractivity, the Bakry-Émery-criterion (2.20) has been improved and specialized in a huge
number of publications since the late 80’s until today. For instance, Theorem 2.2 remains still
valid under certain perturbations of the strict requirement (2.20), see e.g. [25]. In fact, even the
“original Bakry-Émery condition” from [7] is slightly weaker than (2.20). Moreover, in the context
of diffusion on Riemannian manifolds, the connection between logarithmic Sobolev inequalities
and curvature bounds has been exhaustively studied. A nice overview of available results can be
obtained from [35].
There is at least one issue that deserves a quick discussion at this point. The Bakry-Émery method
is designed to provide a strong logarithmic Sobolev inequality (which implies hypercontractivity
of the semi-group Pt). From the point of equilibration estimates, however, the weaker Poincaré
inequality is usually sufficient (since the latter implies a spectral gap of the generator L on L2(Ω)).
There are indeed certain situations in which the log-Sobolev estimate (and thus the whole Bakry-
Émery approach) is bound to fail, whereas a Poincaré inequality can still be proven. An example
of great importance is provided by the linearized fast diffusion equation [17],

∂tu(t;x) = ∇ ·
(
B(x)∇(mB(x)m−2u(t;x))

)
, B(x) =

(
C +

1−m
2m

|x|2
)−1/(1−m)

(2.35)

for 1− 2/d < m < 1. Equation (2.35) is supposed to capture the behavior of solutions to the fast
diffusion equation in a vicinity of the equilibrium point B.

5. Toscani’s approach to the Bakry-Émery method

There exists another approach to proving logarithmic Sobolev inequalities and equilibration esti-
mates, which is strongly related to the Bakry-Émery method, but attains the “adjoint” point of
view. Instead of investigating the algebra of non-negative smooth functions on Ω, one directly in-
vestigates the time evolution of the underlying measure. This approach, which has been developed
since the late 80’s and was summarized in [5], has certain advantages over the original method.
(In the actual lecture, only THIS approach has been presented.) Mainly, since the setup is much
more restrictive, the calculations are more direct and can be made rigorous in the relevant function
spaces with resonable effort. Naturally, much of the elegance and generality of the original method
is lost.
For simplicity, we restrict attention to the following Fokker-Planck equation

∂tu(x) = ∆u(x) +∇ ·
(
u(x)∇V (x)

)
,(2.36)

posed for the probability density u on the whole space Rd. Notice that equation (2.36) corresponds
to the adjoint formulation (2.18) with D ≡ 1 in the context of Ornstein-Uhlenbeck processes.
The goal is to prove exponentially fast convergence of u(t) to

u∞ =
1
Z
e−V , Z =

∫
Rd
e−V (x) dx

in L1(Rd), using entropy methods.

Theorem 2.3. Assume the Bakry-Émery condition

∇2V (x) ≥ λ1 uniformly in x ∈ Rd, with some λ > 0.(2.37)

Let φ : R+ → R be such that φ is convex and 1/φ′′ is concave. Then the associated relative entropy
Hφ and its production Dφ w.r.t. (2.36) satisfy the functional inequality

Hφ[u]−Hφ[u∞] ≤ 1
2λ
Dφ[u].(2.38)

Entropy Hφ and entropy production Dφ converge exponentially at rate 2λ, and any solution u(t)
to (2.36) with Hφ[u0] < +∞ equilibrates exponentially fast,

‖u(t)− u∞‖L1 ≤ C(u0) · e−λt.(2.39)

The proof of Theorem 2.3 is divided into four steps.
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5.1. Step one: first entropy production.

Lemma 2.2. The entropy production Dφ[u(t)] is non-negative and equal to zero iff u(t) = u∞.

We shall be working with the ratio ρ(x) = u(x)/u∞(x) rather than with u(x) itself. The respective
equation reads

∂tρ(x) = u∞(x)−1∇ · (u∞(x)∇ρ(x)) = ∆ρ(x)−∇ρ(x) · ∇V (x).(2.40)

To justify the manipulations below, we implicitly we assume that ρ is smooth in space and time,
and that the quotient ρ(x) is “sufficiently bounded” for |x| → ∞.
The entropy production is given by

Dφ[u] = − d

dt
Eφ[u(t)] = −

∫
φ′(ρ(x))u∞(x)∂tρ(x) dx(2.41)

= −
∫
φ′(ρ(x))∇ · (u∞(x)∇ρ(x)) dx(2.42)

= +
∫
φ′′(ρ(x))|∇ρ(x)|2 u∞(x)dx.(2.43)

Obviously, Dφ[u] ≥ 0, and equality implies that ∇ρ ≡ 0, which further implies u ≡ u∞.

5.2. Step two: second entropy production.

Lemma 2.3. The second order production

Rφ[u(t)] := −1
2
d

dt
Dφ[u(t)]

satisfies the functional inequality

Dφ[u] ≤ 1
λ
Rφ[u](2.44)

for all “sufficiently regular” probability densities u.

By definition,

Rφ[u] = −1
2

∫
∂t
(
φ′′(ρ)

)
|∇ρ|2 u∞ dx−

∫
φ′′(ρ)∇ρ · ∂t∇ρ u∞ dx.(2.45)

For the first integral in (2.45), we find

−
∫
∂t
(
φ′′(ρ)

)
|∇ρ|2 u∞ dx = −

∫
φ′′′(ρ)|∇ρ|2∇ · (u∞∇ρ) dx

= +
∫
∇(φ′′′(ρ)|∇ρ|2) · ∇ρ u∞dx

= +
∫ (

φIV (ρ)|∇ρ|4 + 2φ′′′(ρ)∇ρ · ∇2ρ · ∇ρ
)
u∞dx.

The second integral in (2.45) can be rewritten using

−∇ρ · ∂t∇ρ = −∇ρ · ∇(∂tρ) = −∆∇ρ · ∇ρ+∇ρ · ∇(∇V · ∇ρ)

= −∇ · (∇2ρ · ∇ρ) + ‖∇2ρ‖2 +∇ρ · ∇2V · ∇ρ︸ ︷︷ ︸
≥λ|∇ρ|2

+∇ρ · ∇2ρ · ∇V.

Putting this together yields

Rφ[u] ≥ λDφ[u] +
∫
φ′′(ρ)

(
∇ρ · ∇2ρ · ∇V −∇ · (∇2ρ · ∇ρ)

)
u∞dx

+
∫ (1

2
φIV (ρ)|∇ρ|4 + φ′′′(ρ)∇ρ · ∇2ρ · ∇ρ+ φ′′(ρ)‖∇2ρ‖2

)
u∞dx

= λDφ[u] +
∫ (1

2
φIV (ρ)|∇ρ|4 + 2φ′′′(ρ)∇ρ · ∇2ρ · ∇ρ+ φ′′(ρ)‖∇2ρ‖2

)
u∞dx.
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The following argument shows that the expression under the last integral is pointwise non-negative.
By assumption, φ′′ > 0 and φ′′φIV ≥ 2(φ′′′)2, so that

Q(a, b) = φIV a2 + 4φ′′′ab+ 2φ′′b2

is a non-negative quadratic form. Since further |∇ρ · ∇2ρ∇ρ| ≤ ‖∇2ρ‖|∇ρ|2, one finds

φIV (ρ)|∇ρ|4 + 4φ′′′(ρ)∇ρ · ∇2ρ · ∇ρ+ 2φ′′(ρ)‖∇2ρ‖2 ≥ Q(‖∇2ρ‖, |∇ρ|2) ≥ 0.

Thus (2.44) is proven.

5.3. Step three: proof of the functional inequality.

Lemma 2.4. The inequality (2.38) holds.

The second step provided us with inequality (2.44), which can be restated as

− d

dt
Dφ[u(t)] ≥ −2λ

d

dt
Hφ[u(t)],(2.46)

provided u(t) satisfies (2.36). Integrate (2.46) in time from t = 0 to t = +∞ to obtain

Dφ[u0]− lim
t→+∞

Dφ[u(t)] ≥ 2λ
(
Hφ[u0]− lim

t→+∞
Hφ[u(t)]

)
.

This is very close to the desired inequality (2.38); it remains to investigate the limits. On the left-
hand side, this is almost trivial: since Dφ is non-negative and non-increasing, and

∫∞
0
Dφ[u(t)]dt ≤

Hφ[u0] < +∞, it follows that Dφ[u(t)] → 0 monotonically as t → ∞. The formal argument for
the limit on the right-hand side is also simple: Assuming that we can interchange the limit and
the nonlinear functional Dφ, it follows

0 = lim
t→+∞

Dφ[u(t)] = Dφ[ lim
t→+∞

u(t)].(2.47)

Since the entropy production attains zero exactly at the point u∞, we conclude that limt→+∞ u(t) =
u∞. Interchanging limits once again, we have

lim
t→+∞

Hφ[u(t)] = Hφ[ lim
t→+∞

u(t)] = Hφ[u∞].(2.48)

Unfortunately, some unpleasant density arguments are needed to make this argument rigorous [5].
The results, however, is that the limit vanishes for solutions corresponding to any sensible initial
condition u0.

5.4. Step four: proof of the equilibration estimate.

Lemma 2.5. The estimate (2.39) holds.

Invoking the Gronwall argument, inequality (2.38) immediately implies that

Hφ[u(t)]−Hφ[u∞] ≤
(
Hφ[u0]−Hφ[u∞]

)
e−2λt.

Since 1/φ′′ is concave by assumption, it is continuous R, and lims↘0 1/φ′′(s) < +∞. Hence, φ′′

has a positive lower bound on [0, 1]. Proposition 1.1 applies and yields the equilibration estimate
(2.39).
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6. Problems

Problem 2.1. Use the Bakry-Emery method for a (formal) derivation of the celebrated logarithmic
Sobolev inequality on Rd,∫

Rd
u(x) log u(x) dx+ d log

(√
2πe
)
≤ 2

∫
Rd

∣∣∇√u(x)
∣∣2 dx.(2.49)

Here u is a (strictly positive and sufficiently smooth) probability density.
Hint: Apply the method to the Fokker-Planck equation with quadratic confinement potential V (x) =
1
2 |x|

2. The relevant relative entropy Hφ is generated by φ(s) = s log s.

Problem 2.2. Calculate the value of the H-functional H[u] =
∫

Rd u(x) log u(x) dx as a function
of time for the fundamental solution

U(t;x) =
(
2π(t+ 1)

)−d/2 exp
(
− |x|2

2(t+ 1)
)

(2.50)

of the heat equation on Rd,

∂tu(t;x) =
1
2

∆xu(t;x).(2.51)

What happens in the limit t→ +∞, and why is this expected?

Problem 2.3. Let a (smooth, normalized, rapidly decaying) solution u(t) to the heat equation
(2.51) be given. Our mission is to estimate the decay of the non-symmetric entropy

E
[
u(t)|U(t)

]
:= H

[
u(t)

]
−
∫

Rd
u(t;x) logU(t;x) dx.(2.52)

Here U is the fundamental solution from (2.50) above.
Proceed as follows:

• Perform a change of variables,

y = (1 + t)−1/2x, s =
1
2

log(1 + t), u(t;x) = (1 + t)−d/2v(s; y).(2.53)

• Verify that v satisfies the Fokker-Planck equation

∂sv(s; y) = ∆yv(s; y) +∇y ·
(
y∇yv(s; y)

)
.(2.54)

Notice the different coefficients in front of the Laplacians in (2.51) and (2.54).
• Verify that V (the transformation of U) constitutes the steady state for (2.54).
• Prove that E[u(t)|U(t)] = Hφ[v(s)]−Hφ[V ], using a change of variables under the inte-

gral. Here Hφ is the relative entropy from the lecture, with φ(s) = s log s.
• Use inequality (2.49) to conclude convergence Hφ[v(s)] to Hφ[V ], exponentially fast in s.
• Inteprete the result in terms of the original variables.



CHAPTER 3

Nonlinear Diffusion

Having studied the linear Fokker-Planck equation (2.36) in great detail, we turn to investigate its
nonlinear analogue,

∂tu = ∆f(u) +∇ · (u∇V ).(3.1)

As before, V represents a confinement potential. The novelty is that the rate of diffusion is not
constant anymore but depends on the solution u(x) through f ′

(
u(x)

)
with a smooth function

f : R≥0 → R. Naturally, only non-negative solutions are considered.
This lecture is mainly concerned with the special case of the rescaled porous medium equation
(3.2), which is (3.1) with

f(s) = sm, V (x) =
λ

2
|x|2,

with some m > 1 and λ > 0. The nonlinear effect is the stronger, the larger m is, and the limit
m ↘ 1 gives back the linear Fokker-Planck equation (2.36). Our main concern is the proof of
equilibration — exponentially fast in time — of solutions u to (3.1). As a by-product of this,
we shall obtain a version of the celebrated Gagliardo-Nirenberg interpolation estimates. This is in
complete analogy to the derivation of the logarithmic Sobolev inequality (2.30) as a consequence of
equilibration in the Ornstein-Uhlenbeck process. In the very end of this lecture, some comments
are made about the situation with more general nonlinearities f .

1. The porous medium equation

1.1. The equation and its steady state. The rescaled porous medium equation reads

∂tu = ∆um + λ∇ · (xu),(3.2)

with m > 1 and λ > 0. The term “rescaled” is explained in section 1.2 below. In order to avoid
the discussion of boundary integrals, we assume that

(1) either (3.2) is posed on a convex domain Ω ⊂ Rd and the flux of u across the (smooth)
boundary ∂Ω is zero, i.e. n(x) · ( m

m−1∇u(x)m−1 + λx) = 0 for x ∈ ∂Ω,
(2) or (3.2) is posed on Ω = Rd, with the assumption that u(x) decays rapidly as |x| → ∞.

The stationary (weak) solutions to (3.2) are the celebrated Barenblatt profiles,

u∞(x) =
(
σ − λm− 1

2m
|x|2
)1/(m−1)

+
.(3.3)

We emphasize that u∞ is compactly supported; u∞ is positive on

B =
{
x
∣∣∣ |x|2 < R2 :=

2mσ
λ(m− 1)

}
.

The quantity σ > 0 is referred to as the mass parameter, which we assume to be arbitrary but
fixed in the following (no simplification results from the restriction to unit mass).

1.2. Remarks on the “free” equation. The name rescaled porous medium equation orig-
inates from the fact that, for λ = 1 and Ω = Rd, the scaling

y = etx, s =
eθt − 1
θ

, u(t;x) = edtv(s; y) with θ = 2 + d(m− 1),

27
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transforms (3.2) into the free porous medium equation,

∂sv = ∆yv
m.(3.4)

Notice that u∞ corresponds to a self-similar source-type solution vs of the free equation (3.4),

vs(s; y) = s−dθu∞(s−θx), θ = 2 + d(m− 1).(3.5)

Correspondingly, the self-similar solution vs has a spreading support. Applying the maximum
principle to (3.4), it is immediate to conclude that initially compactly supported solutions remain
compactly supported for all positive times. Moreover, by the minimum principle, the support of
any solution spreads out. The expansion of the support happens at the time scale sθ.
Equation (3.4) has a somewhat unpleasant history. Its first derivation dates back to the times of the
cold war, and the source-type solutions (3.5) to (3.4), first discovered by the russian mathematician
Barenblatt, were supposed to describe the propagation of a heat front after the explosion of an
atomic bomb. Today’s applications of (3.4) are fortunately more restricted to the wetting of
materials by a liquid.
The properties of weak solutions to (3.4) have been exhaustively studied, see for instance [34].
These translate word-by-word to properties of weak solutions to (3.2).

• Weak solutions exist for basically all sensible initial data, and they are unique.
• Mass and positivity are preserved.
• Positive solutions u(t, x) are smooth (in fact classical) in space and time for t > 0, and

non-negative solutions are Hölder-continuous in space.
• A variety of comparision principles (most important: maximum and minimum principle)

and rearrangement inequalities are satisfied by weak solutions.

1.3. Entropy approach. From here on, we shall follow the strategy developed in [20], which
is a non-linear version of (Toscani’s approach to) the Bakry-Émery method. There are, however,
some additional technical difficulties, even on the semi-rigorous level. One is that the elegant
concept of relative entropy (1.3) cannot be used here, since u∞ is zero outside of the bounded set
B. Thus one has to resort to the more general but less convenient absolute entropies (1.2). More
precisely, define

H[u] =
∫

Rd
u
( um−1

m− 1
+
λ

2
|x|2
)
dx.

For convenience, we also introduce the difference

E[u] = H[u]−H[u∞].

The main results are summarized in

Theorem 3.1. The following entropy production inequality holds for all u ≥ 0 with H[u] <∞,

E[u] ≤ 1
2λ

∫
Ω

u
∣∣∣ m

m− 1
∇um−1 + λx

∣∣∣2 dx.(3.6)

Consequently, assuming that u(t) is a solution to (3.2) with H[u0] < ∞, then both the entropy
H and its production DH converge exponentially at rate 2λ. Moreover, solutions u equilibrate
exponentially fast in L1(Ω),

‖u(t)− u∞‖L1 ≤ Ce−λt,(3.7)

where C only depends on H[u0].

As in the linear case, the proof consists of four main steps. For brevity, introduce

Q =
m

m− 1
um−1 +

λ

2
|x|2,

and notice that (3.2) can be written as

∂tu = ∇ · (u∇Q).

Two word about the justification of the formal manipulations performed below are in place now.
First, the porous medium equation does not have the strong regularizing effect of the linear
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Fokker-Planck equation. Even at t > 0, the spatial profile u(t;x) of a non-negative solution (like
the stationary one) is only Hölder continuous in general. The common trick is to approximate non-
negative solutions by strictly positive ones, which are smooth and classical. All relevant estimates
pass to the non-negative limit. The second problem is the justification of integration by parts.
Since the quadratic potential appears frequently under the integral, it is by no means trivial to
conclude that the boundary terms indeed vanish. We leave it here to the reader to check that
finiteness of an 2 + ε-moment of the initial condition is indeed sufficient to proceed as formally
shown.

1.4. Step one: First entropy production. The time derivative of E[u(t)] amounts to

D[u] = − d

dt
E[u]

= −
∫ ( m

m− 1
um−1 +

λ

2
|x|2
)
∂tu dx

= −
∫
Q∇ · (u∇Q) dx

=
∫
u|∇Q|2 dx.

This expression is obviously non-negative, and zero exactly if Q is constant on each connected
component of the support of u. In view of the spatial Hölder-continuity of solutions and the
boundary conditions, the latter implies that Q vanishes identically on Ω, and that u is a Barenblatt
profile.

1.5. Step two: Second entropy production. For the second derivative, one finds

R[u] = −1
2
d

dt
D[u]

= −1
2

∫
Ω

∂tu|∇Q|2 dx−
∫

Ω

u∇Q · ∂t∇Qdx

= −1
2

∫
Ω

∇ · (u∇Q)|∇Q|2 dx+
∫

Ω

∇ · (u∇Q)∂tQdx

= +
∫

Ω

u∇Q · ∇2Q · ∇Qdx+m

∫
Ω

um−2(∇ · (u∇Q))2 dx.

Using the definition of Q, we realize that

R[u] = λ

∫
Ω

u|∇Q|2 dx+

+
m

m− 1

(∫
Ω

u∇Q · ∇2um−1 · ∇Qdx+ (m− 1)
∫

Ω

um−2(∇ · (u∇Q))2 dx︸ ︷︷ ︸
=(∗)

)
.

Naturally, the goal is to prove that the sum of the terms in (*) is non-negative, leading immediately
to

λD[u(t)] ≤ R[u(t)].(3.8)

In order to prove non-negativity of (*), integrate the first contribution by parts, and expand the
square (u∆Q+∇u · ∇Q)2 in the second contribution. This yields

(∗) = −
∫

Ω

(∇u · ∇Q)(∇Q · ∇um−1) dx−
∫

Ω

u∇Q · ∇2Q · ∇um−1 dx−
∫

Ω

u(∇Q · ∇um−1)∆Qdx

+ (m− 1)
∫

Ω

um(∆Q)2 dx+ 2(m− 1)
∫

Ω

um−1(∇u · ∇Q)∆Qdx+ (m− 1)
∫

Ω

um−2(∇u · ∇Q)2 dx

= (m− 1)
∫

Ω

um(∆Q)2 dx+
m− 1
m

∫
Ω

∇um · ∇Q(∆Q) dx− m− 1
m

∫
Ω

∇um · ∇2Q · ∇Qdx.
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Finally, integrate the last two terms by parts, removing the gradient from um. The third derivatives
cancel, leaving

(∗) =
(m− 1)2

m

∫
um(∆Q)2 dx+

m− 1
m

∫
um‖∇2Q‖2 dx ≥ 0.

1.6. Step three: Derivation of the functional inequality. Perform integration in time
of the inequality (3.8) to obtain (3.6). It is probably needless to emphasize that a variety of
technical obstacles need to be overcome in order to make this step rigorous. As in the linear case,
the hardest part is to show that E[u(t)]→ 0 as t→∞.
In direct consequence of (3.6), one obtains the exponential convergence of H and DH by a Gronwall
argument.

1.7. Step four: Csiszar-Kullback inequality. The proof of the equilibration estimate is
suprisingly tricky. Again, this is a technical difficulty caused by the lack of positivity of u∞.

Lemma 3.1. Assume that the support of u is contained in {|x| ≤ R}. Then ‖u−u∞‖L1 ≤ CE[u]1/2

for a suitable C > 0.

Proof. The idea is to perform a (pointwise) Taylor expansion w.r.t. u(x) of the integrand,
i.e. write

λ

2
|x|2(u− u∞) +

1
m− 1

(um − um∞) =
(λ

2
|x|2 +

m

m− 1
um−1
∞

)
︸ ︷︷ ︸

= mσ
m−1

(u− u∞) +
m

2
ũm−2(u− u∞)2,

where ũ(x) is an intermediate value between u∞(x) and u(x). Integrate this, using that u and u∞
have the same mass, to find

E[u] =
m

2

∫
Ω

ũm−2(u− u∞)2 dx.

Suppose that m ≥ 2. Then if u(x) ≥ u∞(x), also ũ(x)m−2 ≥ u∞(x)m−2, so

E[u] ≥ m

2

∫
u≥u∞

um−2
∞ (u− u∞)2 dx.

By the usual trick, exploiting equality of mass again, one finally obtains

‖u− u∞‖L1 ≤ 2
∫
{u>u∞}

|u− u∞| dx ≤ 2
(∫
{u>u∞}

um−2
∞ (u− u∞)2 dx︸ ︷︷ ︸
≤ 2
mE[u]

)1/2(∫
B

u−(m−2)
∞ dx︸ ︷︷ ︸
<+∞

)1/2

.

Finiteness of the lasr integral follows since −(m− 2)/(m− 1) > −1.
In the case where 1 < m < 2, the same argument can be used, now considering the set {u <
u∞}. �

It remains to be shown that E[u] also controls the behavior of u outside the support of u∞.

Lemma 3.2. For some C > 0, depending only on m, λ and d, the excess mass µ(u) satisfies

µ(u) :=
∫
|x|≥R

u dx ≤ CE[u]1/2.(3.9)

As a by-product of the following proof, we find that E[u] ≥ 0 with equality exactly for u = u∞.
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Proof. There are two steps in this proof. For the first, we use that s 7→ sm is convex for
m > 1, and so um − um∞ ≥ mum−1

∞ (u− u∞). It follows

E[u] ≥
∫
|x|<R

( λ
2
|x|2 +

m

m− 1
um−1
∞︸ ︷︷ ︸

= mσ
m−1 =(λ/2)R2

)
(u− u∞) dx+

∫
|x|≥R

(λ
2
|x|2u+

um

m− 1

)
dx

= −λR
2

2

∫
|x|≥R

(u− u∞) dx+
∫
|x|≥R

(λ
2
|x|2u+

um

m− 1

)
dx

=
∫
|x|≥R

(λ
2
(
|x|2 −R2

)
u+

um

m− 1

)
dx =: E∗[u].

This finishes the first step. Next, the excess mass is estimated in terms of E∗. With ρ > 0 to be
chosen later, ∫

|x|≥R
u dx =

∫
R2≤|x|2≤R2+ρ

u dx+
∫
|x|2>R2+ρ

u dx(3.10)

≤
(∫
|x|≥R

um

m− 1
dx
)1/m

Aρ1−1/m +
1
λ
ρ

∫
|x|≥R

λ

2
(
|x|2 −R2

)
u dx(3.11)

≤ Aρ1−1/mE
1/m
∗ + λ−1ρ−1E∗.(3.12)

Here A is a function of λ, m and the dimension d only. The choice ρ = E
1/2
∗ thus provides

(3.9). �

Finally, Lemma 3.1 and Lemma 3.2 need to be combined in order to obtain the equilibration
estimate (3.7).
Introduce the function ũ = αu1{|x|≤R}, where α(M − µ(u)) = M , and M is the (conserved) mass
of u. This function has the same mass and support as u∞. By the triangle inequality,

‖u− u∞‖L1 ≤ ‖u− ũ‖L1 + ‖ũ− u∞‖L1 ≤ 2µ(u) + ‖ũ− u∞‖L1 .

The excess mass µ(u) is controlled by E[u]1/2, see Lemma 3.2. And the second term is controlled
by E[ũ]1/2, see Lemma 3.1. Thus it remains to obtain control of E[ũ] in terms of E[u]. One has

E[ũ] =
∫
|x|≤R

(λ
2
|x|2(αu− u∞) +

αmum − um∞
m− 1

)
dx

≤ E[u] + (α− 1)
∫
λ

2
|x|2u dx+ (αm − 1)

∫
um

m− 1
dx

≤ E[u] + (αm − 1)E[u].

Observing that α remains bounded for E[u] → 0 (in fact goes to one), the argument is finished,
and (3.7) follows.

2. Gagliardo-Nirenberg estimates

Like the Bakry-Émery method, applied to a linear Fokker-Planck equation, provides a proof of the
logarithmic Sobolev inequality (2.30), the non-linear method above, applied to the rescaled porous
medium equation, delivers a proof of Gagliardo-Nirenberg inequalities (3.17). Below, we essentially
follow [21], where the connection between optimal decay estimates for the porous medium equation
and the Gagliardo-Nirenberg estimate has been nicely detailed.

Lemma 3.3. Given m > 1, there are constants A and B such that∫
Rd
u(x)m dx ≤ A

∫
Rd

∣∣∇(u(x)m−1/2
)∣∣2 dx+B

(∫
Rd
u(x) dx

)ν
, ν =

2m+ d(m− 1)
2 + d(m− 1)

.(3.13)

Notice that we do not assume unit mass of u anymore.
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Proof. Inequality (3.13) is a consequence of (3.6) for λ = 1. In fact, rewrite the right-hand
side of (3.6) as follows:∫

Rd
u| m

m− 1
∇um−1 + x|2 dx

=
∫

Rd
| m

m− 1
u1/2∇um−1|2 dx+

∫
Rd
|x|2u dx+

∫
Rd

2m
m− 1

x · u∇um−1 dx

=
( m

m− 1/2

)2
∫

Rd
|∇um−1/2|2 dx+

∫
Rd
|x|2u dx− 2

∫
Rd
x · ∇um dx︸ ︷︷ ︸

=d
R
um dx

.

Joining corresponding terms on the left- and right-hand side, one obtains

(d+
1

m− 1
)
∫

Rd
um dx ≤ 1

2

( m

m− 1/2

)2
∫

Rd
|∇um−1/2|2 dx+H[u∞].(3.14)

Inequality (3.14) is almost in the shape of (3.13). It remains to be checked that the respective
last terms in these formulas agree. To this end, observe that from the explicit formula for the
Barenblatt profile,

u∞(x) =
(
σ − m− 1

2m
|x|2
)1/(m−1)

+
= σ1/(m−1)

(
1− m− 1

2m
|y|2
)1/(m−1)

+︸ ︷︷ ︸
=Um(y)

with
√
σy = x. Notice that the function Um is completely determined by m. Now,

H[u∞] =
∫

Rd

|x|2

2
u∞(x) dx+

∫
Rd

u∞(x)m

m− 1
dx

= σ1/(m−1)+1−d
∫
|y|2

2
Um(y) dy + σm/(m−1)−d

∫
Rd

Um(y)m

m− 1
dy

= Kmσ
m/(m−1)−d,

with a universal constant Km. On the other hand, the mass of u∞ is∫
Rd
u∞(x) dx = σ1/(m−1)−d

∫
Rd
Um(y) dx.

In combination, it is clear that there is some universal constant Lm such that

H[u∞] = Lm

(∫
Rd
u∞(x) dx

)ν
,

where the ν agrees with the one given in (3.13). �

In the next step, (3.13) is optimized by scaling. Setting

u(x) = λ
d
m ũ(λx), λ > 0,(3.15)

the left-hand side of (3.13) remains unchanged, while factors appear on the right-hand side. More
precisely, ∫

Rd
ũm dy ≤ Aλ

2m+d(m−1)
m

∫
Rd
|∇yũm−1/2|2 dy +Bλ−ν

d(m−1)
m

(∫
Rd
ũ dy

)ν
.

Optimality is achieved by choosing λ > 0 such that the right-hand side is minimal. Recall that
the minimum of the expression λαx+ λβy (with αβ < 0) is cxβ/(β−α)yα/(α−β), with some c > 0.
This eventually yields∫

Rd
ũm dy ≤ C

(∫
Rd
|∇yũm−1/2|2 dy

) d(m−1)
2(1+d(m−1))

(∫
Rd
ũ dy

) 2m+d(m−1)
2(1+d(m−1))

.(3.16)

Finally, introducing

w = um−1/2, p =
1

2m− 1
∈ (0, 1),
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gives inequality (3.16) the following standard form.

Corollary 3.1. Given an exponent p ∈ (0, 1), there exists a constant C > 0 such that

‖w‖1+p ≤ C‖∇w‖θ2‖w‖1−θ2p , θ =
d(1− p)

(1 + p)(2p+ d(1− p))
(3.17)

holds for all non-negative functions w ∈ H1(Rd) ∩ L2p(Rd).

3. Generalization

We close the discussion with a somewhat general theorem about entropy relaxation for (3.1). For a
much deeper and also mathematically rigorous discussion, we refer to the article [16] (which covers
the topic almost exhaustively). Indeed, serious analytical issues arise for general solutions to (3.1)
as soon as one leaves the world of the porous medium equations (3.2). For instance, solutions
the fast diffusion equation with f(s) = sm and 0 < m < 1 tend to lose mass if m < 1 − 2/d,
despite the divergence form of (3.1). Nontheless, entropy methods still apply and provide valuable
information [12].
We avoid all these discussions by adopting once again a completely formal point of view, assuming
positive and sufficiently smooth solutions to (3.1), which decay rapidly enough to justify all ma-
nipulations. For the sake of definiteness, let that the nonlinearity f : R≥0 → R be smooth, with
f(0) = 0 and f ′(s) > 0 for s > 0. Hence, the only levelset on which the diffusion might degenerate
is {u = 0}. In fact, the behavior of f(s) for s > 0 is of little importance in the following; all the
interesting features of the equation (3.1) are encoded in the behavior of f at s = 0. Moreover, the
confinement potential should be convex in the strong sense that

∇2V ≥ λ1(3.18)

with some λ > 0.
The starting point is to rewrite equation (3.1) in the form of a gradient flow type w.r.t. Wasserstein
metric, i.e.

∂tu = ∇ · (uv),

with the “Wasserstein velocity”

v = ∇Q, Q = θ(u) + V,

where Q is the variational derivative of the entropy functional

H[u] :=
∫ (

Θ(u) + uV
)
dx.

The functions Θ, θ and f are related by

Θ′(s) = θ(s) and sθ′(s) = f ′(s).

The production term for H is given by

D[u] = − d

dt
H[u] =

∫
u|v|2 dx =

∫
u|∇Q|2 dx.

Clearly, this expression is non-negative. It is zero iff

θ
(
û(x)

)
= σ − V (x)(3.19)

with some constant σ on each connected component of the support of û. By convexity (3.18) of V ,
it is not hard to argue that there can be only one component (either a compact set or the whole
space), and (3.19) holds with one global value of σ, which is determined by the mass of û. The
respective û defines the unique steady state u∞ of (3.1) under the given mass constraint.

Theorem 3.2. Assume that the potential V is convex according to (3.18), and that (1−1/d)f(s) ≤
sf ′(s) for all s > 0. Then entropy and entropy production satisfy the relation

H[u]−H[u∞] ≤ 1
2λ
DH [u].(3.20)

Moreover, H and DH converge exponentially with rate 2λ.
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The equilibration property is hard to prove in this setting. See, however, the discussion in [16].

Proof. A sketch of the formal part of the agument is given here. The proof for (3.20) is
similar to the one leading to (3.6). Indeed, in complete analogy to step 1.5, calculate the second
entropy production,

R[u(t)] = −1
2
d

dt
D[u(t)]

=
∫

Ω

u
(
v · ∇2V · v

)
dx+

∫
Ω

u
(
v · ∇2h(u) · v

)
dx+

∫
Ω

h′(u)|∇ · (uv)|2 dx.(3.21)

By (3.18), the first integral controls the entropy production,∫
Ω

u
(
v · ∇2V · v

)
dx ≥ λD[u].

It remains to be shown that the remaining two integrals in (3.21) are non-negative. The contri-
bution of the second integral amounts to∫

Ω

u
(
v · ∇2h(u) · v

)
dx

=
∫

Ω

(uv) ·
(
(v · ∇)∇h(u)

)
dx

= −
∫

Ω

∇ · (uv)
(
v · ∇h(u)

)
dx−

∫
Ω

∇h(u) ·
(
uv · ∇v) dx

= −
∫

Ω

(
v · ∇f(u)

)
(∇ · v) dx−

∫
Ω

(
v · ∇h(u)

)
(v · ∇u) dx−

∫
Ω

∇f(u) · ∇2Q · v dx

Now observe that

−
∫

Ω

∇f(u) · ∇2Q · v dx =
∫

Ω

f(u)∇ ·
(
∇2Q · ∇Q) dx−

∫
∂Ω

f(u)(n · ∇2Q · ∇Qdx′)

≥
∫

Ω

f(u)‖∇2Q‖2 dx+
∫

Ω

f(u)(v · ∇∆Q) dx.

Here we used convexity of Ω to estimate the boundary term. The third integral in (3.21) gives∫
Ω

h′(u)
(
∇ · (uv)

)
dx

=
∫

Ω

h′(u)(u∇ · v + v · ∇u)2 dx

=
∫

Ω

uf ′(u)(∇ · v)2 dx+ 2
∫

Ω

(
v · ∇f(u)

)
(v · ∇u) dx+

∫
Ω

(
v · ∇h(u)

)
(v · ∇u) dx.

Summing up, we obtain∫
Ω

u
(
v · ∇2h(u) · v

)
dx+

∫
Ω

h′(u)
(
∇ · (uv)

)
dx

≥
∫

Ω

(
v · ∇f(u)

)
(∇ · v) dx+

∫
Ω

uf ′(u)(∇ · v)2 dx+
∫

Ω

f(u)‖∇2Q‖2 dx+
∫

Ω

f(u)(v · ∇∆Q) dx

=
∫

Ω

(
uf ′(u)− f(u)

)
(∇ · v)2 dx+

∫
Ω

f(u)‖∇2Q‖2 dx.

The elementary inequality

(∇ · v)2 =
(
tr(∇2Q)

)2 ≤ d‖∇2Q‖2

allows to conclude

−1
2
d

dt
D[u] ≥ λD[u] +

∫
Ω

(
uf ′(u)− f(u) + d−1f(u)

)
(∇ · v)2 dx.
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In view of the hypothesis on f , this shows

− d

dt

(
H[u(t)]−H[u∞]

)
≤ − 1

2λ
d

dt
D[u(t)].

Integration of the last line from t = 0 to t = +∞ (ignoring all analytical difficulties that may
arise) finally gives (3.20). �
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4. Problems

Problem 3.1. Consider the homogeneous raditive transfer equation

∂tu(t;x) = −u(t;x) +
∫

Ω

u(t; y)µ(dy)(3.22)

on a nice domain Ω ⊂ Rd with fixed probability measure µ. Let ψ : R→ R be smooth and convex,
and define the absolute entropy Hψ[u] =

∫
ψ(u(x))µ(dx). Prove

∫
Ω

ψ
(
v(x)

)
µ(dx)− ψ

(∫
Ω

v(x)µ(dx)
)
≤ 1

2

∫
Ω×Ω

[
ψ′
(
v(x)

)
− ψ′

(
v(y)

)][
v(x)− v(y)

]
µ(dx dy)

(3.23)

for all v ∈ L1
µ(Ω) by proceeding as follows:

(1) Find the explicit form of the solution u(t;x) to (3.22) for u(0;x) = v(x).
(2) Show that the left-hand side of (3.23) is Hψ[u(0)]−Hψ[u∞].
(3) Show that the right-hand side of (3.23) is Dψ[u(0)].
(4) Show that Hψ[u(t)]−Hψ[u∞] ≤ −dHψ[u(t)]/dt by using the explicit form of the solution.

Problem 3.2. The Barenblatt solutions to the (rescaled) porous medium equation are given by

Uσ,m(x) =
(
σ − m− 1

2m
|x|2
)1/(m−1)

+
.(3.24)

The quantity σ > 0 is the mass parameter, and m > 1. Show that there is exist an exponent ν > 0
and a constant K (depending only on m and the dimension d) such that

H[Uσ,m] =
∫

Rd

( |x|2
2
Uσ,m +

Umσ,m(x)
m− 1

)
dx = K

(∫
Rd
Uσ,m(x) dx

)ν
.(3.25)

Calculate the value of ν.

Problem 3.3. Recall that the entropy production estimate for the linear Fokker-Planck equation
lead to the famous logarithmic Sobolev inequality. We shall use the entropy production estimate
for the rescaled porous medium equation to derive the following Gagliardo-Nirenberg inequality:

‖w‖Lp+1 ≤ C‖∇w‖θL2‖w‖1−θL2p .(3.26)

As a preliminary step, show that the entropy production estimate can be rephrased in terms of
Dolbeault’s inequality,∫

u(x)m dx ≤ A
∫ ∣∣∇(u(x)m−1/2

)∣∣2 dx+B
(∫

u(x) dx
)ν
,(3.27)

where ν is the exponent from (3.25), and A and B are some constants (do not calculate those).
Now optimize inequality (3.13) with respect to the scaling u(x) 7→ λd/mu(λx). Finally, set w(x) =
u(x)m−1/2 and p = 1

2m−1 to deduce (3.26). Calculate the value of θ.



CHAPTER 4

Introduction to the Thin Film Equation

Although entropy methods have been heavily investigated in the context of 2nd order equations,
they usually provide only one of many possible approaches to solve a particular problem. In many
cases, alternative tools are available, which may be based, for instance, on comparison principles.
The situation changes dramatically when one moves to parabolic equations of higher order. Here,
frequently entropies constitute the only (known) method to derive a priori estimates for existence
proofs, calculate the large-time asymptotics etc.
This chapter is devoted to the family of one-dimensional thin film equations

∂tu = −(|u|βuxxx)x,(4.1)

which frequently appear as limits of viscous fluid models. The real parameter β appearing in (4.1)
may in principle take any value β > 0. The physically most relevant range lies between β = 1
(pinching of a neck in a Hele-Shaw cell) and β = 3 (viscous fluid moving with no slip); values of
β between 1 and 3 correspond to non-zero slip conditions.
Some of the techniques reffered to as entropy methods today have been developed in the cause
of studying solutions to (4.1) in the celebrated article [9] by Bernis and Friedman. (Though the
notion “entropy” never appears in this work.)
The main feature of (4.1) is its degenerate structure, i.e. ellipticity of the operator on the right-
hand side is lost where u vanishes. This causes difficulties in the existence theory. However, it is
also the origin of an important property of solutions, namely the preservation of non-negativity.
Loosely speaking, the degeneracy makes the x-axis impenetrable to solutions. In contrast, the
linear equation (obtained in the limit β ↘ 0)

∂tu = −uxxxx(4.2)

does not have this property as is easily checked by considering the spatially periodic solution

u(t;x) = 3.1− 4e−t cosx+ 2e−16t cos 2x.(4.3)

One has u(0, x) ≥ 0.1 but u(t, 0) = 3.1− 4e−t + 2e−16t becomes negative for t ≈ 0.2.
The questions related to the phenomenon of non-negativity are still of great interest in the theory
of thin-film equations. Even in one dimension, it is still not know which is the exact range of
β such that thin films do not rupture. Here rupture means that the solution u vanishes at some
point, u(t̂; x̂) = 0, although it has been strictly postive at this location before, u(τ ; x̂) > 0 for
some τ < t̂. The by now classical argument that rupture cannot occur for β ≥ 4 is given below,
see Theorem 4.2. The proof can be extended to cover β ≥ 3.5 by the results presented in the next
lecture. However, it is widely conjectured that rupture is absent for all β > 3.

1. The initial boundary value problem

In these notes, we shall restrict ourselves mainly to solutions on the interval Ω = (0, 1). The
initial boundary value problem (IBVP) as formulated in [9] is (4.1) supplemented with boundary
conditions

ux = uxxx = 0 on ∂Ω,(4.4)

and an initial datum

u(0;x) = u0(x), u0 ∈ H1(Ω).(4.5)

37



38 4. INTRODUCTION TO THE THIN FILM EQUATION

A natural domain for solutions u is the Hölder space

XT = C
1/8,1/2
t,x (ΩT ) with ΩT = [0, T ]× Ω.(4.6)

(The Hölder norm is taken with exponent 1/2 in x, and exponent 1/8 in t.) The fundamental
existence result reads

Theorem 4.1. For arbitrary T > 0, there exists a weak solution u ∈ XT satisfying the (IBVP) in
the sense ∫∫

ΩT

u ∂tφdx+
∫∫
P
|u|nuxxx φx dx = 0.(4.7)

Here P = ΩT ∩ {u 6= 0} ∩ {t > 0}, and φ is a Lipschitz-continuous test function on ΩT , vanishing
near t = 0 and near t = T .
Moreover, the norm ‖u‖XT is controlled in terms of ‖u0‖H1 , independently of T > 0, and in
particular

sup
0<t<T

∫
Ω

ux(t)2 dx+
∫∫

ΩT

|u|βu2
xxx dx dt ≤ 2‖u0‖H1 .(4.8)

Finally, this weak solution u is in fact a classical solution to (4.1)&(4.4) on any time interval
(τ1, τ2) on which u is (strictly) positive in Ω.

The strategy of the proof is to work on the respective non-degenerate problem

∂tuε = −
(
(|uε|β + ε)uε,xxx

)
x
,(4.9)

which possesses a local-in-time solution uε on some Ωτ . Suitable a priori estimates for the Hölder-
norm in Xτ , independent of τ , allow to extend these to solutions to XT . By the Arzela-Ascoli
theorem, for a suitable sequence εn → 0, the functions uεn converge to a limit u in XT . The a
priori estimates guarantee that the integral equation (4.7) holds for u.
In the context of entropy methods, the interesting part of the proof is the derivation of (4.8). This
follow since the energy

E[u] =
1
2

∫
Ω

u2
x dx(4.10)

is a Lyapunov functional for (4.1). At least formally, one has,

− d

dt
E[u(t)] = −

∫
Ω

uxuxt dx = −
∫

Ω

uxx(|u|βuxxx)x dx =
∫

Ω

|u|βu2
xxx dx ≥ 0.

Here we used the boundary conditions in (4.4). The time-integrated form of this relation,∫
Ω

ux(τ)2 dx+ 2
∫∫

Ωτ

|u|βu2
xxx dx dt =

∫
Ω

u2
0,x dx,(4.11)

immediately yields (4.8). The energy estimate (4.11) holds rigorously for the regularized solutions
uε to (4.9), and it carries over to the limit u as ε→ 0. From here, the estimates in XT follow by
tedious but classical calculations.

2. Positivity of solutions

Theorem 4.2. Assume β ≥ 4. If u0 > 0, then u > 0 in ΩT .

As a consequence, the solution u is classical.

Proof. The proof works by contradiction. Assume that u is not strictly positive in ΩT . By
continuity of u and positivity of u0, there exists some smallest time τ > 0 such that minΩ u(τ ;x) =
0; let x̂ ∈ Ω be a zero of u(τ). We recall that u is a classical solution on (0, τ)×Ω, which justifies
the manipulations below.
The key obervation is that, apart from the energy E given above, there exists another Lyapunov
functional,

H[u] =
1

(β − 1)(β − 2)

∫
Ω

u2−β dx.(4.12)
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Indeed, one finds for 0 < t < τ ,

− d

dt
H[u(t)] = − 1

1− β

∫
Ω

u1−βut dx = −
∫

Ω

u−βux u
βuxxx dx =

∫
Ω

u2
xx dx ≥ 0.

Hence H[u(t1)] ≥ H[u(t2)] for 0 < t1 ≤ t2 < τ . By continuity of u and positivity of u0,

(β − 1)(β − 2) lim
t1↘0

H[u(t1)] =
∫

Ω

lim
t1↘0

(
u(t1)2−β

)
dx =

∫
Ω

u2−β
0 dx <∞.

Moreover, by Fatou’s Lemma,

(β − 1)(β − 2) lim
t2↗τ

H[u(t2)] ≥
∫

Ω

lim
t2↗τ

(
u(t2)2−β

)
dx =

∫
Ω

u(τ)2−β dx.

In combination, this implies ∫
Ω

u(τ)2−β dx <∞.(4.13)

On the other hand, since the energy E[u(τ)] is finite, the Sobolev embedding yields that u(τ) is
Hölder-continuous with exponent 1/2 on Ω. In particular, for all x ∈ Ω,

0 ≤ u(τ ;x) ≤ K|x− x̂|1/2

with a finite constant K > 0. Consequently,∫
Ω

u(τ)2−β dx ≥ K2−β
∫

Ω

|x− x̂|−(β/2−1) dx.

But since β ≥ 4, the last integral is infinite, in contradiction to (4.13). �

Theorem 4.2 is at the basis of proving that the (IBVP) possesses a non-negative weak solution for
each H1-regular non-negative initial datum. The argument for 0 < β < 4 is a little intricate, see
section 4 below. However, for β ≥ 4, we may quite straightforwardely conclude

Corollary 4.1. If β ≥ 4 and u0 ≥ 0, then there exists a weak solution u ≥ 0 to the (IBVP) in
sense (4.7).

Proof. The argument is only sketched here. One replaces the initial data by u0δ = u0 +δ > 0
and obtains positive solutions uδ by Theorem 4.2 above. The necessary a priori estimates for the
passage δ → 0 are the same as in the proof of Theorem 4.1, i.e. they follow from dissipation of E.
Clearly, the uniform limit u of the positive functions uδ is non-negative. �

3. Stationarity of the support

The entropy functional H in (4.12) has been proven extremely useful to show Ω-global positivity
of solutions. In this section, we use a localized version of this entropy estimate to obtain a precise
description of how positivity spreads in Ω if u0 vanishes on some set. In fact, for β ≥ 4, one
obtains that the support of u(t) is constant in time. We simply remark that in the regimes where
0 < β < 4, the behavior of the support is much more complicated.

Theorem 4.3. Assume β ≥ 4. For given u0 ≥ 0, let u ≥ 0 be the non-negative weak solution
constructed in the proof of Corollary 4.1. Then supp(u(t)) = supp(u0) for all 0 ≤ t ≤ T .

Theorem 4.3 follows from Lemma 4.1, due to Bernis and Friedman [9], and 4.2, due to Beretta,
Bertsch and dal Passo [8].

Lemma 4.1. Under the above assumptions, supp(u0) ⊂ supp(u(t)).

Proof. For brevity, denote by v = uδ > 0 the positive, classical solution with initial data
v0 = u0δ = u0 +δ. For a non-negative, smooth function ϕ : Ω→ R, introduce the localized entropy

Hϕ[u] =
1

(β − 1)(β − 2)

∫
Ω

u2−β ϕ4 dx.
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Fix ϕ such that u0(x) > 0 for all x ∈ suppϕ; then

Hϕ[v0] ≤ Hϕ[u0] <∞.

For any 0 < t < T , we have

d

dt
Hϕ[v(t)] =

1
β − 1

∫
Ω

v1−β (vβvxxx)xϕ4 dx

=
∫

Ω

vxvxxxϕ
4 dx+

1
β − 1

∫
Ω

vvxxx(ϕ4)x dx

= −
∫

Ω

v2
xxϕ

4 dx− β

β − 1

∫
Ω

vxvxx(ϕ4)x dx−
1

β − 1

∫
Ω

vvxx(ϕ4)xx dx.

Integration by parts is justified since ϕ is smooth on Ω, and v is (sufficiently) smooth on the
support of ϕ. Moreover, by smoothness of ϕ, one trivially has pointwise estimates on Ω,

|(ϕ4)x| ≤ Aϕ3, |(ϕ4)xx| ≤ Bϕ2.

This gives on one hand∫
Ω

|vxvxx||(ϕ4)x| dx ≤ A
(∫

Ω

v2
xϕ

2 dx
)1/2(∫

Ω

v2
xxϕ

4 dx
)1/2

.

Note that the first integral on the right-hand side is controlled by E[v(t)]1/2 ≤ E[u0]1/2, hence
bounded independently of t and δ. On the other hand,∫

Ω

v|vxx||(ϕ4)xx| dx ≤ B
(∫

Ω

v2 dx
)1/2(∫

Ω

v2
xxϕ

4 dx
)1/2

.

The L2-norm of v is bounded independently of δ and t. So, altogether,

d

dt
Hϕ[u(t)] ≤ C

(∫
Ω

u2
xxϕ

4 dx
)1/2

−
∫

Ω

u2
xxϕ

4 dx ≤ 1
4
C2,

where C does not depend on t or δ. By continuity of v(t) at t = 0, it follows that

Hϕ[v(t)] ≤ Hϕ[v0] +
1
4
C2T ≤ Hϕ[u0] +

1
4
C2T <∞ for all t ≤ T .(4.14)

Now, since the approximations v = uδ converge uniformly in ΩT to the true solution u, it follows
by Fatou’s Lemma that also Hϕ[u(t)] <∞ for all t ≤ T .
At this point, one uses exactly the same argument as in the proof of Theorem 4.2: Assume that
u(t) vanishes at x̂ ∈ suppϕ. Due to the Hölder-regularity of u(t) in x (induced by finiteness of
E[u(t)]), the integral Hϕ[u(t)] diverges, contradicting (4.14) above. �

Lemma 4.2. Under the above assumptions, supp(u(t)) ⊂ supp(u0).

Proof. Also this argument is based on a contradiction. Assume that there is some non-empty
open interval I ⊂ Ω on which u0 = 0, but u(t) ≥ η > 0 for some t > 0.
Denote again by v the approximating solution uδ. Choose a non-negative, smooth ψ : Ω → R,
supported in I with positive integral. Then, with the usual justifications,

d

dt

∫
Ω

ψ log v dx = −
∫

Ω

ψ
(vβvxxx)x

v
dx

=
∫

Ω

ψx v
β−1vxxx dx−

∫
Ω

ψ vβ−2vxvxxx dx.
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Integration in time and an application of Hölder’s inequality yield

−
∫

Ω

ψ log v0 dx ≤ −
∫

Ω

ψ log v(t) dx

+
(∫∫

ΩT

ψ2
x v

β−2 dx dt
)1/2(∫∫

ΩT

vβv2
xxx dx dt

)1/2

+
(∫∫

ΩT

ψ2 vβ−4 dx dt
)1/2(∫∫

ΩT

vβv2
xxx dx dt

)1/2

≤ −
∫

Ω

ψ log v(t) dx+ C E[u0]1/2.

In the last step we used smoothness of ψ, boundedness of v, β ≥ 4, and the main energy dissipation
estimate (4.11). The last expression is bounded, independently of δ > 0. But this is in contradition
to the fact that

−
∫

Ω

ψ log v0 dx = − log δ
∫

Ω

ψ dx→ +∞

as δ → 0. �

4. Behavior for smaller parameters

From the physical point of view, the range 1 < β < 4 is much more interesting than β ≥ 4. Which
of the results above survive in the lower range for β?
First of all, the condition β ≥ 4 can be replaced by β > 1 in Corollary 4.1. The key idea of the
ingenious proof from [9] is to regularize (4.1) in the following way:

∂tuε = −(fε(uε)uε,xxx)x, fε(s) =
|s|4+β

s4 + ε|s|β
,(4.15)

and to supply it with the positive initial condition of the form

u0ε = u0 + ε1/4.(4.16)

The reason for the akward choice of fε is essentially that fε(s) ≈ ε−1|s|4 for s ≈ 0, which turns
out to be sufficient to prove Theorem 4.2. Consequently, there exists a positive classical solution
uε to (4.15)&(4.16). For 1 < β < 4, the energy relation (4.11) leads to a priori estimates which are
sufficient to conclude uniform convergence of uεn along a suitable sequence εn to a weak solution
u in the sense 4.7. As a limit of positive functions, u is non-negative.
Moreover, the following weakend form of Theorem 4.2 is available for β > 2.

Theorem 4.4. If β > 2 and
∫

Ω
u2−β

0 dx <∞, then u(t) > 0 almost everywhere on Ω, at each time
t ≤ T .

Proof. Let A > 0 be much larger than the maximum of u on ΩT , and introduce hε : R→ R
by

hε(s) =
∫ A

s

∫ A

r

dz dr

fε(z)
,

and in particular

h0(s) =
1

(β − 1)(β − 2)
s2−β +

A1−β

β − 1
s− A2−β

β − 2
.(4.17)

In substituion of H in (4.12),

Hε[u] =
∫

Ω

hε(u) dx(4.18)

is a Lyapunov functional for (4.15). In fact, since h′′ε (s) = 1/fε(s), one finds after integration by
parts

− d

dt
Hε[uε(t)] =

∫
Ω

u2
ε,xx dx ≥ 0.
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The goal is to pass to the limit ε→ 0 in the resulting inequality

Hε[uε(t)] ≤ Hε[u0ε].(4.19)

The problem is that hε(0)→ +∞ as ε→ 0. The left-hand side can be treated by Fatou’s lemma
(recall hε(s) ≥ 0 for s ≤ A). For the right-hand side, one uses that by definition of hε,

h′′ε (s)− h′′0(s) = εs−4 =⇒ hε(s)− h0(s) = ε(as−2 + bs+ c),

and consequently, since u0ε ≥ ε1/4,

0 ≤ hε(u0ε)− h0(u0ε) ≤ Cε · (ε−1/4)2 = Cε1/2,

which converges to zero uniformly as ε → 0. Thus, estimate (4.19) holds woth ε = 0. Thus, due
to the particular form of H0 given in (4.17),

1
(β − 1)(β − 2)

∫
Ω

u(t)2−β dx+
A1−β

β − 1

∫
Ω

u(t) dx ≤ 1
(β − 1)(β − 2)

∫
Ω

u2−β
0 dx+

A1−β

β − 1

∫
Ω

u0 dx.

Finally, taking into account that the total mass is conserved by weak solutions to (4.1),∫
Ω

u(t)2−β dx ≤
∫

Ω

u2−β
0 dx.

Thus, u(t) cannot vanish on a set of positive measure. �

With some technical effort, a similar procedure can be carried out to obtain localized entropy
estimates [9]. These prove that the support of u(t) cannot shrink as t increases.
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5. Problems

This exercise sheet is entirely devoted to studying the large-time asymptotics of non-negative,
strong solutions u to the Hele-Shaw flow (the thin film equation with β = 1),

∂tu(t;x) = −∂x
(
u(t;x) ∂3

xu(t;x)
)

(4.20)

on R. Our investigation is performed in several steps.

Problem 4.1. Find a suitable rescaling of the form

y = λ(t)x, s = s(t), u(t;x) = λ(t)v(s; y),

such that (4.20) turns into

∂sv(s; y) = −∂y
(
v(s; y) ∂3

yv(s; y)
)

+ ∂y
(
y v(s; y)

)
.(4.21)

Problem 4.2. Find the explicit form of the non-negative, stationary solutions v∞ to (4.21). Also,
determine the corresponding self-similar solutions for (4.20). How regular are these?
Hint: Try with a suitable Barenblatt profile.

Problem 4.3. Rewrite (4.21) further in the Carrillo-Toscani-form

∂sv = −a ∂2
y

(
vα ∂2

yF
)

+ b ∂y
(
vβ ∂yF

)
, with F (s; y) = c v(s; y)γ +

1
2
y2.(4.22)

Calculate the values of the coefficients a, b and c, and the exponents α, β, γ.

Problem 4.4. Prove formally (any integration by parts is allowed) that

H[v] =
∫

R

(√8
3
v(y)3/2 +

1
2
y2
)
dy(4.23)

is an entropy for (4.21).
Hint: To prove the Lyapunov property, use equation (4.22). To prove the equilibration property in
L1(R), look up in your old notes.

Problem 4.5. Prove that the relative entropy H and its production DH are related by

H[v]−H[v∞] ≤ 1
2
DH [v],(4.24)

where v∞ is the stationary solution with the same mass as the initial condition.
Hint: Again, your old notes might be helpful.

Problem 4.6. Conclude the usual L1-estimates for the asymptotics of v and u.





CHAPTER 5

New Entropies for the Thin Film Equation

The goal of this lecture is to improve the positivity results for the thin film equation (4.1). Recall
that the key idea for proving positivity of solutions and (non-)expansion properties of the support
was a combinations of two Lyapunov functionals: the energy on one hand,

E[u] =
1
2

∫
Ω

u2
x dx,

and the entropy on the other hand,

H[u] =
1

(β − 1)(β − 2)

∫
Ω

u−(β−2) dx.

Neglecting technical details, the positivity argument for β ≥ 4 in Theorem 4.2 went like this:
Finiteness of E[u(t)] ≤ E[u0] implies that each profile u(t) is Hölder-continuous of degree 1/2 in
x. Assuming that u(t; x̂) = 0, there is some finite constant K > 0 (depending only on E[u0]) such
that

0 ≤ u(t;x) ≤ K|x− x̂|1/2.

This, in turn, leads to (recalling β ≥ 4)

H[u(t)] ≥ K2−β
∫

Ω

|x− x̂|−(β/2−1) dx = +∞,

which contradicts H[u(t)] ≤ H[u0] < +∞. Non-shrinking of the support followed by localizing
the entropy H, using a suitable cut-off function, see Lemma 4.1. Finally, the bound H[u(t)] ≤
H[u0] <∞ was used to obtain positivity of each profile u(t) almost everywhere in Ω in the range
2 < β < 4, see Theorem 4.4.
The aim of this lecture is to extend this argument by using more general Lyapunov functionals.
More precisely, we are looking for quantities of the form

Ep[u] =
1
2

∫
Ω

(up/2)2
x dx, Hα[u] =

1
α(α− 1)

∫
Ω

uα dx,(5.1)

(other than just p = 2 and α = 2 − β), which are dissipated by (4.1). For α = 1 or α = 0, we
replace the definition in (5.1) by

H1[u] =
∫

Ω

(
u(log u− 1) + 1

)
dx, H0[u] =

∫
Ω

(u− log u) dx,

respectively; notice that H1 is the logarithmic entropy, up to an additive constant. The functionals
Hα are strictly convex w.r.t. u for all α ∈ R, are non-negative for α ≤ 0 and for α ≥ 1, and non-
positive for 0 < α < 1. Moreover, by Jensen’s inequality, they are bounded below by the respective
value of the homogeneous steady state,

Hα[u] ≥ Hα[u∞], u∞ ≡
1
|Ω|

∫
Ω

u dx.

To simplify calculations in this lecture, the domain Ω = (−π,+π) is used instead of (0, 1); due to
the homogeneity of the thin film equation (4.1), this corresponds merely to a rescaling of u and
x. Moreover, we replace the boundary conditions (4.4) by periodic ones, so integration by parts
does not produce boundary terms. It is a straight-forward (though annoying) exercise to verify
that the results also hold under the condition (4.4).
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1. Dissipated Entropies

Theorem 5.1. Assume α + β > 0. Then the functional Hα is dissipated by (4.1) if and only if
3/2 ≤ α+ β ≤ 3.

In particular, α = 2 − β is a possible choice for each β. However, for the proof of positivity, the
optimal value is α = 3/2− β. Using the same argument as before, one finds conservation of strict
positivity for β ≥ 7/2.
Before presenting the actual proof of Theorem 5.1, an outline of the argument is in place, since
the idea generalizes to a variety of other situations. Differentiation of Hα along solutions to the
thin film equation gives

Dα[u(t)] := − d

dt
Hα[u(t)] = − 1

α− 1

∫
Ω

uα−1∂tu dx =
1

α− 1

∫
Ω

uα−1(uβuxxx)x dx

= −
∫

Ω

uα+β
(uxxx
u

)(ux
u

)
dx.

Integration by parts will be used to rewrite the last expression as in integral over something that
is pointwise non-negative. In order to retain a range of α’s as large as possible, the integration
by parts should be carried out somewhat systematically. Here we follow the algebraic approach
developed in [27]. Our paradigma is to conserve the apparent form of the integrand: it should be
the product of uγ (setting γ = α + β), with a polynomial in the scaled derivatives ux/u, uxx/u
etc. To keep calculations short, introduce the abbreviations

ξ1 = ux/u, ξ2 = uxx/u, . . .(5.2)

With these notations,

Dα[u] = −
∫

Ω

uγξ3ξ1 dx.

Moreover, we adopt the following view on integration by parts:
To integrate by parts means

to add the x-derivative of some spatial periodic expression under the integral,
thus changing the form of the integrand, but not the value of the integral.

Suitable expressions to add, which do not alter the shape of the integrand, are necessarily linear
combinations of

Rm := uγξm1
1 ξm2

2 ξm3
3 ,(5.3)

where m is a multi-index, and m1 + 2m2 + 3m3 = 3. Their respective x-derivatives are

(Rm)x = uγ
(
m1ξ

m1−1
1 ξm2+1

2 ξm3
3 +m2ξ

m1
1 ξm2−1

2 ξm3+1
3 +m3ξ

m1
1 ξm2

2 ξm3−1
3 ξ4+

+ (γ − |m|)ξm1+1
1 ξm2

2 ξm3
3

)
,

with |m| = m1 +m2 +m3. The ξ-dependent polynomial inside the brackets is referred to as shift
polynomial in the following. In the situation at hand, there exist exactly 3 expression of type (5.3),
namely

R1 = uγξ3
1 , R2 = uγξ2ξ1, R3 = uγξ3,

corresponding to the three shift polynomials

T1 = 3ξ2ξ2
1 + (γ − 3)ξ4

1 ,

T2 = ξ3ξ1 + ξ2
2 + (γ − 2)ξ2ξ2

1 ,

T3 = ξ4 + (γ − 1)ξ3ξ1.

The reason for introducing this formalism is a translation of analysis into algebra. The “analysis
question”

Is Hα dissipated by the thin film equation?
is answered affirmatively, if the “algebra question”



1. DISSIPATED ENTROPIES 47

Do there exist coefficients ci such that
S(ξ) = −ξ1ξ3 + c1T1 + c2T2 + c3T3 is non-negative for all ξ?

has a positive answer.
The reader might suspect that the algebraic framework presented above provides an “overkill” to
solve a relatively simple problem. However, we develop the general scheme in full generality for
this easy example since it will be used in the more difficult calculations for Ep later.

Lemma 5.1. For α with 3/2 ≤ α+β ≤ 3, one has Dα[u] ≥ 0 for every smooth, positive u : Ω→ R
with periodic boundary conditions.

Proof. Let γ = α + β in the range [3/2, 3] be fixed. By the preceeding considerations, it
suffices to prove that there are real numbers c1 to c3 such that

0 ≤ S(ξ) := −ξ1ξ3 + c1T1 + c2T2 + c3T3

= c3ξ4 +
(
− 1 + (γ − 1)c3 + c2

)
ξ3ξ1 + c2ξ

2
2 +

(
(γ − 2)c2 + 3c1

)
ξ2ξ

2
1 + (γ − 3)c1ξ4

1

for all ξ = (ξ1, . . . , ξ4) ∈ R4. The first observation is that c3 = 0, since

min
ξ
S(ξ) ≤ S(0, 0, 0,−c3) = −c23.

The second is that c2 = 1, since

min
ξ
S(ξ) ≤ lim

ε→0
S
(
ε, 0, ε−1(1− c2), 0

)
= −(c2 − 1)2.

Thus only c1 remains as a free parameter,

S(ξ) = ξ2
2 + (γ − 2 + 3c1)ξ2ξ2

1 + (γ − 3)c1ξ4
1

=
(
ξ2
ξ2
1

)
·
(

1 1
2 (γ − 2 + 3c1)

1
2 (γ − 2 + 3c1) (γ − 3)c1

)
·
(
ξ2
ξ2
1

)
.

The just defined quadratic form is non-negative iff the determinant of the matrix,

∆ = (γ − 3)c1 −
1
4

(γ − 2 + 3c1)2 = −1
4
(
9c21 + 2γc1 + (γ − 2)2

)
(5.4)

is non-negative. The quadratic polynomial in c1 attains its maximal value at the point c∗1 = −γ/9,
and the respective value is

∆∗ = −1
4
(
(γ − 2)2 − γ2/9) = −4

9
(2γ2 − 9γ + 9) = −8

9
(γ − 3)(γ − 3/2).

Hence, the maximum of ∆ is non-negative if 3/2 ≤ γ ≤ 3. �

Lemma 5.2. For α with either 0 < α + β < 3/2 or α + β > 3, there exists a smooth, positive,
periodic û : Ω→ R such that Dα[û] < 0.

The proof presented below relies on an adaption of Laugensen’s counterexample presented in [29].
The basic idea of the construction is suprisingly simple, while the technical details are suprisingly
involved. Arguing on a purely formal level, one takes û = |x|σ with σ = 3/γ and puts it into a
suitable representation of Dα (obtained after sufficiently many integrations by part). The result
is

Dα[û] =
∫
ûγ
( ûxx
û

)( ûxx
û

+ (γ − 2)
( ûx
û

)2)
dx

=
∫
|x|γσσ(σ − 1)|x|−2

(
σ(σ − 1)|x|−2 + (γ − 2)σ2|x|−2

)
dx

= −2σ2(1− σ)(2− σ)
∫
|x|−1 dx.(5.5)

By definition of σ, it is easily checked that the coefficient equals −36γ−4(γ − 3)(γ − 3/2), and
hence is negative for γ > 3 and for γ < 3/2. On the other hand, the integral clearly diverges to
+∞. In summary, Dα[û] = −∞ for α < 3/2− β or α > 3− β. The aim of the following proof is
to shows that there exists a smooth, positive and periodic version of û.
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The reader should not be mislead by the formal argument above that all power functions |x|σ
with σ ∈ R constitute good trial functions for Dα; the conclusion would be completely wrong! The
argument cannot be made rigorous in general for any other value than σ = 3/γ. In fact, it is
an amusing exercise to verify that if |x|σ with just a single value σ 6= 3/γ would be allowed as
a trial function, then there is always a suitable representation of the integral in Dα such that
Dα[|x|σ] < 0, thus excluding the existence of any entropy at all.

Proof. Fix γ = α+ β with γ /∈ [3/2, 3]. Laugesen’s choice for the trial function would be

û(x) = (ε+ sin2 x)τ/2, τ =
3 + δ

γ
,

with positive parameters ε and δ to be chosen sufficiently small a posteriori. This function is
smooth, positive in Ω, and satisfies periodic boundary conditions. Below, it is shown that

lim
δ→0

lim
ε→0

Dα[û] = −∞,

with Dα as in (5.5). The assertion of the theorem follows by choosing first ε > 0, then δ > 0 small
enough.
The first step is to prove

lim
ε→0

Dα[û] = Dα[| sinx|τ ].(5.6)

By elementary calculations,

|ûx| = τ(ε+ sin2 x)τ/2−1| sinx cosx| ≤ τ(ε+ sin2 x)(τ−1)/2,

|ûxx| ≤ τ(τ − 1)(ε+ sin2 x)τ/2−2 sin2 x cos2 x+ (ε+ sin2 x)τ/2−1| cos2 x− sin2 x|

≤ (1 + τ(τ − 1))(ε+ sin2 x)(τ−2)/2.

This gives a pointwise estimate the expression under the integral in Dα[û],

ûγ
∣∣ ûxx
û

∣∣∣∣∣ ûxx
û

+ (γ − 2)(
ûx
û

)2∣∣∣ ≤ C(ε+ sin2 x)(γτ−4)/2 ≤ C ′| sinx|δ−1,

where C and C ′ are independent of ε > 0. But | sinx|δ−1 is integrable on Ω. By Lebesgue’s
dominated convergence theorem, (5.6) follows.
Concerning the subsequent limit of δ → 0, observe that

Dα[| sinx|τ ] =
∫

Ω

| sinx|γτ
(
τ(τ − 1)

(cosx
sinx

)2 − τ)(τ(τ − 1)
(cosx

sinx
)2 − τ + (γ − 2)τ2

(cosx
sinx

)2)
dx

= −τ2(1− τ)(2 + δ − τ)
∫

Ω

| sinx|γτ−4 cos4 x dx

+ τ2(2− γτ)
∫

Ω

| sinx|γτ−2 cos2 x dx+ τ2

∫
Ω

| sinx|γτ dx.

All appearing integrals are defined (as long as δ > 0), since γτ = 3 + δ. Moreover, since uniform
convergence of the integrand implies convergence of the integral value, the last two integrals tend
to finite values at δ → 0. On the other hand, for the first integral, there is some c > 0 such that∫

Ω

| sinx|γτ−4 cos4 x dx ≥ c
∫ π/4

−π/4
|x|δ−1 dx,

which converges to +∞ for δ → 0. The elementary observation

−τ2(1− τ)(2 + δ − τ)→ −σ2(1− σ)(2− σ) = −36γ−4(γ − 3/2)(γ − 3)(5.7)

as δ → 0 finishes the proof. �
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2. Dissipated Energies

As the following formulas — including the final result — constitute complicated algebraic expres-
sions, we choose to introduce a change of variables (α, p)↔ (q, r) as follows:

p = 2 + q, β =
1
4

(7 + q + 5r).

In terms of these variables, define the following elliptical regions in the q-r-plane:

E1 = {P1(q, r) < 0}, P1(q, r) = 7q2 + 3r2 − 3,

E2 = {P2(q, r) < 0}, P2(q, r) = 10q2 + 15r2 − 6.

Moreover, define the parallelogram between the four straight lines given by ±q ± r = 1, i.e.

P = { P3(q, r) < 0}, P3(q, r) = (1 + q + r)(1 + q − r)(1− q + r)(1− q − r).

The arrangement of these three objects in the plane is rather special: The boundary of P is tangent
to E2; and the four points of tangency coincide with the four points of intersection with E1. In
terms of these geometric quantities, the main result reads as follows.

Theorem 5.2. Suppose that p and β are such that (q, r) ∈ E1 ∩ P, or (q, r) ∈ E2. Then Ep is
dissipated. If p 6= 2 and P3(q, r) > 0, then Ep is not dissipated in general.

This result has been obtained independently in [29] and [27]. The proof below is very close to the
one from [27].
In the original variables, the new energies are all situated in the region 1/2 ≤ p ≤ 3. Thus,
additonal regularity estimates on the solution can be derived from them. Concerning the proof
of positivity properties, however, no application of these energies is known so far. Notice that
the Bernis-Friedman strategy always pairs energies with entropies; but the available entropies for
β ≤ 3 remain bounded on film rupture, no matter how smoothly the solution touches the zero
line.
The energy E2 coincides with (4.10) and is always dissipated. Theorem 5.2 makes no statement
about the behavior of Ep on the set P3(q, r) = 0. The interested reader might want to extend the
arguments below one step further to resolve also this.
Theorem 5.2 leaves several questions open, which are not answered until now. For instance, it is
unknown what happens at points (q, r) that lie neither in the region of dissipation, nor in the region
of “definite non-dissipation”. Also, Theorem 5.2 does not answer the question which energies Ep
remain bounded for all times if there are finite initially (even if they are not dissipated).
The strategy to prove Theorem 5.2 is exactly the same as for Theorem 5.1; only that now six
spatial derivatives are involved, and the calculations become more complicated. Let us start by
evaluating the energy dissipation,

Dp[u(t)] := − d

dt
Ep[u(t)] = −

∫
Ω

(up/2)x∂t(up/2)x dx

=
p

2

∫
Ω

(up/2)xxup/2−1∂tu dx

=
p

2

∫
Ω

(up/2−1(up/2)xx)xuβuxxx dx

=
p2

4

∫
Ω

up+β
(
ξ3 + 2qξ1ξ2 +

q(q − 1)
2

ξ3
1

)
ξ3 dx,

using the abbreviations from (5.2). This time, we set γ = p+ β. Altogether, there are 7 possible
shift polynomials, which we shall not list here. Arguing as in the proof of Lemma 5.1, most of
them are irrelevant, since they contain products involving ξ4, ξ5 and ξ6 in first power, while there
are no higher powers to dominate these quantities. (One has to be careful, however, with such
arguments, since the undesired terms might cancel when several shift polynomials are linearly
combined in a clever way; in fact, this frequently happens in the multi-dimensional context.) The
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remaining three shift polynomials originate from

R1 = uγξ5
1 , R2 = uγξ2ξ

3
1 , R3 = uγξ2

2ξ1,

and read

T1 = 5ξ2ξ4
1 + (γ − 5)ξ6

1 ,

T2 = ξ3ξ
3
1 + 3ξ2

2ξ
2
1 + (γ − 4)ξ2ξ4

1 ,

T3 = 2ξ3ξ2ξ1 + ξ3
2 + (γ − 3)ξ2

2ξ
2
1 .

Another argument shows that T3 is not useful, since it introduces a ξ3
2 in the game — and there

is no ξ4
2 to control it. Thus we end up with the algebraic question if there exist real numbers c1

and c2 such that

0 ≤ S(ξ) :=
(
ξ3 + 2qξ1ξ2 +

q(q − 1)
2

)
ξ3 + c1T1 + c2T2

= ξ2
3 + 2qξ1ξ2ξ3 + (

q(q − 1)
2

+ c2)ξ3
1ξ3 + 3c2ξ2

2ξ
3
1 + (5c1 + (γ − 4)c2)ξ2ξ4

1 + (γ − 5)c1ξ6
1

=

 ξ3
ξ2ξ1
ξ3
1

 ·A ·
 ξ3
ξ2ξ1
ξ3
1

 .

Here the matrix A is a linear combination, A = A0 + 1
2c1A1 + 1

2c2A2, with

A0 =

 1 z z(z−1)
4

z 0 0
z(z−1

2 ) 0 0

 , A1 =

0 0 0
0 0 5
0 5 5(q+r−1)

2

 , A2 =

0 0 1
0 6 5q+5r−1

4

1 5q+5r−1
4 0

 .

One needs to study when A defines a non-negative quadratic form. Denote by ∆ the determinant
of A, and by

δ = 3c2 − z2

the determinant of the top-left 2× 2-submatrix Ã. We distinguish two cases for non-negativity of
A:

(1) either δ > 0 and ∆ ≥ 0,
(2) or δ = 0 and A has zero as its smallest eigenvalue.

Before discussing these cases, we perform some simplifications. The complete expression for ∆ is
extremely large; however, it is easy to check from the form of the Ai that

∆ = −25
4
c21 −

3
4
c32 + ?c22 + ?c1c2 + ?c1 + ?c2 + ?.

In particular, for each fixed c2, this is an upside-down parabola in c1. Moreover, the position
c∗1 of the critical point of this parabola depends in an affine manner on c2. In our investigation
of the non-negativity of ∆, it suffices to restrict attention to c1 = c∗1. Define accordingly A∗ =
A0 + c∗1A1 + c2A2, which has determinant

∆∗(c2) = ∆(c∗1, c2) = −3
4
c32 + ?c22 + ?c2 + ?.

We claim that ∆∗ factors into δ and a quadratic polynomial Q(c2). For this, we need to show that
∆∗(ĉ2) = 0 for ĉ2 = z2/3.
On one hand, ∆∗(ĉ2) ≤ 0. Assume on the contrary that ∆∗(ĉ2) > 0. By continuity, ∆∗(ĉ2 +0) > 0
and δ(ĉ2+0) > 0, so A∗(c2) has three genuinely positive eigenvalues for c2 = ĉ2+0. As ∆∗(ĉ2) > 0,
all of them remain strictly positive on a small neighborhood of ĉ2. But this contradicts δ(ĉ2) = 0.
In order to see that A∗(ĉ2) ≥ 0, it suffices to verify that A = A0 + c1A1 + ĉ2A2 has a non-trivial
kernel for a suitable choice of c1. But the particular form of A1 allows to extend the non-trivial
kernel of the submatrix Ã to a non-trivial kernel of A.
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Knowing the approximate form of ∆∗, one can calculate the polynomial Q with some effort,

Q(c2) = −1
8

(2c22 + (q2 + r2 − 1)c2 +
1
2
q2r2).

We specialize to case one now, looking for a c2 > ĉ2 = z2/3 with ∆∗(c2) ≥ 0. One possibility is
obviously that

0 < Q(ĉ2) = − q2

144
P2(q, r),(5.8)

in which case c2 simply needs to be chosen sufficiently close to ĉ2. Another possibility is that Q
increases at c2 = ĉ2,

0 < Q′(ĉ2) = −4
3
P1(q, r),

towards its maximum value, which is non-negative,

0 ≤ Qmax = Q
(
− 1

4
(q2 + r2 − 1)

)
= − 1

64
P3(q, r).

The choice c2 = −(q2 + r2 − 1)/4 yields ∆(c2) ≥ 0. There are no further possibilities.
We turn to the second case in order to see if it provides genuinely new information. So assume
that A∗(ĉ2) has zero as its lowest eigenvalue.
First, we argue that if ∆∗ changes sign at ĉ2 (i.e. ĉ2 is not one of the — at most two — critical
points of ∆∗), then we are back in the case (5.8) discussed above. Indeed, since there are three
eigenvalues of A∗, and one is always strictly positive, it follows that exactly one eigenvalue changes
sign when c2 passes ĉ2. The other two eigenvalues remain on the same side — the non-negative one,
by our assumption on A∗(ĉ2). As it is impossible to have three positive eigenvalues of A∗(ĉ2 − 0),
the sign transition of ∆∗ must be from negative to positive. But this implies (5.8).
The remaining case is that ∆∗ has a critical point at ĉ2, i.e.

0 = Q(ĉ2) = − q2

144
P2(q, r).

This situation shall not discussed further here; it only concerns the boundary of the ellipse E2, and
the (trivial) line q = 0.
The proof that Ep is not dissipated for P3 > 0 is another application of Laugesen’s construction.
More a priori estimates are now necessary, but since no new ideas enter the proof, it is omitted
here.

A concluding remark. There is one huge advantage of the algebraic entropy construction
method, which has not been visible in this lecture. Namely, the proof of non-negativity of poly-
nomials is a well-known task in computational algebraic geometry. A variety of numerical tools
has been developed exactly to answer questions of the type “Do there exist parameters c such
that the polynomial is non-negative for all ξ?” An algorithm which in principle can answer any
such question (provided time and memory suffice) has been implemented e.g. in the program
Mathematica. For instance, Theorem 5.1 can be proven using Mathematica 5.1 in less than five
minutes. Moreover, Matlab-users can download packages which give a numerical answer to the
more restrictive question “Can parameters c be chosen such that the resulting polynomial in ξ is
the sum of squares of other polynomials?”
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3. Problems

Problem 5.1. Given a smooth initial condition u0 : [−π,+π]→ R, denote by u(t;x) for t > 0 the
corresponding — classical and unique — solution to the linear fourth order problem

∂tu(t;x) = −∂4
xu(t;x), u(0;x) = u0(x)(5.9)

with periodic boundary conditions. Find an u0 such that
• u0 is positive, of unit mass, and extends to a smooth 2π-periodic function on R.
• The solution u(t;x) to (5.9) is negative at some point (t̂, x̂) with t̂ > 0, x̂ ∈ R.

Determine an upper bound T > 0 on t̂, solely in terms of E = 1
2

∫ +π

−π |∂xu0(x)|2 dx.
Hint: Any smooth function f : [−π,+π] → R of zero average with f(0) = f(1) satisfies ‖f‖∞ ≤√
π/6 ‖f ′‖2. Moreover, Poincaré’s inequality for intervals might be useful.

Problem 5.2. Consider the Logarithmic Fourth Order (alias DLSS, alias Quantum Diffusion. . . )
equation

∂tu(t;x) = −∂2
x

(
u(t;x)∂2

x log u(t;x)
)
,(5.10)

with periodic boundary conditions on [−π,+π]. Determine all values of α ∈ R such that the
functional

Hα[u] :=
1

α(α− 1)

∫ +π

−π
u(x)α dx(5.11)

is dissipated along arbitrary positive and smooth solutions u(t;x). Moreover, for those α, determine
the optimal value µα ≥ 0 such that

− d

dt
Hα[u(t)] ≥ µα

∫ +π

−π

∣∣∂xu(t;x)
∣∣4 dx.(5.12)

Hint: To prove optimality, apply Laugesen’s trick.

Problem 5.3. The formal part of Laugesen’s trick consists of using û(x) = |x|σ as a trial function
in a suitable representation of the the entropy dissipation D[u]. Why is the respective rigorous
argument necessarily restricted to one particular value of σ?



CHAPTER 6

Decay Rates for the Thin Film Equation

This last lecture is more in the original spirit of the course. Entropy methods are used to establish
various proofs for convergence of solutions to the thin film equation to the steady state. Numerous
results on this topic exist, which are, however, scattered throughout the literature. Below, a
selection from the results given in [11, 19, 31, 32, 33] is presented.

1. Relaxation for small β on bounded domains

Recall the initial boundary value problem (IBVP) from lecture 4,

∂tu = −(uβuxxx)x, ux(0) = ux(1) = uxxx(0) = uxxx(1) = 0, u(0;x) = u0(x) > 0,(6.1)

with slip-parameter β > 0. Once again, the spatial domain is Ω = (0, 1), and for convenience, the
(preserved) mass of the solution should equal one. By simple scaling arguments, all estimates on
u immediately translate into respective estimates for solutions on an arbitrary finite interval and
with arbitrary mass.
Theorems 6.1 and 6.2 are concerned with the convergence of the solution u(t) to the homogeneous
steady state,

u∞ ≡
∫

Ω

u0 dx = 1.

To be on safe grounds, positive (and hence smooth and classical) solutions u are considered
only. The relaxation behavior in the general free-boundary situation is somewhat delicate. In
fact, Theorem 4.3 states that for β ≥ 4, the support of the solution u does not change in time.
Hence, an initially compactly (inside Ω) supported solution is going to approach some non-trivial
stationary profile in the long-time limit instead of the homogeneous state u∞.

1.1. L1-estimates. Recall the definition of the entropies Hα in (5.1).

Theorem 6.1. Let 0 < β < 2, and u be a positive solution to (6.1). Then u relaxes to homogeneity
at an exponential rate,

‖u(t)− u∞‖L1 ≤ C
(
H2−β [u0]−H2−β [u∞]

)1/2 exp
(
− π4(1− β/2)t ·

)
.(6.2)

Here C is a constant, only depending on β.

With some effort, using the results from Lecture 5, it is possible to extend the β-range in Theorem
6.1 to 0 < β < 3, see [11], and — with even more effort — to all β > 0, see [31]. Also, the rates
defined in (6.2) are far from optimal in general. Concerning the optimization of exponential rates,
refer to [15], for instance. However, the crucial observation is that relaxation in L1(Ω) indeed
happens on a global exponential time scale. This is different from the H1(Ω)-relaxation treated
in Theorem 6.2.

Proof. Recall from Lecture 4 that the entropy

H[u] = H2−β =
∫

Ω

u2−β

(1− β)(2− β)
dx

satisfies for classical solutions u to (6.1)

− d

dt
H[u(t)] =

∫
Ω

u2
xx dx ≥ CP

∫
Ω

u2
x ≥ C2

P

(∫
Ω

u2 dx− 1
)
,(6.3)

53
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where CP = π2 is the Poincaré constant for Ω. From the estimate on ux it is immediate that u(t)
converges to the homogeneous profile u∞ ≡ 1 in H1(Ω) as t→∞, implying that H[u(t)]→ H[u∞].
Moreover, by elementary considerations,

1
1− β

s2−β − 2− β
1− β

s+ 1 ≤ (s− 1)2(6.4)

holds for all s ≥ 0, provided 0 < β < 2 with β 6= 1. Integrating (6.4) with s = u(t) on Ω, taking
into account that the mass of u(t) is one, yields

(2− β)
(
H[u(t)]−H[u∞]

)
≤
∫

Ω

u(t)2 dx− 1.

A respective estimate is readily verified also for β = 1. In combination with (6.3), we obtain

H[u(t)]−H[u∞] ≤ exp
(
− π2(2− β)t

)(
H[u0]−H[u∞]

)
by the usual Gronwall argument. Finally, an application of the Csiszar-Kullback inequality from
Proposition 1.1 gives the desired decay estimate (6.2). �

1.2. H1-estimates. The setup is the same as before.

Theorem 6.2. Let 0 < β ≤ 2, and u a positive solution to (6.1). Then u relaxes to homogeneity
in H1(Ω) at algebraic rate,

‖u(t)− u∞‖H1 ≤ (A+Bt)−1/4.(6.5)

Here both A and B depend on u0 and β.

Proof. Instead of the entropy H, the energy

E[u] =
1
2

∫
Ω

u2
x dx

is now used to obtain the relaxation estimate. Recall that, for positive solutions u,

DE [u(t)] = − d

dt
E[u(t)] =

∫
Ω

uβu2
xxx dx.

Following [33], the energy E[u] is estimated in terms of a power of its own dissipation DE [u].
Using the homogeneous Neumann boundary conditions and unity of mass,∫

Ω

u2
x dx = −

∫
Ω

uuxx dx ≤
(∫

Ω

uu2
xx dx

)1/2

=
(∫

Ω

uuxuxxx dx
)1/2

= (sup
Ω
u2−β)1/4

(∫
Ω

u2
x dx

)1/4(∫
Ω

uβu2
xxx dx

)1/4

.

As Ω is one-dimensional, the supremum of u can be estimated in terms of E[u],

sup
Ω
u ≤ 1 +

∫
Ω

∣∣ux∣∣ dx ≤ C(u0) := 1 +
(
2E[u0]

)1/2
.

Thus,

DE [u(t)] ≥ 8C(u0)2−βE[u(t)]3.

By comparison with the ODE ẏ = −Cy3, one concludes

E[u(t)] ≤ (E[u0]−2 + 16C(u0)2−βt)−1/2.

Next, the Poincaré inequality yields at once that∫
Ω

(
u(t)− 1

)2
dx ≤ 2CPE[u(t)],

and thus the H1(Ω)-estimate in (6.5). �
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Two comments are in place here. The first is that Theorem 6.1 can be generalized to multiple
dimensions, whereas Theorem 6.2 (seemingly) cannot. The bottleneck in the proof above is the
continuous embedding of H1(Ω) into L∞(Ω), which does no longer exist in two (or more) di-
mensions. In fact, there is no guarantee that in multiple dimensions, arbitrary solutions remain
bounded in L∞.
The second comment is that Theorem 6.2 is interesting only in the initial phase of the relax-
ation. Once the solution u is L∞-close to the steady state u∞, the convergence is dictated by
the linearization of the thin film equation, and thus is exponentially fast. More precisely, by the
H1-estimate in (6.5), there exists a time T > 0 such that ‖u(t) − 1‖∞ ≤ 1/2 for all t ≥ T . And
then,

− d

dt
E[u(t)] =

∫
Ω

uβu2
xxx dx ≥ (1/2)β

∫
u2
xxx dx ≥ 21−βC2

PE[u(t)].

This is sufficient to conclude exponential relaxation of u(t) towards u∞ in H1 and L1. However,
in contrast to Theorem 6.1, one does not obtain a global and universal exponential rate in H1,
since the time T depends on the initial condition u0 and could be arbitrarily large. An argument
of this type has seemingly first been given in [13], and is at the basis of the considerations in [15].

2. Relaxation of the rescaled Hele-Shaw flow

The thin film equation with parameter β = 1,

∂tu = −(uuxxx)x(6.6)

plays a distinct role. First of all, it is the only thin film equation that constitutes a Wasserstein
gradient flow. The corresppnding potential coincides with the energy,

E[u] =
1
2

∫
u2
x dx.(6.7)

Moreover, it further is the only thin-film equation for which the self-similar solution on R,

us(t;x) = t−1/5V (t−1/5x),

is explicitly known: it is the Smyth-Hill-profile, given by

V (y) =
1
48

(µ2 − y2)2
+,(6.8)

where µ > 0 is a mass parameter. In the following, the intermediate asymptotics of equation (6.6)
are investigated, i.e. the convergence of its solutions to to self-similarity. In analogy to the linear
and non-linear Fokker Planck equations in Lectures 2 and 3, a scaling is performed such that the
self-similar profile V becomes a stationary solution,

∂sv = −(vvyyy)y + (yv)y.

A little more general, we shall be concerned with

∂sv = −2(vvyyy)y + λ(yv)y,(6.9)

where λ > 0 determines the strength of the confinement potential, and the factor two is introduced
for notational convenience later. The respective steady state becomes

v∞(y) =
λ

48
(µ2 − y2)2

+.

Notice that the profile v∞ is of Barenblatt type (3.3), where m = 3/2. However, the dependence
on the strength λ of the quadratic confinement potential is different.
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2.1. L1-estimates. The following result, taken from [19], establishes an intimate connection
between the theory for porous medium equations and the one for thin film equations, and is
probably one of the most surprising results in this field.

Theorem 6.3. The functional

H[v] =
∫

(
4√
3
v3/2 +

λ

2
y2v) dy(6.10)

is an entropy for the rescaled Hele-Shaw flow (6.9). In fact, H converges exponentially at rate 2λ,
and consequently

‖v(t)− v∞‖L1 ≤ Ke−λt,(6.11)

where K only depends on H[v0].

Proof. There is a somewhat ingenious way to prove decay of (6.10). Namely, one rewrites
(6.9) in the following form:

∂sv = − 2√
3

(
v3/2Fyy

)
yy

+
(
vFy

)
y
, F = (2

√
3v1/2 +

λ

2
y2).

From here, the following easy calculation reveals the dissipation property:

DH [v(s)] = − d

ds
H[v(s)]

= −
∫

R
(2
√

3v1/2 +
1
2
y2) ∂sv dy

= +
2√
3

∫
R
F
(
v3/2Fyy

)
yy
dy −

∫
R
F
(
vFy

)
y
dy

= +
2√
3

∫
R
v3/2F 2

yy dy +
∫

R
vF 2

y dy.

The term with the second order derivatives is now neglected. This seems a very rough estimate,
but due to the particular form of the entropy production, one is still able to conclude exponential
convergence of H. To this end, we recall the functional inequality (3.6) relating entropy and
entropy production for the porous medium equation. Choosing exponent m = 3/2, dimension
d = 1, and λ = 1 there (the λ in Lecture 3 and the λ in (6.9) are a priori independent of each
other), (3.6) reads∫

R

(
2u3/2 +

1
2
x2u

)
dx−

∫
R

(
2u3/2
∞ +

1
2
x2u∞

)
dx ≤ 1

2

∫
R
u
∣∣3(u1/2)x + x

∣∣2 dx,
where u∞ denotes the respective Barenblatt profile (3.3),

u∞(x) =
1
36

(σ − x2)2,

with some σ > 0 determining the mass. By substituting

x =
√
λy, u(x) =

4
3
v(y),(6.12)

and trivial manipulations, this estimate turns exactly into

H[v]−H[v∞] ≤ 1
2λ
DH [v].(6.13)

This obviously implies exponential convergence of H at rate 2λ. The L1-estimate in (6.11) follows
by the Csiszar-Kullback inequality proven in Lecture 3. �

Corollary 6.1. Let some non-negative initial condition u0 ∈ L1(R)∩H1(R) with vanishing first
moment, finite second moment, and finite entropy be given. Then there exists a strong solution to
the Hele-Shaw flow (6.6), which satisfies

‖u(x, t)− t−1/5V (t−1/5‖L1 ≤ C
√
H[u0]−H[V ](5t+ 1)−1/5.(6.14)

Here V is the Smyth-Hill-profile (6.8) with the same mass as u0.
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It is most remarkable that the proof neglects the seemingly best piece of the entropy dissipation,
namely the term containing the second order derivatives, and still obtains an exponential decay
estimate in L1. Naturally, the rate in (6.14) is (presumably) rather suboptimal. A linearization
of (6.6) around v∞ on a bounded domain yields [10] that the dominant eigenvalue should be
λ = −15, corresponding to an approximation in the intermediate asymptotics of ≈ t−3/2.

2.2. H1-estimates. The rescaled equation (6.9) is still a gradient flow in Wasserstein metrics,
with potential

E[v] =
∫

(v2
y +

λ

2
y2v) dy.

It is natural to investigate the rate of equilibration of E[v(t)]. In fact, convergence of v(t) “in
energy” implies equilibration of v(t) in H1(R).

Lemma 6.1. Provided v ≥ 0 has finite energy and the same mass as v∞,∥∥(v − v∞)y
∥∥2

L2 ≤ E[v]− E[v∞].

Proof. The proof heavily relies on the special shape of v∞. For reference below, note that

v∞,y(y) = − λ

12
(µ2 − y2)+y, v∞,yy(y) =

λ

4
(
y2 − 1

3
µ2
)
1|y|<m.

Moreover, by straightforward integation,∫
R
v dy =

∫
R
v∞ dy =

λ

48

∫ +µ

−µ

(
µ2 − y2

)2
dy =

1
45
λµ5,

and similarly,∫
R
y2v∞ dy =

λ

48

∫ +µ

−µ
y2
(
µ2 − y2

)2
dy =

1
315

λµ7,

∫
R
v2
∞,y dy =

λ

3

∫
R
y2v∞ dy =

1
945

λ2µ7.

Putting this together, one obtains∫
R

(v − v∞)2
y dy =

∫
R
v2
y dy +

∫
R
v2
∞,y dy − 2

∫
R
vyv∞,y dy

= E[v]− λ

2

∫
R
y2v dy +

∫
R
v2
∞,y dy + 2

∫
R
vv∞,yy dy

= E[v]− λ

2

∫
|y|>µ

y2v dy − E[v∞] + 2
∫

R
v2
∞,y dy +

λ

2

∫
R
y2v∞ dy︸ ︷︷ ︸

=λ2µ7/270

+
λµ2

6

∫
|y|<µ

v dy

= E[v]− E[v∞]− λ

2

∫
|y|>µ

y2v dy +
λ

2

∫
|y|>µ

1
3
µ2v dy

≤ E[v]− E[v∞],

since obviously µ2/3 < y2 on the set {|y| > µ}. �

There is an interesting approach [14] to proving E[v(t)]→ E[v∞], which is based on the equipar-
tition property of E. Partition the energy into its kinetic and its potential contribution,

E[v] = Ek[v] + Ep[v], with Ek[v] =
∫

R
v2
y dy, Ep[v] =

λ

2

∫
R
y2v dy.

A technical, but direct argument (using the famous Nash trick) provides exponential convergence
of Ek[v(t)] to Ek[v∞]. The hard part is to estimate the distance of Ep[v(t)] to Ep[v∞]. Here, the
idea of equilibration enters as follows. In the steady state, Ek[v∞] : Ep[v∞] = 2 : 3, independently
of λ > 0 and µ > 0. Introduce the deviation from the perfect partition,

∆[v] = 3Ek[v]− 2Ep[v].
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A variety of calculations allows to estimate |∆[v]| in terms of the square root of the energy
dissipation DE = −dE/dt. Knowing that∫ t2

t1

∆[v(t)]2 dt ≤ C(E[v(t1)]− E[v(t2)]),

and monotonicity of E[v(t)], one concludes

|∆[v(t)]| ≤ Ct−1/2.

In view of the exponential convergence of Ek[v(t)], one thus finds equilibration of E[v(t)] at the
algebraic rate t−1/2.
This result, however, is suboptimal and can be improved as follows [32].

Theorem 6.4. For solutions v to (6.9), the energy E[v] converges exponentially at rate 2λ. More-
over, v itself equilibrates exponentially fast in H1(R),

‖v(t)− v∞‖H1 ≤ Ce−λt,(6.15)

where C only depends on E[v0].

Proof. We shall actually only provide a pretty formal argument that yields an exponential
decay rate of 10λ/9 instead of 2λ. Deeper investigations of the Wasserstein nature of (6.9) are
necessary to conclude the (presumably optimal) rate.
Also here, the essential idea is to rewrite equation (6.9) in a clever way. But first, let us introduce
the following functional,

G[v] =
4
3

∫
R
v3/2 dy +

Λ
2

∫
R
y2v dy.

and an associated equation of porous medium type,

∂τv = (v(2v1/2 +
Λ
2
y2)y)y =

2
3

(v3/2)yy + Λ(yv)y.(6.16)

Here Λ > 0 is such that 3Λ2 = λ. The dissipation of G[v] along the flow of (6.16) amounts to

DG[v] =
∫

R
v(2v1/2 +

Λ
2
y2)2

y dy

=
∫

R
v2
y dy + Λ2

∫
R
y2v dy + 2Λ

∫
R
yv1/2vy dy

=
∫

R
v2
y dy + Λ2

∫
R
y2v dy − 4Λ

3

∫
R
v3/2 dy.

Finally, introduce the following equation related to DG,

∂σv = (v(−2vyy + Λ2y2 − 2Λv1/2)y)y

= −2(vvyyy)y + 2Λ2(yv)y −
2
3

(v3/2)yy.

The key observation is that (6.9) can be restated as follows:

∂sv = ∂σv + Λ∂τv,

while the energy takes the form

E[v] = DG[v] + ΛG[v].

A combination of these items provides an estimate the dissipation of E. Indeed,

DE [v] = −∂σDG[v]− Λ∂τDG[v]− Λ∂σG[v]− Λ2∂τG[v].

The four terms on the right hand side are treated separately. For the first, one has,

−∂σDG[v] =
∫

R
(2vyy − Λ2y2 + 2Λv1/2)∂σv dy

=
∫

R
v(2vyy − Λ2y2 + 2Λv1/2)2

y dy ≥ 0.
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The second term constitutes the second τ -derivative of G. Using similar considerations that
produced inequality (6.13) from (3.6), a variation of the estimate (3.8) gives

DG[v] ≤ 1
2Λ

(−∂τDG[v]).(6.17)

Omitting straightforward calculations, one finds that the third term verifies

∂σG[v] = ∂τDG[v],

so estimate (6.17) applies again. Finally, by definition, −∂τG = DG. Altogether, this yields

DE [v] ≥ 0 + 2Λ2DG[v] + 2Λ2DG[v] + Λ2DG[v] =
5
3
λDG[v].(6.18)

To finish the argument, notice that inequality (3.6) can be restated as

G[v]−G[v∞] ≤ 1
2Λ

DG[v].

Thus,

E[v]− E[v∞] = DG[v] + Λ(G[v]−G[v∞]) ≤ 3
2
DG[v].

Substituting this into (6.18) yields

DE [v] ≥ 10λ
3

(E[v]− E[v∞]),

which implies exponential convergence of the energy E[v(t)]. The H1-estimate in (6.15) is a
consequence of Lemma 6.1 in combination with the exponential convergence in L1 from (6.11). �
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3. Problems

Problem 6.1. Prove the logarithmic Sobolev inequality∫ 1

0

f(x) log f(x) dx−
(∫ 1

0

f(x) dx
)

log
(∫ 1

0

f(x) dx
)
≤ C1

∫ 1

0

∣∣∂x√f(x)
∣∣2 dx(6.19)

for positive and smooth functions f on the interval [0, 1], which satisfy homogeneous Neumann
boundary conditions. Calculate the optimal value of the constant C1.
Hint: There are dozens of ways to prove (6.19). My favourite one is to consider the entropy
dissipation along solutions f(t) of the heat equation on [0, 1] with f(0) = f .

Problem 6.2. By deep results from measure-capacity theory [22], the logarithmic Sobolev inequal-
ity (6.19) implies the Lq-logarithmic Sobolev inequality∫ 1

0

f(x) log f(x) dx−
(∫ 1

0

f(x) dx
)

log
(∫ 1

0

f(x) dx
)
≤ Cq

(∫ 1

0

∣∣∂x√f(x)q
∣∣2 dx)1/q

(6.20)

for all q > 1. Prove that (6.20) implies further the Beckner interpolation inequalities,∫ 1

0

f(x) dx−
(∫ 1

0

f(x)1/p
)p
≤ Kp,q

(∫ 1

0

∣∣∂x√f(x)q
∣∣2 dx)1/q

(6.21)

for all p > 1. Express Kp,q in terms of Cq.
Hint: First, prove convexity of

F (p) :=
(∫ 1

0

f(x)1/p
)p

for p > 0, with fixed f . Then perform a Taylor expansion of F (p) around p = 1.

Problem 6.3. Use (6.21) to describe the convergence behavior of the functionals

Eα[u] =
1

α(α− 1)

∫ 1

0

u(x)α dx

for α > 1 along solutions u(t;x) to the porous medium equation,

∂tu(t;x) = ∂2
x

(
u(t;x)m

)
, ux(t; 0) = ux(t; 1) = 0, u(0;x) = u0(x) > 0,(6.22)

where m > 1. Calculate the algebraic convergence rates in dependence of m and α.
Remark: Existence, uniqueness, smoothness and positivity of solutions to (6.22) are granted.
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