Tests

Test 1

SS2020, MA341, Test 1

1) Determine if the function $\theta(t)=2 e^{3 t}-e^{2 t}$ is a solution to the equation

$$
\theta^{\prime \prime}-\theta \theta^{\prime}+3 \theta=-2 e^{2 t} .
$$

2) Consider the problem

$$
y^{\prime}=x^{2}(1+y) .
$$

Do the complete theoretical analysis of the problem. Sketch the direction fields. Integrate the equation. Find all solutions on maximal intervals. Draw their graphs. Determine all solutions with the initial value $y(0)=3$.
3) Find all solutions to the problem on maximal intervals

$$
x y^{\prime}+3\left(y+x^{2}\right)=\frac{\sin (x)}{x} .
$$

S52019-MA351-Test 1 -solatim
1)

$$
\begin{aligned}
& \theta(t)=2 e^{3 t}-e^{2 t} \\
& g^{\prime}(t)=6 e^{3 t}-2 e^{2 t} \\
& \theta^{\prime \prime}(t)=18 e^{3 t}-4 e^{2 t} \\
& \theta^{\prime \prime}-9 \theta^{\prime}+3 \theta=18 e^{3 t}-5 e^{2 t}-\left(2 e^{3 t}-e^{2 t}\right)\left(6 e^{3 t}-2 e^{2 t}\right)+ \\
& 3\left(2 e^{3 t}-e^{2 t}\right)=18 e^{3 t}-5 e^{2 t}-\left(12 e^{6 t}-10 e^{5 t}+2 e^{5 t}\right)+6 e^{3 t}-3 e^{2 t} \\
& =-12 e^{6 t}+10 e^{5 t}-2 e^{5 t}+24 e^{3 t}-7 e^{2 t} \\
& a\left(t=0: 夕^{\prime \prime}(0)-8(0) 9(0)+38(0)=13\right. \\
& -2 e^{2 t}(t=0=-2
\end{aligned}
$$

$13 \neq-2 \Rightarrow g(x)$ is mot a solution on \mathbb{R} (ay indenal containig 0)
2) $y^{\prime}=x^{2}(1+g)$ sequable agn. $g(x)=x^{2}, h(y)=1+g, \frac{\partial L}{\partial y}(y)=1$
$\Rightarrow(x, y) \in \mathbb{R}^{2}, j, h, h^{\prime}$ contimnono $\mathbb{R}^{2} \Rightarrow$ uniznewess and ex. ofsolatix
divection fells:

$g(x)=1$ in \mathbb{R} is egmititiom (unstable)

$$
\begin{aligned}
& \frac{y^{\prime}}{1+g}=x^{2} ;(\lg |1+g|)^{\prime}=\left(\frac{x^{3}}{3}+c\right)^{\prime} ; \lg |1+g|=\frac{x^{3}}{3}+c ; \\
& \left.|1+g|=\exp \left(\frac{x^{3}}{3}+c\right)=e^{\frac{x^{5}}{3}} k\right) ; k>0 \\
& 1+g=e^{x / 3 / 3} \cdot k ; K \in \mathbb{R} ; y(x)=-1+K e^{\frac{x^{3}}{3}}, k \in \mathbb{R} \text { in } \mathbb{R}
\end{aligned}
$$

gereat prumbs for ul.
jopl

$$
3=y(0)=-1+k \Rightarrow k=4 .
$$

The migre sol of the inilial salue purblen is $y(x)=-1+4 e^{x / 3}$ in \mathbb{R}.

ЕКKUK:
typecheck
OFFENDING COMMAND:
known
3)

$$
\begin{aligned}
& x y^{\prime}+3 y=\frac{52 x}{x}-3 x^{2} \\
& \ln x \neq 0: \quad y^{\prime}+3 \frac{y}{x}=\frac{5 x}{x^{2}}-3 x, i f: e^{3 g|x|}=\left.1 x\right|^{3} \\
& \text { we emsibait on }(-\infty, 0) \text { and }(0,+\infty) \\
& \text { in } / m x^{3} \text {. } \\
& x \in \mathbb{R}:\{0\} \\
& x^{3} z^{\prime}+3 x^{2} y=x \sin -3 x^{3},\left(x^{3} y\right)^{\prime}=\left(82 x-x \sin x-\frac{3}{5} x^{5}\right)^{\prime} \\
& \begin{array}{l}
\int x \text { nixdx }=-x \operatorname{cn} x+\int \sin x d x=-x \cos x+\operatorname{six} \text { in } R \\
\text { Ld li }
\end{array} \\
& 1-\cos x \\
& x^{3} y=\sin x-x \sin x-\frac{3}{5} x^{5}+c, c \in \mathbb{R} \\
& y(x)=\frac{\operatorname{six} x}{x^{3}}-\frac{\sin x}{x^{2}}-\frac{3}{5} x^{2}+\frac{c}{x^{3}} ; c \in \mathbb{R} ; i n(-\infty, 0) \operatorname{and} .
\end{aligned}
$$

Homeworks

Homework 1

1. Show that $\Phi(x)=x^{2}$ is an explicit solution to $x y^{\prime}=2 y$ on the interval $(-\infty, \infty)$.[1.2 2a]
2. Show that $\Phi(x)=x^{2}-x$ is an explicit solution to $y^{\prime}+y^{2}=e^{2 x}+(1-2 x) e^{x}+x^{2}-1$ on the interval $(-\infty, \infty) .[1.22 \mathrm{~b}]$
3. Show that $\Phi(x)=x^{2}-x^{-1}$ is an explicit solution to $x^{2} y^{\prime \prime}=2 y$ on the interval $(0, \infty) .[1.22 \mathrm{c}]$
4. Classify next equations as ordinary differential equation or partial differential equation, linear or nonlinear. Determine its degree.

$$
\begin{gathered}
y^{\prime}=\frac{y(2-3 x)}{x(1-3 y)} \\
\sqrt{1-y} y^{\prime \prime}+2 x y^{\prime}=0 \\
\frac{\partial N}{\partial t}=\frac{\partial^{2} N}{\partial r^{2}}+\frac{1}{r} \frac{\partial N}{\partial r}+k N, \quad \text { for } k>0 .
\end{gathered}
$$

HW1

1) Sel $y(x)=x^{2} . \quad L S=x y^{\prime}(x)=x \cdot 2 x=2 x^{2}$

$$
R S=2 f(x)=2 x^{2}
$$

$L S=R S$ friall $x \in \mathbb{R} \Rightarrow y(x)=x^{2}$ is sulution on \mathbb{R}.
2) Let $g(x)=x^{2}-x$.

$$
\begin{aligned}
& L S=g^{\prime}(x)-y^{2}(x)=2 x-1-\left(x^{2}-x\right)^{2}=2 x-1-x^{4}+2 x^{3}-x^{2} \\
& R S=e^{2 x}+(1-2 x) x^{x}+x^{2}-1 \\
& (\text { a1 } x=0: \operatorname{LS}(0)=-1 \neq \operatorname{RS}(0)=1) \Rightarrow y(x)=x^{2}-x \text { is mota sulutinn }
\end{aligned}
$$

3)

$$
\begin{aligned}
& \text { Sel } g(x)=x^{2}-x^{-1}, L S=x^{2} g(x)=x^{2}\left(2 x+\frac{1}{x^{2}}\right)^{\prime}=x^{2}\left(2-\frac{2}{x^{3}}\right)= \\
& =2 x^{2}-\frac{2}{x}, R S=2 y(x)=2 x^{2}-\frac{2}{x} . L S=R S \text { on }(0,+\infty) \\
& \Rightarrow g(x):=x^{2}-x^{-1} \text { is a solution in }(0,+\infty)
\end{aligned}
$$

4) $A: y^{\prime}=\frac{y(2-3 x)}{x(1-3 y)}, B: \sqrt{1-y} y^{\prime \prime}+2 x y^{\prime}=0, C: \frac{\partial N}{\partial t}=\frac{\partial^{2} N}{\partial R^{2}}+\frac{1}{2} \frac{\partial N}{\partial r}+8 N$ \& 20 .

- AB: odinary differeatial egratims
C :pactial differtial egen
- degree of $A=1$, depreeff is 2 , leppeef C is 2
A is umlinear since il is wrilleras $F\left(x, y, y^{\prime}\right)=0$ mill
$F(x, y, z)=z-\frac{\partial(2-3 x)}{x(1-3 y)}$ and Shis funchim is art himaen $\sin \varphi$

$$
F(x, \alpha y, \alpha z)=\alpha z-\frac{\alpha,(2-3 x)}{x(1-3 \alpha y)}=\alpha F(x, y, z)-\frac{\alpha y(2-3 x)}{x(1-3 \alpha y)}+\frac{\alpha j / 2-3 x)}{x(1-3 y)}
$$

$\neq \alpha F(x, y, z)$ for exaple if $x=1, y=1, z=1, \alpha=2$.
B is umlienan sinilef

Homework 2

1. Determine if the next ODE's are linear or separable.

$$
x^{\prime}+x t=e^{x}, \quad x x^{\prime}+t^{2} x=\sin (t)
$$

2. Find a general solution to the following separable ODE's. In particular: 1) Apply general theory (existence, uniqueness, direction field method, find trivial solution), 2) Integrate the equation, 3) Express the explicit solutions together with its domain of definition, 4) Draw the complete picture of solutions. If you are not able to find exact roots of the solutions, try to estimate them. Course of the function may help you.

$$
y^{\prime}=\frac{x}{y^{2} \sqrt{1+x}}, \quad y^{\prime}=\frac{x}{y \sqrt{1+x}}
$$

3. Find a general solution to the following linear ODE's. Don't forget to write its domain of definition $\left(x^{2}+1\right) y^{\prime}+x y-x=0$.
4. Solve IVP $y^{\prime}+4 y-e^{-x}=0, y(0)=4 / 3$.

Golution to kmervor 2

1) $x^{\prime}+x t-e^{t}$ is linem, since $x^{\prime}+x x^{\prime}$ is linear in x and x^{\prime}. mike njull lind side e^{t}.
H is mit sumable singe e^{t}-xt canot the mithen as a proshct $h(t) \cdot g(x)$.
$x x^{\prime}+t^{2} x=\sin t$ is monliven since $x x^{\prime}$ is mot hiven in x ord x ! Himultiquebla since $\frac{\sin t+t^{2} x}{x}$ cannot heriniten as - pustuch $h(t) g(x)$.
2) $y^{\prime}=\frac{x}{4 \sqrt{1+x}}$ quand Dleor. $f(x)=,\frac{x}{j^{2} \sqrt{1+x}} ; D(f)=\{(x, y) \in \mathbb{R}\}$ $x>-1, y \neq 0\}$
f, of f are contimnors on $D(f) \Rightarrow$ mD $D(f)$ wethene ex. and mijureon
divelin fields:
$\&$ puess of solutims

2rberalin: $y^{2} y^{\prime}=\frac{x+1-1}{\sqrt{1+x}}=\sqrt{1+x}-(\sqrt{1+x})^{1}-\left(\frac{(1+x)^{3 / 2}}{\frac{2}{2}}-\frac{(1+x)^{1 / 2}}{1 / 2}+c\right)^{1}$

$$
\begin{gathered}
\left(\left.\frac{x^{3}}{3}\right|^{\prime \prime} \Rightarrow y^{3}(x)=2(1+x)^{3 / 2}-6(1+x)^{1 / 2}+c\right. \\
g(x)=\sqrt[3]{2(1+x)^{1 / 2}-6(1+x)^{1 / 2}+c} \text { pr } c \in \mathbb{R} \text { in ret/imituants unlere } \\
\text { RHS } \neq 0
\end{gathered}
$$

We srlue f($x=2 z^{3}-6 z+c=0$, zings for $(1+x)^{1 / 2}$

$$
h^{\prime}(z)=6 z^{2}-6 ; z= \pm 1
$$

Whas ar $(0,+\infty)$ minin $1, h(1)=c-4$

Sulutims are plolledin (x).

$$
\left.D D_{1}\right)=\left(-1, n_{1}\right),\left(n_{1}, n_{2}\right),\left(n_{2}+\infty\right) \text {. }
$$

Anc c 0 Inotin $\left(a_{1}+\infty\right)$

$$
P\left(y_{1}\right)=\left(-1, k_{2}\right) \text { and }\left(n_{21}+\infty\right)
$$

$y^{\prime}=\frac{x}{y \sqrt{1+x}}$ querd sley: same as fefie $f(x, y)=\frac{x}{y \sqrt{1+x}}$ dinedin fields:

Intezution: $y y^{\prime}=\frac{x}{\sqrt{1+x}} \times\left(\frac{2}{3}(1+x)^{3 / 2}-2(1+x)^{1 / 2}+C\right)^{\prime}$

$$
\begin{aligned}
& z^{2}(*)=\frac{4}{3}(1+x)^{3 / 2}-4(1+x)^{1 / 2}+c \quad \text { fr ay } C \text { onimdenoral whles is } \\
& \text { If } \left.C>s \quad D\left({ }_{c}\right)=1-1,+\infty\right) \text {. } \\
& c=5 \\
& c \leqslant 0 \\
& \begin{aligned}
= & (-1,0) \text { and }(0,+\infty) \\
& \left(-1,1_{1}\right) \text { and }(1,+\infty)
\end{aligned} \\
& (0,2,+\infty)
\end{aligned}
$$

promen for sil: $g(x)= \pm \sqrt{\frac{4}{3}(1+x)^{3 / 2}-4(1+x)^{1 / 2}+c}$.
Pichue of sols is abrue (t)

$$
\begin{aligned}
& \text { 3) }\left(x^{2}+1\right) y^{\prime}+x y-x=0 \\
& \text { 能 } \left.y^{\prime}+\frac{x}{x^{2}+1}\right)=\frac{x}{1+x^{2}} \quad \text { IF: etp }\left(\int \frac{1}{2} \frac{2 x}{x^{2}+1} d x\right)=\operatorname{ep} \frac{1}{2} g\left(1+x^{2}\right)= \\
& \left(\sqrt{1+x^{2}} y\right)^{\prime}=\sqrt{1+x^{2}} y^{\prime}+y \frac{x}{\sqrt{1+x^{2}}}=\frac{2 x}{\sqrt{1+x^{2}}} \cdot \frac{1}{2}=\mathbb{R}\left(\sqrt{1+x^{2}}+\left.c\right|^{\prime}\right. \\
& \partial(x)=1+\frac{e}{\sqrt{1+x^{2}}} \text { frig } c \in \mathbb{R} \text { in } \mathbb{R} \\
& y^{\prime}+4 y=e^{-x} \quad \text { IF: } e^{5 x} \\
& \left(e^{4 x} y\right)^{\prime}=e^{4 x} y^{\prime}+4 e^{4 x} y=e^{3 x}=\left(\frac{e^{3 x}}{3}+c\right)^{\prime} \\
& y(x)=\frac{e^{-x}}{3}+C e^{-4 x} \operatorname{prag} c \in \mathbb{R} \text { in } \mathbb{R}
\end{aligned}
$$

c. $y(0): 5 / 3: 4 / 3=y(0)=\frac{1}{3}+c \Rightarrow e_{-x}=1$

$$
l y(x)=\frac{e^{-x}}{3}+e^{-4 x} \sim \mathbb{R}
$$

Homework 3

1. Solve the initial value problem

$$
\begin{aligned}
& \left(1 / x+2 y^{2} x\right) d x+\left(2 y x^{2}-\cos y\right) d y=0 \\
& y(1)=\pi
\end{aligned}
$$

A brine solution of salt flows at a constant rate of $6 \mathrm{~L} / \mathrm{min}$ into a large tank that initially held 50 L of brine solution in which was dissolved 0.5 kg of salt. The solution inside the tank is kept well stirred and flows out of the tank at the same rate. If the concentration of salt in the brine entering the tank is $0.05 \mathrm{~kg} / \mathrm{L}$, determine the mass of salt in the tank after $t \mathrm{~min}$. When will the concentration of salt in the
2. tank reach $0.03 \mathrm{~kg} / \mathrm{L}$?

The initial mass of a certain species of fish is 7 million tons. The mass of fish, if left alone, would increase at a rate proportional to the mass, with a proportionality constant of $2 / y \mathrm{y}$. However, commercial fishing removes fish mass at a constant rate of 15 million tons per year. When will all the fish be gone? If the fishing rate is changed so that the mass of fish 3. remains constant, what should that rate be?

It was noon on a cold December day in Tampa: $16^{\circ} \mathrm{C}$. Detective Taylor arrived at the crime scene to find the sergeant leaning over the body. The sergeant said there were several suspects. If they knew the exact time of death, then they could narrow the list. Detective Taylor took out a thermometer and measured the temperature of the body: $34.5^{\circ} \mathrm{C}$. He then left for lunch. Upon returning at 1:00 p.M., he found the body temperature to be $33.7^{\circ} \mathrm{C}$. When did the murder occur? [Hint: Normal body temperature is $37^{\circ} \mathrm{C}$.]

Homewns 3-ma 341
1)

$$
\underbrace{\left(\frac{1}{x}+2 y^{2} x\right)}_{M(x, y)} d x+\underbrace{\left(2 y x^{2}-\cos y\right)}_{N(x, y)} d y=0 ; g(1)=\pi
$$

Is dle egnation exact?

$$
\frac{\partial M}{\partial y}(x, y)=4 y x=\frac{\partial N}{\partial x}(x, y)=4 x y
$$

Yes, it is! $\quad M$

$$
\begin{aligned}
& M=\frac{\partial F}{\partial x} \Rightarrow F(x, y)=\lg |x|+(x y)^{2}+C(y) \\
& M(x, y)=\frac{\partial F}{\partial g}(x, y)=2 x^{2} y+C^{\prime}(y)=2 y x^{2}-\cos y \\
& \Rightarrow C^{\prime}(y)=-\cos y \Rightarrow C(y)=-\sin y+C
\end{aligned}
$$

The unburon portential $F(x, y)=g|x|+(x y)^{2}-\sin y$ Ingtiai 2 prosomla for solutions: $F(x, g)=C$. Insert $i \cdot c$.

$$
(x=1, y=\pi): \quad \pi^{2}=c \Rightarrow C=\pi^{2}
$$

Solre $\quad g|x|+(x y)^{2}-\sin y=\pi^{2}$ In $y(x)$ bo ged solutin.
2) Firn we contuct equation:
initial slase: 50 e inchis 0,5 \% of soll
inftor : nNte 6L/min, concectiotina 0,0rg/L
oulfor: wate $\mathrm{BL} / \mathrm{min}$, cmoulation $\frac{x(t)}{50}$

$$
\begin{aligned}
& x^{\prime}(t)=0,3-\frac{x(t)}{50} \cdot 6 ; \quad x^{\prime}(t)+\frac{6}{50} x(t)=0,3,11 \cdot e^{\frac{6}{10} t} \\
& \left(e^{\frac{6}{10} t} x(t)\right)^{\prime}=0,3 e^{\frac{6}{10} t}=\left(0,3 \cdot e^{\frac{6}{10} t} \cdot \frac{50}{6}+c\right)^{\prime} \\
& x(t)=2,5+c e^{-\frac{6}{10} t} \quad \text { i..c. } x(t)=2,5+c=0,5 \Rightarrow c=-2
\end{aligned}
$$

The sendedsal: $x(t)=2, T-2 e^{1 / 10 t}$

When will be anculation $=0,03$?

$$
\begin{aligned}
& 0,03=\frac{x\left(t_{0}\right)}{50}=\frac{2,5}{50}-\frac{2 e^{-6 / 10} t_{0}}{50} \\
& 1,5=2,5-2 e^{-\frac{6}{10} t_{0}}, \quad 2 e^{-\frac{6}{10} t_{0}}=1, e^{-\frac{6}{10} t}=\frac{1}{2} \\
& -\frac{6}{10} t_{0}=-\lg 2 \quad t_{0}=\frac{50}{6} \cdot \lg 2 \cong 5,77 \text { min. }
\end{aligned}
$$

The conculation in tant will be $0,03 \mathrm{gg} / \mathrm{L}$ in $\frac{\text { no }}{6} \mathrm{~g} 2$ urimutes
3) Initialmassoffich 7 Mt massifititalt m mt (

Incearerate $2 \mathrm{~m}(t)$
stecremeronte $15 \mathrm{Mt} /$ yearo

$$
\begin{array}{lll}
m^{\prime}(t)=2 m(t)-15 ; & m^{\prime}-2 m=-15 ; & i f e^{-2 t} \\
m(0)=7 m & \left(m\left|t e^{-2 t}\right|\right. & =-15 e^{-2 t}=\left(\frac{15}{2} e^{-2 t}+C\right)^{\prime} \\
m(t)=\frac{15}{2}+c e^{+2 t} & ; m(0)=7=\frac{15}{2}+c \Rightarrow c=-\frac{1}{2} \\
m(t)=\frac{1 \pi}{2}-\frac{1}{2} e^{+2 t} & ; 0=1 T-e^{2 t} ; 15=e^{2 t} ; 2 t=\lg 1 T
\end{array}
$$

$t=\frac{l+15}{2}$. The fisch will be gmien $\frac{\frac{b}{2} T}{2}$ yens.
The reguined rate seliffies $2 \cdot 7-\pi=0$ i. 1. nale $=14 \mathrm{Ht} /$ graode.
4) $\operatorname{deng} 16^{\circ} \mathrm{C}$
fory deny $345^{\circ} \mathrm{C}$ alt1200 $t=0$

$$
33.7^{\circ} \mathrm{C} \quad \text { 1PR2 } \quad t=1
$$

$37^{\circ} \mathrm{C}$ at tine of mundar

The egn: $T^{\prime}(t)=-C(T(t)-16)$
Qulution: $T^{\prime}(t)+C T(t)=+-16 \quad$ lis $e^{-c t}$

$$
\begin{aligned}
& \left(e^{+c t} T(t)\right)^{\prime}=+C \cdot 16 e^{+C t}=\left(x+16 e^{t c t}\right)^{\prime} \\
& T(t)=16+D e^{C c t}
\end{aligned}
$$

$$
34.5=16+D \Rightarrow D=18,5
$$

$$
\begin{aligned}
& T(1)= 33,7=16+18,5 e^{-c t 1} ; 17,7=18,5 e^{-c t} ; e^{-c}=\frac{17,7}{18,5} \\
&-c=\lg \frac{17,7}{18,5}, c=\lg \frac{18,5}{17,7} \\
& T(t)=16+18,5 e^{-g\left(\frac{18,5}{17,7}\right) \cdot t}=16+18,5\left(\frac{17,7}{18,5}\right)^{t} \\
& 377= 16+18,5 e^{-\lg \left(\frac{18,5}{17,7}\right) \cdot t}, \frac{21}{18,5}=e^{-\lg \left(\frac{18,5}{17,7}\right) t} \\
&= \lg \left|\frac{18,5}{17,7}\right| \cdot t=\lg \frac{21}{18,5} ; t=-\frac{\lg \left(\frac{21}{18,5}\right)}{\lg \left(\frac{18,5}{17,4}\right)}=-
\end{aligned}
$$

$-2,87$
$9: 08 \mathrm{am}$.

Homework 4

One way to define hyperbolic functions is by means of differential equations. Consider the eqation $y^{\prime \prime}-y=0$. The hyperbolic cosine, cosh, is defined as the solution of this equation subject to the initial values: $y(0)=1$ and $y^{\prime}(0)=0$. The hyperbolic sine, sinh, is defined as the solution of this equation subject to the initial values: $y(0)=0$ and $y^{\prime}(0)=1$.

1. Solve these initial value problems to derive explicit formulas for cosh and sinh. Also show that $\cosh ^{\prime}=\sinh$ and $\sinh ^{\prime}=\cosh$.
2. Prove that a general solution of the equation $y^{\prime \prime}-y=0$ is given by $y(t)=c_{1} \cosh (t)+c_{2} \sinh (t)$.
3. Suppose that a, b and c are given constants for which $a r^{2}+b r+c=0$ has two distinct real roots. If the two roots are expressed in the form $\alpha-\beta$ and $\alpha+\beta$, show that a general solution of the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y(t)=c_{1} e^{\alpha t} \cosh (\beta t)+c_{2} e^{\alpha t} \sinh (\beta t)$.
4. Use the result of previous part to solve the inital value problem: $y^{\prime \prime}+y^{\prime}-6 y=0$, $y(0)=2, y^{\prime}(0)=-17 / 2$.
thawne 4 -ma 431
$\left.{ }^{1}\right)(*) y^{\prime \prime}-y=0$, char. eqn: $\lambda^{2}=1$, fundmealal syoten $\left\{e^{t}, e^{-t}\right\}$

$$
\left.\begin{array}{rl}
\therefore g(0)=1, g^{\prime}(0)-0: 1 & =A e^{t}+\left.B e^{-t}\right|_{t=0}=A+B \\
0 & =A e^{t}-\left.B e^{-t}\right|_{t-0}=A-B \\
\Rightarrow 1=2 A ; A=1 / 2, B & =1 / 2 \\
\Rightarrow \cosh (t)= & \frac{1}{2}\left(e^{t}+e^{-t}\right) \\
\left.\begin{array}{rl}
\square g(0) & =0, y^{\prime}(0)
\end{array}\right)=1: 0 & =A+B \\
1 & =A-B
\end{array}\right\} \Rightarrow 1=2 A \Rightarrow A=
$$

Clearg $\sin h^{\prime}=\sin h ; \cdot \cos h^{\prime}=\sin h$
2) Guenal sal of $(*)$ is given of $y(t)=A e^{t}+B e^{-t}=$ $=C \cosh t+D \sinh t$, In C, D satirging

$$
\begin{aligned}
& C+D=2 A \\
& C-D=2 B
\end{aligned} \text { i.e., } C=A+B, D=A-B .
$$

So any sulation can be mivten as $g(x)=\operatorname{Cosh} x+D \sin t$
3) $\lambda_{1}=\alpha+\beta, \lambda_{2}=\alpha-\beta$ Sle geveral sal is

$$
y(t)=A e^{(\alpha+\beta) t}+B e^{(\alpha-\beta) t}=e^{\alpha}\left(A e^{\beta t}+B e^{-\beta t}\right)=
$$

$=e^{\alpha}((A+B) \cosh (\beta t)+(A-B) \sinh (\beta x))$, seethe prenin anyphain.
4) $\lambda^{2}+\lambda-6=0 ; \lambda_{1,2}=\frac{-1 \pm \sqrt{1+25}}{2}=-\frac{1}{2} \pm \frac{5}{2}$ in)
$g(t)=t A e^{-\frac{t}{2}}\left(A \cosh \frac{5 t}{2}+B \sinh \left(\frac{5 t}{2}\right)\right), g(0)=2 \Rightarrow A=2$

$$
g^{\prime}(t)=-\frac{1}{2} g(t)+e^{-t / 2}\left(A \frac{5}{2} \sinh \frac{5 t}{2}+\frac{5}{2} B \sinh \left(\frac{5 t}{2}\right)\right), g^{\prime}(0)=-\frac{14}{2} \Rightarrow B=\frac{1 \frac{17}{2}}{\frac{5}{2}}=-3
$$

Homework 5

1. See [NSA12, 4.6, 17]. Find a general solution to the differential equation.

$$
\frac{y^{\prime \prime}}{2}+2 y=\operatorname{tg}(2 t)-\frac{1}{2} e^{t}
$$

2. See [NSA12, 4.9, 8]. A 20-kg mass is attached to a spring with stiffness $200 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $140 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$. If the mass is pulled 25 cm to the right of equilibrium and given an initial leftward velocity of $1 \mathrm{~m} / \mathrm{sec}$, when will it first return to its equilibrium position?
3. See [NSA12, 4.10, 5]. An undamped system is governed by

$$
m \frac{\partial^{2} y}{\partial t^{2}}+k y=F_{0} \cos (\gamma t), \quad y(0)=0, y^{\prime}(0)=0
$$

where $\gamma \neq \omega:=\sqrt{k / m}$.
(a) Find the equation of motion of the system.
(b) Use trigonometric identities to show that the solution can be written in the form

$$
y(t)=\frac{2 F_{0}}{m\left(\omega^{2}-\gamma^{2}\right)} \sin \left(\frac{\omega+\gamma}{2} t\right) \sin \left(\frac{\omega-\gamma}{2} t\right)
$$

(c) When γ is near ω, then $\omega-\gamma$ is small, while $\omega+\gamma$ is relatively large compared with $\omega-\gamma$. Hence, $y(t)$ can be viewed as the product of a slowly varying sine function, $\sin ((\omega-\gamma) t / 2)$, and a rapidly varying sine function, $\sin ((\omega+\gamma) t / 2)$. The net effect is a sine function $y(t)$ with frequency $(\omega-\gamma) / 4 \pi$, which serves as the time-varying amplitude of a sine function with frequency $(\omega+\gamma) / 4 \pi$. This vibration phenom enon is referred to as beats and is used in tuning stringed instruments. This same phenomenon in electronics is called amplitude modulation. To illustrate this phenomenon, sketch the curve $y(t)$ for $F_{0}=32, m=2, \omega=9$ and $\gamma=7$.

Reference

[NSA12] R.K. Nagle, E.B. Saff, and Snider A.D. Fundamentals of Differential Equations and Boundary Value Problems. Addison-Wesley, sixth edition, 2012.

