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Preface to the first edition

Initially thought as lecture notes of a course given by the first author
at the Scuola Normale Superiore in the academic year 2003-2004, this
volume grew into the present form thanks to the constant enthusiasm of
the second author.

Our aim here is to illustrate some of the relevant ideas in the theory of
regularity of linear and nonlinear elliptic systems, looking in particular at
the context and the specific situation in which they generate. Therefore
this is not a reference volume: we always refrain from generalizations and
extensions. For reasons of space we did not treat regularity questions in
the linear and nonlinear Hodge theory, in Stokes and Navier-Stokes theory
of fluids, in linear and nonlinear elasticity; other topics that should be
treated, we are sure, were not treated because of our limited knowledge.
Finally, we avoided to discuss more recent and technical contributions,
in particular, we never entered regularity questions related to variational
integrals or systems with general growth p.

In preparing this volume we particularly took advantage from the ref-
erences [6] [37] [39] [52], from a series of unpublished notes by Giuseppe
Modica, whom we want to thank particularly, from [98] and from the
papers [109] [110] [111].

We would like to thank also Valentino Tosatti and Davide Vittone,
who attended the course, made comments and remarks and read part of
the manuscript.

Part of the work was carried out while the second author was a gradu-
ate student at Stanford, supported by a Stanford Graduate Fellowship.



Preface to the second edition

This second edition is a deeply revised version of the first edition, in which
several typos were corrected, details to the proofs, exercises and examples
were added, and new material was covered. In particular we added the
recent results of T. Rivière [88] on the regularity of critical points of
conformally invariant functionals in dimension 2 (especially 2-dimensional
harmonic maps), and the partial regularity of stationary harmonic maps
following the new approach of T. Rivière and M. Struwe [90], which avoids
the use of the moving-frame technique of F. Hélein. This gave us the
motivation to briefly discuss the limiting case p = 1 of the Lp-estimates
for the Laplacian, introducing the Hardy space H1 and presenting the
celebrated results of Wente [112] and of Coifman-Lions-Meyer-Semmes
[22].

Part of the work was completed while the second author was visiting
the Centro di Ricerca Matematica Ennio De Giorgi in Pisa, whose warm
hospitality is gratefully acknowledged.



Chapter 1
Harmonic functions

We begin by illustrating some aspects of the classical model problem in
the theory of elliptic regularity: the Dirichlet problem for the Laplace
operator.

1.1 Introduction

From now on Ω will be a bounded, connected and open subset of Rn.

Definition 1.1 Given a function u ∈ C2(Ω) we say that u is

– harmonic if Δu = 0

– subharmonic if Δu ≥ 0

– superharmonic if Δu ≤ 0,

where

Δu(x) :=
n∑

α=1

D2
αu(x), Dα :=

∂

∂xα

is the Laplacian operator.

Exercise 1.2 Prove that if f ∈ C2(R) is convex and u ∈ C2(Ω) is harmonic,
then f ◦ u is subharmonic.

Throughout this chapter we shall study some important properties of
harmonic functions and we shall be concerned with the problem of the
existence of harmonic functions with prescribed boundary value, namely
with the solution of the following Dirichlet problem:{

Δu = 0 in Ω
u = g on ∂Ω (1.1)

in C2(Ω) ∩ C0(Ω), for a given function g ∈ C0(∂Ω).



2 Harmonic functions

1.2 The variational method

The problem of finding a harmonic function with prescribed boundary
value g ∈ C0(∂Ω) is tied, though not equivalent (see section 1.2.2), to the
following one: find a minimizer u for the functional D

D(u) =
1
2

∫
Ω

|Du|2dx (1.2)

in the class

A = {u ∈ C2(Ω) ∩ C0(Ω) : u = g on ∂Ω}.

The functional D is called Dirichlet integral.

In fact, formally, if a minimizer u exists, then the first variation of the
Dirichlet integral vanishes:

d

dt
D(u + tϕ)

∣∣∣
t=0

= 0

for all smooth compactly supported functions ϕ in Ω; an integration by
parts then yields

0 =
d

dt
D(u + tϕ)

∣∣∣
t=0

=
∫

Ω

∇u · ∇ϕdx

= −
∫

Ω

Δuϕdx, ∀ϕ ∈ C∞
0 (Ω),

and by the arbitrariness of ϕ we conclude Δu = 0, which is the Euler-
Lagrange equation for the Dirichlet integral: minimizers of the Dirichlet
integral are harmonic.

This was stated as an equivalence by Dirichlet and used by Riemann
in his geometric theory of functions.

Dirichlet’s principle: A minimizer u of the Dirichlet integral in Ω with
prescribed boundary value g always exists, is unique and is a harmonic
function; it solves {

Δu = 0 in Ω
u = g on ∂Ω.

(1.3)

Conversely, any solution of (1.3) is a minimizer of the Dirichlet integral
in the class of functions with boundary value g.

Dirichlet saw no need to prove this principle; however, as we shall see,
in general Dirichlet’s principle does not hold and, in the circumstances in
which it holds, it is not trivial.
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−1

−1

1

1− 1
n

1
n

Figure 1.1: The function un as defined in (1.4)

1.2.1 Non-existence of minimizers of variational
integrals

The following examples, the first being a classical example of Weierstrass,
show that minimizers to a variational integral need not exist.

1. Consider the functional

F(u) =
∫ 1

−1

(xu̇)2dx

defined on the class of Lipschitz functions

A = {u ∈ Lip([−1, 1]) : u(−1) = −1, u(1) = 1}.
The following sequence of functions in A

un(x) :=

⎧⎨⎩ −1 for x ∈ [−1,− 1
n ]

1 for x ∈ [ 1
n , 1]

nx for x ∈ [− 1
n , 1

n ]
(1.4)

shows that infAF = 0, but evidently F cannot attain the value 0 on A.

2. Consider

F(u) =
∫ 1

0

(1 + u̇2)
1
4 dx,

defined on

A = {u ∈ Lip([0, 1]) : u(0) = 1, u(1) = 0}.
The sequence of functions

u(x) =
{

1− nx for x ∈ [0, 1
n ]

0 for x ∈ [ 1
n , 1]
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shows that infAF = 1. On the other hand, if F(u) = 1, then u is constant,
thus cannot belong to A.

3. Consider the area functional defined on the unit ball B1 ⊂ R2

F(u) =
∫

B1

√
1 + |Du|2dx,

defined on

A = {u ∈ Lip(B1) : u = 0 on ∂B1, u(0) = 1}.

As F(u) ≥ π for every u ∈ A, the sequence of functions

u(x) =
{

1− n|x| for |x| ∈ [0, 1
n ]

0 for |x| ∈ [ 1
n , 1]

shows that infAF = π. On the other hand if F(u) = π for some u ∈ A,
then u is constant, thus cannot belong to A.

1.2.2 Non-finiteness of the Dirichlet integral

We have seen that a minimizer of the Dirichlet integral is a harmonic
function. In some sense the converse is not true: we exhibit a harmonic
function with infinite Dirichlet integral.

The Laplacian in polar coordinates on R2 is

Δ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
,

and it is easily seen that rn cosnθ and rn sinnθ are harmonic functions.
Now define on the unit ball B1 ⊂ R2

u(r, θ) =
a0

2
+

∞∑
n=1

rn(an cosnθ + bn sinnθ).

Provided ∞∑
n=1

(|an|+ |bn|) <∞,

the series converges uniformly, while its derivatives converge uniformly on
compact subsets of the ball, so that u belongs to C∞(B1) ∩ C0(B1) and
is harmonic.

The Dirichlet integral of u is

D(u) =
1
2

∫ 2π

0

dθ

∫ 1

0

(|∂ru|2 +
1
r2
|∂θu|2)rdr =

π

2

∞∑
n=1

n(a2
n + b2

n).
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Thus, if we choose an = 0 for all n ≥ 0, bn = 0 for all n ≥ 1, with the
exception of bn! = n−2, we obtain

u(r, θ) =
∞∑

n=1

rn!n−2 sin(n!θ),

and we conclude that u ∈ C∞(B1) ∩ C0(B1), it is harmonic, yet

D(u) =
π

2

∞∑
n=1

n−4n! =∞.

In fact, every function v ∈ C∞(B1)∩C0(B1) that agrees with the function
u defined above on ∂B1 has infinite Dirichlet integral.

1.3 Some properties of harmonic functions

Proposition 1.3 (Weak maximum principle) If u ∈ C2(Ω) ∩ C0(Ω)
is subharmonic, then

sup
Ω

u = max
∂Ω

u;

If u is superharmonic, then

inf
Ω

u = min
∂Ω

u.

Proof. We prove the proposition for u subharmonic, since for a superhar-
monic u it is enough to consider −u. Suppose first that Δu > 0 in Ω. Were
x0 ∈ Ω such that u(x0) = maxΩ u, we would have uxixi(x0) ≤ 0 for every
1 ≤ i ≤ n. Summing over i we would obtain Δu(x0) ≤ 0, contradiction.

For the general case Δu ≥ 0 consider the function v(x) = u(x)+ε|x|2.
Then Δv > 0 and, by what we have just proved, supΩ v = max∂Ω v. On the
other hand, as ε→ 0, we have supΩ v → supΩ u and max∂Ω v → max∂Ω u.

�

Exercise 1.4 Similarly, prove the following generalization of Proposition 1.3:
let u ∈ C2(Ω) ∩ C0(Ω) satisfy

n∑
α,β=1

AαβDαβu +
n∑

α=1

bαDαu ≥ 0,

where Aαβ, bα ∈ C0(Ω) and Aαβ is elliptic:
∑n

α,β=1 Aαβξαξβ ≥ λ|ξ|2, for some
λ > 0 and every ξ ∈ Rn. Then

sup
Ω

u = max
∂Ω

u.
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Remark 1.5 The continuity of the coefficients in Exercise 1.4 is neces-
sary. Indeed Nadirashvili gave a counterexample to the maximum prin-
ciple with Aαβ elliptic and bounded, but discontinuous, see [82].

Proposition 1.6 (Comparison principle) Let u, v ∈ C2(Ω) ∩ C0(Ω)
be such that u is subharmonic, v is superharmonic and u ≤ v on ∂Ω.
Then u ≤ v in Ω.

Proof. Since u− v is subharmonic with u− v ≤ 0 on ∂Ω, from the weak
maximum principle, Proposition 1.3, we get u− v ≤ 0 in Ω. �

Clearly

u ≤ v + max
∂Ω
|u− v| on ∂Ω,

consequently:

Corollary 1.7 (Maximum estimate) Let u and v be two harmonic
functions in Ω. Then

sup
Ω
|u− v| ≤ max

∂Ω
|u− v|.

Corollary 1.8 (Uniqueness) Two harmonic functions on Ω that agree
on ∂Ω are equal.

Proposition 1.9 (Mean value inequalities) Suppose that u ∈ C2(Ω)
is subharmonic. Then for every ball Br(x) � Ω

u(x) ≤
∫

∂Br(x)

u(y)dHn−1(y), 1 (1.5)

u(x) ≤
∫

Br(x)

u(y)dy. (1.6)

If u is superharmonic, the reverse inequalities hold; consequently for u
harmonic equalities are true.

1By
∫
–A f(x)dx we denote the average of f on A i.e., 1

|A|
∫

A f(x)dx. Similarly∫
–A fdHn−1 = 1

Hn−1(A)

∫
A fdHn−1.
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Proof. Let u be subharmonic. From the divergence theorem, for each
ρ ∈ (0, r] we have

0 ≤
∫

Bρ(x)

Δu(y)dy

=
∫

∂Bρ(x)

∂u

∂ν
(y)dHn−1(y)

=
∫

∂B1(0)

∂u

∂ρ
(x + ρy)ρn−1dHn−1(y)

= ρn−1 d

dρ

∫
∂B1(0)

u(x + ρy)dHn−1(y)

= ρn−1 d

dρ

(
1

ρn−1

∫
∂Bρ(x)

u(y)dHn−1(y)
)

= nωnρn−1 d

dρ

∫
∂Bρ(x)

u(y)dHn−1(y),

(1.7)

where ωn := |B1|. This implies that the last integral is non-decreasing
and, since

lim
ρ→0

∫
∂Bρ(x)

u(y)dHn−1(y) = u(x),

(1.5) follows. We leave the rest of the proof for the reader. �

Corollary 1.10 (Strong maximum principle) If u ∈ C2(Ω) ∩ C0(Ω)
is subharmonic (resp. superharmonic), then it cannot attain its maximum
(resp. minimum) in Ω unless it is constant.

Proof. Assume u is subharmonic and let x0 ∈ Ω be such that u(x0) =
supΩ u. Then the set

S := {x ∈ Ω : u(x) = u(x0)}
is closed because u is continuous and is open thanks to (1.6). Since Ω is
connected we have S = Ω. �

Remark 1.11 If u is harmonic, the mean value inequality is also a direct
consequence of the representation formula (1.11) below.

Exercise 1.12 Prove that if u ∈ C2(Ω) satisfies one of the mean value proper-
ties, then it is correspondigly harmonic, subharmonic or superharmonic.

Exercise 1.13 Prove that if u ∈ C0(Ω) satisfies the mean value equality

u(x) =

∫
Br(x)

u(y)dy, ∀Br(x) ⊂ Ω

then u ∈ C∞(Ω) and it is harmonic.
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[Hint: Regularize u with a family ϕε = ρε(|x|) of mollifiers with radial simmetry
and use the mean value property to prove that u ∗ ρε = u in any Ω0 � Ω for ε
small enough.]

Proposition 1.14 Consider a sequence of harmonic functions uj that
converge locally uniformly in Ω to a function u ∈ C0(Ω). Then u is
harmonic.

Proof. The mean value property is stable under uniform convergence, thus
holds true for u, which is therefore harmonic thanks to Exercise 1.13. �

Remark 1.15 Being harmonic is preserved under the weaker hypothesis
of weak Lp convergence, 1 ≤ p <∞, or even of the convergence is the sense
of distributions. This follows at once from the so-called Weyl’s lemma.

Lemma 1.16 (Weyl) A function u ∈ L1
loc(Ω) is harmonic if and only if∫

Ω

uΔϕdx = 0, ∀ϕ ∈ C∞
c (Ω).

Proof. Consider a family of radial mollifiers ρε, i.e. ρε(x) = 1
εn ρ(ε−1x),

where ρ ∈ C∞(Rn) is radially symmetric, supp(ρ) ⊂ B1 and
∫

B1
ρ(x)dx =

1. Define uε = u ∗ ρε. Then, from the standard properties of convolution
we find ∫

Ω

uεΔϕdx =
∫

Ω

u(Δϕ ∗ ρε)dx

=
∫

Ω

uΔ(ϕ ∗ ρε)dx

= 0, for every ϕ ∈ C∞
c (Ωε),

where
Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}.

In particular Δuε = 0 on Ωε. Now fix R > 0 and let 0 < ε ≤ 1
2R. We

have by Fubini’s theorem∫
Ωε

|uε(y)|dy ≤
∫

Ωε

1
εn

∫
Ω

ρ

( |x− y|
ε

)
|u(x)|dxdy

≤
∫

Ω

|u(x)|dx.

(1.8)

Here we may assume that u ∈ L1(Ω), since being harmonic is a local
property. By the mean value property applied with balls of radius R

2 and
(1.8), we obtain that the uε are uniformly bounded in ΩR/2. They are also
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locally equicontinuous in ΩR because for x0 ∈ ΩR and x1, x2 ∈ BR
2
(x0),

still by the mean-value property,

|uε(x1)− uε(x2)| ≤ 2n

ωnRn

∫
B R

2
(x1)ΔB R

2
(x2)

|uε(x)|dx

≤ 2n

ωnRn
sup

BR(x0)

|uε| ·meas
(
BR

2
(x2)ΔBR

2
(x1)

)
,

where

BR
2
(x1)ΔBR

2
(x2) :=

(
BR

2
(x1)\BR

2
(x2)

)
∪

(
BR

2
(x2)\BR

2
(x1)

)
.

By Ascoli-Arzelà’s theorem (Theorem 2.3 below), we can extract a se-
quence uεk

which converges uniformly in ΩR to a continuous function v
as k → ∞ and εk → 0, which is harmonic thanks to Exercise 1.13. But
u = v almost everywhere in ΩR by the properties of convolutions, hence
u is harmonic in ΩR. Letting R→ 0 we conclude. �

Proposition 1.17 Given u ∈ C0(Ω), the following facts are equivalent:

(i) For every ball BR(x) � Ω we have

u(x) ≤
∫

∂BR(x)

u(y)dHn−1(y);

(ii) for every ball BR(x) � Ω we have

u(x) ≤
∫

BR(x)

u(y)dy;

(iii) for every x ∈ Ω, R0 > 0, there exist R ∈ (0, R0) such that BR(x) �
Ω and

u(x) ≤
∫

BR(x)

u(y)dy; (1.9)

(iv) for each h ∈ C0(Ω) harmonic in Ω′ � Ω with u ≤ h on ∂Ω′, we have
u ≤ h in Ω′;

(v)
∫
Ω

u(x)Δϕ(x)dx ≥ 0, ∀ϕ ∈ C∞
c (Ω), ϕ ≥ 0.

Proof. Clearly (i) implies (ii) and (ii) implies (iii).
(iii)⇒(iv): Since h satisfies the mean value property the function w :=
u− h satisfies

w(x) ≤
∫

BR(x)

w(y)dy for all balls BR(x) ⊂ Ω′ s.t. (1.9) holds.



10 Harmonic functions

Then
sup
Ω′

w = max
∂Ω′

w ≤ 0,

the first identity following exactly as in the proof of Corollary 1.10.
(iv)⇒(i): Let BR(x) � Ω, and choose h harmonic in BR(x) and h = u in
Ω\BR(x). This can be done by Proposition 1.24 below. Then

u(x) ≤ h(x) =
∫

∂BR(x)

hdHn−1 =
∫

∂BR(x)

udHn−1.

The equivalence of (v) to (ii) can be proved by mollifying u, compare
Exercise 1.13. �

Often a continuous function satisfying one of the conditions in Pro-
position 1.17 is called subharmonic.

Exercise 1.18 Use Proposition 1.17 to prove the following:

1. A finite linear combination of harmonic functions is harmonic.

2. A positive finite linear combination of subharmonic (resp. superharmonic)
functions is a subharmonic (resp. superharmonic) function.

3. The supremum (resp. infimum) of a finite number of subharmonic (resp.
superharmonic) functions is a subharmonic (resp. superharmonic) func-
tion.

Theorem 1.19 (Harnack inequality) Given a non-negative harmonic
function u ∈ C2(Ω), for every ball B3r(x0) � Ω we have

sup
Br(x0)

u ≤ 3n inf
Br(x0)

u.

Proof. By the mean value property, Proposition 1.9, and from u ≥ 0 we
get that for y1, y2 ∈ Br(x0)

u(y1) =
1

ωnrn

∫
Br(y1)

udx

≤ 1
ωnrn

∫
B2r(x0)

udx

=
3n

ωn(3r)n

∫
B2r(x0)

udx

≤ 3n

ωn(3r)n

∫
B3r(y2)

udx

= 3nu(y2).

�
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Theorem 1.20 (Liouville) A bounded harmonic function u : Rn → R
is constant.

Proof. Define m = infRn u. Then u−m ≥ 0 and by Harnack’s inequality,
Theorem 1.19,

sup
BR

(u−m) ≤ 3n inf
BR

(u−m), ∀R > 0.

Letting R → ∞, the term on the right tends to 0 and we conclude that
supRn u = m. �

Proposition 1.21 Let u be harmonic (hence smooth by Exercise 1.13)
and bounded in BR(x0). For r < R we may find constants c(k, n) such
that

sup
Br(x0)

|∇ku| ≤ c(k, n)
(R− r)k

sup
BR(x0)

|u|. (1.10)

Exercise 1.22 Prove Proposition 1.21.
[Hint: First prove (1.10) for k = 1 using the mean-value identity (it might be
easier to start with the case r = R/2 and then use a covering or a scaling argu-
ment). Then notice that each derivative of u is harmonic and use an inductive
procedure.]

Proposition 1.23 Let (uk) be an equibounded sequence of harmonic func-
tions in Ω, i.e. assume that supΩ |uk| ≤ c for a constant c independent
of k. Then up to extracting a subsequence uk → u in C	

loc(Ω) for every 
,
where u is a harmonic function on Ω.

Proof. This follows easily from Proposition 1.21 and the Ascoli-Arzelà
theorem (Theorem 2.3 below), with a simple covering argument. �

1.4 Existence in general bounded domains

Before dealing with the existence of harmonic functions is general domains
we state a classical representation formula providing us with the solution
of the Dirichlet problem (1.1) on a ball.
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1.4.1 Solvability of the Dirichlet problem on balls:
Poisson’s formula

Proposition 1.24 (H.A. Schwarz or S.D. Poisson) Let a ∈ Rn, r >
0 and g ∈ C0(∂Br(a)) be given and define the function u by

u(x) :=

⎧⎪⎨⎪⎩
r2 − |x− a|2

nωnr

∫
∂Br(a)

g(y)
|x− y|n dHn−1(y) x ∈ Br(a)

g(x) x ∈ ∂Br(a).
(1.11)

Then u ∈ C∞(Br(a)) ∩ C0(Br(a)) and solves the Dirichlet problem{
Δu = 0 in Br(a)
u = g on ∂Br(a)

Proof. We only sketch it. By direct computation we see that u is harmonic.
For the continuity on the boundary assume, without loss of generality, that
a = 0 and define

K(x, y) :=
r2 − |x|2

nωnr|x− y|n , x ∈ Br(0), y ∈ ∂Br(0).

One can prove that∫
∂Br(0)

K(x, y)dHn−1(y) = 1, for every x ∈ Br(0).

Let x0 ∈ ∂Br(0) and for any ε > 0 choose δ such that |g(x)− g(x0)| < ε
if x ∈ ∂Br(0) ∩Bδ(x0). Then, for x ∈ Br(0) ∩Bδ/2(x0),

|u(x)− g(x0)| ≤
∣∣∣∣ ∫

∂Br(0)

K(x, y)[g(y)− g(x0)]dHn−1(y)
∣∣∣∣

≤
∫

∂Br(0)∩Bδ(x0)

K(x, y)|g(y)− g(x0)|dHn−1(y)

+
∫

∂Br(0)\Bδ(x0)

K(x, y)|g(y)− g(x0)|dHn−1(y)

≤ ε +
(r2 − |x|2)rn−2(

δ
2

)n 2 sup
∂Br(0)

|g|.

Hence |u(x)− g(x0)| → 0 as x→ x0. �
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1.4.2 Perron’s method

We now present a method for solving the Dirichlet problem (1.1).
Given an open bounded domain Ω ⊂ Rn and g ∈ C0(∂Ω) define

S− := {u ∈ C2(Ω) ∩ C0(Ω) : Δu ≥ 0 in Ω, u ≤ g on ∂Ω};
S+ := {u ∈ C2(Ω) ∩ C0(Ω) : Δu ≤ 0 in Ω, u ≥ g on ∂Ω}.

These sets are non-empty, since g is bounded and constant functions are
harmonic: u ≡ supΩ g and v ≡ infΩ g belong to S+ and S− respectively.
We also observe that, by the comparison principle, v ≤ u for each v ∈ S−
and u ∈ S+. We define

u∗(x) = sup
u∈S−

u(x), u∗(x) = inf
u∈S+

u(x).

and shall
1. prove that both u∗ and u∗ are harmonic;

2. find conditions on Ω in order to have u∗, u∗ ∈ C0(Ω) and u∗ = u∗ =
g on ∂Ω.

This is referred to as Perron’s method.

Step 1. It is enough to prove that u∗ is harmonic in a generic ball B ⊂ Ω.
Fix x0 ∈ B. By the definition of u∗ we may find a sequence vj ∈ S− such
that vj(x0)→ u∗(x0). Define

v′j := max(v1, . . . , vj) ∈ S−,

v′′j := PBv′j ,

where PBv′j is obtained by (1.11) as the harmonic extention of v′j on B
matching v′j on ∂B. Observe that by definition (v′j) is an increasing se-
quence and, by the maximum principle, (v′′j ) is increasing as well. Since
the sequence (v′′j ) is equibounded and increasing it converges locally uni-
formly in B to a harmonic function h thanks to Proposition 1.23.

Observe that h ≤ u∗ and h(x0) = u∗(x0). We claim that h = u∗ in B.
If h(z) < u∗(z) for some z ∈ B, choose w ∈ S− such that w(z) > h(z)
and define wj = max{v′′j , w}. Also define w′

j and w′′
j as done before with

v′j and v′′j . Again we have that w′′
j → h̃ for some harmonic function h̃.

From the definition it is easy to prove that v′′j ≤ w′′
j , thus h ≤ h̃ and

h(x0) = h̃(x0). By the strong maximum principle, this implies h = h̃ on
all of B. This is a contradiction because

h̃(z) = limw′′
j (z) ≥ w(z) > h(z) = h̃(z).

This proves that h = u∗ and then u∗ is harmonic in B, hence in all of
Ω since B was arbitrary. Clearly the same proof applies to u∗.

Step 2. The functions u∗ and u∗ need not achieve the boundary data g,
and in general they don’t.
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Definition 1.25 A point x0 ∈ ∂Ω is called regular if for every g ∈
C0(∂Ω) and every ε > 0 there exist v ∈ S− and w ∈ S+ such that
g(x0)− v(x0) ≤ ε and w(x0)− g(x0) ≤ ε.

Exercise 1.26 The Dirichlet problem (1.1) has solution for every g ∈ C0(∂Ω)
if and only if each point of ∂Ω is regular.
[Hint: Use Perron’s method and prove that u∗ ∈ C0(Ω) and u∗ = g on ∂Ω.]

Definition 1.27 Given x0 ∈ ∂Ω, an upper barrier at x0 is a superhar-
monic function b ∈ C2(Ω) ∩ C0(Ω) such that b(x0) = 0 and b > 0 on
Ω\{x0}. We say that b is a lower barrier if −b is an upper barrier.

Proposition 1.28 Suppose that x0 ∈ Ω admits upper and lower barriers.
Then x0 is a regular point.

Proof. Define M = max∂Ω |g| and, for each ε > 0, choose δ > 0 such
that for x ∈ Ω with |x− x0| < δ we have |g(x)− g(x0)| < ε. Let b be an
upper barrier and choose k > 0 such that kb(x) ≥ 2M if |x− x0| ≥ δ (by
compactness infΩ\Bδ(x0)

b > 0). Then define

w(x) := g(x0) + ε + kb(x);

v(x) := g(x0)− ε− kb(x)

and observe that w ∈ S+ and v ∈ S−. Moreover w(x0) − g(x0) = ε and
g(x0)− v(x0) = ε. �

In the following proposition we see that, under suitable hypotheses on
the geometry of Ω, the existence of barriers, and therefore of a solution
to the Dirichlet problem, is guaranteed.

Proposition 1.29 Suppose that for each x0 ∈ ∂Ω there exists a ball
BR(y) in the complement of Ω such that BR(y) ∩ Ω = {x0} (see Fig-
ure 1.2). Then every point of ∂Ω is regular, hence the Dirichlet problem
(1.1) is solvable on Ω for arbitrary continuous boundary data.

Proof. For any x0 ∈ ∂Ω and a ball BR(y) as in the statement of the
proposition, consider the upper barrier b(x) := R2−n − |x − y|2−n for
n > 2 and b(x) := log |x−y|

R for n = 2, and the lower barrier −b(x). One
can easily verify that Δb = 0 in Rn \ {y}. �

Exercise 1.30 The hypotesis of Proposition 1.29 is called exterior sphere con-
dition. Show that convex domains and C2 domains satisfy the exterior sphere
condition.

Remark 1.31 The Perron method is non-constructive because it doesn’t
provide any way to find approximate solutions.
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Ω
x0

BR(y)

Figure 1.2: The exterior sphere condition.

1.4.3 Poincaré’s method

We now present a different method of solving the Dirichlet problem (1.1).
Cover Ω with a sequence Bi of balls, i.e. choose balls Bi ⊂ Ω, i =

1, 2, 3, . . . such that Ω =
⋃∞

i=1 Bi. Now define the sequence of integers

ik = 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . , 1, . . . , n, . . .

Given g ∈ C0(Ω), define the sequence (uk) by u1 := g and for k > 1

uk(x) :=
{

uk−1(x) for x ∈ Ω \Bik

Pik
uk−1(x) for x ∈ Bik

,

where Pik
uk−1 is the harmonic extention on Bik

of uk−1

∣∣
∂Bik

, given by
(1.11).

Proposition 1.32 If each point of ∂Ω is regular, then uk converges to
the solution u of the Dirichlet problem (1.1).

Proof. Suppose first g ∈ C0(Ω) subharmonic, meaning that it satisfies
the properties of Proposition 1.17. We can inductively prove that uk is
subharmonic and

g = u1 ≤ u2 ≤ . . . uk ≤ . . . ≤ sup
Ω

g.

Suppose indeed that uk is subharmonic (this is true for k = 1 by assump-
tion). Then by the comparison principle uk+1 ≥ uk, and it is not difficult
to prove that uk+1 satisfies for instance (iii) or (iv) of Proposition 1.17,
hence is subharmonic.

Since, for each i, uk is harmonic in Bi for infinitely many k, increasing
and uniformly bounded with respect to k, by Proposition 1.23 we see that
its limit u is a harmonic functions in each ball Bi, hence in Ω. Using
barriers it is not difficult to show that u = g on the boundary.
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Now suppose that g, not necessarily subharmonic, belongs to C2(Rn)
and Δg ≥ −λ. Then g0(x) = g(x) + λ

2n |x|2 is subharmonic and we may
solve the Dirichlet problem with boundary data g0. We may also solve the
Dirichlet problem with data λ

2n |x|2 (that is subharmonic) and by linearity
we may solve the Dirichlet problem with data g.

Finally, suppose g ∈ C0(Ω), which we can think of as continuosly
extended to Rn, and regularize it by convolution. For each convoluted
function gε ∈ C∞(Ω) we find a harmonic map uε with uε = gε → g
uniformly on ∂Ω. Then by the maximum principle, for any sequence
εk → 0 we have that (uεk

) is a Cauchy sequence in C0(Ω), hence it
uniformly converges to a harmonic function u which equals g on ∂Ω. �

Remark 1.33 The method of Poincaré decreases the Dirichlet integral:

D(g) ≥ D(u2) ≥ . . . ≥ D(uk) ≥ . . . ≥ D(u).

Consequently if g has a W 1,2 extension i.e., an extension with finite Di-
richlet integral, then the harmonic extension u lies in W 1,2(Ω) (for the
definition of W 1,2(Ω) see Section 3.2 below).

On the other hand one can also have

D(g) = D(uk) =∞ for every k = 1, 2, . . . ,

compare section 1.2.2.

Remark 1.34 By Riemann’s mapping theorem one can show that, if
Ω ⊂ R2 is the interior of a closed Jordan curve Γ, then all boundary points
of Ω are regular. Lebesgue has instead exhibited a Jordan domain Ω in
R3 (i.e. the interior of a homeomorphic image of S2) where the problem
Δu = 0 in Ω, u = g on ∂Ω cannot be solved for every g ∈ C0(∂Ω).



Chapter 2
Direct methods

In this chapter we shall study the existence of minimizers of variational
integrals F defined on some space of functions A, say

F(u) :=
∫

Ω

F (Du)dx, u ∈ A, (2.1)

using the so-called direct method. This consists in introducing a possibly
larger class A ⊃ A together with a topology that makes F lower semicon-
tinuous and every (or at least one) minimizing sequence {uj} compact in
A, i.e. such that, modulo passing to a subsequence, uj → u. Then u is a
minimizer in A, since

F(u) ≤ lim inf
j→∞

F(uj) = inf
u∈A
F(u).

Observe that the two conditions are in competition, since with a stronger
topology it is easier to have semicontinuity, but more difficult to have
compactness.

Examples of integrals of the form (2.1) are the following,1

1. F(u) :=
∫
Ω
|Du|2dx

2. F(u) :=
∫
Ω

√
1 + |Du|2dx

3. F(u) :=
∫
Ω

e|Du|2dx

4. F(u) :=
∫
Ω
|Du|2 log(1 + |Du|2)dx

5. F(u) :=
∫
Ω

(∑n−1
i=1 |Diu|2 + |Dnu|k)dx, k ≥ 1

6. F(u) :=
∫
Ω
(1 + |Du|k)

1
k dx, k ≥ 1.

1These integrals are well defined on the space of Lipschitz functions A = Lip(Ω)
because, thanks to Rademacher’s theorem, every Lipschitz function is differentiable
almost everywhere and belongs to W 1,∞(Ω). On the other hand, working with other
spaces, such as Sobolev spaces, is often more suitable.
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It turns out that in all these cases F is a convex function. This is a
key property in the study of lower semicontinuity, and we shall assume it
throughout this chapter.

2.1 Lower semicontinuity in classes
of Lipschitz functions

By convexity of F we have for u, v ∈ Lip(Ω)

F (Dv(x)) ≥ F (Du(x)) + Fpα(Du(x))(Dαv(x)−Dαu(x)), a.e. x ∈ Ω,

where Fpα denotes the partial derivative of F (p) = F (p1, . . . , pn) with
respect to the variable pα, and here and in the following we use the con-
vention of summing over repeated indexes. Consider a sequence {uj}; for
each uj we have∫

Ω

F (Du)dx ≤
∫

Ω

F (Duj)dx−
∫

Ω

Fpα(Du)(Dαuj −Dαu)dx. (2.2)

If we assume that Fpα is continuous, then Fpα(Du(x)) ∈ L∞(Ω). There-
fore if Duj weakly converges to Du in L1(Ω), the last integral vanishes
and F(u) ≤ lim inf F(uj), thus we have

Proposition 2.1 A functional F : Lip(Ω)→ R of the form

F(u) =
∫

Ω

F (Du)dx

with F convex and Fp continuous is lower semicontinuous with respect to
the weak-W 1,1 convergence.

Define the space

Lipk(Ω) = {u ∈ Lip(Ω) : |u|1 ≤ k},

where |u|1 is the Lipschitz seminorm:

|u|1 := sup
x,y∈Ω
x�=y

|u(x)− u(y)|
|x− y| .

Then we have

Proposition 2.2 If F is convex and Fp continuous, then F is lower semi-
continuous with respect to the uniform convergence of sequences with equi-
bounded Lipschitz seminorm.
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Proof. If we approximate Fp(Du) in L1(Ω, Rn) by smooth functions Fε,
the last term in (2.2) can be written as∫

Ω

(Fpα − Fα
ε )(Dαuj −Dαu)dx +

∫
Ω

Fα
ε (Dαuj −Dαu)dx.

Since Fα
ε → Fpα(Du) in L1, and the sequence (uj) has equibounded

gradient, taking ε small enough, the the first term can be made arbitrarily
small. Integrating by parts the second term yields∫

Ω

Fα
ε (Dαuj −Dαu)dx = −

∫
Ω

DαFα
ε (uj − u)dx,

which goes to zero as uj → u uniformly. Lower semicontinuity follows
from (2.2) letting ε→ 0. �

2.2 Existence of minimizers

2.2.1 Minimizers in Lipk(Ω)

The reason for working in the classes Lipk(Ω) of equi-Lipschitz functions
essentially lies in the compactness theorem of Ascoli and Arzelà.

Theorem 2.3 (Ascoli-Arzelà) Given any equibounded and equicontinu-
ous2 sequence of functions uj : Ω→ R, there exists a subsequence conver-
ging uniformly on compact subsets.

Proposition 2.4 Consider g ∈ Lipk(Ω). Then any variational integral
F(u) =

∫
Ω

F (Du)dx with F convex and Fp continuous has a minimizer
in the class

Ak := {u ∈ Lipk(Ω) : u = g on ∂Ω}.
Proof. Take a minimizing sequence (uj) ⊂ Ak. It is equibounded and
equicontinuous hence, by Ascoli-Arzelà’s theorem, we may extract a sub-
sequence, still denoted by uj , such that uj → u ∈ Lipk(Ω) uniformly.
Then Proposition 2.2 yields

F(u) ≤ lim inf
j→∞

F(uj) = inf
u∈Ak

F(u).

�
2Equibounded means that there exists K > 0 such that supΩ |uj | ≤ K for every j;

equicontinuous means that for every x0 ∈ Ω and ε > 0, there exists δ > 0 such that

|uj(x) − uj(x0)| < ε, for x ∈ Ω ∩ Bδ(x0), and for every j.
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The above proposition does not solve the problem of finding a minim-
izer among Lipschitz functions since it produces a function u minimizing
in Ak, but, in general, not in the class A of all Lipschitz functions with
boundary value g. However u is a minimizer in A, if a suitable a priori
estimate for its gradient holds, as the following proposition shows.

Proposition 2.5 Suppose that the minimizer u in Ak given by Proposi-
tion 2.4 satisfies |u|1 < k. Then u minimizes in

A := {u ∈ Lip(Ω) | u = g on ∂Ω}.

Proof. Take any w ∈ A. Since |u|1 < k, we may choose t ∈ (0, 1) such
that tw + (1− t)u ∈ Lipk(Ω). Since u minimizes in Ak and F is convex,
we have

F(u) ≤ F(tw + (1− t)u) ≤ tF(w) + (1− t)F(u),

i.e., F(w) ≥ F(u). �

2.2.2 A priori gradient estimates

We now establish the a priori estimate required in Proposition 2.5, un-
der suitable assumptions. This is achieved by comparison with suitable
functions, called barriers, whose discussion is the aim of the following few
paragraphs. We shall always assume F convex and Fp continuous.

Supersolutions and subsolutions

Definition 2.6 Given the variational integral F , we shall say that u ∈
Lip(Ω) is a supersolution if

F(u + ϕ) ≥ F(u), ∀ϕ ∈ Lip(Ω), ϕ ≥ 0, sptϕ � Ω. (2.3)

We shall say that v is a subsolution if

F(v − ϕ) ≥ F(v), ∀ϕ ∈ Lip(Ω), ϕ ≥ 0, sptϕ � Ω. (2.4)

If u is a supersolution, then we easily infer

d

dt
F(u + tϕ)

∣∣∣
t=0+

=
∫

Ω

Fpα(Du)Dαϕdx ≥ 0, ∀ϕ ≥ 0, sptϕ � Ω,

or, in the sense of distributions, div(Fp(Du)) ≤ 0. Similarly, a subsolution
v satisfies div(Fp(Dv)) ≥ 0.
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The comparison principle

Proposition 2.7 (Comparison principle) Suppose that F is strictly
convex. Then given a supersolution u and a subsolution v in Lip(Ω), with
v ≤ u on ∂Ω, we have v ≤ u in Ω.

Proof. Were the assertion false, the open set

K = {x ∈ Ω | v(x) > u(x)}

would be non-empty. Consider now the functions

ũ(x) :=
{

u(x) if x ∈ Ω\K
v(x) if x ∈ K,

and

ṽ(x) :=
{

v(x) if x ∈ Ω\K
u(x) if x ∈ K.

Then F(ũ) ≥ F(u) and F(ṽ) ≥ F(v), hence∫
Ω

F (Du)dx ≤
∫

Ω

F (Dũ)dx =
∫

Ω\K

F (Du)dx +
∫

K

F (Dv)dx,

whence ∫
K

F (Du)dx ≤
∫

K

F (Dv)dx.

Similarly∫
Ω

F (Dv)dx ≤
∫

Ω

F (Dṽ)dx =
∫

Ω\K

F (Dv)dx +
∫

K

F (Du)dx,

hence ∫
K

F (Dv)dx ≤
∫

K

F (Du)dx.

Then we infer ∫
K

F (Du)dx =
∫

K

F (Dv)dx.

Now the strict convexity of F implies∫
K

F

(
Du + Dv

2

)
dx <

1
2

∫
K

F (Du)dx +
1
2

∫
K

F (Dv)dx

=
∫

K

F (Dv)dx.

This is an absurd since replacing v in K with the smaller function v+u
2 ,

decreases F , contradicting the fact that v is a subsolution. �
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Exercise 2.8 Every constant function is both a supersolution and a subsolu-
tion. Moreover, if u is a supersolution (resp. subsolution), then u + λ is a
supersolution (resp. subsolution) for every constant λ ∈ R.
[Hint: use (2.2) and integration by parts.]

Proposition 2.9 (Maximum principle) Given a subsolution v and a
supersolution u of F in Lip(Ω), we have

sup
Ω

(v − u) ≤ sup
∂Ω

(v − u).

In particular if u is both a supersolution and a subsolution, then

sup
Ω
|u| = sup

∂Ω
|u|

Proof. Since u + sup∂Ω(v − u) is a supersolution by Exercise 2.8, and is
not smaller than v on ∂Ω, Proposition 2.7 yields

v ≤ u + sup
∂Ω

(v − u), in Ω.

�

Exercise 2.10 Show that the comparison principle holds true if we assume that
u and v are respectively a supersolution and a subsolution in Lipk(Ω), which
means that u, v ∈ Lipk(Ω), and in (2.3) and (2.4) we require ϕ ∈ Lipk(Ω).

Reduction to boundary estimates

It now comes the key estimate that allows us to infer global gradient
estimates from boundary estimates. In fact the method we are presenting
goes back to Haar and Radò, see [85]. In the Sixties of the last century the
method was revisited by M. Miranda, P. Hartman and G. Stampacchia.

Proposition 2.11 (Haar-Radò) Let u ∈ Lip(Ω) be a minimizer of F
in A = {v ∈ Lip(Ω) : v = u on ∂Ω}. Then

sup
x,y∈Ω

|u(x)− u(y)|
|x− y| = sup

x∈Ω, y∈∂Ω

|u(x)− u(y)|
|x− y| . (2.5)

Proof. For x1, x2 ∈ Ω, x1 �= x2, let τ = x2 − x1. Define

uτ (x) := u(x + τ), Ωτ := {x : x + τ ∈ Ω}.
Both u and uτ are super and subsolutions in Ω∩Ωτ , which is non-empty.
By the comparison principle, Proposition 2.9, there exists z ∈ ∂(Ω ∩ Ωτ )
such that

|u(x1)− u(x2)| = |u(x1)− uτ (x1)| ≤ |u(z)− uτ (z)| = |u(z)− u(z + τ)|.
Now observe that ∂(Ω ∩ Ωτ ) ⊂ (∂Ω ∪ ∂Ωτ ) and this implies that at least
one of the point z, z+τ belongs to ∂Ω. Moreover, both z and z+τ belong
to Ω. �
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Boundary gradient estimates through the bounded slope
condition

The bounded slope condition (BSC), essentially introduced by Haar, is
defined as follows:

A function g ∈ Lip(∂Ω) satisfies the bounded slope condition
if there exists a constant k > 0 such that for every x0 ∈ ∂Ω
we may find two affine functions v and w with |Dv| ≤ k and
|Dw| ≤ k such that:

1. v(x0) = w(x0) = g(x0)

2. v(x) ≤ g(x), w(x) ≥ g(x) for every x ∈ ∂Ω.

Theorem 2.12 Suppose that g ∈ Lip(∂Ω) satisfies the BSC with constant
k. Then any variational integral F(u) =

∫
Ω

F (Du)dx with F convex and
Fp continuous attains a minimum in the class

A :=
{
u ∈ Lip(Ω) : u

∣∣
∂Ω

= g
}
,

and such minimum belongs to Lipk(Ω).

Proof. By Proposition 2.4, there exists a minimizer u of F in

Ak+1 = {v ∈ Lipk+1(Ω) : v = g on ∂Ω}.

Since the affine functions in the definition of the BSC are a supersolution
and a subsolution, the comparison principle implies that |Du| ≤ k on ∂Ω
and, by Proposition 2.11, |u|1 ≤ k < k +1. We conclude with Proposition
2.5. �

Remark 2.13 The BSC is a pretty strong condition: for instance, it can
be true only if Ω is convex. On the other hand, notice that the above
result holds for a wide class of functionals.

2.2.3 Constructing barriers: the distance function

Since the BSC is very restrictive, we will discuss other conditions on a
domain Ω and a function g ∈ Lip(∂Ω) which allow to construct barriers
and minimize a given variational integral F(u) =

∫
Ω

F (Du)dx, with F
convex and Fp continuous.

Definition 2.14 Given a boundary datum g ∈ Lip(∂Ω), an upper barrier
at x0 ∈ ∂Ω is a supersolution b+ ∈ Lip(Ω) of F such that b+(x0) = g(x0)
and b+ ≥ g on ∂Ω. Lower barriers are defined analogously.
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Suppose that Ω is of class Ck, k ≥ 1; then there exist an interior
tubular neighborhood N of ∂Ω,

N = {x ∈ Ω : dist(x, ∂Ω) < ε},
where the corresponging projection p : N → ∂Ω is of class Ck−1. Let
d(x) := dist(x, ∂Ω) be the distance function from ∂Ω; then for every
x ∈ N ,

∇d(x) = ν(p(x)),

where ν(x) is the interior unit normal to ∂Ω. Since ν and p are of class
Ck−1, we have that d ∈ Ck(N) ∩ C0(N).

For x ∈ N, denote by H(x) the mean curvature (compare Section
11.1.3) at x of the hypersurface in Rn

Γd(x) := {y ∈ Ω : d(y) = d(x)}.
Then it can be proved that:

(n− 1)H(x) = −Δd ≥ (n− 1)H(p(x)).

Given a boundary datum g, that we assume of class C2 in a neighbor-
hood of Ω, one may try to construct Lipschitz barriers of the form

b+(x) := g(x) + h+(d(x)), b−(x) := g(x) + h−(d(x)), (2.6)

with h+ : [0, ε) → R increasing, differentiable at 0, independent of u,
and h+(0) = 0, such that b+(x) is a supersolution of F , and similarly
h− : [0, ε) → R decreasing, differentiable at 0, independent of u, and
h−(0) = 0, such that b−(x) is a subsolution of F . Though in general
impossible, this can be done if we assume additional structural conditions
on Ω and F , compare e.g. [52], [96]. For instance, still assuming that
F = F (|p|), indicate with Fpαpβ

:= ∂2F
∂pα∂pβ

the Hessian of F . Assume
that F is strictly convex and C2, so that Fpipj = Fpjpi and

λ(p)|ξ|2 ≤ Fpαpβ
(p)ξαξβ ≤ Λ(p)|ξ|2,

for positive functions 0 < λ(p) ≤ Λ(p). Define the Bernstein function

E(p) := Fpαpβ
(p)pαpβ .

Then in the following cases the construction of barriers of the form (2.6)
is possible.

(i) lim sup
|p|→∞

|p|Λ(p)
E(p) <∞

(ii) a. lim sup
|p|→∞

Λ(p)
E(p) <∞ and

b. the mean curvature of ∂Ω is non-negative.
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For instance (i) is trivially verified if Fpp is uniformly elliptic, i.e.
λ(p) ≥ γΛ(p) for every p ∈ Rn, and some γ > 0. Uniform ellipticity,
however, is not necessary because F (p) = e|p|

2
, which is not uniformly

elliptic, satisfies (i).

Exercise 2.15 The area functional, F(u) =
∫
Ω

√
1 + |Du|2dx, which is elliptic,

but not uniformly, satisfies (ii)a, but not (i).3

By the comparison principle the existence of such Lipschitz barriers
yields the a priori estimate for the gradient on the boundary (compare
also Proposition 11.41, where we shall also prove the existence of barriers
in the case of the area functional). In particular:

Theorem 2.16 Consider

F(u) =
∫

Ω

F (Du)dx

with F convex and of class C2. If F satisfies (i), or if F and Ω satisfy
(ii) above, then F has a minimizer in

A = {u ∈ Lip(Ω) : u = g on ∂Ω}

for every g ∈ Lip(∂Ω).

2.3 Non-existence of minimizers

Condition (ii)a in the last section does not guarantee the existence of bar-
riers without the assumption (ii)b. We shall now see an explicit example.

2.3.1 An example of Bernstein

We shall prove that the area functional

F(u) :=
∫

Ω

√
1 + |Du|2dx,

which satisfies (ii)a of the previous section, need not have a minimizer if
(ii)b is not met. This will be made more general in the next section.

3Given a function u ∈ Lip(Ω), Ω ⊂ Rn, it can be shown using the area formula that

F(u) :=

∫
Ω

√
1 + |Du|2dx = Hn(graph(u)),

where graph(u) := {(x, u(x)) : x ∈ Ω} ⊂ Rn+1.
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For fixed 0 < ρ < R, consider the domain

Ω = {x ∈ Rn : ρ < |x| < R}.

Define the boundary value g by

g(x) :=
{

m if |x| = ρ
0 if |x| = R

Exercise 2.17 Suppose that u is a minimizer for the area functional with the
above boundary condition. Then u is radial, i.e. u = u(r).
[Hint: the function

u(r) :=
1

2πr

∫
u(r, θ)dθ

satisfies A(u) < A(u) if u 	= u, by the strict convexity of F (p) =
√

1 + |p|2 and
Jensen’s inequality.]

By Exercise 2.17, a minimizer with boundary value g must be radial.
Then the area can be computed as

F(u) = 2π
∫ R

ρ

r
√

1 + u2
rdr.

The corresponding Euler-Lagrange equation is the ordinary differential
equation

rur(r)√
1 + ur(r)2

= −c, (2.7)

where c is a constant depending on m = u(ρ). The unique solution to
(2.7) with u = 0 on ∂BR(0) is

u(r) = c log
(

R +
√

R2 − c2

r +
√

r2 − c2

)
. (2.8)

In particular c ≤ ρ and

sup
0≤c≤ρ

u(ρ) = sup
0≤c≤ρ

c log
(

R +
√

R2 − c2

ρ +
√

ρ2 − c2

)
= ρ log

(
R +

√
R2 − ρ2

ρ

)
=: c(ρ,R),

that forces m to be less than c(ρ,R).
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Figure 2.1: A piece of catenoid which cannot be expressed as graph of a
function.

Remark 2.18 For

m = ρ log
(

R +
√

R2 − ρ2

ρ

)
,

which is the highest value for which the Dirichlet problem is solvable, the
solution u is not smooth up to the boundary since

lim
r→ρ+

|ur(r)| = +∞.

Remark 2.19 Observing that

cosh−1(r) = log(r +
√

r2 − 1),

we see that the graph of the solution given by (2.8) is the revolution
surface obtained by rotating a catenoid. For

m > ρ log
R +

√
R2 − ρ2

ρ

a catenoid matching the boundary conditions is no longer expressible as
the graph of a function, see Figure2.1.

2.3.2 Sharpness of the mean curvature condition

We now show that, at least in the case of the area functional

F(u) =
∫

Ω

√
1 + |Du|2dx,

condition (ii)b is sharp.
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Theorem 2.20 Let x0 ∈ ∂Ω be such that H(x0) < 0, where it is assumed
that Ω is a C2 domain. Then for every ε > 0 there exists g ∈ Lip(∂Ω)
with max∂Ω |g| < ε such that the Dirichlet problem for the area functional
cannot be solved with boundary data g, i.e. the area functional F has no
minimizer in A = {u ∈ Lip(Ω) : u = g on ∂Ω}.

This follows from Lemma 2.22 below by choosing ε > 0, consequently
fixing Γ and finally imposing g = 0 on ∂Ω\Γ and g(x0) > ε

2 . In the proof
of Lemma 2.22 we will need the following lemma.

Lemma 2.21 Let u ∈ Lip(Ω) be a subsolution and a supersolution of F
and let v ∈ C1(Ω) ∩ C0(Ω) be a supersolution of F . Let A be open in Ω
and set ∂1Ω := ∂Ω ∩A. Assume that

1. u ≤ v on ∂0Ω := ∂Ω\∂1Ω,

2. lim inf
t→0+

inf
A∩Γt

∂v

∂ν
> |u|1 := sup

x,y∈Ω, x�=y

|u(x)− u(y)|
|x− y| ,

where
Γt := {x ∈ Ω : d(x, ∂Ω) = t},

and ν is the interior unit normal to Γt. Then u ≤ v in Ω.

Proof. It is enough to prove the claim for w = v + ε instead of v, and let
ε→ 0. By the comparison principle it suffices to show that

u ≤ w on ∂0Ω.

If not, there exists t > 0 as small as we want such that

γt := sup
A∩Γt

(u− w) > 0

and
u− w ≤ 0 on Γt\A.

In Ωt := {x ∈ Ω : dist(x, ∂Ω) > t} we have u ≤ w + γt since u ≤ w + γt

on ∂Ωt, and by the maximum principle (Proposition 2.9) there exists
x0 ∈ Γt ∩A with u(x0) = w(x0) + γt and thus

∂

∂ν
(u− v)(x0) =

∂

∂ν
(u− w)(x0) ≥ 0.

Since t > 0 can be chose arbitrarily small, we found a contradiction to
hypothesis 2. �
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Lemma 2.22 For every ε > 0 there exists a neighborhood Γ of x0 in ∂Ω
such that if u minimizes F in the class A, then

sup
Ω
|u| ≤ sup

∂Ω\Γ
|g|+ ε

2
.

Proof. We may assume x0 = 0 and choose R > 0 such that H(x) < 0
for x ∈ BR(0) ∩ Ω. Remember that H(x) is the mean-curvature of the
hypersurface Γd(x) ⊂ Ω. Define

v(x) = b + ψ(|x|) for x ∈ Ω \BR(0),

where

ψ(r) := −R cosh−1

(
r

R

)
= −R log

(
r +
√

r2 −R2

R

)
,

and
b := sup

∂Ω\BR(0)

|g|+ R cosh−1 diamΩ
R

.

By the above, we know that

∂v

∂ν
= +∞ on ∂BR(x) ∩ Ω.

Also, u ≤ v on ∂Ω\BR(0) and, by Lemma 2.21 applied to the domain
Ω \BR(0), we infer u ≤ v in Ω\BR(0).

We now work in Ω ∩BR(0), where we define

w(x) := a
(√

R−
√

d(x)
)

+ b.

Using that H(x) > 0 for x ∈ Ω∩BR, and −Δd(x) = (n− 1)H(x), we can
compute for a > 0 large enough, more precisely

a ≥
(
− 2(n− 1) inf

Ω∩BR(0)
H

)−1

,

we compute

div(Fp(w)) = Dα
Dαw√

1 + |Dw|2 ≤ 0 weakly,

i.e. w is a supersolution. Moreover we have

w ≥ u on ∂BR(0) ∩ Ω and
∂w

∂ν
= +∞ on ∂Ω ∩BR(0),

hence by Lemma 2.21 applied to the domain Ω ∩BR(0) we have

u(x) ≤ w(x) ≤ b + a
√

R, for x ∈ Ω ∩BR(0).
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In conclusion

|u(x)| ≤ sup
∂Ω\BR(0)

|g|+ R cosh−1
(diamΩ

R

)
+ a
√

R. (2.9)

For R = R(ε) small enough and choosing Γ := ∂Ω ∩ BR(0) we get the
conclusion. �

Remark 2.23 Any minimizer of F in A = {u ∈ Lip(Ω) : u = 0 on ∂Ω}
actually belongs to C∞(Ω). Hence minimizing in A is equivalent to min-
imizing in Ã = {u ∈ C∞(Ω) ∩ Lip(Ω) : u = 0 on ∂Ω}. One might wonder
whether under the assumption of Theorem 2.20 minimizers of F can be
found in the larger class A∗ = {u ∈ C∞(Ω)∩C0(Ω) : u = 0 on ∂Ω}. This
is not the case. For the proof, which is slightly more technical but based
on the same ideas of Theorem 2.20, we refer to [6].

2.4 Finiteness of the area of graphs with zero
mean curvature

We would like to stress one more difference between the Dirichlet problem
for the Laplacian and the minimal surface equation. As we have seen
in Section 1.2.2, a C2(Ω) ∩ C0(Ω) solution to the Dirichlet problem for
the Laplace equation need not have finite Dirichlet energy. In the area
problem things go differently. Let us first notice that the Euler-Lagrange
equation of the area functional

F(u) =
∫

Ω

√
1 + |Du|2dx

is
n∑

i=1

Di
Diu√

1 + |Du|2 = 0. (2.10)

One might wonder whether it is possible to find a solution u to (2.10)
with u ∈ C2(Ω) ∩ C0(Ω) (as usual Ω is bounded) and F(u) = ∞. As we
now see (at least if we assume Ω of class C1 for simplicity), this is not the
case.

Proposition 2.24 Suppose that u ∈ C2(Ω) ∩ C0(Ω) is a solution to the
minimal surface equation (2.10)4 Then the area of the graph of u is finite,
i.e.

F(u) :=
∫

Ω

√
1 + |Du|2dx <∞.

4Minimizers of the area functional (with prescribed boundary data) satisfy (2.10),
but by convexity of the area functional, every Lipschitz solution u of (2.10) with
F(u) < ∞ is in fact the only minimizer of the area relative to its boundary value.
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Proposition 2.24 will be a consequence of the following lemma.

Lemma 2.25 For every u ∈ Lip(Ω) which minimizes the area in

{w ∈ Lip(Ω) : w = u on ∂Ω}
and every v ∈ C1(Ω) we have

F(u) ≤ F(v) +
∫

∂Ω

|u− v|dHn−1. (2.11)

Proof. Choose a sequence of smooth domains Ωε ⊂ Ω with

Ωε ↑ Ω, and Hn−1(∂Ωε)→Hn−1(∂Ω) as ε→ 0,

and choose functions ηε ∈ C∞
c (Ω) with 0 ≤ ηε ≤ 1, ηε ≡ 1 on Ωε, roughly

Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
, ηε(x) ∼ 1

ε
dist(x, ∂Ω), x ∈ Ω\Ωε.

The claim then follows easily from

F(u) ≤ F(ηεv + (1− ηε)u)→ F(v) +
∫

∂Ω

|u− v|dHn−1 as ε→ 0.

�
Proof of Proposition 2.24. We apply Lemma 2.25 in the domain

Ωε :=
{
x ∈ Ω : dist(x, ∂Ω) < ε

}
.

As already noticed, since

F(u,Ωε) :=
∫

Ωε

√
1 + |Du|2dx <∞,

we have that u is the only minimizer of F(·,Ωε) in

{w ∈ Lip(Ωε) : v = u on ∂Ωε},
compare Theorem 11.29. Then, by Lemma 2.25 with v = 0 we infer

F(u,Ωε) ≤ F(v,Ωε) +
∫

∂Ωε

|u|dHn−1

≤ Hn(Ωε) + sup
Ω
|u|Hn−1(∂Ωε).

Letting ε→ 0 we conclude

F(u,Ω) ≤ Hn(Ω) + sup
Ω
|u|Hn−1(∂Ω) <∞.

�

Exercise 2.26 Construct a function u ∈ C2(B1(0)) ∩ C0(B1(0)) with∫
B1(0)

√
1 + |Du|2dx = ∞.



32 Direct methods

2.5 The relaxed area functional in BV

In this section we discuss (giving the main ideas and omitting many de-
tails) how to use variational methods to find minimizers of the area func-
tional with prescribed boundary value (in a suitable relaxed sense) even
on domains Ω not satisfying condition (ii)b, i.e. when the mean curvature
of ∂Ω is negative at some points.

Given a Lipschitz or smooth function in Ω, the area of its graph is
given by

F(u) =
∫

Ω

√
1 + |Du|2dx.

If u is merely continuous, we define its relaxed area, according to Lebesgue,
as

F(u) = inf
{

lim inf
k→∞

F(uk)
∣∣∣ uk → u uniformly, uk ∈ C1(Ω)

}
.

Exercise 2.27 Prove that the relaxed area functional is lower semicontinuous
with respect to the uniform convergence.
[Hint: The area functional F for Lipschitz functions is lower semicontinuous.]

Exercise 2.28 The relaxed area functional agrees with the standard area func-
tional on Lipschitz functions.

In order to understand which functions have finite relaxed area, we
extend the above definition to L1, replacing the uniform convergence with
the L1 convergence: for each u ∈ L1(Ω)

F(u) = inf
{

lim inf
k→∞

F(uk) : uk → u in L1, uk ∈ C1(Ω)
}

.

Functions of bounded variation

Definition 2.29 An L1(Ω) function is said to be of bounded variation
when its partial derivatives in the sense of distributions are signed meas-
ures with finite total variation. The subspace of L1(Ω) consisting of such
functions is called BV (Ω).

Equivalently, BV (Ω) is the space of L1(Ω) functions such that

F(u) < +∞, (2.12)

where

F(u) := sup
{∫

Ω

(
u

n∑
i=1

Digi + gn+1

)
dx : g ∈ C1

c (Ω, Rn+1), |g| ≤ 1
}

.

(2.13)
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Exercise 2.30 Prove the latter claim: a function u ∈ L1(Ω) belongs to BV (Ω)
if and only if it satisfies (2.12).
[Hint: To show that (2.12) implies that u has bounded variation use Riesz’s
representation theorem]

It turns out that the relaxed area agrees with the quantity in (2.13),
often denoted by

∫
Ω

√
1 + |Du|2,5 which is the total variation of the vec-

tor measure (−Du,Ln). BV -functions are exactly the functions having
graphs of finite area.

In particular, given any u ∈ BV (Ω) or any u ∈ C0(Ω) with finite area,
there exists a sequence uk ∈ C∞(Ω) (C∞(Ω) provided, of course ∂Ω is
smooth) such that

uk → u in L1 (or uniformly) and F(uk)→ F(u).

We shall not prove this, see e.g. [6] [49] [51].

2.5.1 BV minimizers for the area functional

We now want to use direct methods to prove existence of minimal graphs
with prescribed boundary. The natural space to work with is BV (Ω).
Since a function u ∈ L1(Ω) is defined up to a set of zero measure, we
cannot näıvely make sense of the boundary datum u

∣∣
∂Ω

. On the other
hand for u ∈ BV (Ω), its trace on ∂Ω is well defined. This follows from
the theorem below, whose proof can be found in [51]:

Proposition 2.31 (Trace) Let Ω ⊂ Rn be bounded domain with Lipschitz
boundary. Then there exists a unique continuous linear operator

Trace : BV (Ω)→ L1(∂Ω)

such that for u ∈ C∞(Ω) we have Traceu = u
∣∣
∂Ω

. Moreover the map
Trace is surjective.

We can now define the class of BV functions with boundary value g ∈
L1(∂Ω):

A :=
{
u ∈ BV (Ω) : Traceu = g

}
,

and look for a minimizer of the area functional in A.
This problem is not in general solvable and the reason lies essentially

in the boundary behaviour of minimizing sequences, as we shall see. Re-
member that direct methods are based on semicontinuity and compact-
ness. For BV functions and the area functional we have both:

Theorem 2.32 (Compactness) The immersion BV (Ω) ↪→ L1(Ω) is
compact.

5Notice the absence of “dx”, to emphasize that
√

1 + |Du|2 is in general not abso-
lutely continuous when u ∈ BV (Ω).
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Proof. We only remark that if Ω = Q is a cube, then the proof is exactly
the same as in Theorem 3.18 in the next chapter. �

Theorem 2.33 (Semicontinuity) Let uj → u in L1(Ω), where uj ∈
BV (Ω). Then u ∈ BV (Ω) and∫

Ω

√
1 + |Du|2 ≤ lim inf

j→+∞

√
1 + |Duj |2.

Consequently, from any minimizing sequence uj ∈ A, we can extract a
subsequence converging in L1(Ω) to a function u ∈ BV (Ω), with∫

Ω

√
1 + |Du|2 ≤

∫
Ω

√
1 + |Dv|2, for every v ∈ A.

But it is false in general that Traceu = g.
This leads us to relax the problem further. We allow for functions u

which do not attain the value g at the boundary, and we modify the area
functional so that the area spanned to connect u to g on ∂Ω is taken into
account. We obtain the functional on BV (Ω)

J (u) :=
∫

Ω

√
1 + |Du|2 +

∫
∂Ω

|u− g|dHn−1. (2.14)

Theorem 2.34 Assume that ∂Ω is Lipschitz continuous. Then for any
boundary data g ∈ L1(∂Ω), there exists a function u ∈ BV (Ω) which
minimizes the area functional J in (2.14) among all functions in BV (Ω).

Proof. Instead of minimizing J we consider a ball BR(0) such that Ω ⊂
BR(0), and extend g to a function in W 1,1(BR(0)\Ω). This can be done
since the trace operator

Trace : W 1,1(Ω \BR(0))→ L1(∂Ω ∪ ∂BR(0))

is surjective. Now, for every v ∈ BV (Ω), denote by vg the function

vg(x) :=
{

v(x) if x ∈ Ω
g(x) if x ∈ BR(0)\Ω.

Then vg ∈ BV (BR(0)), and in fact |Dvg|(∂Ω) =
∫

∂Ω
|v−g|dHn−1, whence∫

BR(0)

√
1 + |Dvg|2 =

∫
Ω

√
1 + |Dv|2 +

∫
BR(0)\Ω

√
1 + |Dg|2dx

+
∫

∂Ω

|v − g|dHn−1

= J (v,Ω) +
∫

BR(0)\Ω

√
1 + |Dg|2dx.
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Therefore our original problem reduces to minimizing
∫

BR(0)

√
1 + |Dv|2

among all the functions in v ∈ BV (BR(0)) such that v = g in BR(0)\Ω.
Since this last condition is preserved under convergence in L1(Ω), we
may consider a minimizing sequence, bounded in BV (Ω) by the Poincaré
inequality, see Proposition 2.35 below. and apply Theorems 2.32 and 2.33
to conclude. �

In the proof of Theorem 2.34 we used the following version of Poin-
caré’s inequality:

Proposition 2.35 For any f ∈ BV (Ω) with Trace f = 0, we have∫
Ω

|f |dx ≤ C(Ω)
∫

Ω

|Df |. (2.15)

For f ∈ C1
c (Ω), (2.15) shall be proven in Proposition 3.10 in the next

chapter. The general case follows at once from the following approxima-
tion property:

Proposition 2.36 Given f ∈ BV (Ω) with Trace f = 0, there exists a
sequence of functions fn ∈ C1

c (Ω) with

fn → f in L1(Ω),
∫

Ω

|Dfn|dx→
∫

Ω

|Df |.

We shall see in Chapter 11 that a minimizer in Theorem 2.34 is smooth
in Ω. Regularity up to the boundary is in general false: u may not even
attain the boundary data g, as Theorem 2.20 implies. On the other hand,
if the mean curvature of ∂Ω is non-negative, we have the following result
of M. Miranda [75].

Theorem 2.37 Assume that ∂Ω is of class C2 and has non-negative
mean curvature at x0. Furthermore, assume that g is continuous at x0,
and let u be a minimizer of the relaxed area functional J in (2.14). Then

lim
x→x0

u(x) = g(x0).

Finally we state the following uniqueness theorem, compare [6] [52]:

Theorem 2.38 Let Ω ⊂ Rn be bounded with Lipschitz continuous bound-
ary, and assume g ∈ C0(∂Ω). Then the functional J in (2.14) has exactly
one minimizer in BV (Ω).



Chapter 3
Hilbert space methods

Let us recall a few simple facts concerning the geometry of Hilbert spaces,
see e.g. [47]. We will use them to solve the Dirichlet problem for the
Laplace equation (1.1) or more general linear equations and systems.

3.1 The Dirichlet principle

The abstract Dirichlet’s principle

Given a Hilbert space H with inner product ( , ) and norm ‖ ‖, and
L ∈ H∗, its dual, define

F(u) :=
1
2
‖u‖2 − L(u). (3.1)

Then we have

1. F achieves a unique minimum u in H and every minimizing sequence
converges to u;

2. u is the unique solution of

(ϕ, u) = L(ϕ) ∀ϕ ∈ H.

Moreover ‖u‖ = ‖L‖H∗ , where

‖L‖H∗ := sup
u∈H

‖u‖H=1

|Lu|.

The theorem of Riesz

As a consequence of the Dirichlet principle we have:

1. For each L ∈ H∗ there exists a unique uL such that L(·) = (·, uL);
indeed this is equivalent to the Dirichlet principle and the minimizer
u of (3.1) is uL.

2. L → uL is a continuous bijective application from H∗ to H, an
isometry which identifies H and H∗.
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The projection theorem

Given a closed subspace V of the Hilbert space H, we have

1. for every f ∈ H there exists a unique uf ∈ V such that

‖f − uf‖ = inf
v∈V
‖f − v‖;

2. for such a projection uf of f we have that (f − uf |ϕ) = 0 for all
ϕ ∈ V .

The projection theorem is equivalent to the Dirichlet principle.

Exercise 3.1 Prove the previous statements.
[Hint: To prove the existence of a minimizer in the abstract Dirichlet principle,
first use |L(v)| ≤ ‖L‖H∗‖v‖ to prove that

F(v) ≥ −1

2
‖L‖2

H∗ , ∀v ∈ H;

then use the parallelogram identity to prove that

1

4
‖u − v‖2 = F(u) + F(v) − 2F

(u + v

2

)
,

so that if (un) is a minimizing sequence, i.e. if F(un) → infv∈H F(v) > −∞ as
n → ∞, then (un) is a Cauchy sequence and converges to the unique minimizer
of F .]

Bilinear symmetric forms

Suppose B is a symmetric, continuous and coercive bilinear form on H,
where continuous and coercive respectively mean that there exist Λ, λ > 0
such that

|B(u, v)| ≤ Λ‖u‖‖v‖, B(u, u) ≥ λ‖u‖2, for all u, v ∈ H.

Then B is a scalar product equivalent to the original (·, ·) and the Dirichlet
principle applies, giving the following theorem.

Theorem 3.2 The functional

F(u) =
1
2
B(u, u)− L(u)

has a unique minimizer u. Moreover u satisfies B(u, v) = L(v) for each
v ∈ H.
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The Lax-Milgram theorem

In the Fifties of last century it was proved that the symmetry condition
on B used previously is not necessary; Theorem 3.2 without the symmetry
assumption is known as Lax-Milgram’s theorem. In fact, fix u ∈ H and
L(v) := B(u, v). By Riesz theorem, L is uniquely represented by a vector
which we call Tu:

B(u, v) = (Tu, v).

Observe that T is linear and continuous and define the symmetric, con-
tinuous and coercive bilinear form

B̃(u, v) := (T ∗u, T ∗v).

Here T ∗ is the adjoint of T , defined by

(Tu, v) = (u, T ∗v), for all u, v ∈ H.

Minimize
1
2
B̃(u, u)− L(u),

finding uL ∈ H such that for ϕ ∈ H

L(ϕ) = B̃(uL, ϕ) = (T ∗uL, T ∗ϕ) = (TT ∗uL, ϕ) = B(T ∗uL, ϕ).

Thus L may be represented also by B, or v := T ∗uL solves

B(v, ϕ) = L(ϕ) ∀ϕ ∈ H.

3.2 Sobolev spaces

Sobolev spaces play an important role in the theory of elliptic equations.
For this reason we collect here a few basic definitions and facts.

3.2.1 Strong and weak derivatives

Let Ω ⊂ Rn and 1 ≤ p < ∞. We say that a function u ∈ Lp(Ω) has
strong derivatives v1, . . . , vn in Lp if there exists a sequence of functions
{uk} ⊂ C1(Ω) ∩ Lp(Ω) such that

uk → u, Diuk → vi in Lp(Ω), i = 1, . . . , n.

It is easily seen that if the strong derivatives exist they are uniquely
determined by u. They are denoted by Diu, since they agree with the
classical derivatives if u is smooth.

Definition 3.3 The class of functions u ∈ Lp(Ω) that possess strong de-
rivatives in Lp is denoted by H1,p(Ω).
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H1,p(Ω) is a linear space, actually, it is a Banach space with the natural
norm

‖u‖pH1,p(Ω) :=
∫

Ω

|u|pdx +
∫

Ω

|Du|pdx.

The closure of C∞
c (Ω) in H1,p(Ω) is denoted by H1,p

0 (Ω).

We say that u ∈ Lp(Ω) has weak derivatives v1, . . . , vn in Lp if for all
i = 1, . . . , n ∫

Ω

uDiϕdx = −
∫

Ω

viϕdx ∀ϕ ∈ C∞
c (Ω).

It is easily seen that again weak derivatives are uniquely determined by
u, if they exist, and that strong derivatives are also weak derivatives.

Definition 3.4 The class of functions u ∈ Lp(Ω) that possess weak deri-
vatives in Lp is denoted by W 1,p(Ω).

Exercise 3.5 Prove that H1,p(Ω) ⊂ W 1,p(Ω).

The following property is often used.

Definition 3.6 We say that an open set Ω ⊂ Rn has the extension prop-
erty if for 1 ≤ p <∞ and for any open set Ω̃ � Ω and every function u ∈
W 1,p(Ω) there exists ũ ∈ W 1,p(Ω̃) with ‖ũ‖W 1,p(Ω̃) ≤ c(Ω, Ω̃)‖u‖W 1,p(Ω).
This is true for instance if Ω is star-shaped or C1 or even just Lipschitz.

Exercise 3.7 Show that the set Ω := ([−1, 1]× [−1, 1]) \ ({0}× [0, 1]) does not
have the extension property.

Assume that Ω has the extension property and u ∈ W 1,p(Ω). Then,
by mollifying ũ we find a sequence of smooth functions

{uk} ⊂ C∞(Ω) ∩ Lp(Ω),

and actually in C∞(Ω), converging in the H1,p-norm to u. For a general
open set Ω, stepping down the parameter of mollification when approach-
ing ∂Ω, one can show the following theorem, of N. G. Meyers and J. Serrin
[72], known as the H = W theorem.

Theorem 3.8 Let Ω be an open set. Then H1,p(Ω) = W 1,p(Ω).

Remark 3.9 The definitions of H1,p(Ω) and W 1,p(Ω) also extend to the
case p =∞, but we have H1,∞(Ω) �= W 1,∞(Ω).
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3.2.2 Poincaré inequalities

The well-known Poincaré inequalities show that in many cases the Lp-
norm of the derivative of a Sobolev function u controls the Lp-norm of u
itself.

Proposition 3.10 For every u ∈W 1,p
0 (Ω), 1 ≤ p < +∞ we have∫

Ω

|u|pdx ≤ (diamΩ)p

∫
Ω

|Du|pdx.

Proof. Write x = (x1, x2, . . . , xn) = (x1, x̃) and suppose u ∈ C1
c (Ω); up to

a translation we can assume that

Ω ⊂ [−a, a]× Rn−1, a :=
diam(Ω)

2
.

Set u = 0 outside Ω. Then by Jensen’s inequality

|u(x)|p =
∣∣∣∣ ∫ x1

−a

Du(t, x̃)dt

∣∣∣∣p
≤ (2a)p

∣∣∣∣ ∫ a

−a

Du(t, x̃)dt

∣∣∣∣p
≤ (2a)p−1

∫ a

−a

|Du(t, x̃)|pdt.

Integrating with respect to x̃ and x1 yields

∫
Ω

|u|pdx ≤ (2a)p−1

∫
Ω

dx

∫ a

−a

|Du(t, x̃)|pdt

= (2a)p−1

∫ a

−a

dx1

∫
Ω

|Du|pdx

= (2a)p

∫
Ω

|Du|pdx.

The claim in the general case follows by density of C1
c (Ω) in W 1,p

0 (Ω). �

Exercise 3.11 On the Banach space W 1,p
0 (Ω), Ω bounded and 1 ≤ p < ∞, the

standard H1,p norm is equivalent to

‖u‖p

W
1,p
0

:=

∫
Ω

|Du|pdx.

Proposition 3.12 There is a constant c = c(n, p) such that, if Ω ⊂ Rn

is a convex set of diameter � and u ∈W 1,p(Ω), then∫
Ω

|u− uΩ|pdx ≤ c�p

∫
Ω

|Du|pdx, (3.2)

where uΩ = 1
|Ω|

∫
Ω

u.
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Proof. Since smooth functions are dense in W 1,p(Ω), it is enough to prove
(3.2) for u ∈ C∞(Ω). By Jensen’s inequality∫

Ω

|u− uΩ|pdx =
∫

Ω

∣∣∣u(x)−
∫

Ω

u(y)dy
∣∣∣pdx

≤
∫

Ω

∫
Ω

|u(x)− u(y)|pdydx.

Noticing that

u(x)− u(y) =
n∑

i=1

∫ xi

yi

∂u

∂xi
(x1, . . . , xi−1, ξ, yi+1, . . . , yn)dξ,

integrating over Ω×Ω and using Jensen’s inequality and Fubini’s theorem
we find ∫

Ω

∫
Ω

|u(x)− u(y)|pdydx ≤ c(n, p)|Ω|�p

∫
Ω

|Du|pdx. (3.3)

�

Remark 3.13 The above Proposition still holds for non-convex sets with
the extension property if we replace the constant c(n, p)�p in (3.2) by a
more general constant c(p,Ω), which can be very large even for domains
of diameter 1. A proof can be given by choosing a ball B containing Ω
and extending any u ∈ W 1,p(Ω) to a function ũ ∈ W 1,p(B) (the cost of
this extension can be large, depending on Ω), then applying (3.2) to ũ. A
different proof will be given using compactness, see Proposition 3.21.

Exercise 3.14 Prove the claims in Remark 3.13. For instance, consider for
μ > 0 the domain

Ωμ = B1(ξ−) ∪ ([−2, 2] × [−μ, μ]) ∪ B1(ξ+) ⊂ R2, ξ± = (±2, 0).

Show that if (3.2) holds on Ωμ with a constant c(Ωμ), then necessarily c(Ωμ) →
∞ as μ → 0.

[Hint: Choose u = ±1 on B1(ξ±).]

Proposition 3.15 There is a constant c = c(n, p) such that, if Ω ⊂ Rn

is a convex set of diameter � and u ∈W 1,p(Ω), with u ≡ 0 in Ω0 for some
measurable set Ω0 ⊂ Ω with |Ω0| > 0 then∫

Ω

|u|pdx ≤ c�p |Ω|
|Ω0|

∫
Ω

|Du|pdx, (3.4)
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Proof. By Jensen’s inequality∫
Ω

|u|pdx =
∫

Ω

∣∣∣u(x)−
∫

Ω0

u(y)dy
∣∣∣pdx

≤
∫

Ω

∫
Ω0

|u(x)− u(y)|pdydx.

Then with (3.3) (which was proven for u smooth, but holds for every
u ∈W 1,p(Ω) by density) we conclude∫

Ω

|u|pdx ≤ 1
|Ω0|

∫
Ω

∫
Ω0

|u(x)− u(y)|pdydx

≤ 1
|Ω0|

∫
Ω

∫
Ω

|u(x)− u(y)|pdydx

≤ c(n, p)�p |Ω|
|Ω0|

∫
Ω

|Du|pdx.

�

Exercise 3.16 Show that in dimension 2 and higher one cannot in general
replace c
p |Ω|

|Ω0| by a constant independent of Ω0.

[Hint. Consider a function u ∈ W 1,p(B1(0)) with B1(0) ⊂ Rn, 1 ≤ p < n and

u = 0 in Bε(0), u = 1 in B1(0) \ B2ε(0), |∇u| ≤ 2

ε
,

and let ε → 0.]

Remark 3.17 Using the same idea of Remark 3.13, also Proposition 3.15
can be extended to non-convex domains enjoying the extension property,
replacing the constant c�p |Ω|

|Ω0| with a more general constant c(p,Ω)
|Ω0| .

3.2.3 Rellich’s theorem

Theorem 3.18 Suppose that Ω is a bounded domain with the extension
property (for instance a star-shaped domain, or a domain with Lipschitz
boundary). Then, for 1 ≤ p < +∞, the following immersion

W 1,p(Ω) ↪→ Lp(Ω)

is compact.

Proof. We first show that the immersion W 1,p(Q) ↪→ Lp(Q) is compact,
where Q is a cube of side �. Let {uk} ⊂ W 1,p(Q) with ‖uk‖W 1,p ≤ M.
Fix ε > 0 and let Q1, . . . , Qs be a subdivision of Q in cubes with disjoint
interiors and side σ, σ < ε. Of course

|(uk)Qj | :=
∣∣∣ ∫

Qj

uk(x)dx
∣∣∣ ≤ c

σn
.
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Consider the finite family G of simple functions

g(x) = n1εχQ1(x) + . . . + nsεχQs(x),

where n1, . . . , ns are integers in (−N,N) with N > c
εσn and χQj is the

characteristic function of Qj . We now show that each uk has Lp-distance
from one of the g in G not greater than c2ε for some c2(�, n, p): this
concludes the proof since then G is a finite c2ε-net.

Define

u∗
k(x) :=

s∑
j=1

(uk)Qj χQj (x).

Poincaré inequality (3.2) yields∫
Q

|uk − u∗
k|pdx ≤

s∑
j=1

∫
Qj

|uk − u∗
k|pdx

≤ c(n, p)σp
s∑

j=1

∫
Qj

|Duk|p

≤ cMpσp.

On the other hand, there is g ∈ G such that for all x ∈ Q

|g(x)− u∗
k(x)| < ε,

hence

‖uk − g‖Lp ≤ ‖uk − u∗
k‖Lp + ‖u∗

k − g‖Lp ≤ c1σ + �nε ≤ c2ε.

In order to complete the proof, use the extension property to extend (with
uniform bounds on the norms) every function in W 1,p(Ω) to a function
in W 1,p(Q) for a cube Q ⊃⊃ Ω and then apply the previous part of the
proof. �

Remark 3.19 If the extension property does not hold we still have the
compactness of the embedding

W 1,p
0 (Ω)→ Lp(Ω),

since for u ∈ W 1,p
0 (Ω) the function ũ defined by setting ũ = 0 on Q \ Ω

(again Ω � Q for a fixed cube Q) and ũ = u in Ω belongs to W 1,p(Q).

Remark 3.20 Some assumption on the regularity of Ω is necessary, as
the following counterexample shows. Define a domain Ω as in figure 3.1,
with the squares Qn of side length 1

n2 and the connecting aisles An of
length 1

n2 and width 1
n4 .
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...Q1 Q2 Q3A1

A2

Figure 3.1: Counterexample to Rellich’s theorem. The domain is
bounded, but its boundary is not continuous.

Next consider the sequence of functions un defined by:

un :=

⎧⎨⎩ n4 on Qn

0 on Qj , j �= n;
0 on Aj , j �= n, n− 1.

On An−1 and An set un to be the only affine function such that un is
continuous on Ω. Then ‖un‖L1(Ω) ≥ 1, while ‖un‖W 1,1(Ω) is uniformly
bounded. Since un ⇀ 0 in L1, had a subsequence limit in L1, the limit
would be zero, in contrast with ‖un‖L1(Ω) ≥ 1.

The following useful version of Poincaré’s inequality has essentially been
proven in Proposition 3.12 and Remark 3.13, but we shall give a simple
alternative proof based on Rellich’s theorem.

Proposition 3.21 For every bounded and connected domain Ω with the
extension property there is a constant c = c(n, p,Ω) such that for each
u ∈W 1,p(Ω) we have∫

Ω

|u− uΩ|pdx ≤ c

∫
Ω

|Du|pdx,

where as usual uΩ :=
∫
–
Ω

udx. When Ω is a ball of radius r or a cube of
side length r, then we can take c(n, p,Ω) = c(n)rp.

Proof. Were the assertion false, we could find a sequence uj with∫
Ω

|Duj |pdx→ 0, (uj)Ω = 0,
∫

Ω

|u|pdx = 1.

By Rellich’s and Banach-Alaoglu’s theorems we may find a subsequence
(unk

) such that

unk

Lp→ u, unk

W 1,p

⇀ u.

In particular Du = 0, i.e. u is constant, ‖u‖Lp(Ω) = 1 and uΩ = 0, which
is clearly impossible.

The last claim of the proposition follows by scaling. �
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3.2.4 The chain rule in Sobolev spaces

The following properties of Sobolev functions are often used. As usual we
will consider Ω bounded.

Proposition 3.22 Let f ∈ C1(R) with f ′ ∈ L∞(R) and u ∈W 1,p(Ω) for
some p ∈ [1,∞]. Then f ◦ u ∈W 1,p(Ω) and

D(f ◦ u) = f ′(u)Du.

Proof. It clearly suffices to prove the proposition for p = 1, since u ∈
W 1,p(Ω) implies u ∈ W 1,1(Ω), hence (by the case p = 1) the weak deriv-
ative of f◦u is f ′(u)Du which clearly belongs to Lp, hence f◦u ∈W 1,p(Ω).
Hence let us assume p = 1. Since |f(t)| ≤ C(1 + |t|) for t ∈ R, if easily
follows that f ◦u ∈ L1(Ω). Choose a sequence (uk) ⊂ C∞(Ω) with uk → u
in W 1,1

loc (Ω). Then by the classical chain rule we have for every ϕ ∈ C∞
c (Ω)∫

Ω

(f ◦ uk)Dϕdx = −
∫

Ω

D(f ◦ uk)ϕdx = −
∫

Ω

f ′(uk)Dukϕdx. (3.5)

Since

|f ◦ uk(x)− f ◦ u(x)| ≤ sup
t∈R

|f ′(t)||uk(x)− u(x)|, x ∈ Ω,

we have f ◦ uk → f ◦ u in L1
loc(Ω), hence

lim
k→∞

∫
Ω

(f ◦ uk)Dϕdx =
∫

Ω

(f ◦ u)Dϕdx.

Moreover, up to extracting a subsequence uk → u a.e. in Ω, hence also
f ′(uk)→ f ′(u) a.e. in Ω, and by the dominated convergene theorem∫

Ω

|f ′(uk)Dukϕ− f ′(u)Duϕ|dx ≤
∫

Ω

|f ′(uk)Duk − f ′(uk)Du||ϕ|dx

+
∫

Ω

|f ′(uk)Du− f ′(u)Du||ϕ|dx

≤ sup
R

|f ′|
∫

Ω

|Duk −Du||ϕ|dx

+
∫

Ω

|f ′(uk)− f ′(u)||Du||ϕ|dx

→ 0 as k →∞.

Going back to (3.5) we see that f ′(u)Du ∈ L1(Ω) is the weak derivative
of f ◦ u and we conclude. �
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Proposition 3.23 Let u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞. Then u+, u−, |u| ∈
W 1,p(Ω), where

u+ := max{u, 0}, u− := min{u, 0}.
Moreover

Du+(x) =
{

Du(x) if u(x) > 0
0 if u(x) ≤ 0,

Du−(x) =
{

0 if u(x) ≥ 0
Du(x) if u(x) < 0,

D|u|(x) =

⎧⎨⎩ Du(x) if u(x) > 0
0 if u(x) = 0
−Du(x) if u(x) < 0.

Finally given any t ∈ R, Du = 0 almost everywhere on {x ∈ Ω : u(x) = t}.
Proof. As in the proof of Proposition 3.22, it suffices to consider the case
p = 1. We first deal with u+. For any ε > 0 set

fε(t) =
{ √

t2 + ε2 − ε if t > 0
0 if t ≤ 0.

Notice that |f ′| ≤ 1. Then by Proposition 3.22 we have fε ◦ u ∈W 1,1(Ω)
and∫

Ω

(fε ◦ u)Dϕdx = −
∫
{x∈Ω:u(x)>0}

uDu√
u2 + ε2

ϕdx, ∀ϕ ∈ C∞
c (Ω).

Taking the limit as ε→ 0 and using the dominated convergence theorem
we infer ∫

Ω

u+Dϕdx = −
∫
{x∈Ω:u(x)>0}

Duϕdx, ∀ϕ ∈ C∞
c (Ω),

hence
u+ ∈W 1,1(Ω) and Du+ = Duχ{x∈Ω:u(x)>0}.

Since u− = −(−u)+ and |u| = u+− u−, also the claims about u− and |u|
easily follow.

In order to prove the last claim, assume without loss of generality that
t = 0, and simply observe that u = u+ + u−, hence Du = Du+ + Du−,
and both Du+ and Du− vanish a.e. on {x ∈ Ω : u(x) = 0}. �

Proposition 3.24 Let f ∈ C0(R) be piecewise C1, i.e. there are points
t1, . . . , t
 such that f ∈ C1((−∞, t1]), f ∈ C1([t1, t2]), etc... Assume also
that f ′ ∈ L∞(R). Then for every u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞, we have
f ◦ u ∈W 1,p(Ω) and

D(f ◦ u)(x) =
{

f ′(u(x))Du(x) if u(x) �∈ {t1, . . . , t
}
0 if u(x) ∈ {t1, . . . , t
}.
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Proof. Working by induction we can assume � = 1 and there is no loss
of generality in assuming that t1 = 0. We can find f1, f2 ∈ C1(R) with
f ′
1, f

′
2 ∈ L∞ and f1(t) = f(t) for t ≥ 0, f2(t) = f(t) for t ≤ 0. Then

f ◦ u = f1 ◦ u+ + f2 ◦ u−,

and the claim follows from Propositions 3.22 and 3.23. �

Corollary 3.25 Given u ∈ W 1,p(Ω), 1 ≤ p ≤ ∞ and k ∈ R we have
(u− k)+ ∈W 1,p(Ω) and

D(u− k)+(x) =
{

Du(x) if u(x) > k
0 if u(x) ≤ k.

Proof. Apply Proposition 3.24 with

f(t) =
{

t− k if t ≥ k
0 if t ≤ k.

�

3.2.5 The Sobolev embedding theorem

For later use, we recall without proof (see for instance [2] and compare
Theorem 7.29)

Theorem 3.26 (Sobolev-Morrey) Assume that Ω has the extension
property (Definition 3.6) and let p ∈ [1,+∞), k ≥ 1. Then

1. if kp < n, we have a continuous immersion

W k,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p, q∗], q∗ :=
np

n− kp
, (3.6)

which is also compact for q ∈ [p, q∗) if Ω is bounded; moreover

‖u‖Lp∗ ≤ c(p, k,Ω)‖u‖W k,p , for every u ∈W k,p(Ω); (3.7)

2. if kp = n we have a continuous (actually compact if Ω is bounded)
immersion

W k,p(Ω) ↪→ Lq(Ω), ∀q ∈ [p,+∞), (3.8)

and

‖u‖Lq ≤ c(p, q, k,Ω)‖u‖W k,p , for every u ∈W k,p(Ω);
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3. if kp > n + pr for some r ∈ N, we have a continuous (actually
compact if Ω is bounded) immersion

W k,p(Ω) ↪→ Cr(Ω), (3.9)

and
‖u‖Cr ≤ c(p,Ω)‖u‖W k,p , for every u ∈W 1,p(Ω).

Imbeddings (3.6) and (3.8) are essentially due to Sobolev [101], [102],
(Kondracov for the compactness) while imbedding (3.9) is due to Morrey
[76].

3.2.6 The Sobolev-Poincaré inequality

Mixing the Sobolev inequality (3.7) and the Poincaré inequality of Pro-
position 3.21 one obtains

Proposition 3.27 For every bounded and connected domain Ω with the
extension property there is a constant c = c(p,Ω) such that for every
u ∈W 1,p(Ω), 1 ≤ p <∞, we have(∫

Ω

|u− uΩ|p∗
dx

) 1
p∗

≤ c

(∫
Ω

|Du|pdx

) 1
p

,

where uΩ :=
∫
–
Ω

udx.

Proof. Applying (3.7) to u− uΩ, and then Proposition 3.21 we estimate(∫
Ω

|u− uΩ|p∗
dx

) 1
p∗

≤ c

(∫
Ω

|Du|pdx

) 1
p

+ c

(∫
Ω

|u− uΩ|pdx

) 1
p

≤ c1

(∫
Ω

|Du|pdx

) 1
p

.

�

Remark 3.28 Using Propositions 3.10 or 3.15 instead of Proposition
3.21, one can state similar versions of the Sobolev-Poincaré inequality
for functions in W 1,p

0 , or for functions vanishing on subsets of positive
measure.

3.3 Elliptic equations: existence of weak
solutions

We discuss here the solvability of Dirichlet and Neumann boundary value
problems for linear elliptic equations in Sobolev spaces as consequence of
Lax-Milgram’s theorem and in fact of the abstract Dirichlet principle. In
the next section we shall deal with linear systems.
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3.3.1 Dirichlet boundary condition

As usual Ω ⊂ Rn is a bounded open domain. It is understood that we
sum over repeated indices.

Theorem 3.29 Let Aαβ ∈ L∞(Ω) be elliptic and bounded, that is for
some λ,Λ > 0

λ|ξ|2 ≤ Aαβ(x)ξαξβ ≤ Λ|ξ|2, ∀x ∈ Ω. (3.10)

Then, for each g ∈ W 1,2(Ω) and f, fα ∈ L2(Ω), α = 1, . . . , n there exists
one and only one weak solution u ∈W 1,2(Ω) to the Dirichlet problem{ −Dβ(AαβDαu) = f0 −Dαfα in Ω

u = g on ∂Ω
(3.11)

meaning that u− g ∈W 1,2
0 (Ω) and∫

Ω

AαβDαuDβϕdx =
∫

Ω

(
f0ϕ + fαDαϕ

)
dx

for all ϕ ∈W 1,2
0 (Ω) or, equivalently, for all ϕ ∈ C∞

c (Ω).
If in addition Aαβ = Aβα, then the solution u is the unique minimizer

of the functional

F(v) =
1
2

∫
Ω

AαβDαvDβvdx−
∫

Ω

f0vdx−
∫

Ω

fαDαvdx (3.12)

in the class
A = {v ∈W 1,2(Ω) : v − g ∈W 1,2

0 (Ω)}.
Proof. Step 1. Define on the Hilbert space H := W 1,2

0 (Ω) the bilinear
form

B(v, w) :=
∫

Ω

AαβDαvDβwdx,

which is coercive thanks the Poincaré inequality and the ellipticity of Aαβ.
Set ũ = u − g, so that the initial problem is reduced to finding ũ ∈ H
such that for every v ∈W 1,2

0 (Ω)∫
Ω

AαβDαũDβvdx =
∫

Ω

f0vdx +
∫

Ω

[AαβDαg + fβ ]Dβvdx =: L(v).

Notice that L ∈ H∗, see also Remark 3.30. By Lax-Milgram’s theorem
there is exactly one ũ such that

B(ũ, v) = L(v), ∀v ∈W 1,2
0 (Ω),

thus u = ũ + g is the unique solution to (3.11).
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Step 2. If Aαβ is symmetric, the second derivative of F is

D2Fu(v, w) =
∫

Ω

AαβDαvDβwdx,

so that F is convex on W 1,2 and strictly convex on A. Thus a critical
point of F in A is the only minimizer (if it exists) of F in A. On the
other hand, the Euler-Lagrange equation of F is∫

Ω

AαβDαuDβϕdx−
∫

Ω

f0ϕdx−
∫

Ω

fαDαϕdx = 0,

that is (3.11). This implies that a solution of (3.11) is the unique of F
in A. �

Remark 3.30 The right-hand-side of (3.11) represents a generic element
of the dual space W 1,2

0 (Ω)∗, since every continuous linear functional L :
W 1,2

0 (Ω)→ R is of the form

L(ϕ) :=
∫

Ω

f0ϕdx +
∫

Ω

fαDαϕdx,

for some f0, f
α ∈ L2(Ω), α = 1, . . . , n.

3.3.2 Neumann boundary condition

The Dirichlet boundary condition makes the functional F in (3.12) coer-
cive on the class A. Slightly modifying F , we make it coercive on all of
W 1,2(Ω); consequently a Neumann boundary condition naturally arises.

Theorem 3.31 Let Aαβ ∈ L∞(Ω) be elliptic and bounded as in (3.10).
Then for every γ > 0, f0, f

α ∈ L2(Ω), α = 1, . . . , n, there exists a unique
weak solution to{ −Dβ(AαβDαu) + γu = f0 −Dαfα in Ω

AαβDαuνβ = fβνβ on ∂Ω,
(3.13)

where ν = (ν1, . . . , νn) is the exterior unit normal to ∂Ω, if Ω is smooth
enough, see Remark 3.32.

If Aαβ = Aβα, then such a solution is the unique minimizer in W 1,2(Ω)
of

F(v) =
1
2

∫
Ω

AαβDαvDβvdx +
γ

2

∫
Ω

v2dx−
∫

Ω

f0vdx−
∫

Ω

fαDαvdx.

(3.14)
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Remark 3.32 Unless we provide some smoothness assumption, (3.13)
means, by definition,∫

Ω

AαβDαuDβϕdx + γ

∫
Ω

uϕdx =
∫

Ω

f0ϕdx +
∫

Ω

fαDαϕdx,

for every ϕ ∈W 1,2(Ω).
(3.15)

Observe that the test function ϕ need not vanish on ∂Ω, compare the
proof of Theorem 3.31.

Proof of Theorem 3.31. The bilinear form

B(v, w) :=
∫

Ω

AαβDαvDβwdx + γ

∫
Ω

vwdx

is coercive, being B(u, u) ≥ min{λ, γ} · ‖u‖2W 1,2 . Set

L(v) :=
∫

Ω

f0vdx +
∫

Ω

fαDαvdx.

By Lax-Milgram theorem applied to the Hilbert space H = W 1,2(Ω), a
solution to the equation

B(u, ϕ) = L(ϕ), for every ϕ ∈W 1,2(Ω),

i.e. equation (3.15), exists and is unique. Such a solution is a minimizer
if Aαβ is symmetric, as in Theorem 3.29. �

To obtain the Neumann boundary condition in (3.13) at least formally
we integrate by parts in (3.15) and get∫

Ω

[
−Dβ(AαβDαu) + γu− f0 + Dαfα

]
ϕdx

+
∫

∂Ω

[
AαβDαuνβ − fανα

]
ϕdHn−1 = 0,

for every ϕ ∈ W 1,2(Ω). When ϕ ∈ W 1,2
0 (Ω), the second term on the left

hand side vanishes, giving

−Dβ(AαβDαu) + γu = f0 −Dαfα

in the sense of distributions (or pointwise if u, f0 and fα are regular
enough), therefore when ϕ is generic we infer∫

∂Ω

[
AαβDαuνβ − fανα

]
ϕdHn−1 = 0, ∀ϕ ∈W 1,2(Ω),

that yields the boundary condition in (3.13).
Also notice that geometrically this boundary condition means that on

∂Ω the vector field AαβDαu − fα is tangent to ∂Ω (when the objects
involved are regular enough).
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Exercise 3.33 Making the above argument precise, show that the boundary
condition in (3.13) holds pointwise if Ω, Aαβ, f0, fα and u are regular enough.

Exercise 3.34 When Aαβ = δαβ, that is when the higher order part of equa-
tion (3.13) is the Laplacian, the boundary condition becomes ∂u

∂ν
= fανα.

Remark 3.35 More generally, consider a variational integral

F(u) :=
∫

Ω

F (x, u,Du)dx,

with ∂Ω and F of class C1. The Euler-Lagrange equation of F ,

d

dt
F(u + tϕ)

∣∣∣
t=0

= 0

is ∫
Ω

{
Fpα(x, u,Du)Dαϕ + Fu(x, u,Du)ϕ

}
dx = 0, ∀ϕ ∈ C∞(Ω).

The natural boundary condition arising from minimizing F in W 1,2(Ω) in
this case is

ναFpα(x, u,Du) = 0 on ∂Ω.

Something similar holds for systems, as the reader can verify.

3.4 Elliptic systems: existence of weak
solutions

Let us now discuss systems of linear equations.

3.4.1 The Legendre and Legendre-Hadamard
ellipticity conditions

Definition 3.36 A matrix of coefficients
(
Aαβ

ij

)1≤α,β≤n

1≤i,j≤m
is said to satisfy

1. the very strong ellipticity condition, or the Legendre condition, if
there is a λ > 0 such that

Aαβ
ij ξi

αξj
β ≥ λ|ξ|2, ∀ξ ∈ Rm×n; (3.16)

2. the strong ellipticity condition, or the Legendre-Hadamard condi-
tion, if there is a λ > 0 such that

Aαβ
ij ξαξβηiηj ≥ λ|ξ|2|η|2, ∀ξ ∈ Rn,∀η ∈ Rm. (3.17)
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Remark 3.37 The Legendre condition implies the Legendre-Hadamard
condition: just insert ξi

α := ξαηi in (3.16). The converse is trivially true
in case m = 1 or n = 1, but is false in general as the following example
shows.

Example 3.38 Let n = m = 2 and define for some λ > 0

A12
12 = A21

21 = 1, A21
12 = A12

21 = −1,

A11
11 = A11

22 = A22
11 = A22

22 = λ,

so that
Aαβ

ij ξi
αξj

β = det(ξ) + λ|ξ|2.
Since det(ξαηi) = 0 for every choice of vectors ξ, η ∈ R2, we have

Aαβ
ij ξαξβηiηj = λ|ξ|2|η|2, ∀ξ ∈ Rn,∀η ∈ Rm,

and
Aαβ

ij ξi
αξj

β = det(ξi
α) + λ|ξ|2, ∀ξ ∈ Rm×n.

This shows that for every λ > 0 the Legendre-Hadamard condition is
satisfied, while for λ ≤ 1/2 the Legendre condition is not (choose e.g.
ξ1
1 = 1, ξ2

2 = −1, ξ1
2 = ξ2

1 = 0).

3.4.2 Boundary value problems for very strongly
elliptic systems

Theorems analogous to 3.29 and 3.31 hold true trivially for very strongly
elliptic systems.

Theorem 3.39 Let Aαβ
ij ∈ L∞(Ω) be bounded and satisfy the Legendre

condition, that is for some λ > 0 (3.16) holds. Then, for each g ∈
W 1,2(Ω, Rm) and fi, f

α
i ∈ L2(Ω), i = 1, . . . ,m, α = 1, . . . , n, there exists

one and only one weak solution u ∈W 1,2(Ω, Rm) to the Dirichlet problem⎧⎨⎩ −Dβ(Aαβ
ij Dαuj) = fi −Dαfα

i in Ω

u = 0 on ∂Ω.
(3.18)

As before we have to interpret (3.18) in the weak sense as follows: the
first equation means∫

Ω

Aαβ
ij DαujDβϕidx =

∫
Ω

(fiϕ
i + fα

i Dαϕi)dx, for all ϕ ∈W 1,2
0 (Ω, Rm)

and the boundary condition simply corresponds to

u− g ∈W 1,2
0 (Ω, Rm).
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If Aαβ
ij = Aβα

ji , then the solution u is the unique minimizer of the func-
tional

F(v) =
1
2

∫
Ω

Aαβ
ij DαviDβvjdx−

∫
Ω

fiv
idx−

∫
Ω

fα
i Dαvidx (3.19)

in the class

A = {v ∈W 1,2(Ω, Rm) : v − g ∈W 1,2
0 (Ω, Rm)}.

Theorem 3.40 Let Aαβ
ij be very strongly elliptic and bounded, fi, f

α
i ∈

L2(Ω) and γ > 0. Then there exists a unique solution to⎧⎨⎩ −Dβ(Aαβ
ij Dαuj) + γui = fi −Dαfα

i in Ω

Aαβ
ij Dβujνα = fα

i να on ∂Ω.
(3.20)

As in Theorem 3.31, without further regularity (3.15) means∫
Ω

Aαβ
ij DαujDβϕidx+γ

∫
Ω

uiϕidx =
∫

Ω

fiϕ
idx +

∫
Ω

fα
i Dαϕidx,

for every ϕ ∈W 1,2(Ω, Rm).
(3.21)

If Aαβ
ij = Aβα

ji , this solution is the unique minimizer of

F(v) =
1
2

∫
Ω

Aαβ
ij DαviDβvjdx +

γ

2

∫
Ω

|v|2dx−
∫

Ω

fiv
idx−

∫
Ω

fα
i Dαvidx

(3.22)
in W 1,2(Ω, Rm).

Proof of Theorems 3.39 and 3.40. The strong ellipticity condition gives
the coercivity on W 1,2

0 (Ω, Rm) of the bilinear form

B(v, w) :=
∫

Ω

Aαβ
ij DαviDβwjdx,

and the coercivity on W 1,2(Ω, Rm) of

B(v, w) :=
∫

Ω

Aαβ
ij DαviDβwjdx + γ

∫
Ω

viuidx.

Then we can repeat the proofs of Theorems 3.29 and 3.31. �

3.4.3 Strongly elliptic systems: G̊arding’s inequality

If the coefficients Aαβ
ij satisfy only the Legendre-Hadamard condition

(3.17), in general the bilinear form

B(u, v) :=
∫

Ω

Aαβ
ij DαuiDβvjdx
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is not coercive on W 1,2
0 (Ω, Rm): we shall see that, under suitable hypo-

thesis, B is weakly coercive, according to the following definition.

Definition 3.41 A bilinear form B on W 1,2
0 (Ω, Rm) is said to be weakly

coercive if there exist λ0 > 0 and λ1 ≥ 0 such that

B(u, u) ≥ λ0

∫
Ω

|Du|2dx− λ1

∫
Ω

|u|2dx. (3.23)

Theorem 3.42 (G̊arding’s inequality) Assume that Aαβ
ij are unifor-

mly continuous on Ω and that they satisfy the Legendre-Hadamard condi-
tion (3.17) for some λ > 0 independent of x ∈ Ω. Then the bilinear form
on W 1,2

0 (Ω, Rm) defined by

B(u, v) :=
∫

Ω

Aαβ
ij DαuiDβvjdx

is weakly coercive. If Aαβ
ij are constant then B is in fact coercive.

Proof. The idea is to use the Fourier tranform to decouple the terms Dαui

and Dβuj and then apply the Legendre-Hadamard condition. Recall that
for a given function f ∈ L2(Ω) the Fourier transform of f is

f̂(x) :=
∫

Rn

f(y)e−2πix·ydy.

The Fourier transform satisfies

D̂αf(x) = 2πixαf̂ (3.24)

and the Parseval identities

(f̂ , ĝ)L2 = (f, g)L2 , ‖f̂‖L2 = ‖f‖L2 , (3.25)

where, since f̂ and ĝ take values into C, we define

(f̂ , ĝ)L2 =
∫

Rn

f̂(ξ)ĝ(ξ)dξ,

where ĝ is the complex conjugate of ĝ.
Step 1. Assume Aαβ

ij are constant. For u ∈ W 1,2
0 (Ω, Rm), that we think

of as being extended to zero outside Ω, we bound with (3.24), (3.25) and
the Legendre-Hadamard condition

B(u, u) = Aαβ
ij

∫
Rn

D̂αuiD̂βujdξ = (2π)2Aαβ
ij

∫
Rn

ξαξβûiûjdξ

≥ (2π)2λ
∫

Rn

|ξ|2|û|2dξ = (2π)2λδαβδij

∫
Rn

ξαξβûiûjdξ

= λδαβδij

∫
Rn

D̂αuiD̂βujdξ = λ

∫
Rn

∣∣D̂u
∣∣2dξ

= λ

∫
Rn

|Du|2dx. (3.26)
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Step 2. Let us now drop the assumption that A is constant and take
u ∈ W 1,2

0 (Ω, Rm) supported in Br(x0) for some x0 ∈ Ω and r small.
Then, by step 1 we get

B(u, u) =Aαβ
ij (x0)

∫
Ω

DαuiDβujdx

+
∫

Br(x0)

[
Aαβ

ij (x)−Aαβ
ij (x0)

]
DαuiDβujdx

≥λ

∫
Ω

|Du|2dx− ω(r)
∫

Ω

|Du|2dx,

where
ω(r) := sup

x,y∈Ω, |x−y|≤r

max
α,β,i,j

|Aαβ
ij (x)−Aαβ

ij (y)|

is the modulus of continuity of Aαβ
ij .

Step 3. Now choose r > 0 such that λ∗
0 := λ − ω(r) > 0 and cover

Ω with finitely many balls Br(xk), k = 1, . . . , N . Fix a partition of the
unity ϕ2

k subordinated to the covering {Br(xk)}, i.e. non-negative smooth
functions ϕk with

support(ϕk) ⊂ Br(xk),
N∑

k=1

ϕ2
k = 1 on Ω,

so that for u ∈W 1,2
0 (Ω, Rm) (again extended to 0 outside Ω)

u =
N∑

k=1

(uϕ2
k), support(uϕ2

k) ⊂ Br(xk).

Then

B(u, u) =
∫

Ω

Aαβ
ij

N∑
k=1

ϕ2
kDαuiDβujdx

=
N∑

k=1

∫
Ω

Aαβ
ij Dα(ϕkui)Dβ(ϕkuj)dx

−
N∑

k=1

∫
Ω

Aαβ
ij uiujDαϕkDβϕkdx

−
N∑

k=1

∫
Ω

Aαβ
ij ϕkujDαuiDβϕkdx

−
N∑

k=1

∫
Ω

Aαβ
ij ϕkuiDαϕkDβujdx.

(3.27)
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By Step 2

N∑
k=1

∫
Ω

Aαβ
ij Dα(ϕkui)β(ϕkuj)dx ≥ λ∗

0

N∑
k=1

∫
Ω

|D(ϕku)|2dx

= λ∗
0

N∑
k=1

∫
Ω

[
ϕ2

k|Du|2 + |u|2|Dϕk|2 + 2ϕkuiDαϕkDαui
]
dx.

Applying Young’s inequality 2ab ≤ εa2 + b2

ε to the last term (a = |Du|,
b = ϕk|u||Dϕk|) we get

N∑
k=1

∫
Ω

Aαβ
ij Dα(ϕkui)Dβ(ϕkuj)dx ≥ (λ∗

0 − ε)
∫

Ω

|Du|2dx− cε

∫
Ω

|u|2dx.

The last three terms in (3.27) are estimated as follows:∣∣∣∣ ∫
Ω

Aαβ
ij uiujDαϕkDβϕkdx

∣∣∣∣ ≤ c sup
Ω
|A|

∫
Ω

|u|2dx,

and using Young’s inequality as before∣∣∣∣ ∫
Ω

Aαβ
ij ϕkujDαuiDβϕkdx

∣∣∣∣ ≤ ε

∫
Ω

|Du|2dx + c
sup |A|2

ε

∫
Ω

|u|2dx.

Going back to (3.27) and choosing ε <
λ∗

0
3 we conclude that B is weakly

coercive with λ0 = λ∗
0 − 3ε and λ1 = λ1(Ω, ω, ε) in (3.23). �

Exercise 3.43 Show that, under the assumptions of Theorem 3.42, the bilinear
form

B(u, v) :=

∫
Ω

Aαβ
ij DαuiDβvjdx +

∫
Ω

bα
ijDαuivjdx +

∫
Ω

ciju
ivjdx

is weakly coercive in W 1,2
0 (Ω, Rm) provided, for instance, bα

ij , cij ∈ L∞(Ω).

Corollary 3.44 Let Aαβ
ij be as in Theorem 3.42. Then, for any g ∈

W 1,2(Ω, Rm) and fi, f
α
i ∈ L2(Ω), α = 1, . . . , n, i = 1, . . . ,m, there exists

a unique weak solution u ∈W 1,2(Ω, Rm) to the Dirichlet problem⎧⎨⎩ −Dβ(Aαβ
ij Dαuj) + γuj = fi −Dαfα

i in Ω

u = g in ∂Ω
(3.28)

for γ sufficiently large.
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Proof. Write the equation in (3.28) for ũ := u−g. Since the bilinear form

B(u, v) :=
∫

Ω

Aαβ
ij DαuiDβvj + γ

∫
Ω

u · v

is coercive for γ large thanks to Theorem 3.42, the conclusion follows as
in Theorem 3.29. �

Fix γ as in Corollary 3.44. The linear map that to (g, fi, f
α
i )α=1,...,n

i=1,...,m

associates the solution u ∈ W 1,2(Ω, Rm) ⊂ L2(Ω, Rm) to (3.28) is com-
pact, therefore we may conclude from the theory of compact operators
that (3.28) is uniquely solvable for all g, fi and fα

i except for at most a
discrete countable set of values of γ, the eigenvalues, which lie in (−∞, λ0),
for a suitable λ0 <∞.

For later use we state a simplified but useful version of Theorem 3.42,
corresponding to the estimate in (3.26).

Proposition 3.45 Let the coefficients Aαβ
ij be constant and satisfy the

Legendre-Hadamard condition (3.17) for some λ > 0. Then

B(u, u) :=
∫

Ω

Aαβ
ij DαuiDβujdx ≥ λ

∫
Ω

|Du|2dx

for all u ∈W 1,2
0 (Ω, Rm).

Corollary 3.46 Let Aαβ
ij be constant and satisfy the Legendre-Hadamard

condition (3.17). Then, for every g ∈ W 1,2(Ω, Rm) and fi, f
α
i ∈ L2(Ω),

α = 1, . . . , n, i = 1, . . . ,m, there exists one and only one weak solution
u ∈W 1,2(Ω, Rm) to the Dirichlet problem⎧⎨⎩ −Dβ(Aαβ

ij Dαuj) = fi −Dαfα
i in Ω

u = g on ∂Ω.



Chapter 4
L2-regularity: the Caccioppoli inequality

In this chapter we discuss regularity in terms of square summability of
the derivatives of weak solutions to a linear elliptic system

−Dα(Aαβ
ij Dβuj) = fi −Dαfα

i

in dependence of the regularity of the coefficients and boundary data,
i.e., we deal with the energy estimates for the derivatives of solutions.
The basic tool we use is the Caccioppoli inequality, sometimes also called
reverse Poincaré inequality, which enables us to give a priori estimates of
the L2-norm of the derivatives of a solution u in terms of the L2-norm of
u.

4.1 The simplest case: harmonic functions

Theorem 4.1 (Caccioppoli inequality) Let u ∈ W 1,2(Ω) be a weak
solution of Δu = 0, that is∫

Ω

DαuDαϕdx = 0, ∀ϕ ∈W 1,2
0 (Ω). (4.1)

Then for each x0 ∈ Ω, 0 < ρ < R ≤ dist(x0, ∂Ω) we have∫
Bρ(x0)

|Du|2dx ≤ c

(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− λ|2dx, ∀λ ∈ R (4.2)

for some universal constant c.

Proof. Define a “cut-off” function η ∈ C∞
c (Ω) such that

1. 0 ≤ η ≤ 1;

2. η ≡ 1 on Bρ(x0) and η ≡ 0 on BR(x0) \Bρ(x0)

3. |Dη| ≤ 2
R−ρ .
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Choosing as test function ϕ := (u− λ)η2 in (4.1) we get∫
Ω

|Du|2η2dx +
∫

Ω

Dαu(u− λ)2ηDαηdx = 0,

hence using Hölder’s inequality∫
BR(x0)

|Du|2η2dx ≤
∫

BR(x0)

|Du||u− λ|2η|Dη|dx

≤
(∫

BR(x0)

|Du|2η2dx

) 1
2
(∫

BR(x0)

4|u− λ|2|Dη|2dx

) 1
2

.

Dividing by (∫
BR(x0)

|Du|2η2dx

) 1
2

,

squaring and taking into account the properties of η yield:∫
Bρ(x0)

|Du|2dx ≤
∫

BR(x0)

|Du|2η2dx

≤ 16
(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− λ|2dx.

�

Exercise 4.2 (Higher order estimates) For k > 0 and any BR(x0) ⊂ Ω
there is a constant c(k, R) such that, whenever u is a smooth harmonic function,
then ∫

B R
2

(x0)

|Dku|2dx ≤ c(k, R)

∫
BR(x0)

|u|2dx. (4.3)

[Hint: Prove that all partial derivatives of u are harmonic functions and
apply repeatedly Theorem 4.1 on suitable annuli.]

Exercise 4.3 (Smoothness of harmonic functions) Using inequality (4.3)
prove that a harmonic function u ∈ W 1,2(Ω) belongs to W k,2

loc (Ω) for all k,
consequently it is smooth.

[Hint: Consider the convoluted functions uε := u ∗ ρε for some mollifying sym-
metric kernel ρ. Show that uε is harmonic and use the derivative estimates
together with Rellich’s and Sobolev’s embedding theorems to conclude that, up
to subsequences, uε → u in Ck for each k ≥ 0.]
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4.2 Caccioppoli’s inequality for elliptic
systems

Theorem 4.4 Let u ∈W 1,2(Ω, Rm) be a weak solution of

−Dα(Aαβ
ij Dβuj) = fi −DαFα

i (4.4)

with fi, F
α
i ∈ L2(Ω), and assume that one of the following conditions

holds:

1. Aαβ
ij ∈ L∞(Ω) and satisfy the Legendre ellipticity condition (3.16);

2. Aαβ
ij ≡ const and satisfy the Legendre-Hadamard condition (3.17);

3. Aαβ
ij ∈ C0(Ω) satisfy the Legendre-Hadamard condition.

Then for any ball BR(x0) ⊂ Ω (with R < R0 small enough under condition
3) and 0 < ρ < R the following Caccioppoli inequality holds:∫

Bρ(x0)

|Du|2dx ≤ c

{
1

(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− ξ|2dx

+ R2

∫
BR(x0)

|f |2dx +
∫

BR(x0)

|F |2dx

}
, (4.5)

for every vector ξ ∈ Rm, where under conditions 1 or 2

c = c(λ,Λ), Λ := sup |A|.

Under condition 3 the constant c also depends on the modulus of continuity
of Aαβ

ij and R0.

Proof. We give the simple proof when hypothesis 1 is satisfied. The
other cases can be treated in a similar way using G̊arding’s inequality;
the details are left for the reader.

First assume fi = 0. Define a cut-off function η as in the proof of
Theorem 4.1 and choose as test function (u − ξ)η2 into (4.4). From the
Legendre condition we obtain

λ

∫
BR(x0)

η2|Du|2dx ≤
∫

BR(x0)

η2Aαβ
ij DαujDβuidx

=−
∫

BR(x0)

2η(ui − ξi)Aαβ
ij DαujDβηdx

+
∫

BR(x0)

η2Fα
i Dαuidx +

∫
BR(x0)

2ηFα
i (ui − ξi)Dαηdx

=: (I) + (II) + (III).
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Now we can bound with Young’s inequality 2ab ≤ εa2 + b2

ε and the prop-
erties of η

(I) ≤ εΛ
∫

BR(x0)

η2|Du|2dx +
4Λ

ε(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− ξ|2dx,

(II) ≤ εΛ
∫

BR(x0)

η2|Du|2dx +
1

4εΛ

∫
BR(x0)

|F |2dx

(III) ≤ 4
(R− ρ)2

∫
BR(x0)\Bρ(x0)

|u− ξ|2dx +
∫

BR(x0)

|F |2dx.

Choosing ε = λ
4Λ , using that∫

Bρ(x0)

|Du|2dx ≤
∫

BR(x0)

η2|Du|2dx

and simplifying yield the result.
When fi �= 0 define

F̃ 1
i (x) =

∫ x1

−∞
fi(t, x2, . . . , xn)χBR(x0)(t, x2, . . . , xn)dt,

and prove using Jensens inequality that∫
BR(x0)

(F̃ 1
i )2dx ≤ cR2

∫
BR(x0)

f2
i dx.

Then the term fi = D1F̃
1
i can be added to term F 1

i . �

Exercise 4.5 Prove that in Theorem 4.4 we can replace the assumption fi ∈
L2(Ω) with the weaker assumption fi ∈ L2∗(Ω), 2∗ := 2n

n+2
, and in (4.5) we can

replace the term

R2

∫
BR(x0)

|f |2dx with

(∫
BR(x0)

|f |2∗dx

) 2
2∗

.

4.3 The difference quotient method

In order to prove L2-estimates for the derivatives of a solution u we show
that the difference quotients of u (a sort of discrete derivative) satisfy
an elliptic system; by Caccioppoli’s inequality we get L2-estimates on the
derivatives of the difference quotients Dτh,su and apply Proposition 4.8 to
conlude the existence of the s-derivative DsDu with a suitable estimate
in L2. The procedure can be used inductively to obtain higher order
differentiability.
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Definition 4.6 (Difference quotient) Given a function u : Ω → Rm,
an integer s ∈ {1, . . . , n} and h > 0 we define the difference quotient

τh,su(x) :=
u(x + hes)− u(x)

h
, ∀x ∈ Ωs,h := {x ∈ Ω : x + hes ∈ Ω},

where es ∈ Rn is the unit vector (0, . . . , 0, 1, 0, . . . , 0) with 1 in the s-th
position.

Exercise 4.7 If u ∈ W 1,p(Ω), then τs,hu ∈ W 1,p(Ωs,h) and τs,hDu = Dτs,hu.
Moreover for u or v compactly supported in Ω and h small enough we have∫

Ω

u τh,svdx = −
∫

Ω

τ−h,su vdx, (4.6)

and Leibniz’s rule holds

τh,s(uv)(x) = u(x + hes)τh,sv(x) + τh,su(x)v(x). (4.7)

Proposition 4.8 Let 1 < p < +∞ and Ω0 � Ω. Then

(i) There is a constant c = c(n) such that, for every u ∈ W 1,p(Ω) and
s = 1, . . . , n, we have

‖τh,su‖Lp(Ω0) ≤ c‖Du‖Lp(Ω), |h| < dist(Ω0, ∂Ω)
2

. (4.8)

(ii) If u ∈ Lp(Ω) and there exists L ≥ 0 such that, for every h <
dist(Ω0, ∂Ω), s = 1, . . . , n, we have

‖τh,su‖Lp(Ω0) ≤ L, (4.9)

then u ∈W 1,p(Ω0), ‖Du‖Lp(Ω0) ≤ L and τh,su→ Dsu in Lp(Ω0) as
h→ 0.

Proof. (i) Assume first that u ∈ C∞(Ω). By the fundamental theorem of
calculus

u(x + hes)− u(x) =
∫ h

0

∂

∂xs
u(x + ξes)dξ,

whence

τh,su(x) =
∫ h

0

∂

∂xs
u(x + ξes)dξ.

Therefore, by Jensen’s inequality and Fubini’s theorem we get

‖τh,su‖pLp(Ω0)
=

∫
Ω0

∣∣∣∣ ∫ h

0

∂

∂xs
u(x + ξes)dξ

∣∣∣∣pdx

≤
∫

Ω0

( ∫ h

0

∣∣Du(x + ξes)
∣∣pdξ

)
dx

≤
∫ h

0

(∫
Ω

|Du(x)|pdx

)
dξ = ‖Du‖pLp(Ω).
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For a general u ∈ W 1,p(Ω) we approximate it W 1,p(Ω) with a sequence
of smooth functions and notice that (4.8) is stable under convergence in
W 1,p(Ω).

(ii) We have that Lp(Ω) is reflexive and τh,su is bounded in Lp(Ω0) uni-
formly with respect to h. According to Banach-Alaoglu’s theorem, the
unit ball of a reflexive Banach space is sequentially weakly compact.
Therefore we may extract a weakly converging subsequence:

τhk,s ⇀ g in Lp(Ω0)

and g = Dsu in the sense of distributions because ∀ϕ ∈ C∞
c (Ω0) we have∫

Ω0

gϕdx = lim
hk→0

∫
Ω0

τhk,suϕdx

= − lim
hk→0

∫
Ω0

uτ−hk,sϕdx

= −
∫

Ω0

uDsϕdx.

Thus Dsu ∈ Lp(Ω0). To prove that the convergence τh,su→ Dsu is strong
in Lp(Ω0), take any w ∈ C∞(Ω); then

τh,su−Dsu = τh,s(u− w) + τh,sw −Dsw + Ds(w − u),

and by part 1

‖τh,su−Dsu‖Lp(Ω0) ≤ ‖τh,sw −Dsw‖Lp(Ω0) + c‖Ds(w − u)‖Lp(Ω),

where c = c(n, p). Since C∞(Ω) is dense in W 1,p(Ω), the second term
on the right-hand side can be made arbitrarily small, while the first term
goes to 0 as h→ 0 since τh,sw → Dsw uniformly on compact sets. �

4.3.1 Interior L2-estimates

The following theorem is a direct consequence of the Caccioppoli inequal-
ity and Proposition 4.8.

Theorem 4.9 Let u ∈W 1,2(Ω, Rm) be a weak solution of

−Dα(Aαβ
ij Dβuj) = fi −DαFα

i (4.10)

with fi ∈ L2(Ω), Fα
i ∈ W 1,2(Ω). Assume that Aαβ

ij ∈ Lip(Ω) satisfy
the Legendre-Hadamard condition. Then u ∈ W 2,2

loc (Ω, Rm), and for any
relatively compact subset Ω0 of Ω we have

‖D2u‖L2(Ω0) ≤ c
(‖u‖L2(Ω) + ‖f‖L2(Ω) + ‖DF‖L2(Ω)

)
, (4.11)

c being a constant depending on Ω0, Ω and the ellipticity and Lipschitz
constants of A.
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Proof. Remember that (4.10) means∫
Ω

Aαβ
ij DβujDβϕidx =

∫
Ω

fiϕ
idx +

∫
Ω

Fα
i Dαϕidx, ∀ϕ ∈ C∞

c (Ω, Rm).

(4.12)
Assume that fi = 0 (for the general case see the following exercise), choose
a test function ϕ and, for h small, insert ϕ(x− hes) in (4.12) to obtain∫

Ω

Aαβ
ij (x + hes)Dβuj(x + hes)Dβϕi(x)dx =

∫
Ω

Fα
i (x + hes)Dαϕi(x)dx.

(4.13)
Subtract (4.12) form (4.13) to obtain∫

Ω

Aαβ
ij (x + hes)τh,s(Dβuj)Dαϕidx +

∫
Ω

τh,sA
αβ
ij DβujDαϕidx

=
∫

Ω

τh,sF
α
i Dαϕidx.

(4.14)

Remember that τh,s(Du) = D(τh,su) and apply Caccioppoli inequality
(4.5) to τh,su in (4.14): for any B4R(x0) ⊂ Ω∫

BR(x0)

|τh,sDu|2dx ≤ c

R2

∫
B2R(x0)

|τh,su|2dx

+ c

∫
B2R(x0)

|τh,sA|2|Du|2dx

+ c

∫
B2R(x0)

|τh,sF |2dx.

As h→ 0 all the terms on the right-hand side remain bounded thanks to
the first part of Proposition 4.8 and A being Lipschitz; thus the second
part of the same proposition implies that Du ∈W 1,2(BR(x0)); taking the
limit as h→ 0 and applying Caccioppoli’s inequality again we bound∫

BR(x0)

|D2u|2dx ≤ c

R2

∫
B2R(x0)

|Du|2dx + cL2

∫
B2R(x0)

|Du|2dx

+ c

∫
B2R(x0)

|DF |2dx

≤ c1(R,L)
∫

B4R(x0)

|u|2dx +
∫

B2R(x0)

|DF |2dx,

where L is the Lipschitz constant of A. By a covering argument we get
(4.11). �

Exercise 4.10 Complete the proof of Theorem 4.9 by dropping the assump-
tion that f = 0.
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[Hint. Choose as test function ϕ := τ−h,s(η
2τh,su) with the usual cut-off func-

tion η. We obtain∫
Ω

Aαβ
ij DβujDαϕidx ≥ c

∫
Ω

|D(ητh,su)2|dx − c1

∫
Ω

(η2|Du|2 + |Dη|2|τh,su|2)dx.

Rearranging one gets

c

∫
Bρ

|D(ητh,su)|2dx ≤ c1

∫
Ω

(η2|Du|2 + |Dη|2|τh,su|2)dx

+

∫
Ω

|f ||ϕ|dx +

∫
Ω

|F ||Dϕ|dx.

(4.15)

The last term is quite easy to estimate and for the term involving f∫
Ω

|f ||τ−h,s(η
2τh,su)|dx ≤ ε

∫
ω

|D(η2τh,su)|2dx +
1

ε

∫
Ω

|f |2dx

≤ ε

∫
Ω

|D(ητh,su)|2dx + ε

∫
Ω

|Dη|2|τh,su|2dx

+
1

ε

∫
Ω

|f |2dx.

(4.16)

Insert (4.16) into (4.15) to obtain an L2-estimate of τh,sDu and use Proposition
4.8 to get the result.]

By induction Theorem 4.9 generalizes to the following regularity result.

Theorem 4.11 Assume that u ∈ W 1,2(Ω, Rm) is a weak solution of the
system

−Dα(Aαβ
ij Dβuj) = fi −DαFα

i ,

where Aαβ
ij satisfies the Legendre-Hadamard condition and for some in-

teger k ≥ 0

1. Aαβ
ij ∈ Ck,1(Ω), i.e. DkAαβ

ij ∈ Lip(Ω),

2. fi ∈W k,2(Ω),

3. Fα
i ∈W k+1,2(Ω).

Then u ∈ W k+2,2
loc (Ω, Rm) and for every Ω0 � Ω there is a constant c

depending on k, Ω, Ω0 and ‖A‖Ck,1 such that

‖Dk+2u‖L2(Ω0) ≤ c(‖u‖L2(Ω) + ‖f‖W k,2(Ω) + ‖DF‖W k,2(Ω)).

Proof. For k = 0 this reduces to Theorem 4.9. Now we assume the
theorem true for some k − 1 ≥ 0 and prove it for k.

For a given ψ ∈ C∞
c (Ω) consider the test function ϕ := Dsψ, 1 ≤ s ≤

n. Integration by parts yields∫
Ω

Ds(AαβDβuj)Dαψidx =
∫

Ω

Dsfiψ
idx +

∫
Ω

DsF
α
i Dαψidx,
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that becomes∫
Ω

Aαβ
ij Dβ(Dsu

j)Dαψidx =
∫

Ω

Dsfiψ
idx

+
∫

Ω

[−DsA
αβ
ij Dβuj + DsF

α
i

]
Dαψidx.

Now given Ω0 � Ω choose Ω̃ with Ω0 � Ω̃ � Ω. We have f̃i := Dsfi ∈
W k−1,2(Ω) and F̃α

i := −DsA
αβ
ij Dβuj + DsF

α
i ∈ W k,2(Ω̃) so that by

inductive hypothesis we have Dsu ∈ W k+1,2(Ω0) for every s, i.e. u ∈
W k+2,2(Ω0) with the claimed estimate easily following. �

Corollary 4.12 Let u be a weak solution of the elliptic system

−Dα(Aαβ
ij Dβuj) = fi −DαFα

i

with Aαβ
ij , fi, F

α
i ∈ C∞(Ω). Then u ∈ C∞(Ω, Rm).

Proof. By Theorem 4.11 u ∈W k,2
loc (Ω, Rm) for every k ≥ 0 and the result

follows at once from the Sobolev embedding theorem. �

4.3.2 Boundary regularity

The solution to an elliptic system with prescribed boundary data g is
regular up to the boundary according to the regularity of ∂Ω and g.

Definition 4.13 A domain Ω is said to be of class Ck if for every point
x0 ∈ ∂Ω there exist a neighborhood U of x0 in Ω and Ck-diffeomorphism

γ : B
+ → U,

where B+ is the half-ball {x ∈ Rn : |x| < 1, xn > 0} and B
+

is its closure.

Theorem 4.14 Let the hypothesis of Theorem 4.11 be in force. Assume
in addition that ∂Ω is of class Ck+2 and u − g ∈ W 1,2

0 (Ω) for a given
g ∈W k+2,2(Ω). Then u ∈W k+2,2(Ω) and there is a constant c depending
on k, Ω and ‖A‖Ck,1 such that

‖Dk+2u‖L2(Ω) ≤ c(‖f‖W k,2(Ω) + ‖DF‖W k,2(Ω) + ‖g‖W k+2,2(Ω)).

Proof. Up to redefining u by u − g and changing the data of the system
accordingly, we may assume that u ∈W 1,2

0 (Ω).
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Step 1: Reduction to a flat boundary. For a neighborhood U of a point
x0 ∈ ∂Ω and a Ck+2-diffeomorphism γ : U → B+ as in Definition 4.13,
define in B+. We can assume that Jγ := detDγ > 0 on B

+
. Setting

ũ(y) := u(γ(y)),

Ãαβ
ij (y) := Aνμ

ij (γ(y))Jγ(y)(Dμγβ(y))−1Dν(γ−1)αγ(y),

F̃α
i (y) := Jγ(y)Dμ(γ−1)α(γ(y))Fμ

i (γ(y))

f̃i(y) := Jγ(y)fi(γ(y)),

we have with the change of variable formula we have for ϕ ∈ C∞
x (B+)∫

B+
Ãαβ

ij (y)Dβũj(y)Dαϕi(y)dy =
∫

U

Aαβ
ij (x)Dβuj(x)Dαϕi(γ−1(x))dx

=
∫

U

fi(x)ϕi(γ−1(x))dx +
∫

U

Fα
i (x)Dαϕi(γ−1(x))dx

=
∫

B+
f̃i(y)ϕi(y)dy +

∫
B+

F̃α
i (y)Dαϕi(y)dy,

i.e.
−Dα(Ãαβ

ij Dβũj) = f̃i − F̃α
i in B+. (4.17)

Thanks to the assumption on γ, ũ ∈ W k+2,2(B+) if and only if u ∈
W k+2,2(U). It is then clear that we can first assume Ω = B+ and

u = 0 on {x ∈ B
+

: xn = 0}, (4.18)

and prove that u ∈W k+2,2(B+
1/2), where

B+
1/2 = {x ∈ Rn : |x| < 1/2, xn > 0}.

Then using a covering argument on ∂Ω we conclude for a general set Ω
with Ck+2 boundary.

Step 2: Existence of second derivatives DsDu, s �= n. By (4.18), for
any η ∈ C∞

c (B1) we have ηu ∈ W 1,2
0 (B+, Rm) and similarly, if s �= n,

ϕ := τ−h,s(η2τh,su) ∈ W 1,2
0 (B+), so that ϕ is an admissible test func-

tion. Inserting ϕ in (4.17) and carrying out the same computations as in
Exercise 4.10 yields

‖τh,sDu‖L2(B+
1/2)
≤ c

{‖Du‖L2(B+) + ‖f̃‖L2(B+) + ‖DF̃‖L2(B+)

}
,

thus proving, by Proposition 4.8, that all the second derivatives of u except
for DnDβu are in L2(B+

1/2) and bounded, for β = 1, . . . , n. Since weak
derivatives commute, the same reasoning applies with s = β if β �= n, so
that it only remains to prove that Dnnu is bounded in L2(B+

1/2).
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Step 3: Existence of Dnnu bounded in L2(B+
1/2). System (4.17) may be

rewritten (ignoring the ∼ symbols) as∫
B+

1/2

Ann
ij DnujDnϕidx =−

n∑
α,β=1

(α,β)�=(n,n)

m∑
i,j=1

∫
B+

1/2

Aαβ
ij DβujDαϕidx

+
∫

B+
1/2

fiϕ
idx +

∫
B+

1/2

Fα
i Dαϕidx.

(4.19)

After integration by parts, we get

−Ann
ij (Dnnuj , ϕi)L2(B+

1/2)

=
∫

B+
1/2

[ n∑
α,β=1

(α,β)�=(n,n)

Dα

(
Aαβ

ij Dβuj
)

+ DnAnn
ij Dnuj + fi −DαFα

i

]
︸ ︷︷ ︸

bounded in L2(B+
1/2)

ϕidx.

(4.20)

Observing that (Ann
ij ) is positive definite by ellipticity, hence invertible,

(4.20) implies
sup

‖ϕ‖
L2(B

+
1/2)

≤1

(Dnnuj , ϕi)L2(B+
1/2)
≤ c,

hence by duality Dnnuj belongs to L2(B+
1/2) and is bounded as usual.

Step 4. With a covering argument we obtain D2u ∈ L2(Ω) and

‖D2(u− g)‖L2(Ω) ≤ c
{‖D(u− g)‖L2(Ω) + ‖f̃‖L2(Ω) + ‖DF̃‖L2(Ω)

}
,

i.e.

‖D2u‖L2(Ω) ≤ c
{‖Du‖L2(Ω) + ‖Dg‖W 1,2(Ω) + ‖f̃‖L2(Ω) + ‖DF̃‖L2(Ω)

}
,

but we can get rid of the term ‖Du‖L2(Ω) on the right-hand side by testing
the system with ϕ = (u − g), using ellipticity, Hölder’s and Poincaré’s
inequalities:

λ‖Du‖2L2(Ω) ≤
∫

Ω

Aαβ
ij DβujDα(uj − gj)dx +

∫
Ω

Aαβ
ij DβujDαgidx

≤ c
(
‖f‖L2(Ω)‖u− g‖L2(Ω) + ‖F‖L2(Ω)‖D(u− g)‖L2(Ω)

+ ‖Du‖L2(Ω)‖Dg‖L2(Ω)

)
≤ λ

2
‖Du‖2L2(Ω) +

c

λ

(
‖F‖2L2(Ω) + ‖f‖2L2(Ω) + ‖Dg‖2L2(Ω)

)
.
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With Poincaré’s inequality we easily bound also ‖u‖2L2(Ω). For the higher
derivatives we may proceed by induction as in Theorem 4.11. �

4.4 The hole-filling technique

Caccioppoli’s inequality may be used to obtain a decay estimate for the
Dirichlet integral of weak solutions of linear elliptic systems. Here we
show how to do this by the hole-filling technique of Widman [115]. As
a consequence we obtain Hölder continuity for the solutions of elliptic
systems with bounded coefficients in dimension 2.

Let u ∈ W 1,2
loc (Ω, Rm), Ω ⊂ Rn be a solution to the following elliptic

system:
−Dα(Aαβ

ij (x)Dβuj) = 0 in Ω, (4.21)

λ|ξ|2 ≤ Aαβ
ij ξi

αξj
β ≤ Λ|ξ|2.

Take x0 ∈ Ω, 0 < R < dist(x0, ∂Ω). Insert in (4.21) the test function
(u − ξ)η2, where ξ ∈ Rm and η is a non-negative cut-off function with
η ≡ 1 on BR

2
(x0), η ≡ 0 on Ω\BR(x0), |Dη| ≤ 2

R . We obtain∫
Ω

|Du|2η2dx ≤ c

∫
Ω

|Du||Dη||u− ξ|ηdx, c = c(λ,Λ)

and taking into account the properties of η, Poincaré’s inequality and
2ab ≤ εa2 + b2

ε the right-hand side above can be bounded by

1
2

∫
Ω

|Du|2η2dx + c1

∫
BR(x0)\B R

2
(x0)

|u− ξ|2dx. (4.22)

Choosing

ξ =
∫

BR(x0)\B R
2

(x0)

udx

we can use the Poincaré-type inequality∫
BR(x0)\B R

2
(x0)

|u− ξ|2dx ≤ c2R
2

∫
BR(x0)\B R

2
(x0)

|Du|2dx

(prove it as exercise: first assume R = 1 and apply Proposition 3.21, then
rescale) and summing up we find∫

B R
2

(x0)

|Du|2dx ≤ c

∫
BR(x0)\B R

2
(x0)

|Du|2dx (4.23)
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for a dimensional constant c. Adding c times the left-hand side to both
sides we get ∫

B R
2

(x0)

|Du|2dx ≤ c

c + 1

∫
BR(x0)

|Du|2dx, (4.24)

and ∫
B2−kR

(x0)

|Du|2dx ≤
( c

c + 1

)k
∫

BR(x0)

|Du|2dx

for all k ≥ 1. This yields the existence of some α = α(λ,Λ) > 0 such that∫
Bρ(x0)

|Du|2dx ≤ c1ρ
2αdx.

As we shall see in the next chapter, when n = 2, i.e. Ω ⊂ R2, Morrey’s
Theorem 5.7 implies that u ∈ C0,α

loc (Ω, Rm).

Remark 4.15 By G̊arding’s inequality, we get (4.23) also in the case
that Aαβ

ij only satisfy the Legendre-Hadamard condition and are constant,
or satisfy the Legendre-Hadamard condition, are continuous and R is
small enough. Hence also in these cases we have Hölder continuity in
dimension 2.

Another easy consequence of (4.24) is that entire solutions of (4.21),
i.e. solutions of (4.21) in all of Rn, with finite energy,∫

Rn

|Du|2dx <∞,

are constant. Consider now an entire solution u of (4.21) in dimension
n = 2. Suppose it is globally bounded; then from (4.22) (with ξ = 0) we
get ∫

BR(0)

|Du|2dx ≤ c

R2

∫
B2R(0)

|u|2dx ≤ c1 sup
R2
|u|2

hence u has finite energy. Therefore we conclude

Theorem 4.16 (Liouville) Let u ∈ W 1,2
loc (R2) be a bounded solution of

the elliptic system (4.21) with Ω = R2. Then u is constant.



Chapter 5
Schauder estimates

In this chapter we prove Schauder estimates according to the work of S.
Campanato, without using potential theory.

5.1 The spaces of Morrey and Campanato

The domains Ω ⊂ Rn in this chapter are supposed to satisfy the following
property: there exists a constant A > 0 such that for all x0 ∈ Ω, ρ <
diamΩ we have

|Bρ(x0) ∩ Ω| ≥ Aρn. (5.1)

Note that every domain of class C1 or Lipschitz has the above property.

Definition 5.1 Set Ω(x0, ρ) := Ω ∩ Bρ(x0) and for every 1 ≤ p ≤ +∞,
λ ≥ 0 define the Morrey space Lp,λ(Ω)

Lp,λ(Ω) :=
{

u ∈ Lp(Ω) : sup
x0∈Ω
ρ>0

ρ−λ

∫
Ω(x0,ρ)

|u|pdx < +∞
}

,

endowed with the norm defined by

‖u‖p
Lp,λ(Ω)

:= sup
x0∈Ω
ρ>0

ρ−λ

∫
Ω(x0,ρ)

|u|pdx

and the Campanato space Lp,λ(Ω)

Lp,λ(Ω) :=
{

u ∈ Lp(Ω) : sup
x0∈Ω
ρ>0

ρ−λ

∫
Ω(x0,ρ)

|u− ux0,ρ|pdx < +∞
}

,
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where ux0,ρ :=
∫
–
Ω(x0,ρ)

udx. We give the Campanato space Lp,λ(Ω)
the seminorm

[u]pp,λ := sup
x0∈Ω
ρ>0

ρ−λ

∫
Ω(x0,ρ)

|u− ux0,ρ|pdx

and the norm
‖u‖Lp,λ(Ω) := [u]p,λ + ‖u‖Lp(Ω).

Remark 5.2 In the above definition only small radii are relevant, i.e. we
can fix ρ0 > 0 and replace the definition of ‖u‖p

Lp,λ(Ω)
with

sup
x0∈Ω

0<ρ<ρ0

ρ−λ

∫
Ω(x0,ρ)

|u|pdx,

and similarly we modify [u]p,λ. These norms, which are more convenient
when proving local estimates, are equivalent to the previous ones, as can
be seen with a simple covering argument.

Remark 5.3 The spaces of Morrey and Campanato are Banach spaces;
however one can show that smooth functions are not dense in these spaces.
In any case we shall not use the Banach structure of these spaces.

Proposition 5.4 For 0 ≤ λ < n we have Lp,λ(Ω) ∼= Lp,λ(Ω).

Proof. We have1∫
Ω(x0,ρ)

|u−ux0,ρ|pdx ≤ 2p−1

{∫
Ω(x0,ρ)

|u|pdx + |Ω(x0, ρ)||ux0,ρ|p
}

(5.2)

and by Jensen’s inequality

|ux0,ρ|p ≤ 1
|Ω(x0, ρ)|

∫
Ω(x0,ρ)

|u|pdx. (5.3)

Insert (5.3) in (5.2), divide by ρλ to obtain

[u]pp,λ ≤ 2p‖u‖p
Lp,λ(Ω)

,

thus concluding Lp,λ(Ω) ⊂ Lp,λ(Ω).

For the converse write

1
ρλ

∫
Ω(x0,ρ)

|u|pdx ≤ 2p−1

{
1
ρλ

∫
Ω(x0,ρ)

|u− ux0,ρ|pdx + ωnρn−λ|ux0,ρ|p
}

.

(5.4)
1We shall freely use the inequality (a + b)p ≤ 2p−1(ap + bp) valid for every p ≥ 1.
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We need to estimate the term ρn−λ|ux0,ρ|p uniformly with respect to x0

and ρ. For 0 < r < R and x, x0 ∈ Ω we have

|ux0,R − ux0,r|p ≤ 2p−1
{|u(x)− ux0,R|p + |u(x)− ux0,r|p

}
;

integrating with respect to x on Ω(x0, r) and using (5.1) we obtain

|ux0,R−ux0,r|p ≤ 2p−1

Arn

{∫
Ω(x0,R)

|u−ux0,R|pdx+
∫

Ω(x0,r)

|u−ux0,r|pdx

}
,

thus

|ux0,R − ux0,r|p ≤ c1(p,A)
rn

(Rλ + rλ)[u]pp,λ ≤
2c1(p,A)

rn
Rλ[u]pp,λ.

and taking the p-th root

|ux0,R − ux0,r| ≤ c2[u]p,λR
λ
p r−

n
p . (5.5)

Set Rk = R
2k ; (5.5) implies

|ux0,Rk
− ux0,Rk+1 | ≤ c2R

λ−n
p [u]p,λ2k n−λ

p + n
p , (5.6)

and taking the sum from 0 to h we infer

|ux0,R − ux0,Rh+1 | ≤ c3(n, p, λ,A)[u]p,λR
λ−n

p

h+1 . (5.7)

Choose h and R with diamΩ ≤ R ≤ 2 diamΩ and Rh+1 = ρ. Then we
have

|ux0,ρ|p ≤ 2p−1
{|ux0,R|p + |ux0,R − ux0,ρ|p

}
≤ 2p−1

{|ux0,R|p + cp
3ρ

λ−n[u]pp,λ

}
,

which inserted in (5.4), and taking into account the condition on R, yields

1
ρλ

∫
Ω(x0,ρ)

|u|pdx ≤ c4

{
[u]pp,λ + |ux0,R|p

} ≤ c5‖u‖pLp,λ(Ω)
,

where we also used

ρn−λ|ux0,R|p ≤ c5|ux0,R|p ≤ c6‖u‖pLp(Ω).

�
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5.1.1 A characterization of Hölder continuous
functions

Theorem 5.5 (Campanato) For n < λ ≤ n + p and α = λ−n
p we have

Lp,λ(Ω) ∼= C0,α(Ω). Moreover the seminorm

[u]C0,α := sup
x,y∈Ω, x�=y

|u(x)− u(y)|
|x− y|α

is equivalent to [u]p,λ. If λ > n + p and u ∈ Lp,λ(Ω), then u is constant.

Proof. Assume u ∈ C0,α(Ω). For x ∈ Ω(x0, ρ) we have

|u(x)− u(x0)| ≤ [u]C0,αρα,

hence
|u(x)− ux0,ρ| ≤ [u]C0,αρα.

Consequently

1
ρλ

∫
Ω(x0,ρ)

|u(x)− ux0,ρ|pdx ≤ ωn[u]pC0,αρn−λ+αp = ωn[u]pC0,α .

Conversely, take u ∈ Lp,λ(Ω). For x0 ∈ Ω, R > 0, Rk := R
2k , we get from

(5.7)

|ux0,Rk
− ux0,Rh

| ≤ c[u]p,λR
λ−n

p

k , k < h, (5.8)

consequently {ux0,Rk
} is a Cauchy sequence. Set

ũ(x0) := lim
h→+∞

ux0,Rh
.

This limit doesn’t depend on the choice of R, as can be easily verified
using (5.5).

From the differentiation theorem of Lebesgue we know that ux,ρ →
u(x) in L1(Ω) as ρ → 0, so that u = ũ almost everywhere. Taking the
limit as h→ +∞ in (5.8) we conclude

|ux,R − u(x)| ≤ c[u]p,λR
λ−n

p , (5.9)

from which we see that the convergence of ux,R to ũ(x) is uniform. By
the absolute continuity of the Lebesgue integral we have that ux,R is
continuous with respect to x, so that the uniform limit u is also continuous.

To show Hölder continuity we take x, y ∈ Ω, R := |x−y| and estimate

|u(x)− u(y)| ≤ |ux,2R − u(x)|+ |ux,2R − uy,2R|+ |uy,2R − u(y)|. (5.10)
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The first and the third terms are estimated by (5.9). For the second term
we have

|ux,2R − uy,2R| ≤ |ux,2R − u(z)|+ |u(z)− uy,2R|
which, integrated with respect to z over Ω(x, 2R) ∩ Ω(y, 2R), gives

|ux,2R − uy,2R| ≤
∫
Ω(x,2R)

|u(z)− ux,2R|dz +
∫
Ω(y,2R)

|u(z)− uy,2R|dz

|Ω(x, 2R) ∩ Ω(y, 2R)| .

By Hölder’s inequality (applied to the functions 1 · |u(z) − uy,2R| and
1 · |u(z)− ux,2R|) we obtain

|ux,2R − uy,2R| ≤ c
1

|Ω(x, 2R) ∩ Ω(y, 2R)| [u]p,λR
λ−n

p +n. (5.11)

On the other hand Ω(x,R) ⊂ Ω(x, 2R) ∩ Ω(y, 2R), thus by (5.1) we get

|Ω(x, 2R) ∩ Ω(y, 2R)| ≥ ARn,

therefore (5.11) becomes

|ux,2R − uy,2R| ≤ c1[u]p,λR
λ−n

p ,

which together with the preceding estimate in (5.10) yields

|u(x)− u(y)| ≤ c2[u]p,λR
λ−n

p = c2[u]p,λ|x− y|λ−n
p .

Hence u ∈ C0,α(Ω) and [u]C0,α ≤ c2[u]p,λ. Since any u ∈ C0,α(Ω) is
constant if α > 1, also the last claim of the theorem follows. �

Corollary 5.6 Assume that Ω has the extention property, for instance
it is Lipschitz, and let u ∈ W 1,p(Ω), p > n. Then u ∈ C0,1−n

p (Ω), and
‖u‖C0,1−n/p ≤ c‖u‖W 1,p , where c = c(Ω, p).

Proof. Extend u to a function ũ ∈W 1,p(Rn), with

‖ũ‖W 1,p(Rn) ≤ c1‖u‖W 1,p(Ω)

for a constant c1(Ω, p). By Poincaré’s inequality, Proposition 3.21, and
Hölder’s inequality we have∫

Ω(x0,ρ)

|u− ux0,ρ|dx ≤ c2ρ

∫
Rn

|Dũ|dx

≤ c3

(∫
Bρ(x0)

|Du|pdx

) 1
p

ρn−n
p +1,

that is, u ∈ L1,n−n
p +1(Ω) ∼= C0,1−n

p (Ω). �
As a corollary, we obtain the celebrated theorem of Morrey on the

growth of the Dirichlet integral
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Theorem 5.7 (Morrey) Let u ∈W 1,p
loc (Ω), Du ∈ Lp,n−p+ε

loc (Ω), for some

ε > 0. Then u ∈ C
0, ε

p

loc (Ω).

Proof. By Poincaré’s inequality, Proposition 3.21, we have for any ball
Bρ(x0) � Ω∫

Bρ(x0)

|u− ux0,ρ|pdx ≤ cρp

∫
Bρ(x0)

|Du|pdx ≤ cρn+ε‖Du‖pLp(Bρ(x0))
,

so that by standard covering arguments u ∈ Lp,n+ε
loc (Ω) (we are also using

that in the definition of Morrey and Campanato spaces only small radii
are relevant) and the result follows from Campanato’s theorem. �

5.2 Elliptic systems with constant
coefficients: two basic estimates

The following proposition is a simple consequence of the L2-regularity
and, in particular, of the Caccioppoli inequality, and will be the basic
tool in proving Schauder estimates.

Proposition 5.8 Let Aαβ
ij be constant and satisfy the Legendre-Hadamard

condition (3.17). Then there exists a constant c = c(n,m, λ,Λ) such that
any solution u ∈W 1,2

loc (Ω) of

Dα(Aαβ
ij Dβu) = 0 (5.12)

satisfies ∫
Bρ(x0)

|u|2dx ≤ c
( ρ

R

)n
∫

BR(x0)

|u|2dx, (5.13)

and ∫
Bρ(x0)

|u− ux0,ρ|2dx ≤ c
( ρ

R

)n+2
∫

BR(x0)

|u− ux0,R|2dx, (5.14)

for arbitrary balls Bρ(x0) � BR(x0) � Ω.

Proof. Both inequalities are trivial for r ≥ R
2 , so that we may assume

r < R
2 .

Let us first prove (5.13). By Theorem 4.11 we have for k ≥ 1 u ∈
W k,2

loc (Ω, Rm) and

‖u‖W k,2(BR/2) ≤ c(k,R, n,m, λ,Λ)‖u‖L2(BR).
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Thus, for k large enough (depending on n), on account of Sobolev Theorem
3.26 ∫

Bρ(x0)

|u|2dx ≤ ωnρn sup
Bρ(x0)

|u|2dx

≤ ωnρn sup
BR/2(x0)

|u|2dx

≤ c1(n,R)ρn‖u‖2W k,2(BR/2(x0))

≤ c2(R,n,m, λ,Λ)ρn‖u‖2L2(BR(x0))
.

A simple scaling argument (see the exercise below) finally yields

c2(R,n,m, λ,Λ) =
1

Rn
c(n,m, λ,Λ).

Inequality (5.14) follows from (5.13) applied to the partial derivatives
Dsu (which are also solutions of (5.12)) together with the inequalities of
Caccioppoli (4.5) and Poincaré:∫

Bρ(x0)

|u− ux0,ρ|2dx ≤ c1ρ
2

∫
Bρ(x0)

|Du|2dx

≤ c2ρ
2
( ρ

R

)n
∫

BR/2(x0)

|Du|2dx

≤ c3ρ
2
( ρ

R

)n 1
R2

∫
BR(x0)

|u− ux0,ρ|2dx.

�

Exercise 5.9 Make precise the scaling argument in the proof of the above
proposition.
[Hint. We can assume x0 = 0. For a given solution u of (5.12) in BR(0), the
rescaled function ũ(x) = u(Rx) is a solution of (5.12) in B1(0), so that (5.13)
applies to ũ with ρ

R
instead of ρ.]

Exercise 5.10 Prove that for every f ∈ W 1,2
loc (Ω, Rm), Bρ(x0) � Ω∫

Bρ(x0)

|f(x) − fx0,ρ|2dx = inf
λ∈Rm

∫
Bρ(x0)

|f(x) − λ|2dx. (5.15)

[Hint: Differentiate the right-hand side with respect to λ.]

Remark 5.11 Since x �→ |x|2 is a convex function, whenever u is har-
monic, v = |u|2 is subharmonic, see Exercise 1.2. Therefore the energy
inequality (5.13) in this case follows from the monotonicity formula (1.7)
for subharmonic functions:∫

Bρ(x0)

|u|2dx ≤
∫

BR(x0)

|u|2dx, Bρ(x0) � BR(x0) � Ω.

In particular we can choose c = 1 in this special case.
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5.2.1 A generalization of Liouville’s theorem

Propositon 5.8 extends to all partial derivatives of u since they also solve
(5.12). A consequence of this is that the only entire solutions of an el-
liptic system with constant coefficients that grow at most polynomially at
infinity are polynomials.

Theorem 5.12 Let u : Rn → Rm be an entire solution to the elliptic
system (5.12), and assume that there exists a constant M > 0 and an
integer k ≥ 0 such that

|u(x)| ≤M(1 + |x|k), ∀x ∈ Rn.

Then u is a polynomial of degree at most k.

Proof. Fix ρ > 0 and let P be a polynomial of degree at most k such that
for any multi-index γ with |γ| ≤ k we have on Bρ = Bρ(0)∫

Bρ

Dγ(u− P )dx = 0. (5.16)

Such a polynomial can be easily determined, starting with the condition
(5.16) for |γ| = k, which determines the coefficients of the monomials in P
of highest degree, and then inductively lowering |γ|. Repeatedly applying
Poincaré’s inequality (3.2) to v = Dγu−DγP , |γ| = 0, . . . , k, using (5.13)
for some R ≥ 2ρ, (k + 1)-times Caccioppoli’s inequality (4.5), and the
bound on u yields∫

Bρ

|u− P |2dx ≤ c1ρ
2k+2

∫
Bρ

|Dk+1u|2dx

≤ c2

( ρ

R

)n

ρ2k+2

∫
BR

|Dk+1u|2dx

≤ c3

( ρ

R

)n+2k+2
∫

B2k+1R

|u|2dx ≤ c4M
2
( ρ

R

)n+2k+2

Rn+2k.

Letting R → +∞ we conclude that u = P in Bρ, and in particular
Dk+1u = 0 in Bρ. Since ρ was arbitrary Dk+1u = 0 in Rn, hence it is a
polynomial of degree at most k. �

5.3 A lemma

The following lemma turns out to be very useful.

Lemma 5.13 Let φ : R+ → R+ be a non-negative and non-decreasing
function satisfying

φ(ρ) ≤ A
[( ρ

R

)α

+ ε
]
φ(R) + BRβ ,
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for some A,α, β > 0, with α > β and for all 0 < ρ ≤ R ≤ R0, where R0 >
0 is given. Then there exist constants ε0 = ε0(A,α, β) and c = c(A,α, β)
such that if ε ≤ ε0, we have

φ(ρ) ≤ c
[φ(R)

Rβ
+ B

]
ρβ . (5.17)

for all 0 ≤ ρ ≤ R ≤ R0.

Proof. Set ρ := τR, 0 < τ < 1; then

φ(τR) ≤ ταA
[
1 +

ε

τα

]
φ(R) + BRβ . (5.18)

Set γ := α+β
2 . We may assume, without loss of generality, that 2A > 1,

so that we may choose τ ∈ (0, 1) satisfying 2Aτα = τγ . Choose ε0 =
ε0(A,α, β) > 0 such that ε0

τα < 1. Then (5.18) gives for ε ≤ ε0

φ(τR) ≤ τγφ(R) + BRβ .

Iterating we find for k ≥ 0

φ(τkR) ≤τγφ(τk−1R) + Bτ (k−1)βRβ

≤τkγφ(R) + Bτ (k−1)βRβ
k−1∑
j=0

τ j(γ−β)

≤
[
τ−β + τ−2β

∞∑
j=0

τ j(γ−β)

]
τ (k+1)β(φ(R) + BRβ)

=cτ (k+1)β(φ(R) + BRβ),

with a constant c(A,α, β). Choose k ∈ N such that τk+1R ≤ ρ ≤ τkR.
Then

φ(ρ) ≤ φ(τkR) ≤ cτ (k+1)β(φ(R) + BRβ),

which gives (5.17), since τk+1 ≤ ρ/R. �

5.4 Schauder estimates for elliptic systems
in divergence form

5.4.1 Constant coefficients

Theorem 5.14 Let u ∈W 1,2
loc (Ω, Rm) be a solution to

Dα(Aαβ
ij Dβuj) = −DαFα

i , (5.19)
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with Aαβ
ij constant and satisfying the Legendre-Hadamard condition (3.17).

If Fα
i ∈ L2,μ

loc (Ω), 0 ≤ μ < n + 2, then Du ∈ L2,μ
loc (Ω), and

‖Du‖L2,μ(K) ≤ c
(
‖Du‖L2(Ω) + [F ]L2,μ(Ω̃)

)
, (5.20)

for every compact K � Ω̃ � Ω, with c = c(n,m,K, Ω̃, λ,Λ, μ).

Corollary 5.15 In the hypothesis of the theorem, if Fα
i ∈ Ck,σ(Ω), k ≥

1, then u ∈ Ck+1,σ
loc (Ω) and

‖u‖Ck+1,σ(K) ≤ c
(
‖Du‖L2(Ω) + ‖F‖Ck,σ(Ω)

)
,

with c = c(n,m,K,Ω, λ,Λ, σ)

Proof. Thanks to Theorem 4.11, u ∈ W k+1,2
loc (Ω, Rm) so that we may

differentiate the system k times. If γ is a multi-index with |γ| ≤ k, then
we obtain

Dα(Aαβ
ij Dβ(Dγuj)) = −Dα(DγFα

i ).

Theorems 5.5 and 5.14 then yield the result. The details of the estimate
are left for the reader. �
Proof of Theorem 5.14. For a given ball BR(x0) ⊂ Ω̃ we write u = v + w
v is the solution (which exists and is unique by Corollary 3.46) to{

Dα(Aαβ
ij Dβvj) = 0 in BR(x0)

v = u on ∂BR(x0).
(5.21)

By Proposition 5.12 we get∫
Bρ(x0)

|Dv − (Dv)x0,ρ|2dx ≤ c
( ρ

R

)n+2
∫

BR(x0)

|Dv − (Dv)x0,R|2dx,

consequently, using (5.15)∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx

=
∫

Bρ(x0)

|Dv − (Dv)x0,ρ + Dw − (Dw)x0,ρ|2dx

≤ c1

( ρ

R

)n+2
∫

BR(x0)

|Dv − (Dv)x0,R|2dx + 2
∫

Bρ(x0)

|Dw − (Dw)x0,ρ|2dx

≤ c2

( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx + c3

∫
BR(x0)

|Dw − (Dw)x0,R|2dx

≤ c2

( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx + c3

∫
BR(x0)

|Dw|2dx.

(5.22)
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In order to estimate
∫

BR(x0)
|Dw|2dx we observe that by (5.19) and (5.21)

we have∫
BR(x0)

Aαβ
ij DβwjDαϕidx =

∫
BR(x0)

Fα
i Dαϕidx

=
∫

BR(x0)

(
Fα

i − (Fα
i )x0,R

)
Dαϕidx,

for every ϕ ∈ W 1,2
0 (BR(x0), Rm). Choose ϕ = w as test function; on

account of Proposition 3.45

λ

∫
BR(x0)

|Dw|2dx ≤
∫

BR(x0)

Aαβ
ij DαwiDβwjdx

=
∫

BR(x0)

(
Fα

i − (Fα
i )x0,R

)
Dαwidx

≤
(∫

BR(x0)

∑
i,α

∣∣Fα
i − (Fα

i )x0,R

∣∣2dx

) 1
2
(∫

BR(x0)

∣∣Dw
∣∣2dx

) 1
2

,

(5.23)

thus, simplifying,∫
BR(x0)

|Dw|2dx ≤ c3

∫
BR(x0)

∑
α,i

|Fα
i − (Fα

i )x0,R|2dx ≤ [F ]22,λRμ. (5.24)

Inserting (5.24) into (5.22) we obtain

φ(ρ) :=
∫

Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ A
( ρ

R

)n+2

φ(R) + BRμ.

Lemma 5.13 with α = n + 2 and β = μ yields

φ(ρ) ≤ c

[( ρ

R

)μ

φ(R) + Bρμ

]
≤ c1

[( ρ

R

)μ

‖Du‖2L2(Ω) + [F ]22,λρμ

]
,

i.e. the first part of the claim. Estimate (5.20) follows at once by covering
K with balls. �

Exercise 5.16 State and prove a similar result when (5.19) is replaced by

Dα(Aαβ
ij Dβuj) = fi − DαF α

i ,

with fi ∈ L2,μ(Ω), F α
i ∈ L2,μ+2(Ω) for some 0 ≤ μ < n.

[Hint: Use Hölder’s and Caccioppoli’s inequalities to bound the term∫
BR(x0)

fiw
idx

arising in (5.23).]
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5.4.2 Continuous coefficients

Theorem 5.17 Let u ∈W 1,2
loc (Ω, Rm) be a solution to

Dα(Aαβ
ij Dβuj) = −DαFα

i , (5.25)

with Aαβ
ij ∈ C0

loc(Ω) satisfying the Legendre-Hadamard condition (3.17).
Then, if Fα

i ∈ L2,λ
loc (Ω) for some 0 ≤ λ < n, we have Du ∈ L2,λ

loc (Ω) and
the following estimate

‖Du‖L2,λ(K) ≤ c
(
‖Du‖L2(Ω̃) + ‖F‖2

L2,λ(Ω̃)

)
(5.26)

holds for every compact K � Ω̃ � Ω, where c = c(n,m, λ,Λ,K, Ω̃, ω) and
ω is the modulus of continuity of (Aαβ

ij ) in Ω̃ :

ω(R) := sup
x,y∈Ω̃

|x−y|≤R

|A(x)−A(y)|,

Proof. Fix x0 ∈ K and BR(x0) ⊂ Ω̃ and write,

Dα

(
Aαβ

ij (x0)Dβuj
)

= −Dα

{(
Aαβ

ij (x)−Aαβ
ij (x0)

)
Dβuj + Fα

i

}
=: −DαGα

i .
(5.27)

This is often referred to as Korn’s trick. With the same computation of
the proof of Theorem 5.14 (using (5.13) instead of (5.14)) we obtain∫

Bρ(x0)

|Du|2dx ≤ c
( ρ

R

)n
∫

BR(x0)

|Du|2dx + c

∫
BR(x0)

|Du−Dv|2dx,

(5.28)
v being the solution of (5.21) with Aαβ

ij = Aαβ
ij (x0). As for (5.24) we have∫

BR(x0)

|D(u− v)|2dx ≤ c

∫
BR(x0)

|G|2dx

≤ c

∫
BR(x0)

|F |2dx + cω(R)2
∫

BR(x0)

|Du|2dx.

Together with inequality (5.28), this gives∫
Bρ(x0)

|Du|2dx ≤ A

{( ρ

R

)n

+ ω(R)2
}∫

BR(x0)

|Du|2dx + ‖F‖L2,λRλ.

Lemma 5.13 applied with φ(ρ) =
∫

Bρ(x0)
|Du|2dx2, α = n, β = λ and

choose R ≤ R0 so that ω(R0) is small enough yields the result. �
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Corollary 5.18 In the same hypothesis of the theorem, if λ > n−2, then
u ∈ C0,σ

loc (Ω, Rm), σ = λ−n+2
2 .

Proof. Du ∈ L2,λ
loc (Ω) by the theorem and the conclusion follows from

Morrey’s Theorem 5.7. �

In particular if F and A are continuous, then u is Hölder continuous.

5.4.3 Hölder continuous coefficients

Theorem 5.19 Let u ∈W 1,2
loc (Ω, Rm) be a solution to

Dα(Aαβ
ij Dβuj) = −DαFα

i , (5.29)

with Aαβ
ij ∈ C0,σ

loc (Ω) satisfying the Legendre-Hadamard condition (3.17)
for some σ ∈ (0, 1). If Fα

i ∈ C0,σ
loc (Ω), then we have Du ∈ C0,σ

loc (Ω).
Moreover for every compact K � Ω̃ � Ω

‖Du‖C0,σ(K) ≤ c
(
‖Du‖L2(Ω̃) + ‖F‖C0,σ(Ω̃)

)
, (5.30)

c depending on K, Ω̃, the ellipticity and the Hölder norm of the coefficients
Aαβ

ij .

Proof. First observe that the hypothesis implies that ω(R) ≤ cRσ, if ω

is the modulus of continuity of the coefficients Aαβ
ij (x). Moreover Fα

i ∈
L2,n+2σ(Ω) by Campanato’s theorem. We define Gα

i as in (5.27) and with
the same argument used to obtain (5.22) and (5.24) we get for any ball
BR(x0) � Ω

∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤c
( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx

+ c

∫
BR(x0)

|Dw|2dx,

(5.31)

where w := u − v and v is the solution to (5.21) with Aαβ
ij = Aαβ

ij (x0).
By Proposition 3.45 and w being an admissible test function we get, as in
(5.23),∫

BR(x0)

|Dw|2dx ≤ c1

∫
BR(x0)

|F − Fx0,R|2dx + c1ω(R)2
∫

BR(x0)

|Du|2dx.
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Together with (5.31) and remembering that Du ∈ L2,n−ε
loc (Ω) for every

ε > 0 by Theorem 5.17, we obtain

φ(ρ) :=
∫

Bρ(x0)

|Du− (Du)x0,ρ|2dx

≤ c
( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx

+ c1

∫
BR(x0)

|F − Fx0,R|2dx︸ ︷︷ ︸
≤[F ]22,n+2σRn+2σ

+ ω(R)2︸ ︷︷ ︸
≤c2R2σ

∫
BR(x0)

|Du|2dx︸ ︷︷ ︸
≤c(ε)Rn−ε

≤c
( ρ

R

)n+2

φ(R) + BRn+2σ−ε,

(5.32)

which, by Lemma 5.13 implies Du ∈ L2,n+2σ−ε
loc (Ω) ∼= C

0,σ− ε
2

loc (Ω). In par-
ticular Du is locally bounded and we have∫

BR(x0)

|Du|2dx ≤ ωn sup
BR(x0)

|Du|2Rn.

Consequently (5.32) improves to

φ(ρ) ≤ c
( ρ

R

)n+2

φ(R) + BRn+2σ

and, again by Lemma 5.13,

φ(ρ) ≤ c
( φ(R)

Rn+2σ
+ B

)
ρn+2σ. (5.33)

We therefore conclude that Du ∈ L2,n+2σ
loc (Ω) ∼= C0,σ

loc (Ω) and the estimate
easily follows. �

5.4.4 Summary and generalizations

Theorem 5.20 Assume that u ∈W 1,2
loc (Ω, Rm) is a solution to

Dα(Aαβ
ij Dβuj) = fi −DαFα

i ,

where k ≥ 1 and

(i) Aαβ
ij ∈ Ck

loc(Ω) (resp. Ck,σ
loc (Ω) for some 0 < σ < 1),

(ii) DkFα
i ∈ L2,λ

loc (Ω), for some λ < n (resp. L2,λ
loc (Ω), n ≤ λ ≤ n + 2σ),

(iii) Dk−1fi ∈ L2,λ
loc (Ω), for some λ < n (resp. L2,λ

loc (Ω), n ≤ λ ≤ n+2σ).



5.4 Schauder estimates for systems in divergence form 89

Then Dk+1u ∈ L2,λ
loc (Ω) (resp. L2,λ

loc (Ω)).

In particular if Aαβ
ij ∈ Ck,σ

loc (Ω), Fα
i ∈ Ck,σ

loc (Ω) and fi ∈ Ck−1,σ
loc (Ω),

then u ∈ Ck+1,σ
loc (Ω).

Proof. The proof is just sketched. With the same techniques used so
far (freezing the coefficients Aαβ

ij and solving the homogeneous system
Dα(Aαβ

ij Dβvj) = 0 in BR(x0) � Ω) we obtain, for the case λ < n,∫
Bρ(x0)

|Du|2dx ≤ c

[( ρ

R

)n

+ ω(R)2
] ∫

BR(x0)

|Du|2dx

+ c

∫
BR(x0)

[
|F |2 + R2|f |2

]
dx,

and for n ≤ λ ≤ n + 2σ,∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤c
( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx

+ cω(R)2
∫

BR(x0)

|Du|2dx

+ c

∫
BR(x0)

[
|F − Fx0,R|2 + R2|f |2

]
dx.

If we differentiate the system and use induction as in Corollary 5.15, the
result follows from from Lemma 5.13 as usual. �

5.4.5 Boundary regularity

Here we sketch how to get Schauder estimates at the boundary.

Theorem 5.21 Let u ∈W 1,2(Ω) be a solution to⎧⎨⎩ −Dα(Aαβ
ij Dβuj) = −DαFα

i in Ω

u− g ∈W 1,2
0 (Ω)

(5.34)

with Aαβ
ij ∈ Ck,σ(Ω) satisfying the Legendre-Hadamard condition (3.17),

F ∈ Ck,σ(Ω), g ∈ Ck+1,σ(Ω), σ ∈ (0, 1). Then we have u ∈ Ck+1,σ(Ω)
and

‖u‖Ck+1,σ(Ω) ≤ c(Ω, σ, λ, ‖A‖Ck,α(Ω))
{‖F‖Ck,σ(Ω)+‖g‖Ck+1,σ(Ω)

}
, (5.35)

where λ is the ellipticity constant in (3.17).
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Proof. We give the proof in the case Aαβ
ij are constant.

Step 1. Reduction to zero boundary value. It is enough to study the
regularity of v := u− g which solves⎧⎨⎩ −Dα(Aαβ

ij Dβvj) = −Dα

(
Fα

i + Aαβ
ij Dβgj

)
:= −DGα

i in Ω

v ∈W 1,2
0 (Ω)

(5.36)

Observe that Gα
i ∈ C0,σ(Ω).

Step 2. Reduction to a flat boundary. As in step 1, Theorem 4.14, we may
consider the boundary to be flat working locally.2 We may thus assume
that Ω = Rn

+ = {x ∈ Rn : xn ≥ 0}.
Step 3. Generalization of (5.32) to the boundary. Inequality (5.32) con-
tinues to hold true if x0 ∈ Γ = {x ∈ Rn

+ : xn = 0} and instead of Bρ(x0)
and BR(x0) we write B+

ρ (x0) and B+
R(x0). This is because inequalities

(5.13) and (5.14) generalize to the boundary as∫
B+

ρ (x0)

|v|2dx ≤ c
( ρ

R

)n
∫

B+
R(x0)

|v|2dx, (5.37)∫
B+

ρ (x0)

|v − vx0,ρ|2dx ≤ c
( ρ

R

)n+2
∫

B+
R(x0)

|v − vx0,ρ|2dx, (5.38)

because v = 0 on Γ, being this time vx0,ρ the average of v on B+
ρ (x0).

Step 4. Global estimates. To see that Du ∈ C1,σ(Ω) we need to show
that

φ(ρ, x0) :=
∫

Ω(x0,ρ)

|Du− (Du)x0,ρ|2dx ≤ cρn+2σ,

with c independent of x0 and ρ. Assume first that G = 0 (this is the case if
g = 0 and F = 0). Then we fix R > 0 satisfying the following property: for
every y0 ∈ ∂Ω the neighborhood B2R(y0)∩Ω is diffeomorphic to B+

2R(0).
Choose x0 ∈ Ω, 0 < ρ ≤ R.

Case 1: x0 ∈ ΩR :=
{
x ∈ Ω : dist(x, ∂Ω) > R

}
. Then∫

Bρ(x0)

|Du− (Du)x0,ρ|2 ≤ c
( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2

≤ cρn+2
‖Du‖2L2(Ω)

Rn+2
.

In particular

[Du]2L2,n+2(ΩR) ≤ c
‖Du‖2L2(Ω)

Rn+2
.

2This is why the constant in (5.35) depends on Ω.



5.4 Schauder estimates for systems in divergence form 91

Case 2: r := dist(x0, ∂Ω) ≤ R, and ρ ≤ r. Call y0 the projection of x0

onto Γ. Then∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c
(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2dx

≤ c
(ρ

r

)n+2
∫

B+
2r(y0)

|Du− (Du)y0,2r|2dx

≤ c1

(ρ

r

)n+2( 2r
2R

)n+2
∫

B+
2R(y0)

|Du− (Du)y0,2R|2dx

≤ c2

( ρ

R

)n+2

‖Du‖2L2(Ω).

Case 3: r := dist(x0, ∂Ω) ≤ R, and ρ > r. Set y0 to be the projection of
x0 on Γ. We have∫

Ω(x0,ρ)

|Du− (Du)x0,ρ|2dx ≤
∫

B2ρ(y0)

|Du− (Du)y0,2ρ|2dx

≤ c
( 2ρ

2R

)n+2
∫

B+
2R(y0)

|Du− (Du)y0,2R|2dx

≤ c3

( ρ

R

)n+2

‖Du‖2L2(Ω).

Therefore u ∈ L2,n+2(Ω), hence it is Hölder continuous by Campanato’s
theorem.

Step 5. Drop the assumption G = 0. Divide the estimates in the three
cases as above. For the first case we have the same estimates as in The-
orem 5.19. For the second case set v equal to the solution to the homo-
genous system in Br(x0) with boundary data u and estimate∫

Bρ(x0)

|Du− (Du)x0,ρ|2dx

≤ c
(ρ

r

)n+2
∫

Br(x0)

|Du− (Du)x0,r|2dx +
∫

Br(x0)

|D(u− v)|2dx.

Next define w to be the solution to the homogeneous system in B+
2R(y0)

with boundary data u and find∫
Br(x0)

|Du− (Du)x0,r|2dx ≤
∫

B+
2r(y0)

|Du− (Du)y0,2r|2dx

≤ c
( r

R

)n+2
∫

B2R(y0)

|Du− (Du)y0,2R|2dx

+
∫

B2R(y0)

|D(u− w)|2dx.
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Next estimate
∫

B2R(y0)
|D(u−w)|2 and

∫
Br(x0)

|D(u−v)|2 as in (5.32) and
apply Lemma 5.13. The third case is similar and is left for the reader. �

5.5 Schauder estimates for elliptic systems
in non-divergence form

Schauder theory for elliptic systems in non-divergence form

Aαβ
ij Dαβuj = fi

develops similarly to the case of systems in divergence form, see [20] [39].
First of all we observe that if Aαβ

ij are constant, then

Aαβ
ij Dαβuj = Dα(Aαβ

ij Dβuj).

Consequently inequalities (5.13) and (5.14) hold true for u and its deriv-
atives.

Theorem 5.22 Assume that u ∈W 2,2
loc (Ω) is a solution to

Aαβ
ij Dαβuj = fi,

where Aαβ
ij satisfies the Legendre-Hadamard condition and for some given

k ≥ 0

(i) Aαβ
ij ∈ Ck

loc(Ω) (resp. Ck,σ
loc (Ω) for some σ ∈ (0, 1)),

(ii) Dkfi ∈ L2,λ
loc (Ω), for some λ < n (resp. L2,λ

loc (Ω), for some given
λ ∈ [n, n + 2σ]).

Then Dk+2u ∈ L2,λ
loc (Ω) (resp. L2,λ

loc (Ω)).

In particular if Aαβ
ij , f ∈ Ck,σ

loc (Ω), then u ∈ Ck+2,σ
loc (Ω).

Proof. Repeating the arguments above, we freeze the coefficients:

Aαβ
ij (x0)Dαβuj = −[

Aαβ
ij (x)−Aαβ

ij (x0)
]
Dαβuj + fi.

By solving the homogeneous equation we get∫
Bρ(x0)

|D2u|2dx≤c

[( ρ

R

)n

+ cω(R)2
] ∫

BR(x0)

|D2u|2dx + c

∫
BR(x0)

|f |2dx,

where ω is the modulus of continuity of (Aαβ
ij ). Then∫

Bρ(x0)

|D2u− (D2u)x0,ρ|2dx ≤ c
( ρ

R

)n
∫

BR(x0)

|D2u− (D2u)x0,R|2dx

+ ω(R)2
∫

BR(x0)

|D2u|2dx +
∫

BR(x0)

|f − fx0,R|2dx.
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The conclusion follows then from Lemma 5.13 for k = 0 and by differen-
tiating the system for k > 0. �

As for systems in divergence form, one also proves boundary estimates,
concluding:

Theorem 5.23 Let u be a solution of{
Aαβ

ij Dαβuj = fi in Ω,

u = g on ∂Ω.
(5.39)

of class W 2,2(Ω, Rm) or C2(Ω, Rm), where the coefficients Aαβ
ij ∈ C0,σ(Ω)

satisfy the Legendre-Hadamard condition , fi ∈ C0,σ(Ω), g ∈ C2,σ(Ω, Rm),
and finally ∂Ω is of class C2,1. Then u ∈ C2,σ(Ω, Rm) and

‖u‖C2,σ(Ω) ≤ c
{
‖f‖C0,σ(Ω) + ‖g‖C2,σ(Ω) + ‖D2u‖L2(Ω)

}
, (5.40)

where c is a constant depending on n, σ, Ω, the ellipticity constants and
the C0,σ norm of the coefficients Aαβ

ij (x).

It is worth noticing the (5.40) is just an a priori estimate; in fact
presently we do not know how to show existence of a W 2,2 or C2 solution
of (5.39).

5.5.1 Solving the Dirichlet problem

Consider the linear elliptic operator

Lu := Aαβ
ij Dαβuj ,

where the Aαβ
ij are Hölder continuous and satisfy the Legendre-Hadamard

condition. The a priori estimate (5.40) is one of the key points in proving
existence of a classical solution u ∈ C2,σ(Ω, Rm) of the boundary value
problem {

Lu = f in Ω

u = g on ∂Ω,
(5.41)

where f ∈ C0,σ(Ω, Rm), g ∈ C2,σ(Ω, Rm), and ∂Ω is of class C2,1. This is
done via the so-called continuity method .

We consider the boundary value problem{
Ltu = f in Ω

u = g on ∂Ω,
(5.42)

where
Lt := (1− t)Δu + tLu, t ∈ [0, 1].
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As we saw in Chapter 1, Problem (5.42) is uniquely solvable if t = 0.
Therefore (5.41) is uniquely solvable if the set

Σ :=
{
t ∈ [0, 1] : (5.42) is uniquely solvable for any

f ∈ C0,σ(Ω, Rm), g ∈ C2,σ(Ω, Rm)
}

is both open and closed, as in this case Σ = [0, 1].
To prove this we shall use the a priori estimate (5.40), in fact an

improvement of (5.40), i.e. the a priori estimate

‖u‖C2,σ(Ω) ≤ c‖f‖C0,σ(Ω), (5.43)

where without loss of generality we can also assume g = 0 (it is enough
to consider the equation solved by u− g).

The estimate (5.43) is for instance a consequence of uniqueness, as
stated in the following

Theorem 5.24 Suppose that the boundary value problem

Ltu = 0 in Ω, u = 0 on ∂Ω (5.44)

has only the zero solution. Then for a solution u ∈W 2,2(Ω, Rm) of

Ltu = f in Ω, u = 0 on ∂Ω (5.45)

we have
‖D2u‖L2(Ω) ≤ c‖f‖C0,σ(Ω). (5.46)

Proof. We argue by contradiction. Assume that (5.46) does not hold.
Then we can find a sequence (uk) ⊂ W 2,2(Ω, Rm) of functions solving
(5.45) with f = fk → 0 in C0,σ(Ω) and satisfying ‖D2uk‖L2 = 1. Then
by (5.40), (uk) is uniformly bounded in C2,σ(Ω, Rm), hence up to a sub-
sequence we have uk → u in C2(Ω, Rm), where u solves

Ltu = 0 in Ω, u = 0 on ∂Ω, ‖D2u‖L2 = 1,

contradicting uniqueness. �

Notice that (5.46) implies that (5.40) can be improved to

‖u‖C2,σ(Ω) ≤ c(‖f‖C0,σ(Ω) + ‖g‖C2,σ(Ω)). (5.47)

Of course, by Hopf maximum principle, see Exercise 1.4, (5.44) has
zero as unique solution if Lu = 0 is a second order elliptic scalar equation.
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Assuming (5.47), we now prove that Σ is both open and closed, thus

Theorem 5.25 Assume that for every t ∈ [0, 1] Problem (5.44) has at
most one solution. For instance suppose that

Lu := AαβDαβu, u scalar,

where the coefficients of L are Hölder continuous, f ∈ C0,σ(Ω, Rm), g ∈
C2,σ(Ω, Rm) and ∂Ω is of class C2,1. Then the boundary value problem
(5.41) has a unique solution u ∈ C2,σ(Ω, Rm). Moreover

‖u‖C2,σ(Ω) ≤ c
(‖f‖C0,σ(Ω) + ‖g‖C2,σ(Ω)

)
.

Proof. We have to prove that Σ is open and closed, since as already
observed 0 ∈ Σ.
Σ is closed : Let tk ∈ Σ and tk → t. For

f ∈ C0,α(Ω, Rm), g ∈ C2,α(Ω, Rm)

we can find uk ∈ C2,α(Ω, Rm) solving

Ltk
u(k) = f in Ω u(k) = g on ∂Ω.

From (5.47) we infer, up to a subsequence, u(k) → u in C2(Ω) and

Ltu = f in Ω u = g on ∂Ω,

hence t ∈ Σ.

Σ is open: Let t0 ∈ Σ. For w ∈ C2,σ(Ω) let Ttw = uw be the unique
solution of

Lt0uw = (Lt0 − Lt)w + f in Ω, uw = g on ∂Ω.

From (5.47), and noticing that

Lt0 − Lt = (t− t0)Δ + (t0 − t)L

we then infer

‖Ttw1 − Ttw2‖C2,σ(Ω) ≤ c |t− t0| ‖w1 − w2‖C2,σ(Ω),

i.e.
Tt : C2,σ(Ω, Rm)→ C2,σ(Ω, Rm)

is a contraction for |t− t0| < δ, δ small, hence is has a fixed point, which
is a solution of (5.42). Consequently (t0 − δ, t0 + δ) ⊂ Σ. �



Chapter 6
Some real analysis

We collect in this chapter some facts of real analysis that will be relevant
for us in the sequel.

6.1 The distribution function
and an interpolation theorem

Two functions are particularly useful when studying the size of a measur-
able function f : the distribution function of f and the maximal function
of f .

6.1.1 The distribution function

Let Ω be an open set and f : Ω→ R a measurable function. Given t ≥ 0
set A(f, t), or Af (t) or At

A(f, t) :=
{
x ∈ Ω : |f(x)| > t

}
.

The distribution function of f , λ(f, t) or λf (t) or simply λ(t), is defined
as the function λ : [0,+∞)→ R given by

λ(t) := |A(f, t)|.

Trivially:

1. λ(t) is non increasing, continuous on the right and jumps at every
value t that is assumed by |f | on a set of positive measure:

λf (t)− λf (t−) = meas
{
x ∈ Ω

∣∣ |f(x)| = t
}
.

2. λf (t)→ 0 as t→∞ if f ∈ L1(Ω), and

‖f‖L∞(Ω) = inf
{
t ≥ 0

∣∣ λf (t) = 0
}
.
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Proposition 6.1 For all p > 0 we have∫
At

|f |pdx = p

∫ ∞

t

sp−1|As|ds + tp|At|. (6.1)

In particular ∫
Ω

|f |pdx = p

∫ ∞

0

sp−1|As|ds. (6.2)

Proof. If χAt is the characteristic function of At, by Fubini-Tonelli’s
theorem we have∫

Ω

|f |pdx =
∫

Ω

dx

∫ |f(x)|

0

p tp−1dt

=
∫

Ω

∫ ∞

0

p tp−1χAtdtdx

= p

∫ ∞

0

tp−1

∫
Ω

|χAt |dxdt,

i.e. (6.2). Applying (6.2) to max
{|f |p − tp, 0

}
we find (6.1). �

Let f ∈ Lp(Ω), p ≥ 1. Then

tpλf (t) ≤
∫

Af (t)

|f |pdx ≤ ‖f‖pLp(Ω),

i.e. f satisfies the so called p-weak estimate

λf (t) ≤
(‖f‖Lp(Ω)

t

)p

.

Definition 6.2 We say that a measurable function u : Ω→ R is weakly
p-summable or belongs to the weak Lp-space, denoted Lp

w(Ω), if

‖f‖Lp
w(Ω) := sup

t>0
t λf (t)

1
p <∞.

If p =∞, we set L∞
w (Ω) = L∞(Ω).

Notice that ‖f‖Lp
w(Ω) is not a norm and that Lp(Ω) ⊂ Lp

w(Ω), while
Lp

w(Ω) ⊂ Lq(Ω) for every q < p if Ω is bounded.

Exercise 6.3 Let f be measurable and g ∈ Lp(Ω); suppose that

λf (t) ≤ λg(t) ∀t > 0, or λf (t) ≤ c

t

∫
Ag(t)

gdx ∀t > 0.

Show that f ∈ Lp(Ω).

Exercise 6.4 Let 1 < p < ∞. Show that f ∈ Lp
w(Ω) if and only if

sup

{
1

|E|1−1/p

∫
E

|f | dx

∣∣∣∣ E ⊂ Ω measurable

}
< ∞.
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6.1.2 Riesz-Thorin’s theorem

Let T : A → B be a linear operator from some linear space A into a linear
space B. Suppose that T maps continuously the Banach subspaces A0 and
A1 of A into the Banach subspaces, respectively, B0 and B1 of B. In this
setting it often happens that there exists two families of Banach spaces,
called spaces of linear interpolation, At ⊂ A and Bt ⊂ B, t ∈ [0, 1] such
that T maps continuously At into Bt for every t ∈ [0, 1]. Results of this
type are called interpolation theorems. The simplest one is that expressed
by the interpolation inequality

‖f‖Lq(Ω) ≤ ‖f‖θLp(Ω)‖f‖1−θ
Lr(Ω),

where

θ ∈ [0, 1], 1 ≤ p ≤ q ≤ r ≤ ∞ and
1
q

=
θ

p
+

1− θ

r

that is a simple consequence of Hölder’s inequality.
The first interpolation theorem probably is Riesz’s convexity theorem

together with its complex extension, known as Riesz-Thorin interpolation
theorem. We shall not need it in the sequel, thus we state it without proof.

Let T : Lp0(Ω)+Lp1(Ω)→M be a linear map from Lp0(Ω)+Lp1(Ω),
the space of functions that can be written as f+g, f ∈ Lp0(Ω), g ∈ Lp1(Ω),
into the space of measurable functions. We say that T is of type (p, q),
p0 ≤ p ≤ p1 if it maps Lp(Ω) continuously into Lq(Ω), i.e.

‖Tf‖Lq(Ω) ≤M‖f‖Lp(Ω) ∀ f ∈ Lp(Ω). (6.3)

The greatest lower bound of the constants M such that (6.3) holds is
called the (p, q)-norm of T .

Theorem 6.5 (M. Riesz convexity theorem) Let the operator T be
of type (p0, q0) and (p1, q1), where p0 ≤ q0, p1 ≤ q1 and p0 ≤ p1. For all
θ ∈ [0, 1] define pθ and qθ by

1
pθ

:=
1− θ

p0
+

θ

p1

1
qθ

:=
1− θ

q0
+

θ

q1
.

Then T is of type (pθ, qθ) for all θ ∈ [0, 1]. Moreover if Mθ is the (pθ, qθ)-
norm of T we have

Mθ ≤M1−θ
0 Mθ

1 .

The theorem states that T is of type (pθ, qθ) if it is of type (p0, q0),
(p1, q1) and if

(
1
p0

, 1
q0

)
and

(
1
p1

, 1
q1

)
lie in the triangle of vertices (0, 0),

(0, 1), (1, 1) and if
(

1
pθ

, 1
qθ

)
lies on the segment joining the points

(
1
p0

, 1
q0

)
and

(
1
p1

, 1
q1

)
. If we work with complex Lp-spaces and complex norms, the
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theorem extends to the case in which the points
(

1
p0

, 1
q0

)
and

(
1
p1

, 1
q1

)
may

belong to the whole square [0, 1]× [0, 1] and, in this case, it is called Riesz-
Thorin theorem. Two classical applications of the Riesz-Thorin theorem
are the following.

Convolution operators. Given f ∈ Lp(Rn; C), the convolution oper-
ator

Λfg := f ∗ g :=
∫

Rn

f(x− y)g(y)dy

maps L1(Rn; C) into Lp(Rn; C) and

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 ,

and Lp′
(Rn; C) into L∞(Rn; C), and

‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lp′ .

A consequence of Riesz-Thorin theorem is that Λf maps continuously any
Lr(Rn; C) into Lq(Rn; C) and

‖f ∗ g‖Lq ≤ ‖f‖Lp‖g‖Lr

provided
1
q

=
1
p

+
1
r
− 1.

This is known as Young’s inequality.

Fourier transform. As a consequence of Young’s inequality the Fourier
transform of f ∈ L1(Rn; C)

f̂(ξ) :=
∫

Rn

e−2πix·ξf(x)dx

maps L1(Rn; C) into L∞(Rn; C) with norm not exceeding 1, and actually,
by Riemann-Lebesgue’s theorem1, L1(Rn; C) is mapped into C0

0 (Rn; C).
If f ∈ L1(Rn; C) ∩ L2(Rn; C), then f̂ ∈ L2(Rn; C) and ‖f̂‖L2 = ‖f‖L2 by
Plancherel theorem. Consequently, the Fourier transform extends as an
isometry from L2(Rn; C) into itself.

1Prove as exercise the following

Theorem 6.6 (Riemann-Lebesgue) For any f ∈ L1(Rn; C) we have

lim
|ξ|→∞

∫
Rn

e−2πix·ξf(x)dx = 0.

[Hint: Start with f ∈ C0
c (Rn; C).]
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Riesz-Thorin theorem then yields that the Fourier transform maps
every Lp(Rn; C), 1 ≤ p ≤ 2 into its dual space Lp′

(Rn; C) and

‖f̂‖Lp′ ≤ ‖f‖Lp .

This is known as Hausdorff-Young inequality. By duality this holds also
for 2 ≤ p <∞.

6.1.3 Marcinkiewicz’s interpolation theorem

Let Ω ⊂ Rn be a measurable set. Suppose that T maps measurable
functions on Ω into measurable functions on Ω. We say that T is quasi-
linear if

|T (f + g)| ≤ Q
(|Tf |+ |Tg|)

for all f and g, Q being a constant independent of f and g. We say that
T is of weak -(p, q) type, 1 ≤ p <∞, if there is a constant A ≥ 0 such that

λTf (s) ≤
(

A‖f‖Lp(Ω)

s

)q

, ∀f ∈ Lp(Ω).

Theorem 6.7 Let T be a quasi-linear operator both of weak-(p0, p0) and
weak-(p1, p1) type, 1 ≤ p0 < p1 ≤ ∞. Then T is of strong-(p, p) type for
all p0 < p < p1.

Proof. Let u ∈ Lp(Ω) and s > 0 be fixed, and let

Es := {x ∈ Ω : |Tu(x)| > s}
v := uχ{x∈Ω:|u(x)|≤ s

2QA1
},

w := uχ{x∈Ω:|u(x)|> s
2QA1

}.

As u = v + w, we have |Tu| ≤ Q(|Tv|+ |Tw|), hence

Es ⊂
{
x ∈ Ω : |Tv(x)| > s

2Q

}
∪
{
x ∈ Ω : |Tw| > s

2Q

}
=: Fs∪Gs. (6.4)

Let A0 and A1 be the (p0, p0) and (p1, p1) norms of T respectively, i.e.

λTf (s) ≤
(

Ai‖f‖Lpi

s

)pi

, ∀f ∈ Lpi(Ω), i = 0, 1.

We have

|Gs| ≤
(

2A0‖w‖p0Q

s

)p0

=
c1

sp0

∫
{|u|>s/(2QA1)}

|u(x)|p0dx,
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and so∫ ∞

0

pλp−1|Gs|ds ≤ c1p

∫ ∞

0

sp−p0−1

∫
{|u|>s/(2QA1)}

|u(x)|p0dxds

= c1p

∫
Ω

|u(x)|p0

∫ 2QA1|u(x)|

0

sp−p0−1dsdx

=
c2p

p− p0

∫
Ω

|u(x)|pdx

=
c2p

p− p0
‖u‖pLp .

(6.5)

If p1 =∞, then ‖Tv‖L∞ ≤ A1‖v‖L∞ ≤ s
2Q , and so Fs = ∅; otherwise we

have

|Fs| ≤
(

2A1‖v‖p1Q

s

)p1

=
c3

sp1

∫
{|u|≤s/(2QA1)}

|u(x)|p1dx,

so that∫ ∞

0

psp−1|Fs|ds ≤ c3p

∫ ∞

0

sp−p1−1

∫
{|u|≤s/(2QA1)}

|u(x)|p1dxds

= c3p

∫
Ω

|u(x)|p1

∫ ∞

2QA1|u(x)|
sp−p1−1dsdx

=
c4p

p1 − p

∫
Ω

|u(x)|pdx

=
c4p

p1 − p
‖u‖pLp .

(6.6)

By (6.2), (6.4), (6.5) and (6.6) we have

‖Tu‖pLp =
∫ ∞

0

psp−1|Es|ds

≤
∫ ∞

0

psp−1(|Fs|+ |Gs|)ds

≤
(

c2p

p− p0
+

c4p

p1 − p

)
‖u‖pLp ,

for p1 <∞, while for p =∞.

‖Tu‖pLp ≤
∫ ∞

0

psp−1|Gs|ds ≤ c2p

p− p0
‖u‖pLp . (6.7)

�
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A variant of the previous proof actually yields
Theorem 6.8 Let p0, p1, q0, q1 be such that 1 ≤ pi ≤ qi ≤ ∞, i = 0, 1,
p0 ≤ p1 and q0 �= q1. Suppose T is quasi-linear and simultaneously of
weak-(p0, q0) and weak-(p1, q1) type. For θ ∈ (0, 1) define pθ and qθ by

1
pθ

=
1− θ

p0
+

θ

p1
,

1
qθ

=
1− θ

q0
+

θ

q1
.

Then T is of strong-(pθ, qθ) type.

6.2 The maximal function and the Calderon-
Zygmund argument

We discuss here two more tools that are very useful to deal with the
measure of the size of a function.

6.2.1 The maximal function

The Hardy-Littlewood maximal function of a locally summable function
f in Rn, i.e. a function f ∈ L1

loc(R
n), is defined for all x ∈ Rn by

Mf(x) := sup
r>0

∫
Br(x)

|f(y)|dy.

We clearly have
1. Mf is lower semicontinuous, A(Mf, t) is open for all t, hence meas-

urable, homogeneous of degree one and quasi-linear,

M(f + g) ≤M(f) + M(g).

2. M maps L∞(Rn) into L∞(Rn) continuously

‖Mf‖L∞ ≤ ‖f‖L∞ ,

and, on account of Lebesgue differentiation theorem,

|f(x)| ≤Mf(x), for a.e. x ∈ Rn.

3. Mf is not bounded in L1, indeed Mf is never in L1 except for f ≡ 0
since Mf decays at infinity no faster than |x|−n (up to constant).

Remark 6.9 Sometimes it is convenient to define the maximal function
as

Mf(x) := sup
r>0

∫
Qr(x)

|f(y)|dy,

where Qr(x) is the cube centered at x with sides parallel to the coordinate
axis and side 2r:

Qr(x) :=
{
y ∈ Rn

∣∣ |yi − xi| < r, i = 1, . . . , n
}
.
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The maximal theorem of Hardy and Littlewood

The key result about the maximal function is the following

Theorem 6.10 (Hardy-Littlewood) Given a function f ∈ L1(Rn) we
have Mf ∈ L1

w(Rn); more precisely

λMf (t) :=
∣∣{x ∈ Rn

∣∣ Mf(x) > t
}∣∣

≤ c(n)
t

∫{
x
∣∣|f(x)|> t

2

} |f(y)|dy.
(6.8)

In particular Mf(x) <∞ for a.e. x.

Proof. If x ∈ A(Mf, t), then for some r(x) > 0∫
Br(x)(x)

|f(y)|dy > t,

or equivalently

|Br(x)(x)| < 1
t

∫
Br(x)(x)

|f(y)|dy.

Using a simple covering argument2 we can choose points xi ∈ Rn, i =
1, 2, . . .

|A(Mf, t)| ≤
∞∑

i=1

|Br(xi)(xi)|

≤ 1
t

∞∑
i=1

∫
Br(xi)(xi)

|f(y)|dy

≤ ξ(n)
t

∫
Rn

|f(y)|dy.

Next we set

f̃(x) := fχA(f,t/2) =

{
f(x) if |f(x)| > t

2 ,

0 if |f(x)| ≤ t
2 .

2We use the following simple version of Besicovitch-Vitali covering theorem:

Lemma 6.11 Let E ⊂ Rn and r : E → Rn be a bounded function. There exists a
countable family {xi : i ∈ N} in E such that

(i) E ⊂ ⋃∞
i=0 Br(xi)(xi),

(ii) every point of E belongs at most to ξ(n) balls Br(xi)(xi), where ξ(n) is a di-
mensional constant;

or even the version in which (ii) is replaced by

(ii)’ the balls B 1
3 r(xi)

(xi) are disjoint.
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Of course f̃ ∈ L1(Rn) and Mf(x) ≤Mf̃(x) + t
2 , therefore

A(Mf, t) ⊂ A(Mf̃, t/2),

consequently

|A(Mf, t)| ≤ |A(Mf̃, t/2)|

≤ 2ξ(n)
t

∫
Rn

|f̃(y)|dy

=
2ξ(n)

t

∫
{x∈Rn:|f(x)|>t/2}

|f(y)|dy.

�
Since {x ∈ Rn : Mfp(x) > t} = {x ∈ Rn : Mf(x) > t

1
p }, (6.8) also yields∣∣{x ∈ Rn

∣∣ Mf(x) > t
}∣∣ ≤ c(n)

tp

∫
{x∈Rn:|f(x)|>t/2}

|f(y)|pdy

if f ∈ Lp(Rn), p ≥ 1.
From Marcinkiewicz’s theorem (see (see (6.7)) with p0 = 1 in partic-

ular) or simply multiplying (6.8) by tp−1 and using Proposition 6.1, we
easily deduce

Proposition 6.12 Let f ∈ Lp(Rn), p > 1. Then Mf ∈ Lp(Rn) and

‖Mf‖Lp ≤ A(n, p)‖f‖Lp ,

where A(n, p) ∼ 1
p−1 as p→ 1.

Also notice that

1. If fk → f in Lp, then M(|fk − f |p)→ 0 in measure; in fact∣∣{x
∣∣ M(|fk − f |p)(x) > ε

}∣∣ ≤ c(n)
εp
‖fk − f‖Lp .

2. tp
∣∣{x

∣∣ Mf(x) > t
}∣∣→ 0 as t→∞.

Finally, from |f(x)| ≤ Mf(x) a.e. we also infer ‖f‖Lp ≤ ‖Mf‖Lp ,
p > 1.

Lebesgue’s differentiation theorem

In several instances we used that for a.e. x∫
Br(x)

f(y)dy → f(x) as r → 0.

This can be in fact inferred using the maximal theorem.
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Theorem 6.13 Let f ∈ Lp(Rn), p ≥ 1. For a.e. x we have |f(x)| ≤
Mf(x) and

lim
r→0

∫
Br(x)

|f(y)− f(x)|pdy = 0.

Proof. Consider a sequence {fk} ⊂ C∞
c (Rn) that converges to f in

Lp(Rn). By Proposition 6.12 we may assume that

fk(x)→ f(x) and M(|fk − f |p)(x)→ 0 for a.e. x ∈ Rn. (6.9)

Set E := {x ∈ Rn | (6.9) holds}. Then, as

fk(x) = lim
ρ→0

∫
Bρ(x)

fk(y)dy

implies |fk(x)| ≤Mfk(x), we see that |f(x)| ≤Mf(x) for every x ∈ E.
The second part of the claim follows observing that∫

Br(x)

|f(y)− f(x)|pdy ≤ c(p)
∫

Br(x)

{
[f(y)− fk(y)]p + [f(x)− fk(x)]p

+ [fk(x)− fk(y)]p
}
dy

≤ c(p)
(

osc
Br(x)

fk

)p

+ c(p)2M(|f − fk|p)(x).

�

Exercise 6.14 Let f ∈ L1(Rn). Deduce that for a.e. x

f(x) = lim
r→0

∫
Br(x)

f(y)dy

and, indeed,

f(x) = lim
B ball
|B|→0
B�x

∫
B

f(y)dy.

A theorem of F. Riesz

Here all cubes will have sides parallel to the axis. Let Q0 be an n-
dimensional cube in Rn and let F denote the family of all countable
coverings of Q0 by cubes with disjoint interiors. For f ∈ L1(Q0) set

Kp(f) :=
[

sup
{Qi}∈F

∞∑
i=1

|Qi|
( ∫

Qi

|f(x)|dx
)p

] 1
p

.
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Theorem 6.15 (F. Riesz) Given any f ∈ L1(Q0), then f ∈ Lp(Q0) if
and only if Kp(f) <∞. Moreover

‖f‖Lp(Q0) = Kp(f).

Proof. By Jensen’s inequality Kp(f) ≤ ‖f‖Lp(Q0). Conversely, assume
Kp(f) < ∞ and let {Qi,k} be the covering of Q0 obtained dividing Q0

into 2nk cubes congruent to 2−kQ0. Define

ϕk(x) =
∫

Qi,k

|f(y)|dy, if x ∈ Qi,k.

We have ϕk ∈ Lp(Q0) and∫
Q0

ϕp
kdx =

∞∑
i=1

|Qi,k|1−p

(∫
Qi,k

|f |dx

)p

≤ Kp
p (f) <∞.

By the differentiation theorem ϕk(x) → |f(x)| as k → ∞ for a.e. x;
Fatou’s lemma then yields∫

Q0

|f |pdx ≤ lim inf
k→∞

∫
Q0

|ϕk|pdx ≤ Kp
p (f).

�

6.2.2 Calderon-Zygmund decomposition argument

Here we present the Calderon-Zygmund or stopping time argument and
its relations to the maximal and distribution functions. The conclusion of
the argument states

Theorem 6.16 (Calderon-Zygmund decomposition) Let Q be an
n-dimensional cube in Rn and let f be a non-negative function in L1(Q).
Fix a parameter t > 0 in such a way that∫

Q

f(x)dx ≤ t.

Then there exists a countable family {Qi}i∈I of cubes in the dyadic de-
composition of Q (as defined in the proof) such that

(i) t <
∫
–

Qi
fdx ≤ 2nt for every i ∈ I;

(ii) f(x) ≤ t for a.e. x ∈ Q\⋃i∈I Qi.
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Proof. By bisection of the sides of Q, we subdivide Q into 2n congruent
subcubes. Those cubes P which satisfy∫

P

f(x)dx > t

will belong to the family {Qi}, while the others are similarly divided into
dyadic subcubes and the process is repeated indefinitely (or finitely if at
some step there is no such cube). Let Q := {Qi} denote the family of
subcubes so obtained for which∫

Qi

f(x)dx > t

and for each Qi denote by Q̃i the cube whose subdivision gave rise to Qi.
Since |Q̃i| = 2n|Qi| we get immediatly (i) as∫

Q̃i

f(x)dx ≤ t.

If x ∈ Q\⋃i∈I Qi and is not on the boundary of some Qi, then clearly
it belongs to infinitely many cubes P in the successive subdivision with
|P | → 0. As Lebesgue differentiation theorem implies

f(x) = lim
P�x
|P |→0

∫
P

f(y)dy a.e. x,

(ii) follows at once. �

Remark 6.17 If f ∈ L1(Rn) and t is any positive constant, then the
conclusion of Theorem 6.16 holds true, since we can first subdivide Rn

into cubes for which we have ∫
Q

f(x)dx ≤ t.

Remark 6.18 Let {Qt
i} and {Qs

i} be the families in the decompositions
of Calderon-Zygmund corresponding to the parameters t and s, s > t > 0.
Then each Qs

i is contained in some Qt
j .

We finally show that for any function f ∈ L1(Q)

(a) the distibution function of the maximal function Mf(x)

(b) the function 1
t

∫
{|f |>t} |f(y)|dy

(c) the sum of the measures of the cubes Qt
i of the Calderon-Zygmund

decomposition relative to |f | and t
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are equivalent for large values of t. In fact we have

Proposition 6.19 Let Q be a cube in Rn, f ∈ L1(Q) and let∫
Q

|f |dx ≤ t.

Denote by {Qt
i}i∈I the Calderon-Zygmund cubes relative to |f | and t. We

have

2−n

t

∫
{x∈Q:|f(x)|>t}

|f |dx ≤
∑
i∈I

|Qt
i| ≤

2
t

∫
{x∈Q:|f(x)|>t/2}

|f |dx, (6.10)

and, for constants γ(n), c1(n) and c2(n),

1
t

∫
{x∈Q:|f(x)|>t}

|f |dx ≤ c1(n)
∣∣A(Mf, γ(n)t)

∣∣
≤ c2(n)

t

∫
{x∈Q:|f(x)|> γ(n)t

2 }
|f |dx.

(6.11)

Proof. From∫
{x∈Q:|f(x)|>t}

|f |dx ≤
∑
i∈I

∫
Qt

i

|f |dx ≤ 2nt
∑
i∈I

|Qt
i|

and

t|Qt
i| ≤

∫
Qt

i

|f |dx =
∫
{x∈Qt

i:|f(x)|>t/2}
|f |dx +

∫
{x∈Qt

i:|f(x)|≤t/2}
|f |dx

≤
∫
{x∈Qt

i:|f(x)|>t/2}
|f |dx +

t

2
|Qt

i|

(6.10) follows. The inequality on the right-hand side of (6.11) is the
maximal theorem. Finally, consider x ∈ Qt

i; we have∫
Qt

i

|f(y)|dy > t,

and taking the smallest ball B centered at x and containing Qt
i, we find

Mf(x) ≥
∫

B

|f(y)|dy ≥ γ(n)
∫

Qt
i

|f(y)|dy > γ(n)t.

Hence A(Mf, γ(n)t) ⊃ ⋃
i∈I Qt

i and the inequality on the left-hand side
of (6.11) follows from (6.10).

�
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6.3 BMO

The notion of functions of bounded mean oscillation was introduced and
studied by F. John and L. Nirenberg in connection with the work of F.
John on quasi-isometric maps and of J. Moser on Harnack inequality. It
then proved to be extremely relevant in many different fields of real and
complex analysis.

Definition 6.20 Let Q0 be an n-dimensional cube in Rn. We say that a
function u ∈ L1(Q0) belongs to the space of functions with bounded mean
oscillation BMO(Q0) if

|u|∗ := sup
∫

Q

|u− uQ| dx < +∞, (6.12)

where the supremum is taken over all the n-cubes Q ⊂ Q0 whose sides are
parallel to those of Q0, and being uQ :=

∫
–

Q
u dx.

Commonly BMO is defined in the whole of Rn by requiring u ∈ L1
loc(R

n)
and the supremum in (6.12) to be taken over all cubes in Rn with sides
parallel to the coordinate axis (or even over all cubes in Rn). But for
future use we prefer to work in a cube given cube Q0. It is easily seen
that BMO(Q0) ∼= L1,n(Q0); we shall in fact see later that BMO(Q0) ∼=
Lp,n(Q0) for all p, 1 ≤ p <∞.

It is worth remarking that

(i) u ∈ BMO(Q0) if and only if for every Q ⊂ Q0 there is a constant
cu,Q such that

sup
Q

∫
Q

|u− cu,Q|dx <∞.

Indeed for x ∈ Q

|u(x)− uQ| ≤ |u(x)− cu,Q|+ |cu,Q − uQ|
≤ |u(x)− cu,Q|+

∫
Q

|u(y)− cu,Q|dy,

and averaging over Q we get∫
Q

|u(x)− uQ|dx ≤ 2
∫

Q

|u(x)− cu,Q|dx.

(ii) In the definition we can replace cubes with balls, and in fact only
balls with small radii are relevant.
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(iii) L∞(Q0) ⊂ BMO(Q0), but, for instance log |x| ∈ BMO([−1, 1]),
and in fact to log |x| ∈ BMO(R); this can be seen observing that
homotheties leave invariant BMO(R) and that∫ x+1

x−1

∣∣ log |y|∣∣dy and
∫ x+1

x−1

∣∣ log |y| − log |x|∣∣dy

are uniformly bounded with respect to x if |x| ≤ 1 and |x| ≥ 1
respectively.

(iv) If ψ is a Lipschitz function (uniformly continuous suffices), the u ∈
BMO implies ψ(u) ∈ BMO. Consequently max{u, 0}, min{u, 0},
|u| are BMO function if u is a BMO function. In particular, if Ω
is a bilipschitz tranform of a cube Q, then BMO(Ω) ∼= BMO(Q).

(v) W 1,n(Q0) ⊂ BMO(Q0). Indeed by Jensen’s and Poincaré’s inequal-
ities, we see that∫

Q

|u− uQ|dx ≤
( ∫

Q

|u− uQ|ndx

) 1
n

≤ c

(
|Q|

∫
Q

|Du|ndx

) 1
n

.

(vi) Finally, BMO enjoys a rigidity that is typical of smooth functions.
For instance, if u ∈ BMO(Rn) and Ω ⊂ Rn is a measurable set,
then uχΩ is not necessarily a BMO function. Indeed

v(x) := χ(0,+∞) log |x| /∈ BMO(R)

while log |x| ∈ BMO(R).

6.3.1 John-Nirenberg lemma I

One of the important properties of BMO functions is the following weak
estimate:

Theorem 6.21 (John-Nirenberg lemma I [63]) There are constants
c1, c2 > 0, depending only n, such that∣∣{x ∈ Q

∣∣ |u(x)− uQ| > t
}∣∣ ≤ c1 exp

(
− c2

t

|u|∗
)
· |Q| (6.13)

for all cubes Q ⊂ Q0 with sides parallel to those of Q0, all u ∈ BMO(Q0)
and all t > 0.

Proof. As u ∈ BMO(Q0) ⇒ u ∈ BMO(Q) and the sup in (6.12) can
only decrease if we consider Q instead of Q0, it is enough to prove (6.13)
for Q = Q0 only. Moreover, there is no loss of generality in assuming
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|u|∗ = 1: if it is not so, we can consider ũ := u/|u|∗, for which |ũ|∗ = 1
and

{x ∈ Q0 : |u(x)− uQ0 | > t} =
{
x ∈ Q0 : |ũ(x)− ũQ0 | >

t

|u|∗
}
.

Take α > 1 = |u|∗ ≥
∫
–

Q0
|u−uQ0 | dx; applying the Calderon-Zygmund ar-

gument with f = |u−uQ0 | and parameter α, we find a sequence {Q1
k}k∈K1

such that

α <

∫
Q1

k

|u− uQ0 |dx ≤ 2nα, for every k ∈ K1, (6.14)

and
|u− uQ0 | ≤ α a.e. on Q \

⋃
k∈K1

Q1
k. (6.15)

Then by (6.14) we get

|uQ1
k
− uQ0 | =

∣∣∣∣ ∫
Q1

k

(u− uQ0) dx

∣∣∣∣ ≤ 2nα, (6.16)

and∑
k∈K1

|Q1
k| ≤

1
α

∑
k∈K1

∫
Q1

k

|u−uQ0 |dx ≤ 1
α

∫
Q0

|u−uQ0 |dx ≤ 1
α
|Q0|. (6.17)

Since |u|∗ = 1, for all k ∈ K1 we have
∫
–

Q1
k
|u − uQ1

k
| dx ≤ 1 < α, so

that we can apply again the Calderon-Zygmund argument with Q = Q1
k,

f = |u− uQ1
k
| and parameter α, finding a sequence of cubes {Q1

k,j}j∈J(k)

such that

α <
1

μ(Q1
k,j)

∫
Q1

k,j

∣∣u(x)− uQ1
k

∣∣ dx ≤ 2nα , (6.18)

for all j ∈ J(k) and

|u(x)− uQ1
k

∣∣ ≤ α a.e. on Q1
k \

⋃
j∈J(k)

Q1
k,j . (6.19)

As k ranges over K1 we collect all cubes obtained and rename the denu-
merable family

{Qk,j}j∈J(k),k∈K1 = {Q2
k}k∈K2 ,

and claim that

|u− uQ0 | ≤ 2 · 2nα, a.e. on Q0\
⋃

k∈K2

Q2
k. (6.20)
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Indeed we have

Q0 \
⋃

k∈K2

Q2
k =

(
Q0 \

⋃
k∈K1

Q1
k

)
∪

( ⋃
k∈K1

Q1
k \

⋃
k∈K2

Q2
k

)
.

On Q0 \
⋃

k∈K1
Q1

k we have |u− uQ0 | ≤ α ≤ 2 · 2nα a.e. by (6.15), while
(6.14) and (6.16) imply that for a.e. x ∈ ⋃

k∈K1
Q1

k \
⋃

k∈K2
Q2

k we have

|u(x)− uQ0 | ≤ |u(x)− uQ1
k
|+ |uQ1

k
− uQ0 | ≤ α + 2nα ≤ 2 · 2nα, (6.21)

where k = k(x) ∈ K1 is the (unique) index such that x ∈ Q1
k. Then (6.20)

is proven.
Moreover by (6.17) and the fact that |u|∗ = 1,

∑
j∈K2

|Q2
k| ≤

1
α

∑
k∈K1

∫
Q1

k

|u− uQ1
k
|dx ≤ 1

α

∑
k∈K1

|Q1
k| ≤

1
α2
|Q0|.

Repeating this procedure inductively, for every k ∈ N we can find a se-
quence of cubes {Qi

k}k∈Ki such that

|u− uQ0 | ≤ i2nα a.e. on Q0 \
⋃

k∈Ki

Qi
k (6.22)

∑
k∈Ki

|Qi
k| ≤

1
αi
|Q0|. (6.23)

Indeed (6.23) follows simply as before. To get (6.22), write

Q0 \
⋃

k∈Ki

Qi
k =

(
Q0 \

⋃
k∈K1

Q1
k

)
∪ . . . ∪

( ⋃
k∈Ki−1

Qi−1
k \

⋃
k∈Ki

Qi
k

)
.

Then for x ∈
(⋃

k∈Ki−1
Qi−1

k \⋃k∈Ki
Qi

k

)
, we have

|u(x)− uQ0 | ≤
∣∣u(x)− uQi−1

ki−1

∣∣ +
∣∣uQi−1

ki−1
− uQi−2

ki−2

∣∣ + . . . +
∣∣uQ1

k1
− uQ0

∣∣
≤ α︸︷︷︸

x/∈∪k∈Ki
Qi

k

+ 2nα + . . . + 2nα︸ ︷︷ ︸
by (6.16), (6.20), and analogs

≤ i2nα.

To prove (6.13) take any t > 0, and set c1 := α, c2 := log α
2nα . If t < 2nα,

we have 0 ≤ c2(2nα− t)⇒ 1 ≤ ec2(2
nα−t) = c1e

−c2t and so

|{x ∈ Q0 : |u− uQ0 | > t}| ≤ |Q0| ≤ c1e
−c2t|Q0|.
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If t ≥ 2nα, choose i ∈ N in such a way that i2nα ≤ t < (i + 1)2nα; then
finally

|{x ∈ Q0 : |u− uQ0 | > t}| ≤ |{x ∈ Q0 : |u− uQ0 | > i2nα}|
≤

∑
k∈Ki

|Qi
k| ≤

1
αi
|Q0|

≤ c1e
−c2t|Q0|,

where the last inequality follows from −i ≤ 1− t
2nα . �

Corollary 6.22 Let u ∈ BMO(Q0); then u ∈ Lp(Q0) for all 1 ≤ p <
+∞ and there is a C = C(n, p) such that

sup
Q⊂Q0

( ∫
Q

|u− uQ|p dx

)1/p

≤ C|u|∗. (6.24)

Proof. Using (6.2) together with (6.13), we get∫
Q

|u− uQ|pdx = p

∫ +∞

0

tp−1
∣∣{x ∈ Q : |u(x)− uQ| > t}∣∣dt

≤ p · c1

∫ +∞

0

tp−1 exp
(
− c2

|u|∗ t
)
|Q|dt

= p · c1

( |u|∗
c2

)p

|Q|
∫ +∞

0

sp−1e−s ds

= C(n, p) |u|p∗|Q|,
and (6.24) follows. �

From Corollary 6.22 and Jensen’s inequality we immediately get

Corollary 6.23 For every 1 ≤ p < +∞ the Campanato space Lp,n(Q0)
is isomorphic to BMO(Q0).

Exercise 6.24 It is not true that if u ∈ Lp(Q0) for every p ∈ [1,∞), then
u ∈ BMO(Q0). Let u(x) := (log |x|)2, x ∈ [−1, 1]. Show that u ∈ Lp([−1, 1])
for every p ∈ [1,∞), but is does not satisfy (6.13), hence u 	∈ BMO([−1, 1]).

In the following theorem we give some characterizations of BMO func-
tions; in particular we show the converse of Theorem 6.21, so that (6.13)
is in fact equivalent to u being a BMO function.

Theorem 6.25 The following facts are equivalent:

1. u ∈ BMO(Q0);

2. there are c1, c2 such that for all Q ⊂ Q0, t > 0

|{x ∈ Q : |u(x)− uQ| > t}| ≤ c1e
−c2t|Q|;
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3. there are c3, c4 such that for all Q ⊂ Q0∫
Q

(
ec4|u−uQ| − 1

)
dx ≤ c3;

4. there are c5, c6 such that for all Q ⊂ Q0( ∫
Q

ec6udx

)( ∫
Q

e−c6udx

)
≤ c5.

Moreover, we can choose c1, c3, c5 depending only on n, while c2, c4, c6 =
c4 can be chosen of the form c(n)/|u|∗.

Proof.
(1⇒ 2) is John-Nirenberg lemma I with c2 instead of c2

|u|∗ .

(2⇒ 3) Set c4 := c2
2 . Then using (6.2) and the change of variable ec4t = s

we compute∫
Q

(
ec4|u−uQ| − 1

)
dx =

∫ ∞

1

∣∣∣{x ∈ Q : ec4|u(x)−uQ| > s
}∣∣∣ds

=
∫ ∞

0

c4e
c4t

∣∣∣{x ∈ Q
∣∣ |u(x)− uQ| > t

}∣∣∣dt

≤c1|Q|
∫ ∞

0

c4e
c4te−c2tdt

=c1|Q|
∫ ∞

0

c2

2
e−

c2
2 tdt = c1|Q|.

(3⇒ 1) t ≤ et − 1, hence |u− uQ| ≤ 1
c4

ec4|u−uQ| − 1, so that∫
Q

|u− uQ|dx ≤ 1
c4

∫
Q

(
ec4|u−uQ| − 1

)
dx ≤ c3

c4
.

(3⇒ 4) We have∫
Q

ec4udx

∫
Q

e−c4udx =
∫

Q

ec4(u−uQ)dx

∫
Q

e−c4(u−uQ)dx

≤
( ∫

Q

ec4|u−uQ|dx

)2

.

(4⇒ 1) Set w := log v, v = ec6u; then∫
Q

ew−wQdx

∫
Q

e−(w−wQ)dx =
∫

Q

ewdx

∫
Q

e−wdx ≤ c5. (6.25)
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On the other hand, by Jensen’s inequality∫
Q

ew−wQdx ≥ exp
∫

Q

(w − wQ)dx = 1∫
Q

e−(w−wQ)dx ≥ exp
∫

Q

(−(w − wQ))dx = 1.

Hence we conclude that both integrals in (6.25) are smaller than or equal
to c5. Finally, since∫

Q

exp |w − wQ|dx ≤
∫

Q

exp(w − wQ)dx +
∫

Q

exp(wQ − w)dx ≤ 2c5,

using again Jensen’s inequality we conclude

exp
∫

Q

|w − wQ|dx ≤
∫

Q

exp |w − wQ|dx ≤ 2c5.

Taking the supremum over all cubes Q ⊂ Q0 we get u ∈ BMO(Q0). �

Sobolev embedding in the limit case

If u ∈ W 1,n(Q0), Q0 ⊂ Rn, then by Sobolev embedding theorem u ∈
Lp(Q0) for all p, 1 ≤ p <∞, but in general u is not bounded:

log(− log |x|) ∈W 1,2(B1(0)) if n = 2.

However, by Poincaré and Hölder’s inequalities∫
Q

|u− uQ|dx ≤ c(n)|Q| 1−n
n

∫
Q

|Du|dx, (6.26)

i.e. u ∈ BMO(Q0). Since what matters here is (6.26), by John-Nirenberg
lemma (or Theorem 6.25, 3), we can state

Proposition 6.26 Let u ∈ W 1,1(Q0) and suppose that for any cube
QR ⊂ Q of side length R ∫

QR

|Du|dx ≤ kRn−1.

Then there are constants μ1 and μ2 depending only on n such that∫
Q0

exp
(μ1

k
|u− uQ0 |

)
dx ≤ μ2.
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6.3.2 John-Nirenberg lemma II

The next theorem may be regarded as a weak form of Riesz theorem 6.15.

Theorem 6.27 Let u ∈ L1(Q0) and suppose that for some p ∈ [1,∞] we
have

Kp(u) :=
(

sup
Δ∈{Δ}

∑
Qi∈Δ

|Qi|
( ∫

Qi

|u− uQi |
)p) 1

p

<∞, (6.27)

where {Δ} denotes the collection of all finite decompositions Δ of the cube
Q0 into subcubes Qi with sides parallel to the axes. Then the function
u− uQ0 (hence also u) belongs to Lp

w(Q0) and for all t > 0

∣∣{x ∈ Q0 : |u(x)− uQ0 | > t
}∣∣ ≤ c(n, p)

(
Kp(u)

t

)p

.

Proof. Let q := p
p−1 be the conjugate exponent of p and

λj := 1 +
1
q

+
1
q2

+ · · ·+ 1
qj

=
1− q−j−1

1− q−1
= p(1− q−j−1)

τj :=
1

2n+j(n+1)qjλj
< 1.

Observe that qjλj = qjλj−1 + 1. Fix σ > 0 and

λ(σ) := |{x ∈ Q0 : |u(x)− uQ0 | > σ}|.
We first show by induction on j that if{

u ∈ L1(Q0) is such that Kp(u) <∞ and

τjσ ≥ Kp(u)|Q0|− 1
p

(A)j

then

λ(σ) ≤ Aj

(λjKp(u)
σ

)λj
(

1
Kp(u)

∫
Q0

|u− uQ0 |dx

) 1
qj

,

where A0 := 1, Aj =
j∏

i=1

(qi2n+i(n+1))
1
qi .

(B)j

Since obviously

λ(σ) ≤ 1
σ

∫
Q0

|u− uQ0 |dx,

(B)0 trivially holds, hence also the implication (A)0 ⇒ (B)0. Let us now
assume that

(A)j−1 ⇒ (B)j−1
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for all f ∈ L1(Q0) with Kp(f) < ∞ and that σ satisfies (A)j . Taking
Δ = {Q0} in (6.27) we get

τjσ ≥ Kp(u)

|Q0| 1p
≥

∫
Q0

|u− uQ0 |dx

and we can apply the Calderon-Zygmund argument to |u − uQ0 | with
parameter t = τjσ to obtain a sequence of cubes {Qk}, Qk ⊂ Q0 such
that⎧⎪⎨⎪⎩

τjσ <

∫
Qk

|u− uQ0 |dx ≤ 2nτjσ ∀k

|u− uQ0 | ≤ στj a.e. in Q0\
⋃

k Qk.

(6.28)

Let

v(x) :=
{

u(x)− uQk
for x ∈ Qk

0 for x ∈ Q0\
⋃

k Qk.

Then

(i) vQ0 = 0

(ii) Kp(v) ≤ Kp(u)

(iii) because of (6.28)∫
Q0

|v|dx =
∑

k

|Qk| 1q |Qk| 1p
∫

Qk

|u− uQk
|dx

≤
(∑

k

|Qk|
( ∫

Qk

|u− uQk
|dx

)p) 1
p (∑

k

|Qk|
) 1

q

≤ Kp(v)
(

1
τjσ

∫
Q0

|u− uQ0 |dx

) 1
q

.

Since

|u− uQk
| ≥ |u− uQ0 | − |uQ0 − uQk

| ≥ |u− uQ0 | −
∫

Qk

|u− uQ0 |dx,

using (6.28) we have

{x ∈ Q0 : |u(x)− uQ0 | > σ
} ⊂ {x ∈ Q0 : |v(x)| > σ(1− 2nτj)}.

From

1− 2nτj > 1− 1
qjλj

=
λj−1

λj
(6.29)
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we infer

2n+1τj =
2−n−(j−1)(n+1)

qj−1λj−1

λj−1

qλj
< τj−1(1− 2nτj).

Therefore v satisfies (A)j−1 with σ̃ := (1− 2nτj)σ.
From the induction argument, and using (6.29), we then get

λ(σ) ≤ ∣∣{x ∈ Q0 : |v(x)| > σ(1− 2nτj)
}∣∣

≤ Aj−1

(
λjKp(v)

σ

)λj−1
(

1
Kp(v)

∫
Q0

|v|dx

)q1−j

,

and using (ii) and (iii) we conclude

λ(σ) ≤ Aj−1λ
λj−1
j τ−q−j

j

(
Kp(u)

σ

)λj
[

1
Kp(u)

∫
Q0

|u− uQ0 |dx

]q−j

.

To get (B)j , we observe that τ−1
j = qjλj2n+j(n+1), whence

λj−1
j τ−q−j

j ≤ λ
λj

j [qj2n+j(n+1)]
1

qj .

This concludes the proof of the induction.
Let us assume that (A)j holds for a given σ > 0. By the trivial

estimate
|Q0| 1p

∫
Q0

|u− uQ0 |dx ≤ Kp(u)

and (B)j we deduce the existence of a constant c(n, p) such that

λ(σ) ≤ c(n, p)
(

Kp(u)
σ

)p
(
1− 1

qj+1

)
|Q0|

1
qj+1

= c(n, p)
(

Kp(u)
σ

)p(
σ|Q0| 1p
Kp(u)

) p

qj+1

.

(6.30)

We assume now Kp(u)|Q0|− 1
p < 2−nσ and we choose the greatest integer

j for which (A)j holds. Then we have

στj+1 < |Q0|− 1
p Kp(u) ≤ στj . (6.31)

Inserting (6.31) into (6.30) we conclude

λ(σ) ≤ c1(n, p)
(

Kp(u)
σ

)p

τ−pq−j−1

j+1 ≤ c2(n, p)
(

Kp(u)
σ

)p

, (6.32)
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where we used that τ−pq−j−1

j+1 is bounded. Finally, since λ(σ) ≤ |Q0| we

see that (6.32) holds also for 0 < σ < 2nKp(u)|Q0|− 1
p with a different

constant.
To see that also u ∈ Lp

w(Q0), write |u| ≤ |u− uQ0 |+ |uQ0 | and notice
that ∣∣{x ∈ Q0 : |u(x)| > t

}∣∣ ≤∣∣{x ∈ Q0 : |u(x)− uQ0 | > t/2
}∣∣

+
{

0 if |uQ0 | < t
2

|Q0| ≤ 2p|uQ0 |p
tp if t

2 ≤ |uQ0 |.
�

Proposition 6.28 A function u ∈ L1(Q0) belongs to BMO(Q0) if and
only if

lim inf
p→∞ Kp(u) <∞.

In this case we have
|u|∗ = lim

p→∞Kp(u).

Proof. We may assume |u|∗ > 0. Then for any M ∈ (0, |u|∗) we can find
a cube Q ⊂ Q0 such that ∫

Q

|u− uQ|dx > M,

hence
Kp(u) ≥ |Q| 1p M,

concluding
M ≤ lim inf

p→∞ Kp(u) ≤ lim sup
p→∞

Kp(u) ≤ |u|∗.

�

6.3.3 Interpolation between Lp and BMO

Following G. Stampacchia and S. Campanato we now prove

Theorem 6.29 Let 1 ≤ p < ∞ and let T be a linear operator of strong
type (p, p) and bounded from L∞ into BMO, i.e.

‖Tu‖Lp ≤ c1‖u‖Lp , for every u ∈ Lp(Q0)

and
‖Tu‖∗ ≤ c2‖u‖L∞ , for every u ∈ BMO(Q0).

Then T maps continuously Lq(Q0) into Lq(Q0) for all q ∈ (p,∞).
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Proof. Let Δ = {Qi} be a fixed subdivision of Q0. Given u : Q0 → R
define

(TΔu)(x) :=
∫

Qi

|Tu− (Tu)Qi |dx, for x ∈ Qi.

Then TΔ is of strong-(p, p) type, since

‖TΔu‖pLp(Q0)
=

∑
Qi∈Δ

|Qi|
( ∫

Qi

|Tu− (Tu)Qi |dx

)p

≤
∑

Qi∈Δ

∫
Qi

|Tu− (Tu)Qi |pdx

≤ 2p−1
∑

Qi∈Δ

∫
Qi

[|Tu|p + |(Tu)Qi |p]dx

≤ 2p
∑

Qi∈Δ

∫
Qi

|Tu|pdx

= 2p‖Tu‖pLp(Q0)
≤ c1‖u‖pLp(Q).

Moreover TΔ is also of strong-(∞,∞) type: indeed for all u ∈ L∞(Q) we
have

‖TΔu‖L∞(Q0) ≤ |Tu|∗ ≤ c2‖u‖L∞(Q0).

Finally TΔ is clearly quasi-linear.
Marcinkiewicz’s theorem then implies that TΔ is a bounded operator

between Lr(Q) and Lr(Q0) for all r ∈ (p,∞); moreover, the (r, r)-operator
norm of TΔ can be estimated with a constant that depends only on p, r, c1

and c2. In particular, there is a constant c > 0 not depending on Δ, such
that

‖TΔu‖Lr(Q0) ≤ c‖u‖Lr(Q).

On the other hand

Kr(Tu) = sup
Δ∈{Δ}

‖TΔu‖r ≤ C‖u‖r <∞;

therefore, thanks to John-Nirenberg’s theorem, we have that Tu ∈ Lr
w(Q0)

and T is of weak (r, r)-type for each r ∈ (p,∞). Again by Marcinkiewicz’s
theorem, T is of strong (q, q)-type for every q ∈ (p, r), hence for every
q ∈ (p,∞). �

6.3.4 Sharp function and interpolation Lp −BMO

The sharp function of u ∈ L1(Q0) can be defined according to Fefferman
and Stein as follows:

u#(x) := sup
x∈Q⊂Q0

∫
Q

|u(y)− uQ|dy.
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The centered sharp function is defined as

ũ(x) := sup
Q⊂Q0

∫
Q

|u(y)− uQ|dy.

where the supremum is taken among all cubes centered at x. We have

ũ(x) ≤ u#(x) ≤ 2nũ(x), |u|∗ = ‖ũ‖L∞ ,

and, extending u to L1(Rn) by setting u = 0 on Rn \ Q0, we can define
Mu(x) and verify

u(x) ≤ c(n)Mu(x),

hence if u ∈ Lp(Q0) for some p > 1, then u# ∈ Lp(Q0). Conversely we
have:

Theorem 6.30 (Fefferman-Stein) Consider u ∈ L1(Q0), and suppose
that u# ∈ Lp(Q0) for some p > 1. Then u ∈ Lp(Q0) and( ∫

Q0

|u|pdx

) 1
p

≤ c(n, p)
[( ∫

Q0

|u#|pdx

) 1
p

+
∫

Q0

|u|dx

]
.

Set
μ(t) :=

∑
j∈J

|Qt
j |, (6.33)

where {Qt
j}j∈J is the Calderón-Zygmund family of cubes corresponding

to |u| and t. The proof of Theorem 6.30 uses the following weak estimate,
known as good-λ-inequality (we use t as parameter for λ).

Proposition 6.31 We have

μ((2n + 1)t) ≤ ∣∣{x ∈ Q0

∣∣ u#(x) > βt
}∣∣ + βμ(t) (6.34)

for any β ∈ (0, 1) and any t such that

t >

∫
Q0

|u|dx.

Proof. Set s := (2n + 1)t. Let {Qt
j}j∈J and {Qs

i}i∈I be the Calderón-
Zygmund family of cubes corresponding to the function |u| and the para-
meters t and s respectively. We can write

μ(s) =
∑
j∈J

∑
i∈I:Qs

i⊂Qt
j

|Qs
i |.

Fix j ∈ J ; then we have two possibilities:
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1. Qt
j ⊂

{
x ∈ Q0 : u#(x) > βt

}
. In this case∑

i∈I:Qs
i⊂Qt

j

|Qs
i | ≤

∣∣{x ∈ Qt
j

∣∣ u#(x) > βt
}∣∣.

2. There is y ∈ Qt
j such that u#(y) ≤ βt, thus∫

Qt
j

|u− uQt
j
|dx ≤ βt

and ∫
Qs

i

|u− uQt
j
|dx ≥

∫
Qs

i

|u|dx−
∫

Qt
j

|u|dx ≥ s− 2nt = t.

Therefore, in this second case,

t
∑

i∈I:Qs
i⊂Qt

j

|Qs
i | ≤

∑
i∈I:Qs

i⊂Qt
j

∫
Qs

i

|u− uQt
j
|dx ≤

∫
Qt

j

|u− uQt
j
| ≤ βt|Qt

j |

i.e. ∑
i∈I:Qs

i⊂Qt
j

|Qs
i | ≤ β|Qt

j |.

In both cases summing on j we deduce (6.34). �
Proof of Theorem 6.30. We rewrite (6.34) as

μ(t) ≤ ∣∣{x ∈ Q0

∣∣ u#(x) > β(2n + 1)−1t
}∣∣ + βμ

(
(2n + 1)−1t

)
for t > (2n + 1)

∫
–

Q0
|u|dx =: t0, and consider

I(τ) := p

∫ τ

t0

tp−1μ(t)dt.

We have

I(τ) ≤ p

∫ τ

t0

tp−1
∣∣{x ∈ Q0 : Mu(x) > t

}∣∣dt

≤ p

∫ τ

t0

tp−1
∣∣{x ∈ Q0 : u#(x) > β(2n + 1)−1t

}∣∣dt

+ βp

∫ τ

t0

tp−1μ((2n + 1)−1t)dt

≤
(

2n + 1
β

)p

p

∫ ∞

β(2n+1)−1t0

sp−1
∣∣{x ∈ Q0 : u#(x) > s

}∣∣ds

+ β(2n + 1)pp

∫ (2n+1)−1τ

(2n+1)−1t0

rp−1μ(r)dr

≤
(

2n + 1
β

)p

‖u#‖pLp(Q0)
+ β(2n + 1)pI(τ) + β(2n + 1)ptp0|Q0|
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i.e., if we choose β = 1
2 (2n + 1)−p,

I(τ) ≤ 2p+1(2n + 1)p(p+1)‖u#‖pLp(Q0)
+ tp0|Q0|,

and the result follows at once for (6.2), since |A(u, t)| ≤ μ(t). �

In terms of the sharp function we can now give a more transparent

Proof of the interpolation Lp −BMO. Consider the map

T (u) := (Tu)#.

T is sublinear and

1. is of type (p, p) if p > 1 since

‖T u‖Lp(Q0) ≤ c(n)‖M(Tu)‖Lp(Q0)

≤ c(n, p)‖Tu‖LP (Q0)

≤ c(n, p)Ap‖u‖Lp(Q);

2. is of type weak-(1, 1) if p = 1 since∣∣{x ∈ Q0 : (Tu)#(x) > t
}∣∣ ≤ ∣∣{x ∈ Q0 : M(Tu)(x) > t/c(n)

}∣∣
≤ c′(n)‖Tu‖L1

t
≤ c′(n)A1‖u‖L1

t
;

3. is of type (∞,∞) since

‖T (u)‖L∞ ≤ 2n|Tu|∗ ≤ 2nA∞‖u‖L∞ .

Marcinkiewicz interpolation theorem implies that T is of strong type (q, q)
for all q ∈ (p,∞), and Theorem 6.30 finally yields the result, since by
Jensen’s inequality we get∫

Q0

|Tu|qdx ≤ c1

∫
Q0

|T u|qdx + c2|Q0|
( ∫

Q0

|Tu|dx

)q

≤ c3

∫
Q0

|u|qdx + c2|Q0|
( ∫

Q0

|Tu|pdx

) q
p

≤ c3

∫
Q0

|u|qdx + c4|Q0|
( ∫

Q0

|u|pdx

) q
p

≤ c5

∫
Q0

|u|qdx.

�
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6.4 The Hardy space H1

The Hardy space was introduced by E. Stein and G. Weiss [104] and can
be characterized as

H1(Rn) :=
{
f ∈ L1(Rn) : sup

t>0
|φt ∗ f | ∈ L1(Rn)

}
,

where
ht(x) :=

1
tn

h
(x

t

)
,

for a given function h ∈ C∞
c (Rn) with

supp(h) ⊂ B1(0),
∫

B1(0)

hdx �= 0.

The definition is independent of the choice of h (see Fefferman and Stein
[34]).

Exercise 6.32 Prove that if f ∈ H1(Rn) is non-negative, then f ≡ 0.

As Exercise 6.32 suggest, the Hardy space is a strict subspace of L1,
i.e. H1(Rn) ⊂ L1(Rn). In fact it turns out that∫

Rn

fdx := lim
R→∞

∫
BR(0)

fdx = 0

for every f ∈ H1(Rn).
The Hardy space is a good replacement of L1 in the theory of partial

differential equations. For instance, we shall see that L1-estimates for the
Laplace equation do not hold, in the sense that

Δu = f in B1, u = 0 on ∂B1, with f ∈ L1(B1)

does not imply D2u ∈ L1(B1) (see Example 7.5). On the other hand if we
replace the assumption f ∈ L1(B1) by f ∈ H1(Rn), then D2u ∈ L1(B1)
and in fact

‖D2u‖L1 ≤ c‖f‖H1 .

A classical example of a function belonging to H1(Rn) is the Jacobian
Ju of a function u ∈ W 1,n(Rn). It is clear that Ju ∈ L1(Rn), but as we
shall seee the special Jacobian structure makes Ju slightly ”better” than
an arbitrary integrable function. This is part of the following theorem.

Theorem 6.33 (Coifman-Lions-Meyer-Semmes [22]) 1) Let u sat-
isfy

u ∈ Lq
loc(R

n, Rn) for all q ∈ [1,∞), ∇u ∈ Ln(Rn). (6.35)
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Then Ju := det(∇u) ∈ H1(Rn) and

‖Ju‖H1 ≤ C‖∇u‖Ln .

2) Let E, B satisfy

E ∈ Lp(Rn, Rn), B ∈ Lp′
(Rn, Rn), with p ∈ (1,∞),

1
p

+
1
p′

= 1

(6.36)
and

div E = 0, curlB = 0, 3 (6.37)

in the sense of distributions. Then E ·B ∈ H1(Rn), and

‖E ·B‖H1 ≤ ‖E‖Lp‖B‖Lp′ . (6.38)

The proof of Theorem 6.33 is based on the following lemma.

Lemma 6.34 Let E, B satisfy (6.36) and (6.37). Then for every α and
β satisfying

1
α

+
1
β

= 1 +
1
n

, 1 ≤ α ≤ p, 1 ≤ β ≤ p′,

there is a constant C = C(h, α, β) such that

|ht ∗ (E ·B)(x)| ≤ C

( ∫
Bt(x)

|E(y)|αdy

) 1
α
( ∫

Bt(x)

|B(y)|βdy

) 1
β

,

for every x ∈ Rn, t > 0, where ht is as in the definition of the Hardy
space.

Proof. Since curlB = 0, by the Poincaré lemma (see Corollary 10.71) we
can find a function π such that ∇π = B, where π ∈ L

(p′)∗

loc (Rn) if p′ < n
or a function π ∈ Lq

loc(R
n) for every q ∈ [1,∞) if p′ ≥ n, where

(p′)∗ =
np′

n− p′

is the Sobolev exponent. We have

E ·B = div(Eπ)

in the sense of distributions. This is obvious if E and B are smooth,
since div(Eπ) = div(E)π + E · ∇π, and in the general case it follows by

3curlB = 0 means that weakly ∂Bi
∂xj

− ∂Bj

∂xi
= 0 for 1 ≤ i, j ≤ n.
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mollifying E and B. Then we can write

ht ∗ (E ·B)(x) =
∫

Rn

1
tn

h
(x− y

t

)
div(E(y)π(y))dy

=
∫

Rn

1
tn+1

∇h
(x− y

t

)
·E(y)π(y)dy

=
∫

Rn

1
tn+1

∇h
(x− y

t

)
·E(y)

(
π(y)− πx,t

)
dy,

with

πx,t :=
∫

Bt(x)

π(ξ)dξ.

Then with Hölder’s inequality, and bounding

1
tn
∇h

(x− y

t

)
≤ C

tn
χBt(x)(y),

we deduce

|ht ∗ (E ·B)(x)| ≤ C

( ∫
Bt(x)

|E(y)|βdy

) 1
β
( ∫

Bt(x)

∣∣∣∣π(y)− πx,t

t

∣∣∣∣β′

dy

) 1
β′

.

By the Sobolev-Poincaré inequality, Proposition 3.27, we then infer( ∫
Bt(x)

∣∣∣∣π(y)− πx,t

t

∣∣∣∣β′

dy

) 1
β′
≤ C

( ∫
Bt(x)

|∇π|α
) 1

α

= C

( ∫
Bt(x)

|B|α
) 1

α

,

since
1
α∗ =

1
α
− 1

n
= 1− 1

β
=

1
β′ ,

and the proof is complete. �

Proof of Theorem 6.33. We first prove part 2). Apply Lemma 6.34 with
some α, β as in the lemma satisfying α ∈ (1, p) and β ∈ (1, p′). Then,
since p/α, p′/β > 1,

sup
t>0
|ht ∗ (E·B)(x)| ≤ C sup

t>0

( ∫
Bt(x)

|E(y)|αdy

) 1
α
( ∫

Bt(x)

|B(y)|βdy

) 1
β

≤ C

(
sup
t>0

∫
Bt(x)

|E(y)|αdy

) 1
α
(

sup
t>0

∫
Bt(x)

|B(y)|βdy

) 1
β

= C(M(|E|α)(x))
1
α C(M(|B|β)(x))

1
β ,
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and we conclude by noticing that, thanks to the maximal theorem (Pro-
position 6.12),

‖(M(|E|α))
1
α ‖Lp = ‖M(|E|α)‖ 1

α

Lp/α ≤ C‖|E|α‖ 1
α

Lp/α = C‖E‖Lp ,

and similarly
‖(M(|B|β))

1
β ‖Lp′ ≤ C‖B‖Lp′ ,

so that

‖E ·B‖H1 =
∫

Rn

sup
t>0
|ht ∗ (E ·B)(x)|dx ≤ C‖E‖Lp‖B‖Lp′ ,

as claimed.

We now see how part 2) of Theorem 6.33 implies part 1). Indeed we
can write u = (u1, . . . , un) and

Ju = det(∇u) = ∇u1 · σ,

where

div σ = 0 as distribution, |σ| ≤
n∏

j=2

|∇uj | a.e.,

and apply part 2) with

E = σ ∈ Ln/(n−1)(Rn, Rn), B = ∇u1 ∈ Ln(Rn, Rn)

to get
‖Ju‖H1 ≤ ‖∇u1‖Ln‖σ‖Ln/(n−1) ≤ ‖∇u‖nLn ,

as claimed. �

6.4.1 The duality between H1 and BMO

It was proven by Fefferman and Stein that BMO(Rn) is dual to the Hardy
space H1(Rn). In particular every continuous and linear functional L on
H1(Rn) can be written as

L(g) =
∫

Rn

f(x)g(x)dx, (6.39)

for some f ∈ BMO(Rn), where the integral has to be intended in the
sense that we shall now explain. Indeed notice that for g ∈ H1(Rn) and
f ∈ BMO(Rn) the integral in (6.39) need not be absolutely convergent,
since f might be unbounded (for instance f(x) = χB1(0) log |x|) and |g|
might be only L1. However, if we consider the linear space

H1
a(Rn) =

{
g ∈ L∞(Rn) : supp(g) compact, and

∫
Rn

g(x) dx = 0
}
,
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which is a dense subspace of H1(Rn) (the proof of this fact is not ele-
mentary), then the integral in (6.39) converges whenever g ∈ H1

a(Rn).
Moreover, the fact that the average of g is zero ensures that (6.39) is
well-defined, although elements of BMO(Rn) are defined up to additive
constants.

We can now state the duality theorem:

Theorem 6.35 (Fefferman-Stein [34]) Let f ∈ BMO(Rn) and con-
sider the linear functional Lf : H1

a(Rn)→ R given by

Lf (g) =
∫

Rn

f(x)g(x) dx.

Then Lf is bounded and its unique bounded linear extension to H1(Rn)
satisfies

‖Lf‖ := sup
g∈H1,‖g‖H1=1

Lf (g) ≤ C|f |∗.

Conversely, for every continuous and linear functional L ∈ (H1(Rn))∗,
there exists a unique4 function f ∈ BMO(Rn) such that L = Lf , where
Lf is as in the first part of the theorem. Moreover, we have that

|f |∗ ≤ C′‖L‖.

6.5 Reverse Hölder inequalities

The last tools we want to discuss here are the reverse Hölder inequalities.
These are inequalities such as( ∫

Q

fpdx

) 1
p

≤ b

( ∫
Q

fqdx

) 1
q

∀Q congruent to Q0, (6.40)

where p > q and b > 1. There are several occurences of inequalities of
this type, for instance: Harnack inequality for harmonic functions

sup
Q

u ≤ c(n) inf
Q

u

can be seen as (6.40) with p = +∞, q = −∞. In Theorem 6.25 we saw
that eαf satisfies (6.40) with p = 1, q = −1 for some α if f ∈ BMO(Q0).
Reverse Hölder inequalities also appear in the theory of weights in har-
monic analysis, and in the theory of quasi-conformal mappings.

However, inequalities (6.40) are too stringent; for instance they imply
that f ≡ 0 if f = 0 in some open subset of Q0 (principle of unique

4Remember that functions in BMO are defined up to constants, hence also unique-
ness is intended up to constants.
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continuation), and this is too strong for solutions of elliptic systems. More
suited for the last case are reverse Hölder inequalities with increasing
support :( ∫

Br(x0)

fpdx

) 1
p

≤ b

( ∫
B2r(x0)

fqdx

) 1
q

∀x ∈ Ω, r < r0, (6.41)

which were introduced and studied by M. Giaquinta and G. Modica [46].
The key property is that, whenever (6.40) or (6.41) hold with exponents
(p, q), they also hold with exponent (p+ε, p) for some positive ε, providing,
this way, higher integrability of f .

6.5.1 Gehring’s lemma

The following result is due to F. W. Gehring [35].

Theorem 6.36 Let f ∈ Lq(Q0) for some q > 1. Suppose that there exists
b > 1 such that for all congruent5 subcubes Q of Q0 we have( ∫

Q

|f |qdx

) 1
q

≤ b

∫
Q

|f |dx.

Then there exists p > q and a constant c(n, p, q, b) such that f ∈ Lp(Q0)
and ( ∫

Q

|f |pdx

) 1
q

≤ c

( ∫
Q

|f |qdx

) 1
q

, ∀Q ⊂ Q0. (6.42)

Proof. Clearly it is enough to prove (6.42) for Q = Q0. Given t ≥∫
–

Q0
|f |dx, denote by {Qi}i∈I the Calderón-Zygmund cubes relative to t

and |f |. Also set As = {x ∈ Q0 : |f(x)| > s}. According to Proposition
6.19 ∫

At

|f |qdx ≤ 2ntq
∑
i∈I

|Qi|. (6.43)

Moreover for every i ∈ I

tq ≤
∫

Qi

|f |qdx.

The last inequality transforms, using the assumption, in

t|Qi| ≤ b

∫
Qi

|f |dx ≤ b

∫
Qi∩Aβt

|f |dx + bβt|Qi|

5As usual all cubes have sides parallel to the axes.
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for every β ∈ (0, 1/b). If we choose β = 1
2b we infer

t|Qi| ≤ c1

∫
Qi∩Aβt

|f |dx, (6.44)

with c1 depending only on b. From (6.43) and (6.44) we then deduce∫
At

|f |qdx ≤ c2t
q−1

∫
Aβt

|f |dx.

Since ∫
Aβt\At

|f |qdx ≤ tq−1

∫
Aβt

|f |dx,

we also have ∫
Aβt

|f |qdx ≤ (c2 + 1)tq−1

∫
Aβt

|f |dx,

and, if we set

h(t) :=
∫

At

|f |dx

and observe that ∫
At

|f |qdx = −
∫ ∞

t

sq−1dh(s),

we conclude

−
∫ ∞

τ

sq−1dh(s) ≤ aτq−1h(t),

for every τ ≥ βt = t
2b , with c3 = c3(b, q, n), and the result follows from

the lemma below. �

Lemma 6.37 Let h : [t0,+∞) → [0,+∞) be a non increasing function
with limt→+∞ h(t) = 0. Suppose that for every t ≥ t0 and for some con-
stant a > 1 we have

−
∫ +∞

t

sq−1dh(s) ≤ atq−1h(t). (6.45)

Then, for every p ∈ [q, q + q−1
a−1 ), we have

−
∫ +∞

t0

sp−1dh(s) ≤ −ctp−q
0

∫ +∞

t0

sq−1dh(s), (6.46)

where c = c(a, p, q).
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Proof. Up to rescaling, we may assume t0 = 1 and, by an approximation
argument, we may assume that, for some k > 0, h(s) = 0 if s ≥ k. For
any r > 0 set

I(r) := −
∫ +∞

1

srdh(s) = −
∫ k

1

srdh(s).

Then integration by parts yields

I(p− 1) = −
∫ k

1

sp−qsq−1dh(s)

= I(q − 1) + (p− q)
∫ k

1

sp−q−1
(
−

∫ k

s

tq−1dh(t)
)
ds︸ ︷︷ ︸

=:J

.
(6.47)

By (6.45) we have, again integrating by parts,

J ≤ a

∫ k

1

sp−2h(s)ds = − a

p− 1
h(1)− a

p− 1

∫ k

1

sp−1dh(s)

≤ − 1
p− 1

I(q − 1)− a

p− 1

∫ k

1

sp−1dh(s).

Inserting this into (6.47) we get(
1− a

p− q

p− 1

)
I(p− 1) ≤ q − 1

p− 1
I(q − 1),

that is (6.46), up to rescaling. �

6.5.2 Reverse Hölder inequalities with increasing
support

The following result was proved by M. Giaquinta and G. Modica [46].

Theorem 6.38 Let f ∈ Lq
loc(Ω), q > 1, be a non negative function.

Suppose that for some constants b > 0, R0 > 0( ∫
BR(x0)

fqdx
) 1

q ≤ b

∫
B2R(x0)

fdx (6.48)

for all x0 ∈ Ω, 0 < R < min(R0,
dist(x0,∂Ω)

2 ). Then f ∈ Lp
loc(Ω) for some

p > q and there is a constant c = c(n, q, p, b) such that( ∫
BR(x0)

fpdx
) 1

p ≤ c
( ∫

B2R(x0)

fqdx
) 1

q

.
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...

...

...

...

Q1

C0C2

P1,1 P1,2 P1,3

P2,1 P2,2 P2,3 P2,4

Figure 6.1: Decomposition of Q1 = C0 ∪ (
⋃∞

k=1 Ck) and Ck =
⋃

Pk,j .

Proof. Since the theorem is scale and translation invariant, and it is local,
we may work in the cube

Q1 :=
{
x ∈ Rn : |xi| < 3

2
, i = 1, . . . , n

}
and assume g ≡ 0 in Rn\Q1. Define also

C0 :=
{
x ∈ Rn : |xi| ≤ 1

2
, i = 1, . . . , n

}
,

Ck :=
{
x ∈ Q1 :

1
2k
≤ dist(x, ∂Q1) ≤ 1

2k−1

}
, k ≥ 1,

so that Q1 =
⋃+∞

k=0 Ck. Decompose each Ck into a union of nonoverlapping
cubes {Pk,j} of side length 1

2k , in the obvious way (see Figure 6.1) and
define the function

φ(x) :=
(
dist(x, ∂Q1)

)n
, x ∈ Q1.

Let σ = σ(n) > 0 be a constant such that

1
σ
|Pk,j | ≤ φ(x) ≤ σ|Pk,j |, ∀x ∈ Ck−1 ∪ Ck ∪ Ck+1. (6.49)
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Choose t > 0 satisfying
t ≥ γ0‖f‖Lq(Q1), (6.50)

for some γ0 ≥ 1 to be determined. By (6.49) and |Pk,j | ≤ 1, we have∫
Pk,j

(fφ)qdx ≤ σq|Pk,j |q
∫

Pk,j

fqdx ≤ σq‖f‖qLq(Q1)
;

therefore we may choose γ0 > σ, so that (6.50) implies

tq >

∫
Pk,j

(fφ)qdx.

Now we apply Calderón-Zygmund argument to each Pk,j , with parameter
tq and function (fφ)q, obtaining non overlapping cubes Ql

k,j ⊂ Pk,j sat-
isfying:

tq <

∫
Ql

k,j

(fφ)qdx ≤ 2ntq, for every j, k, l, (6.51)

and

f(x)φ(x) ≤ t, x ∈
⋃
k,j

(
Pk,j\

⋃
l

Ql
k,j

)
= Q1\

⋃
k,j,l

Ql
k,j ,

i.e., setting As = Afφ(s) =
{
x ∈ Q1 : f(x)φ(x) > s

}
we have

At ⊂
⋃
k,j,l

Ql
k,j .

This, together with (6.51), implies∫
At

(fφ)qdx ≤
∑
k,j,l

|Ql
j,k|

∫
Ql

k,j

(fφ)qdx

≤ 2ntq
∑
k,j,l

|Ql
j,k|.

(6.52)

By (6.51) and (6.49) we have that, for any x ∈ Ql
k,j ,

t <

( ∫
Ql

k,j

(fφ)qdx

) 1
q

≤ σ|Pk,j |
( ∫

Ql
k,j

fqdx

) 1
q

≤ σ|Pk,j |
∫

Q
l,(2)
k,j

fdx

≤ c1

∫
Q

l,(2)
k,j

fφdx,

(6.53)
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where Q
l,(2)
k,j ⊂ Q1 is the cube having the same center as Ql

k,j , but twice
the side length. We deduce

t|Ql,(2)
k,j | ≤ c1

∫
Q

l,(2)
k,j ∩Aβt

fφdx + c1βt|Ql,(2)
k,j |, ∀β > 0.

Fixing β = 1
2c1

, this becomes

t|Ql,(2)
k,j | ≤ 2c1

∫
Q

l,(2)
k,j ∩Aβt

fφdx. (6.54)

The Q
l,(2)
k,j form an open covering of ∪j,k,lQ

l
k,j , and we can choose count-

ably many pairwise disjoint Q
l,(2)
k,j , which we rename as Q

(2)
m such that⋃

j,k,l

Ql
j,k ⊂

⋃
m

Q(5)
m ,

where Q
(5)
m is the cube having the same center as Q

(2)
m , but 5 times the

side length. Returning to (6.52), we can conclude∫
At

(fφ)qdx ≤ c2t
q−1

∫
Aβt

fφdx, ∀t > γ0‖f‖Lq(Q1).

Observing that ∫
Aβt\At

(fφ)qdx ≤ tq−1

∫
Aβt

fφdx,

we obtain∫
Aτ

(fφ)qdx ≤ c3τ
q−1

∫
Aτ

fφdx, ∀τ = βt >
γ0

2c1
‖f‖Lq(Q1),

and if we set
h(t) :=

∫
At

|fφ|dx

and observe that ∫
At

|fφ|qdx = −
∫ ∞

t

sq−1dh(s),

we conclude
−

∫ ∞

τ

sq−1dh(s) ≤ aτq−1h(t),

for every τ ≥ γ0
2c1
‖f‖Lq(Q1), and the result follows from Lemma 6.37. �



Chapter 7
Lp-theory

In the first section of this chapter we establish Lp-estimates for solutions
of elliptic systems both in divergence and non-divergence form as con-
sequence of Stampacchia’s interpolation theorem, see [103] [19] therefore
without using potential theory. The rest of the chapter is dedicated to a
short introduction to singular integrals.

7.1 Lp-estimates

The Lp-estimates of the gradient of weak solutions to elliptic systems may
be obtained by interpolating L2 and BMO estimates.

7.1.1 Constant coefficients

Let Ω be a domain that is bilipschitz equivalent to the unit cube. Consider
in the weak form the Dirichlet problem{

Dα

(
Aαβ

ij Dβuj
)

= DαFα
i in Ω

u = 0 on ∂Ω,
(7.1)

where Aαβ
ij are constant coefficients satisfying the Legendre-Hadamard

condition
Aαβ

ij ξαξβηiηj ≥ λ|ξ|2|η|2, for some λ > 0.

From G̊arding’s inequality we know that the linear operator

T : L2(Ω)→ L2(Ω)

that to each F ∈ L2(Ω) associates the gradient of the weak W 1,2
0 - solution

to problem (7.1) is continuous

‖Du‖L2(Ω) ≤ c‖F‖L2(Ω),
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since

λ

∫
Ω

|Du|2dx ≤
∫

Ω

Aαβ
ij DβujDαuidx =

∫
Ω

Fα
i Dαuidx

≤
(∫

Ω

|F |2dx

) 1
2
(∫

Ω

|Du|2dx

) 1
2

.

From the (interior plus boundary) regularity theory, we know that T maps
continuously L∞(Ω) into BMO(Ω), compare Theorem 5.14 and Corollary
6.23:

|Du|∗ ≤ c1[Du]L2,n ≤ c2

(‖Du‖L2 + ‖F‖L2,n

)
≤ c3‖F‖L2,n ≤ c4‖F‖L∞ .

Stampacchia’s interpolation theorem then yields at once

Theorem 7.1 Let u ∈ W 1,2(Ω, Rm) be a weak solution of the Dirichlet
problem {

Dα

(
Aαβ

ij Dβui
)

= DαFα
i

u− g ∈W 1,2
0 (Ω),

where the constant coefficients Aαβ
ij satisfy the Legendre-Hadamard condi-

tion (3.17), and Fα
i ∈ Lp(Ω) and g ∈W 1,p(Ω, Rm) for some p ≥ 2. Then

Du ∈ Lp(Ω) and

‖Du‖Lp(Ω) ≤ c
(‖Dg‖Lp(Ω) + ‖F‖Lp(Ω)

)
, (7.2)

for some constant c(Ω, p, λ, |A|)

7.1.2 Variable coefficients: divergence and non-diver-
gence case

Consider a weak solution u ∈W 1,2(Ω, Rm) of the system

Dα

(
Aαβ

ij Dβuj
)

= gi + Dαfα
i (7.3)

where the coefficients Aαβ
ij (x) are uniformly continuous and satisfy the

Legendre-Hadamard condition (3.17).
Fix η ∈ C∞

c (BR(x0)), where BR(x0) � Ω. One easily computes that
uη is a weak solution in BR(x0) of

Dα

(
Aαβ

ij (x0)Dβ(ujη)
)

= Dα

(
[Aαβ

ij (x0)−Aαβ
ij (x)]Dβ(ujη)

)
+ Gi + DαFα

i ,
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where

Gi := giη − fα
i Dαη + Aαβ

ij (x)DβujDαη

Fα
i := fα

i η + Aαβ
ij (x)ujDβη.

Let now w ∈W 1,2
0 (BR(x0), Rm) be the weak solution of

Δwi = Gi.

We conclude that uη is a weak solution of

Dα

(
Aαβ

ij (x0)Dβ(ujη)
)

= Dα

(
[Aαβ

ij (x0)−Aαβ
ij (x)]Dβ(ujη) + F̃α

i

)
,

where
F̃α

i = Fα
i + Dαwi.

Suppose now that for some p ∈ (2,∞)

fα
i ∈ Lp(Ω)

gi ∈ Lp∗(Ω), p∗ :=
np

n + p

Du ∈ Lm(Ω), for some m ∈ [2, p].

Then Gi ∈ Lmin(m,p∗) and Fα
i ∈ Lmin(p,m∗). Here m∗ = nm

n−m is the
Sobolev exponent for m < n and m∗ :=∞ for m ≥ n. On account of the
L2 theory D2w ∈ L2(Ω) and

Δ(Dαwi) = DαGi;

Theorem 7.1 then yields

Dw ∈ Lr∗
(Ω), r∗ = min(m∗, (p∗)∗) = min(m∗, p),

and in conclusion
F̃α

i ∈ Lmin(m∗,p)(Ω).

Now for s = min(m∗, p) fix V ∈W 1,s
0 (BR(x0)) and let v ∈W 1,s

0 (BR(x0))
be the weak solution of

Dα

(
Aαβ

ij (x0)Dβvj
)

= Dα

{[
Aαβ

ij (x0)−Aαβ
ij (x)

]
DβV j + F̃α

i

}
. (7.4)

By Theorem 7.1 we have

‖Dv‖Lmin(m∗,p) ≤ c
∣∣A(x0)−A(x)

∣∣ ‖DV ‖Lmin(m∗,p) + c‖F̃‖Lmin(m∗,p) ,

and the map

T : V ∈W 1,s
0 (BR(x0)) �→ v ∈W 1,s

0 (BR(x0))
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satisfies

‖D(TV1 − TV2)‖Lmin(m∗,p) ≤ cω(R) ‖(DV1 −DV2)‖Lmin(m∗,p) ,

where ω(R) is the modulus of continuity of (Aαβ
ij ), hence it is a contraction

for R sufficiently small. Then, provided Du ∈ Lm(BR(x0)), T has a
unique fixed point in W 1,min(m∗,p)(BR(x0)) that agrees with uη. Since
Du ∈ L2(BR(x0)) we infer that D(uη) ∈ Lmin(2∗,p), and choosing η ≡ 1
in BR/2(x0) we infer Du ∈ Lmin(2∗,p)(BR/2(x0)). Noticing that

2∗···∗(k−times) ≥ p for k large enough,

a bootstrap argument yields

Theorem 7.2 Let u ∈W 1,2(Ω, Rm) be a weak solution of (7.3). Assume
the coefficients Aαβ

ij uniformly continuous with modulus of continuity ω
and satisfying the Legendre-Hadamard condition (3.17) with ellipticity λ.
Suppose moreover that fα

i ∈ Lp(Ω) and gi ∈ L
np

n+p (Ω) for some p ∈ (2,∞).
Then Du ∈ Lp

loc(Ω) and for any open set Ω0 � Ω we have

‖Du‖Lp(Ω0) ≤ c
[
‖f‖Lp(Ω) + ‖g‖

L
np

n+p (Ω)
+ ‖Du‖L2(Ω)

]
,

with c = c(p, n, λ, ω, |A|,dist(Ω0, ∂Ω)).

Similarly one can show

Theorem 7.3 Suppose that u ∈W 2,2(Ω, Rm) is a solution of

Aαβ
ij Dαβuj = fi

with Aαβ
ij as in Theorem 7.2 and fi ∈ Lp(Ω) for some p ∈ (2,∞). Then

D2u ∈ Lp
loc(Ω) and for any open set Ω0 � Ω

‖D2u‖Lp(Ω0) ≤ c(p, n, λ, ω, |A|,dist(Ω0, ∂Ω))
[
‖f‖Lp(Ω) + ‖D2u‖L2(Ω)

]
.

Of course one can also prove global estimates, but we shall not deal
with that.

7.1.3 The cases p = 1 and p =∞
The Lp-estimates of the previous section actually extend to the case p ∈
(1, 2), hence they hold for every p ∈ (1,∞). For instance we state without
proof:
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Theorem 7.4 Let u ∈W 1,2(Ω, Rm) solve

Δu = f in Ω, u− g ∈W 1,2
0 (Ω, Rm),

for some f ∈ Lp(Ω, Rm), g ∈ W 2,p(Ω, Rm), where p ∈ (1,∞). Then we
have u ∈W 2,p(Ω, Rm) and

‖D2u‖Lp(Ω) ≤ c(‖f‖Lp(Ω) + ‖D2g‖Lp(Ω)).

One might wonder whether Theorem 7.4 extends to the cases p = 1
and p =∞. This is not the case, as we shall now show.

Example 7.5 (Failure of the L1-estimates) Let

D2 := {x ∈ R2 : |x| < 1},

and consider the function u ∈W 1,2
0 (D2) given by

u(x) = log log(e|x|−1).

Then
Δu(x) = − 1

|x|2 log2(e|x|−1)
,

hence owing to ∫ 1

0

1
r log2(er−1)

dr <∞,

we immediately infer
Δu ∈ L1(D2).

On the other hand, u �∈W 2,1(D2). For instance, writing |x| = r, one can
easily verify that

|D2u| ≥ ∂2u

∂r2
=

log(er−1)− 1
r2 log2(er−1)

≥ 1
2r2 log(er−1)

for r sufficiently small,

and since ∫ ε

0

1
r log(er−1)

dr =∞, for every ε ∈ (0, 1],

we have ∫
D2
|D2u|dx =∞.

Example 7.6 (Failure of the L∞-estimates) Let u : D2 → C be defined
in polar coordinates by

u(r, θ) = r2 log(r)e2iθ.



142 Lp-theory

We can easily compute

ur(r, θ) = (2r log r + r)e2iθ,

urr(r, θ) = (2 log r + 3)e2iθ,

uθθ(r, θ) = −4r2 log(r)e2iθ,

hence, since in polar coordinates

Δ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2
,

we easily see that
Δu = 4e2iθ ∈ L∞(Ω),

while ∇2u /∈ L∞(Ω).

Exercise 7.7 Let u be as in Example 7.6. Show that D2u ∈ BMO(D2) (com-
pare Theorem 5.20).

7.1.4 Wente’s result

Consider again Ω = D2 := {x ∈ R2 : |x| < 1}. Although Δu ∈ L1(D2)
does not imply D2u ∈ L1(D2), nor ∇u ∈ L2 or u ∈ L∞ in general, these
facts are true if Δu presents a special structure, like in Wente’s theorem
below (compare also Remark 7.9, and see also [15] and [113]).

Theorem 7.8 (Wente [112]) Consider two functions a, b ∈ W 1,2(D2)
and let u ∈W 1,1

0 (D2) solve{
Δu = ∇⊥a · ∇b in D2

u = 0 on ∂D2,
(7.5)

where
∇⊥a · ∇b =

∂a

∂x1

∂b

∂x2
− ∂a

∂x2

∂b

∂x1
.

Then u ∈ C0(D2) ∩W 1,2(D2) and

‖u‖L∞ + ‖∇u‖L2 ≤ C‖∇a‖L2‖∇b‖L2 , (7.6)

where C is a fixed constant, not depending on a or b.

Proof. First consider the case when a, b ∈ C∞(D2). Let us notice that if
we can bound

‖u‖L∞ ≤ C‖∇a‖L2‖∇b‖L2 , (7.7)

then integration by parts and Hölder’s inequality yield∫
D2
|∇u|2dx = −

∫
D2

uΔudx ≤ 2‖u‖L∞‖∇a‖L2‖∇b‖L2 ,



7.1 Lp-estimates 143

hence, using the inequality 2ts ≤ t2 + s2,

‖∇u‖2L2 ≤ ‖u‖2L∞ + ‖∇a‖2L2‖∇b‖2L2 ≤ (C + 1)‖∇a‖2L2‖∇b‖2L2

and (7.6) follows.
Let us now prove (7.7). Extend a and b to smooth functions ã and b̃

defined on R2 and with compact support. This can be done in such a way
that

‖∇ã‖L2(R2) ≤ C‖∇a‖L2(D2), ‖∇b̃‖L2(R2) ≤ C‖∇b‖L2(D2), (7.8)

with C not depending on a or b. Next define

ũ := ψ ∗ (∇⊥ã · ∇b̃),

where
ψ(x) :=

1
2π

log
1
|x|

is a fundamental solution of the Laplacian, i.e. Δψ = δ0. In particular
one can easily verify that

Δũ = Δu in D2.

Now notice that in polar coordinates (r, θ)

∇⊥ã · ∇b̃ = −1
r

∂ã

∂θ

∂b̃

∂r
+

1
r

∂b̃

∂θ

∂ã

∂r
=

1
r

∂

∂r

(
ã

∂b̃

∂θ

)
− 1

r

∂

∂θ

(
ã

∂b̃

∂r

)
.

It follows

ũ(0) =
1
2π

∫
R2

log r

[
1
r

∂

∂r

(
ã

∂b̃

∂θ

)
− 1

r

∂

∂θ

(
ã

∂b̃

∂r

)]
dx

=
1
2π

∫ ∞

0

∫ 2π

0

log r

[
∂

∂r

(
ã

∂b̃

∂θ

)
− ∂

∂θ

(
ã

∂b̃

∂r

)]
dθdr

=
1
2π

∫ 2π

0

∫ ∞

0

log r
∂

∂r

(
ã

∂b̃

∂θ

)
drdθ

= − 1
2π

∫ 2π

0

∫ ∞

0

1
r

(
ã

∂b̃

∂θ

)
drdθ.

(7.9)

Now let
ãr :=

∫
∂Dr

ãdθ

denote the average of ã over the circle of radius r. Since∫ 2π

0

∂b̃(r, θ)
∂θ

dσ = 0
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for every r > 0, we can also write (7.9) as

ũ(0) ≤ − 1
2π

∫ 2π

0

∫ ∞

0

1
r

(
(ã− ãr)

∂b̃

∂θ

)
drdθ.

Then with the Cauchy-Schwarz and Poincaré inequalities we bound

ũ(0) ≤ 1
2π

∫ ∞

0

1
r

(∫ 2π

0

|ã− ãr|2dθ

) 1
2

⎛⎝∫ 2π

0

∣∣∣∣∣∂b̃

∂θ

∣∣∣∣∣
2

dθ

⎞⎠ 1
2

dr

≤ 1
2π

∫ ∞

0

(∫ 2π

0

∣∣∣∣∂ã

∂θ

∣∣∣∣2 dθ

) 1
2
⎛⎝∫ 2π

0

∣∣∣∣∣∂b̃

∂θ

∣∣∣∣∣
2

dθ

⎞⎠ 1
2

dr

r

≤ 1
2π

(∫ ∞

0

∫ 2π

0

∣∣∣∣∂ã

∂θ

∣∣∣∣2 dθ
dr

r

) 1
2
⎛⎝∫ ∞

0

∫ 2π

0

∣∣∣∣∣∂b̃

∂θ

∣∣∣∣∣
2

dθ
dr

r

⎞⎠ 1
2

≤ 1
2π
‖∇ã‖L2‖∇b̃‖L2

≤ C0‖∇a‖L2‖∇b‖L2 ,

(7.10)

where, taking into account (7.8) we chose C0 = C2

2π .
By translation invariance (7.10) actually implies

‖ũ‖L∞ ≤ C0‖∇a‖L2‖∇b‖L2 .

Now observe that v := ũ−u is harmonic, hence by the maximum principle

sup
D2
|ũ− u| ≤ sup

∂D2
|ũ| ≤ ‖ũ‖L∞ ,

and by the triangle inequality

sup
D2
|u| ≤ sup

D2
|ũ− u|+ sup

D2
|ũ| ≤ 2‖ũ‖L∞ ≤ 2C0‖∇a‖L2‖∇b‖L2 .

The general case is obtained by approximation. Indeed, if

an ∈ C∞(D2) ∩H1(D2), an → a in H1(D2)

bn ∈ C∞(D2) ∩H1(D2), bn → b in H1(D2)

and un is the solution of (7.5) with an and bn instead of a and b, then by
(7.6) (un) is a Cauchy sequence in C0(D2) ∩ H1(D2), hence un → v in
C0(D2)∩H1(D2) for some function v. On the other hand, since anbn → ab
in L1(D2), by Lp estimates (in fact a version we have not proven in
the previous sections), we also have that un → u in W 1,p(D2) for every
p ∈ [1, 2), where u solves (7.5). It follows that u = v hence u satisfies
(7.6). �
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Remark 7.9 In the same hypothesis of Theorem 7.8 Coifman, Lions,
Meyer and Semmes [22] later proved that D2u ∈ L1(D2). It is well-known
that this also implies u ∈ C0(D2) and Du ∈ L2(D2).

With a similar proof, one can also prove estimates for the Neumann
problem:

Theorem 7.10 Consider two functions a, b ∈ W 1,2(D2) and let u ∈
W 1,1

0 (D2) solve ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δu = ∇⊥a · ∇b in D2

∂u

∂ν
= 0 on ∂D2,∫

D2
udx = 0.

Then u ∈ C0(D2) ∩W 1,2(D2) and

‖u‖L∞ + ‖∇u‖L2 ≤ C‖∇a‖L2‖∇b‖L2 , (7.11)

where C is a fixed constant, not depending on a or b.

7.2 Singular integrals

Given a function k ∈ L1(Rn) the convolution product of k with a function
f ∈ L1(Rn)

k ∗ f(x) :=
∫

Rn

k(x− y)f(y)dy (7.12)

defines a map from L1(Rn) into L1(Rn), see Section 6.1.2. In this and
in the next section we shall be concerned with singular and fractional
integrals. This amounts to studying k∗f for functions k(x) (called kernels)
which are positively homogeneous of degree −α for some α > 0

k(y) = |y|−αk
( y

|y|
)

=
ω(y)
|y|α , ω(y) := k

( y

|y|
)
,

where ω is homogeneous of degree zero. Notice that k is not integrable in
Rn, unless it is 0. Two situations, corresponding respectively to fractional
and singular integrals, are of particular interest:

(a) 0 < α < n, (b) α = n.

Case (a) is of course the simplest. If, for example, we assume ω bounded
and f ∈ L1(Rn), then

k ∗ f(x) =
∫

Rn

ω(y)
f(x− y)
|y|α dy

=
∫

B1(0)

ω(y)
f(x− y)
|y|α dy +

∫
Rn\B1(0)

ω(y)
f(x− y)
|y|α dy.

(7.13)
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The first term, being the convolution of f with an integrable function, the
function k1 = kχB1(0), exists for almost every x ∈ Rn and is integrable in
Rn, while for the second integral we have∣∣∣∣ ∫

Rn\B1(0)

ω(y)
|y|α f(x− y)dy

∣∣∣∣ ≤ max
Rn\{0}

|ω|
∫

Rn\B1(0)

|f(x− y)|dy,

therefore it represents a bounded function.
Case (b) is much more complicated and in fact it will be our main

concern. Assuming ω bounded, say ω ≡ 1, we have

k ∗ f(x) =
∫

B1(0)

f(x− y)
|y|n dy +

∫
Rn\B1(0)

f(x− y)
|y|n dy (7.14)

and the second integral again represents a bounded function. But it is
clear that the first integral needs not exist as a Lebesgue integral at any
point x. For example, if f is non-zero in a neighborhood of a point x0, say
a non-zero constant, then the integral diverges for x in a neighborhood of
x0. Therefore, if we want to consider those integrals, we need to redefine
their meaning.

Example 7.11 (Newtonian potential) Consider the potential of a dens-
ity of mass f(x) in R3

V (x) := − 1
4π

∫
R3

f(y)
|x− y|dy.

If, say, f is smooth and with compact support, differentiation under the
sign of integral formally leads to

∂2V

∂xi∂xj
(x) = lim

ε→0

∫
Rn\Bε(x)

kij(x− y)f(y)dy (7.15)

where

kij(y) =
1

4π|y|3
(
δij − 3

yiyj

|y|2
)
. (7.16)

A classical result by Hölder states that if f ∈ C0,α
c (R3) then V ∈ C2,α(R3)

and ΔV = f , so that (7.15) amounts also to

∂2V

∂xi∂xj
= KijΔg, Kijf(x) := lim

ε→0

∫
Rn\Bε(x)

kij(x− y)f(y)dy,

which expresses the monomial differential operator ∂2

∂xi∂xj in terms of the
Laplacian and of a singular integral.

The integral in (7.15) is of course of the same nature of the integral
in (7.13), and both are singular integrals. Notice that kij has mean value
zero on the unit sphere |x| = 1. This is actually, as we shall see, the
reason why the limit exists.
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In the following subsection we shall study boundedness of singular in-
tegrals on Hölder spaces, extending Hölder’s result on the continuity of
the second derivatives of the Newtonian potential of a Hölder continuous
distribution of mass, and on Lp spaces, proving the nowadays classical
Calderón-Zygmund theorem. Finally, in the last subsection we shall dis-
cuss fractional integral operators proving, as a consequence, the classical
Sobolev inequalities.

7.2.1 The cancellation property and the Cauchy prin-
cipal value

Let k(y) = ω(y)
|y|n be a continuous function from Rn\{0} into R which is pos-

itively homogeneous of degree −n, so that ω is continuous and positively
homogeneous of degree zero. For every ε > 0 and for every f ∈ Lp(Rn),
1 ≤ p <∞, the integral

Tεf(x) :=
∫

Rn\Bε(x)

k(x− y)f(y)dy =
∫

Rn\Bε(0)

k(y)f(x− y)dy

is absolutely convergent, since

|k(y)| ≤ |y|−n sup
∂B1(0)

|ω(y)|.

Notice that in order for Tεf(x) to be well defined we only need ω to be
bounded (not necessarily continuous) and that Tεf(x) = f ∗ kε(x), where
kε := kχRn\Bε(0).

Motived by the previous example we would like to define

Tf(x) =
∫

k(x− y)f(y)dy

as Cauchy principal value, i.e. as

Tf(x) =
∫

k(x− y)f(y)dy := lim
ε→0

Tεf(x).

However, as the following example shows, this is not always possible
without further assumptions on ω(y).

Example 7.12 Let n = 1, ω ≡ 1 and f(t) = χ[−1,1]. For

Tεf(x) =
∫

R\Bε(x)

f(t)
|x− t|dt

we have

lim
ε→0

Tεf(x) =
{

0 if x /∈ [−1, 1]
+∞ if x ∈ [−1, 1].
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Definition 7.13 (Cauchy principal value) Let Ω ⊂ Rn be an open set
containing 0 and g : Ω\{0} → R be a measurable function. We say that g
is integrable in the Cauchy principal sense with respect to a neighborhood
U of 0 if g is integrable on each Ω\εU and

lim
ε→0

∫
Ω\εU

gdx

exists (of course εU := {εx : x ∈ U}). Such a limit, which in general
depends on U , is called Cauchy principal value of the integral with respect
to U .

Proposition 7.14 Let k(y) = |y|−nω(y/|y|) be as above, with ω measur-
able and homogeneous of degree 0. We have:

(i) The Cauchy principal value of the integral of k(y) with respect to
a neighborhood U of 0 exists if and only if it exists for any other
neighborhood V of 0.

(ii) The principal value of the singular integral
∫

k(y)dy exists for all U
if and only if the following cancellation property holds:∫

∂B1(0)

k(y)dy = 0.

Proof. Let U and V be two neighborhood of 0. For ε small we have
εU ∩ εV ⊂ Ω and∫

Ω\εU

k(x)dx−
∫

Ω\εV

k(x)dx =
∫

ε(V \U)

k(x)dx−
∫

ε(U\V )

k(x)dx

=
∫

V \U

k(εx)εndx−
∫

U\V

k(εx)εndx

=
∫

V \U

k(x)dx−
∫

U\V

k(x)dx,

which implies (i). By (i) we can take U = B1(0) in (ii). For 0 < ε < η, η
small, we have∫

Ω\Bη(0)

k(x)dx−
∫

Ω\Bε(0)

k(x)dx =
∫ η

ε

ρn−1

(∫
∂B1(0)

k(ρθ)dHn−1(θ)
)

dρ

=
∫ η

ε

dρ

ρ

∫
∂B1(0)

ω(θ)dHn−1(θ)

= log
(

η

ε

)∫
∂B1(0)

ω(θ)dHn−1(θ),

which proves (ii). �
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Motivated by the previous considerations we now set

Definition 7.15 We say that a function k : Rn\{0} → R is a singular
kernel or a Calderón-Zygmund kernel if

(i) k is positively homogeneous of degree −n, i.e.

k(x) =
ω(x)
|x|n , ∀x ∈ Rn\{0},

where ω(x) is a zero-homogeneous function;

(ii) k
∣∣
∂B1(0)

= ω ∈ L∞

(iii)
∫

∂B1(0)
kdHn−1 =

∫
∂B1(0)

ωdHn−1 = 0.

Examples of singular kernels are k(x) = 1
πx for n = 1 and kij(x) as

defined in (7.16). More generally, if F ∈ C1(Rn\{0}) is homogeneous of
degree 1− n, then DjF , j = 1, . . . , n is a singular kernel. In fact (i) and
(ii) are easily verified, and as for (iii) we have by (i) and the divergence
theorem

0 =
1

R− r

(∫
∂BR(0)

xj

|x|F (x)dHn−1 −
∫

∂Br(0)

xj

|x|F (x)dHn−1

)
=

1
R− r

∫
BR(0)\Br(0)

DjFdx

→
∫

∂BR(0)

DjFdHn−1, as r → R.

From now on a singular integral will be an integral of the type

Tf(x) =
∫

k(x− y)f(y)dy := lim
ε→0

∫
Rn\Bε(x)

k(x− y)f(y)dy,

where k is a singular kernel.

7.2.2 Hölder-Korn-Lichtenstein-Giraud theorem

In this section we discuss singular integrals as operators on the space
of Hölder continuous functions with compact support. Let k(x) be a
Calderón-Zygmund kernel and let

Tεf(x) :=
∫

Rn\Bε(x)

k(x− y)f(y)dy.

As a consequence of the cancellation property of k(x) we get

Proposition 7.16 Let f ∈ C0,α
c (Rn), 0 < α < 1. Then Tεf converges

uniformly to Tf in Rn. In particular Tf(x) is a continuous function of x.
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Proof. For x ∈ Rn and 0 < δ < ε, the cancellation property of k yields

|Tεf(x)− Tδf(x)| =
∫

Bε(x)\Bδ(x)

k(x− y)f(y)dy

=
∫

Bε(x)\Bδ(x)

k(x− y)
[
f(y)− f(x)

]
dy,

hence

|Tεf(x)− Tδf(x)| ≤ c(n)‖ω‖L∞ [f ]0,α

∫ ε

δ

tα−1dt

=
c(n)
α
‖ω‖L∞ [f ]0,α

(
εα − δα

)
.

This shows that Tεf(x) is a Cauchy sequence for the uniform convergence.
�

We now prove that actually Tf is Hölder continuous if f ∈ C0,α
c (Rn)

and in fact T is a bounded operator from C0,α
c (Rn) into C0,α(Rn). In

order to do that we need however some regularity on the kernel k. We
shall assume that its trace ω on Σ1 := ∂B1(0) is Lipschitz continuous,
though less would suffice. We then have

Theorem 7.17 (Hölder-Korn-Lichtenstein-Giraud) Assume that k
is a Calderón-Zygmund kernel. Suppose that k

∣∣
Σ1

= ω
∣∣
Σ1

is Lipschitz
continuous. Then for every f ∈ C0,α

c (Rn), 0 < α < 1, we have Tf ∈
C0,α(Rn) and

[Tf ]0,α ≤ c(n, α, ‖ω‖C0,1(Σ1))[f ]0,α,

where
‖ω‖C0,1(Σ1) = ‖ω‖L∞(Σ1) + sup

x,y∈Σ1, x�=y

ω(x)− ω(y)
|x− y| .

Proof. As we have seen in the proof of Proposition 7.16, for 0 < δ < ε we
have

|Tεf(x)− Tδf(x)| ≤ c(n, α)‖ω‖L∞ [f ]0,α(εα − δα).

Letting δ → 0 we infer

|Tεf(x)− Tf(x)| ≤ c[f ]0,αεα, ∀x ∈ Rn.

Now we fix x, z ∈ Rn. Since

|Tf(x)−Tf(z)| ≤ |Tf(x)−Tεf(x)|+ |Tεf(x)−Tεf(z)|+ |Tεf(z)−Tf(z)|.
In order to prove the theorem it clearly suffices to show that

|Tεf(x)− Tεf(z)| ≤ c[f ]0,αεα for ε = 2|x− z|. (7.17)

In the next two lemmas we state separately the two simple estimates which
lead to (7.17).
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Lemma 7.18 There is a constant c = c
(
n, ‖ω‖C0,1(Σ1)

)
such that

|k(x− y)− k(x)| ≤ c
|y|
|x|n+1

, if |x| ≥ 2|y|.

Proof. We write

k(x− y)− k(x) = ω(x− y)
[

1
|x− y|n −

1
|x|n

]
+

1
|x|n

[
ω(x− y)− ω(x)

]
=: (I) + (II).

First observe that, if |x| ≥ 2|y|, then |x|
2 ≤ |x− y| ≤ 3

2 |x|. Moreover, if ξ
is a point in the segment with end points x and x− y, we have

|x|
2
≤ |ξ| ≤ 3

2
|x|.

In fact, for t ∈ (0, 1), ξ = tx + (1− t)(x− y) we have

|ξ| ≤ t|x|+ (1− t)|x− y| ≤ t|x|+ 3
2
(1− t)|x| ≤ 3

2
|x|

|ξ| = |x− (1− t)y| ≥ |x| − (1− t)|y| ≥ 1
2
|x|.

Using Lagrange’s mean value theorem with the function

t �→ 1
|tx + (1− t)(x− y)| , t ∈ [0, 1],

we estimate (I) for some ξ in the segment with end points x and x− y by

|(I)| ≤ n‖ω‖L∞ |ξ|−n−1|y| ≤ n2n+1‖ω‖L∞
|y|
|x|n+1

.

On the other hand, by the regularity of ω we have

|(II)| ≤ ‖ω‖C0,1(Σ1)

|x|n
∣∣∣∣ x− y

|x− y| −
x

|x|
∣∣∣∣ ≤ c‖ω‖C0,1(Σ1)

|x|n
|y|
|x| ,

where we applied the mean value theorem to the function

t �→ tx + (1− t)(x− y)
|tx + (1− t)(x− y)| , t ∈ [0, 1],

hence the proof is complete. �

Lemma 7.19 There exists a constant c = c
(
n, ‖ω‖C0,1(Σ1)

)
such that for

any ε ≥ 2|x− z| we have

|Tεf(x)−Tεf(z)|≤c

{
|z−x|

∫
Rn\Bε(z)

|f(y)|
|z − y|n+1

dy+ε−n

∫
B2ε(z)

|f(y)|dy

}
.



152 Lp-theory

Proof. We write

Tεf(x)− Tεf(z) =
∫

Rn\Bε(z)

[
k(x− y)− k(z − y)

]
f(y)dy

+
∫

Rn\Bε(x)

k(x− y)f(y)dy

−
∫

Rn\Bε(z)

k(x− y)f(y)dy.

Applying Lemma 7.18 with x replaced by z − y and y by z − x we infer∣∣∣∣ ∫
Rn\Bε(z)

[
k(x− y)− k(z − y)

]
f(y)dy

∣∣∣∣≤c|z − x|
∫

Rn\Bε(z)

|f(y)|
|z − y|n+1

dy,

with c = c
(
n, ‖ω‖C0,1(Σ1)

)
. On the other hand∣∣∣∣ ∫

Rn\Bε(x)

k(x−y)f(y)dy−
∫

Rn\Bε(z)

k(x−y)f(y)dy

∣∣∣∣ ≤ c

εn

∫
B2ε(z)

|f(y)|dy,

as
(
Rn\Bε(x)

)
Δ
(
Rn\Bε(z)

) ⊂ B2ε(z), and the proof is completed. �
Completion of the proof of Theorem 7.17. On account of the cancellation
property of k we have

Tεf(x) = Tε(f − λ)(x), ∀λ ∈ R.

We can therefore apply Lemma 7.19 to the function x �→ f(x) − f(z) to
get

|Tεf(x)− Tεf(z)| ≤ c1

{
|z − x|

∫
Rn\Bε(z)

|f(y)− f(z)|
|z − y|n+1

dy

+ ε−n

∫
B2ε(z)

|f(y)− f(z)|dy

}
≤ c2

{∫
Rn\Bε(z)

[f ]0,α|y − z|α
|y − z|n dy + [f ]0,αεα

}
≤ c3

{∫ ∞

ε

tα−1dt + εα

}
[f ]0,α ≤ c4[f ]0,αεα,

which is (7.17). �

7.2.3 L2-theory

In this section we begin the study of the action of a singular integral on Lp

spaces, and more precisely here we restrict ourselves to the study of the
behaviour of Tεf and Tf when f ∈ L2(Rn). Since Tεf is a convolution,
a natural tool in the L2 setting is of course the Fourier transform.
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Theorem 7.20 Let k(x) be a Calderón-Zygmund kernel and let f ∈
L2(Rn). Then we have

(i) For every ε > 0, Tεf belongs to L2(Rn) and

‖Tεf‖L2(Rn) ≤ A2‖f‖L2(Rn)

with constant A2 independent of ε.

(ii) The limit Tf of Tεf as ε→ 0 exists in the sense of L2(Rn), and

‖Tf‖L2(Rn) ≤ A2‖f‖L2(Rn).

(iii) We have
T̂ f(ξ) = m(ξ)f̂(ξ),

where m(ξ) is a homogeneous function of degree zero, and more
precisely

m(ξ) =
∫

∂B1(0)

k(x′)
[
log

1
|x′ · ξ|−i

π

2
sign(x′·ξ)

]
dHn−1(x′), |ξ| = 1.

Proof. Set

kε(x) :=

{
k(x) if |x| > ε

0 if |x| ≤ ε.

Obviously kε ∈ L2(Rn) and Tεf = kε ∗ f . Then by Parseval theorem

‖Tεf‖L2(Rn) = ‖k̂ε ∗ f‖L2(Rn)

= ‖k̂εf̂‖L2(Rn)

≤ ‖k̂ε‖L∞(Rn)‖f̂‖L2(Rn)

= ‖k̂ε‖L∞(Rn)‖f‖L2(Rn),

provided k̂ε is bounded.
In order to prove boundedness of k̂ε we introduce the polar coordinates

ξ = Rξ′, ξ′ =
ξ

|ξ| ; x = rx′, x′ =
x

|x| .

Then for ξ �= 0, i.e., R > 0, and using the cancellation property of k,

k̂ε(ξ) = lim
η→∞

∫
Bη(0)

e−2πix·ξkε(x)dx

= lim
η→∞

∫
∂B1(0)

ω(x′)
(∫ η

ε

[
e−2πiRrx′·ξ′ − cos(2πrR)

]dr

r

)
dσ(x′).
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Consider the integral∫ η

ε

[
e−2πiRrx′·ξ′ − cos(2πrR)

]dr

r
=

∫ Rη

Rε

[
e−2πirx′·ξ′ − cos(2πr)

]dr

r
.

(7.18)
We claim that its imaginary part

−
∫ Rη

Rε

sin(2πrx′ · ξ′)
r

dr

is uniformly bounded and converges for η →∞ and then ε→ 0 to

−
∫ ∞

0

sin t

t
dt · sign(x′ · ξ′) = −π

2
sign(x′ · ξ′). (7.19)

In fact, without loss of generality, we may assume x′ · ξ′ > 0. Then∫ Rη

Rε

sin(2πrx′ · ξ′)
r

dr =
∫ 2πRx′·ξ′η

2πRx′·ξ′ε

sin r

r
dr =: I

and we distinguish three cases:

(a) 2πRx′ · ξ′ε ≤ 1 ≤ 2πRx′ · ξ′η. Then since sin r ≤ r for r > 0

I =
∫ 1

2πRx′·ξ′ε

sin r

r
dr +

∫ 2πRx′·ξ′η

1

sin r

r
dr ≤ 1 +

∫ 2πRx′·ξ′η

1

sin r

r
dr

= 1− cos r

r

∣∣∣∣2πRx′·ξ′η

1

−
∫ 2πRx′·ξ′η

1

cos r

r2
dr

≤ 3 +
∫ 2πRx′·ξ′η

1

1
r2

dr ≤ 4.

(b) 2πRx′ · ξ′η ≤ 1. In this case the interval (2πRx′ · ξ′ε, 2πRx′ · ξ′η) is
contained in (0, 1) and since sin r

r ≤ 1 the claim is trivial.

(c) 2πRx′ · ξ′ε ≥ 1. In this case one proceeds as in (a).
Similarly one can show that the real part of (7.18)∫ η

ε

[
cos(2πrRx′ · ξ′)− cos(2πrR)

]dr

r

is equibounded. Finally let us show that

lim
ε→0
η→∞

∫ η

ε

[
cos(2πrRx′ · ξ′)− cos(2πrR)

]dr

r
= log

1
|x′ · ξ′| . (7.20)

To prove this, we observe that if

F (λ) :=
∫ η

ε

h(λr)− h(r)
r

dr, then F ′(λ) =
h(λη)− h(λε)

λ
,



7.2 Singular integrals 155

hence, being F (1) = 0,

F (λ) =
∫ λ

1

h(tη)− h(tε)
t

dt =
∫ λη

η

h(t)
t

dt−
∫ λε

ε

h(t)
t

dt.

Now, if h(t)
t is integrable in (1,+∞) and if h(t) = h(0)+ bounded function

of t times t near zero, letting η → +∞ and ε→ 0 we infer

lim
η→∞
ε→0

∫ η

ε

h(λr)− h(r)
r

dr = −h(0) log λ. (7.21)

Applying (7.21) with h(r) := cos(2πRr), λ := |x′ · ξ′|, we infer at once
(7.20). This completes the proof of (i).

For any σ > 0 we now split f as f = g + b where g ∈ C1
c (Rn) and

b := f − g ∈ L2(Rn) with ‖b‖L2(Rn) ≤ σ. From (i) we then deduce

‖Tεb‖L2 ≤ A2‖b‖L2 ≤ A2σ.

On the other hand Tεg → Tg uniformly in Rn by Proposition 7.16 and
Tεg(x) = Tg(x) for x �∈ supp(g) and ε < dist(x, supp(g)). Consequently
Tεg → Tg in L2. If follows that Tεf is a Cauchy sequence in L2(Rn),
which proves (ii).

Finally, thanks to (7.19), (7.20) and the dominated convergence, we
have

k̂ε(ξ)→ m(ξ), for every ξ �= 0.

Then since Tεf → Tf in L2 as ε → 0, we have T̂εf = k̂εf̂ → T̂ f in L2,
and since k̂εf̂ → mf̂ pointwise a.e. as ε→ 0, (iii) follows at once. �

Example 7.21 Returning to the Newtonian potential of a distribution
f ∈ L2(Rn)

V (x) :=
∫

Rn

Γ(x− y)f(y)dy,

where

Γ(x− y) :=

⎧⎪⎨⎪⎩
1

n(2− n)ωn
|x− y|2−n if n > 2

1
2π

log |x− y| if n = 2

for which we have ΔV = f , a consequence of Theorem 7.20 is that V has
second derivatives bounded in L2 by c‖f‖L2 .
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7.2.4 Calderón-Zygmund theorem

In this section we study the action of singular integrals on Lp(Rn), 1 < p <
∞. We shall show that Calderón-Zygmund operators are of weak-(1, 1)
type; this, together with the L2-theory in section 7.2.3 and Marcinkiewicz
interpolation theorem, will allow us to prove the celebrated Calderón-
Zygmund inequality

‖Tf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn) (7.22)

in the range 1 < p ≤ 2, and finally, by duality, in the full range 1 < p <∞.
Classical examples show that (7.22) does not hold for p = 1 or p = ∞,
even in the case of the second derivatives of a Newtonian potential.

More precisely we shall prove

Theorem 7.22 Let k(x) be a Calderón-Zygmund kernel with Lipschitz
continuous restriction on Σ1 := ∂B1(0). Then we have

(i) Suppose f ∈ L1(Rn). Then for all ε > 0, Tε is of weak type (1, 1)
uniformly in ε, i.e.∣∣{x ∈ Rn : |Tεf(x)| > t

}∣∣ ≤ c

t
‖f‖L1(Rn), ∀t > 0, (7.23)

where c is a constant independent of ε and f .

(ii) Suppose f ∈ Lp(Rn), 1 < p <∞. Then Tεf ∈ Lp(Rn) and

‖Tεf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn). (7.24)

(iii) If f ∈ Lp(Rn), 1 < p <∞, then the limit of Tεf as ε→ 0 exists in
the sense of Lp(Rn), and

‖Tf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn), (7.25)

where Ap is independent of f .

In fact it is possible to prove pointwise convergence of Tεf(x) to Tf(x)
for almost every x, suitably controlling the maximal singular integral

T ∗f(x) := sup
ε>0
|Tεf(x)|,

but we shall not do that. Under the same assumptions of Theorem 7.22
the following holds.
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Theorem 7.23 We have

(i) For f ∈ Lp(Rn), 1 ≤ p <∞

Tεf(x)→ Tf(x) as ε→∞

pointwise for a.e. x.

(ii) If f ∈ L1(Rn), then the mapping f �→ T ∗f is of weak type (1,1).

(iii) If 1 < p <∞, then

‖T ∗f‖Lp(Rn) ≤ Ap‖f‖Lp(Rn).

Proof of Theorem 7.22. The key point is the weak estimate (7.23) and the
key idea is to split f ∈ L1(Rn) in a good part g and in a bad remainder
b, f = g + b, where g is obtained as follows. Given t > 0 cover Rn

with congruent disjoint cubes Q0
i , i ∈ N, such that

∫
–

Q0
i
|f |dx < t for

every i (this is possible if the cubes Q0
i are chosen to be large enough).

Applying the Calderón-Zygmund argument to every such cube, we can
find a denumerable family of dyadic cubes {Qj : j ∈ J} with interiors
mutually disjoint such that

Rn = F ∪
⋃
j∈J

Qj , |f(x)| ≤ t ∀x ∈ F,

∑
j∈J

|Qj | ≤ 1
t

∫
Rn

|f(x)|dx,

∫
Qj

|f |dx ≤ 2nt, for j ∈ J.

We then set

g(x) :=

⎧⎪⎨⎪⎩
f(x) if x ∈ F∫

Qj

|f |dx if x ∈ Qj for some j ∈ J

and b := f − g. Trivially

b(x) = 0 for x ∈ F, and
∫

Qj

b(x)dx = 0.

Now since Tεf = Tεg + Tεb, it follows that∣∣{x ∈ Rn : |Tεf(x)| > t
}∣∣ ≤ ∣∣{x ∈ Rn : |Tεg(x)| > t/2

}∣∣
+

∣∣{x ∈ Rn : |Tεb(x)| > t/2
}∣∣,

and it suffices to establish separately for both terms of the right side
inequalities like (7.23).
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Estimate for Tεg. Trivially g ∈ L2(Rn) and∫
Rn

|g|2dx =
∫

F

|g|2dx +
∫
∪j∈JQj

|g|2dx ≤ t

∫
F

|g|dx + c2
1t

2
∑
j∈J

|Qj |

≤ c2t

∫
Rn

|f |dx.

The L2-theory then yields

‖Tεg‖L2 ≤ A2‖g‖L2 ,

consequently∣∣{x ∈ Rn : |Tεg(x)| > t
}∣∣ ≤ A2

2

t2

∫
Rn

|g|2dx ≤ c3

t

∫
Rn

|f |dx. (7.26)

Estimate for Tεb. For each cube Qj we consider the cube Q∗
j which has

the same center y(j), but which is expanded 2
√

n times. Set

F ∗ := Rn\
⋃
j∈J

Q∗
j , Ω∗ :=

⋃
j∈J

Q∗
j .

Of course F ∗ ⊂ F , and

|Ω∗| ≤ (2
√

n)n
∑
j∈J

|Qj | ≤ c5

t

∫
Rn

|f |dx; (7.27)

notice also that

|x− y(j)| ≥ √n side(Qj) ≥ |y − y(j)| if x /∈ Q∗
j , y ∈ Qj . (7.28)

Thanks to (7.27), we only need to estimate
∣∣{x ∈ F ∗ : |Tεb(x)| > t

}∣∣ in
order to complete the proof of (7.23). As a first step in this direction we
claim that for all ε > 0 and x ∈ F ∗ we have

|Tεb(x)| ≤
∑
j∈J

∫
Qj

∣∣k(x− y)− k(x− y(j))
∣∣|b(y)|dy + cMb(x), (7.29)

where Mb is the maximal function of b. In fact we have

Tεb(x) =
∑
j∈J

∫
Qj

kε(x− y)b(y)dy.

Fix x ∈ F ∗ and ε > 0; then the cubes Qj fall into the following three
classes:

(a) Qj ⊂ Bε(x). In this case kε(x− y) = 0 for every y ∈ Qj , hence∫
Qj

kε(x− y)b(y)dy = 0.
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(b) Qj ⊂ Rn\Bε(x). In this case∫
Qj

kε(x− y)b(y)dy =
∫

Qj

[
k(x− y)− k(x− y(j))

]
b(y)dy,

being
∫

Qj
b(y)dy = 0. This term is bounded by∫

Qj

∣∣k(x− y)− k(x− y(j))
∣∣|b(y)|dy,

which is the expression appearing in (7.29).

(c) Qj has a non-empty intersection with Bε(x) and Rn\Bε(x). In this
case Qj ⊂ B2ε(x) and∣∣∣∣ ∫

Qj

kε(x− y)b(y)dy

∣∣∣∣ =
∣∣∣∣ ∫

Qj∩(Rn\Bε(x))

k(x− y)b(y)dy

∣∣∣∣
≤ c6

εn

∫
B2ε(x)∩Qj

|b(y)|dy.

If we add over all cubes Qj , we then get

|Tεb(x)| ≤
∑
j∈J

∫
Qj

∣∣k(x− y)− k(x− y(j))
∣∣|b(y)|dy + c

∫
B2ε(x)

|b(y)|dy,

which yields at once (7.29). Inequality (7.29) can be written as

|Tεb(x)| ≤ Σ(x) + cMb(x), x ∈ F ∗,

hence∣∣{x ∈ F ∗ : |Tεb(x)| > t/2
}∣∣ ≤ ∣∣{x ∈ F ∗ : |Σ(x)| > t/4

}
+

∣∣{x ∈ F ∗ : cMb(x) > t/4
}∣∣. (7.30)

The maximal theorem then yields∣∣{x ∈ F ∗ : cMb(x) > t/4
}∣∣ ≤ c7

t

∫
Rn

|b(y)|dy

≤ c7

t

∫
Rn

|f |dx +
c7

t

∫
Rn

|g|dx

≤ c8

t

∫
Rn

|f |dx.

To estimate the first term on the right-hand side of (7.30) we integrate
Σ(x) over F ∗ to get∫

F∗
|Σ(x)|dx ≤

∑
j∈J

∫
x/∈Q∗

j

∫
y∈Qj

∣∣k(x− y)− k(x− y(j))
∣∣|b(y)|dydx,
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but on account of (7.28) and by Lemma 7.18, for y ∈ Qj and writing
x′ = x− y(j), y′ = y − y(j),∫

x/∈Q∗
j

∣∣k(x− y)− k(x− y(j))
∣∣dx ≤

∫
|x′|≥2|y′|

∣∣k(x′ − y′)− k(x′)
∣∣dx′

≤ c9

∫
|x′|≥2|y′|

|y′|
|x′|n+1

dx′ ≤ c10;

therefore with Fubini’s theorem∫
F∗
|Σ(x)|dx ≤ c11

∑
j∈J

∫
Qj

|b(y)|dy ≤ c12‖f‖L1 ,

which yields ∣∣{x ∈ F ∗ : |Σ(x)| > t/4
}∣∣ ≤ c

t

∫
Rn

|f |dx.

This concludes the proof of (i).

The Lp-inequalities. Being Tε of weak type (1, 1) and (2, 2) for all ε >
0 with bounds independent of ε, Marcinkiewicz’s interpolation theorem
implies that Tε is of strong type (p, p) for 1 < p < 2 and

‖Tεf‖Lp(Rn) ≤ Ap‖f‖Lp(Rn)

with Ap independent of ε. To conclude the proof of Theorem 7.22 (ii) it
remains to consider the case 2 < p <∞.
Let f ∈ Lp(Rn), 2 < p < ∞, and actually f ∈ Lp(Rn) ∩ L1(Rn), which
suffices by density. Consider for any smooth map ϕ with ‖ϕ‖Lp′ ≤ 1 the
integral ∫

Rn

(Tεf)ϕdx =
∫

Rn

∫
Rn

kε(x− y)f(y)ϕ(x)dydx

=
∫

Rn

f(y)
(∫

Rn

kε(x− y)ϕ(x)dx

)
dy.

The integral
∫

Rn kε(x − y)ϕ(x)dx is the ε-approximation of a singular
integral with kernel k(−x), and ϕ ∈ Lp′

, 1 < p′ < 2, therefore it belongs
to Lp′

, and its Lp′
norm is bounded by Ap′‖ϕ‖p′ ≤ Ap′ (notice that Ap′

is the same for k(x) and k(−x).) Hölder’s inequality then gives∣∣∣ ∫ (Tεf)ϕdx
∣∣∣ ≤ Ap′‖f‖Lp

and, taking the supremum on all ϕ indicated above, we get

‖Tf‖Lp ≤ Ap′‖f‖Lp , 2 < p <∞.

This concludes the proof of Theorem 7.22 (ii).

The convergence in Lp follows as in the case p = 2, compare Theorem
7.20 (ii). �
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7.3 Fractional integrals and Sobolev
inequalities

In this section we shortly discuss fractional integrals∫
Rn

f(y)
|x− y|n−α

dy, 0 < α < n.

It is common to normalize such integrals as

Iα(f)(x) :=
1

γ(α)

∫
Rn

f(y)
|x− y|n−α

dy,

where

γ(α) :=
π

n
2 2αΓ

(
α
2

)
Γ
(

n
2 − α

2

) ,

Γ being the Euler function (9.38), and call Iα(f) the Riesz potential of
order α of f . Of course the Riesz potential is the convolution

Iα(f)(x) = Iα ∗ f(x)

where Iα denotes the kernel

Iα(x) := γ(α)−1|x|−n+α.

Proposition 7.24 Let 0 < α < n and let f ∈ Lp(Rn), 1 ≤ p < n
α . Then

the Riesz potential Iα(f)(x) is a.e. well defined.

Proof. Write k(x) = |x|−n+α; it suffices to consider k ∗ f . We decompose
k as k = k1 + k∞ where

k1(x) =

{
k(x) if |x| ≤ μ

0 if |x| > μ
k∞(x) =

{
0 if |x| ≤ μ

k(x) if |x| > μ.

where μ is any positive constant. Trivially k ∗ f = k1 ∗ f + k∞ ∗ f .
The integral k1 ∗ f(x) is well defined for almost every x, since it is the
convolution of the function k1 ∈ L1(Rn) with the function f ∈ Lp(Rn),
while the integral k∞ ∗ f is well defined for all x as it is the convolution
of the function f ∈ Lp(Rn) with the function k∞ which is easily seen to
belong to Lp′

(Rn) on account of the condition p < n
α . �

Next we ask for what good pairs (p, q) is the operator f �→ Iα(f)
bounded from Lp(Rn) into Lq(Rn), i.e. we have the inequality

‖Iα(f)‖Lq ≤ A‖f‖Lp for every f ∈ Lp(Rn). (7.31)
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Set fδ(x) := f(δx). Then we have

‖fδ‖Lp = δ−
n
p ‖f‖Lp ,

Iα(fδ) = δ−α(Iα(f))δ,

‖Iα(fδ)‖Lq = δ−α−n
q ‖Iα(f)‖Lq ,

hence it follows at once that (7.31) is possible only if

1
q

=
1
p
− α

n
.

We shall see below that this condition is also sufficient, except for p = 1.
In this case inequality (7.31), i.e.,

‖Iα(f)‖
L

n
n−α
≤ A‖f‖L1 (7.32)

cannot hold. In fact applying (7.32) to fk, where

fk ≥ 0,
∫

Rn

fkdx = 1, supp(fk) ⊂ B1/k(0), fk ⇀ δ0 as measures,

and passing to the limit as k →∞, we would infer3333 1
γ(α)

|x|α−n

3333
L

n
n−α

≤ A,

i.e., ∫
Rn

|x|−ndx <∞,

and this is a contradiction.

Theorem 7.25 (Hardy-Littlewood-Sobolev inequality) Consider
0 < α < n, 1 ≤ p < n

α , and let q := np
n−αp .

(i) If p > 1, then
‖Iα(f)‖Lq ≤ Ap,q‖f‖Lp .

(ii) If p = 1, then the mapping f → Iα(f) is of weak type (1, q), i.e.∣∣{x ∈ Rn : |Iα(f)(x)| > t
}∣∣ ≤ (A‖f‖L1

t

)q

∀t > 0.

Proof. With the same notations as in the proof of Proposition 7.24, we
show that the mapping f �→ k ∗ f is of weak type (p, q), i.e.

∣∣{x ∈ Rn : |k ∗ f(x)| > t
}‖ ≤ (

Ap,q
‖f‖Lp

t

)q

, ∀f ∈ Lp(Rn), t > 0.

(7.33)
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For that we may assume ‖f‖p = 1 and estimate∣∣{x ∈ Rn : |k ∗ f(x)| > 2t
}∣∣ ≤ ∣∣{x ∈ Rn : |k1 ∗ f(x)| > t

}∣∣
+
∣∣{x ∈ Rn : |k∞ ∗ f(x)| > t

}∣∣.
Since k1 ∈ L1(Rn), f ∈ Lp(Rn), we have k1 ∗f ∈ Lp(Rn) by Section 6.1.2,
hence∣∣{x ∈ Rn : |k1 ∗ f(x)| > t

}∣∣ ≤ ‖k1 ∗ f‖pp
tp

≤ ‖k1‖p1‖f‖pp
tp

=
‖k1‖p1

tp
,

and
‖k‖1 =

∫
Bμ(0)

|x|−n+αdx = c1μ
α.

On the other hand ‖k∞ ∗ f‖∞ ≤ ‖k∞‖p′‖f‖p = ‖k∞‖p′ and

‖k∞‖p′ =
(∫

Rn\Bμ(0)

(|x|−n+α
)p′

dx

) 1
p′

= c2μ
−n

q .

Consequently

‖k∞‖p′ = t if c2μ
−n

q = t or μ = c3t
− q

n .

For this value of μ we then have ‖k∞ ∗ f‖∞ ≤ t so that∣∣{x ∈ Rn : |k∞ ∗ f(x)| > t
}∣∣ = 0,

and we conclude∣∣{x ∈ Rn : |k ∗ f(x)| > 2t
}∣∣ ≤ (

c1
μα

t

)p

≤ c4t
−q = c4

(‖f‖Lp

t

)q

,

since ‖f‖Lp = 1. This of course gives (7.33). The special case for p = 1
now gives part (ii) of the theorem, and part (i) follows by Marcinkiewicz
interpolation, Theorem 6.8. �

It is worth noticing that Riesz’s kernels behave quite badly at infinity,
compared with their behaviour near zero. This fact is responsible for the
restrictions p < n

α in Propostion 7.24 and Theorem 7.25. For functions
with compact support we can however complement the results above with
the following

Proposition 7.26 Let 0 < α < n and let f ∈ Lp(Rn) be a function with
compact support in BR(0). Then

(i) For p > n
α we have

‖Iα(f)‖L∞ ≤ ApR
α−n

p ‖f‖Lp .
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(ii) For p = n
α we have for all q <∞

‖Iα(f)‖Lq ≤ Ap,q|BR(0)| 1q ‖f‖Lp .

Proof. By Hölder’s inequality

|Iα(f)(x)| ≤ γ(α)−1

∣∣∣∣ ∫
BR(0)

|x− y|−n+αf(y)dy

∣∣∣∣
≤ γ(α)−1

(∫
BR(0)

|x− y|−(n−α)p′
dx

) 1
p′
‖f‖Lp

≤ γ(α)−1

(∫
BR(0)

|y|−(n−α)p′
dx

) 1
p′
‖f‖Lp

= c(n, α, p)Rα−n
p ‖f‖Lp

which gives (i).
For any q < ∞ set r := nq

n+αq < n
α . Theorem 7.25 (i) and Hölder’s

inequality then yield

‖Iα(f)‖Lq ≤ Ar,q‖f‖Lr ≤ Ar,q‖f‖Lp‖χBR(0)‖
1
r

L
p

p−r
= Ar,q‖f‖Lp |BR(0)| 1q .

�
Actually in the case p = n

α not only we have Iα(f) ∈ Lq(BR(0)) for
all q <∞, but also

Proposition 7.27 There are constants c1 and c2 depending only on n
and p such that ∫

BR(0)

exp
(

c1

|In
p
(f)(x)|p′

‖f‖p′
Lp

)
dx ≤ c2

for all f ∈ Lp(Rn) with compact support in BR(0).

Proof. We may assume that ‖f‖p = 1. We have for any δ > 0

Iα(f)(x) =
∫

Bδ(x)

f(y)|x− y|α−ndy +
∫

BR(0)\Bδ(x)

f(y)|x− y|α−ndy.

We estimate the first integral on the right as∫
Bδ(x)

|f(y)||x− y|α−ndy =
∞∑

k=0

∫
B(x,2−kδ)\B(x,2−k−1δ)

|f(y)||x− y|α−ndy

≤
∞∑

k=0

( δ

2k+1

)α−n
∫

B(x,2−kδ)

|f(y)|dy

≤ c(n)
∞∑

k=0

(1
2

)α−n( δ

2k

)α
∫

B(x,2−kδ)

|f(y)|dy

≤ cδαMf(x),
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and the second integral by Hölder’s inequality and the fact that ‖f‖p = 1:

∫
BR(0)\Bδ(x)

|f(y)||x− y|α−ndy ≤ ‖f‖Lp

(∫
BR(0)\Bδ(x)

|x− y|(α−n)p′
dy

) 1
p′

≤
(
|Σ1|

∫ 2R

δ

r(α−n)p′+n−1dr

) 1
p′

≤
(
|Σ1| log

2R
δ

) 1
p′

,

where Σ1 := ∂B1(0). Thus

|Iα(f)(x)| ≤ cδαMf(x) +
(
|Σ1| log

2R
δ

) 1
p′

.

If we choose

δα := min
{

ε

cMf(x)
, (2R)α

}
,

then

|Iα(f)(x)| ≤ ε +
[
|Σ1|max

(
0, log

(
2Rε−

1
α c

1
α (Mf(x))

1
α

))] 1
p′

= ε +
[ |Σ1|

n
max

(
0, log

(
(2R)nε−pcp(Mf(x))p

))] 1
p′

since αp = n. It follows, for any β > 1,

|Iα(f)(x)|p′ ≤ c(β)εp′
+ β
|Σ1|
n

max
(
0, log

(
(2R)nε−pcpMf(x)p

))
,

i.e.

exp
(

1
β

n

|Σ1|
∣∣∣∣Iα(f)(x)
‖f‖p

∣∣∣∣p′ )
≤ exp

(
cεp′)

max
(
1, (2R)nε−pcpMf(x)p

)
,

with c = c(β, n, p). Integrating over BR(0) the result then easily follows,
since

‖Mf‖p ≤ c‖f‖p = c

by the maximal theorem. �

Lemma 7.28 For every function u ∈ W 1,1
0 (Rn) (or equivalently u ∈

W 1,1
0 (Ω) for an open set Ω ⊂ Rn) we have

u(x) =
1

nωn

∫
Rn

x− y

|x− y|n · ∇udy,

i.e. u can be represented as a Riesz potential of order 1 of its derivatives.
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Proof. By density of C∞
c (Rn) in W 1,1

0 (Rn) we can assume that u ∈
C∞

c (Rn). Write

1
nωn

∫
Rn

x− y

|x− y|n · ∇udy =
1

nωn

∫
Rn\Bε(x)

x− y

|x− y|n · ∇udy

+
1

nωn

∫
Bε(x)

x− y

|x− y|n · ∇udy

=: (I)ε + (II)ε.

Since x−y
|x−y|n is integrable, we have

lim
ε→0

(II)ε = 0.

Since

div
(

x− y

|x− y|n
)

= 0,

integration by part gives

(I)ε =
∫

∂Bε(x)

udHn−1,

hence limε→0(I)ε = u(x). �
The above results then yield at once

Theorem 7.29 (Sobolev) Let u ∈ W 1,p
0 (BR(0)), where BR(0) ⊂ Rn.

Then there are universal constants c, c1, c2 and c3, depending on n, such
that

‖u‖Lp∗ ≤ c‖Du‖Lp if 1 < p < n, p∗ := np
n−p∫

BR(0)

exp
(

c1
|u|

‖Du‖Ln

) n
n−1

dx ≤ c2 if p = n

‖u‖L∞ ≤ c3R
1−n

p ‖Du‖Lp if p > n.

Actually, the case p = n is due to N. Trudinger [107] and the inequality
is often referred to as Moser-Trudinger’s inequality, since the optimal
constant c1 was found by Moser [81].



Chapter 8
The regularity problem in the scalar case

In this chapter we address the problem of the regularity of minimizers of
variational integrals and quasilinear elliptic equations in the scalar case.
The key result is the celebrated theorem of De Giorgi [24], also known as
De Giorgi-Nash theorem or De Giorgi-Nash-Moser theorem.

8.1 Existence of minimizers by direct
methods

Consider the functional

F(u) :=
∫

Ω

F (x, u,Du)dx,

where Ω � Rn is bounded and F : Ω× Rm × Rn×m is a smooth function
satisfying

(i) F (x, u, p) ≥ 0;

(ii) F and Fpi
α

= ∂F
∂pi

α
are continuous,

(iii) F (x, u, p) is convex with respect to p.

Then we have

Theorem 8.1 (Semicontinuity) If

F (x, u,Du) ≤ Λ(1 + |Du|q) for some q ∈ [1,∞) and Λ > 0,
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then the functional F is weakly lower semicontinuous in W 1,q
loc (Ω, Rm),

i.e. if uk ⇀ u in W 1,q(Ω0, Rm) for any compact subset Ω0 � Ω, then

F(u) ≤ lim inf
k→∞

F(uk).

Proof. Since the convergence in W 1,q
loc implies the convergence in W 1,1

loc ,
we can consider the case q = 1. Up to extracting a subsequence, we may
assume that uk → u a.e. and uk → u in L1

loc(Ω, Rm) (Rellich’s theorem).
Fix Ω0 � Ω and ε > 0. Then, by Egorov’s and Lusin’s theorems, and

by the absolute continuity of Lebesgue integral, there exists a compact
subset K ⊂ Ω0 such that meas(Ω0\K) < ε and

1. uk → u uniformly in K,

2. u
∣∣
K

and Du
∣∣
K

are continuous,

3.
∫

K
F (x, u,Du)dx ≥ ∫

Ω0
F (x, u,Du)dx− ε.

By convexity of F in p, setting F(uk,K) :=
∫

K
F (x, uk,Duk)dx, we

find

F(uk,K) ≥
∫

K

F (x, uk,Du)dx +
∫

K

Fpi
α
(x, uk,Du)(Dαui

k −Dαui)dx

=
∫

K

F (x, uk,Du)dx +
∫

K

Fpi
α
(x, u,Du)(Dαui

k −Dαui)dx

+
∫

K

[
Fpi

α
(x, uk,Du)− Fpi

α
(x, u,Du)

]
(Dαui

k −Dαui)dx.

Taking the limit as k → ∞, the second and the third integrals on the
right-hand side vanish: the former because Fpα

i
(x, u,Du) is bounded on

K and Dαui
k −Dαui ⇀ 0 in L1(K), the latter because Fpi

α
(x, uk,Duk)−

Fpi
α
(x, u,Duk)→ 0 uniformly on K and Dαui

k −Dαui is equibounded in
L1(K). Finally

lim inf
k→∞

∫
K

F (x, uk,Du)dx ≥
∫

K

F (x, u,Du)dx,

by Fatou’s lemma. Therefore

lim inf
k→∞

∫
Ω0

F (x, uk,Duk)dx ≥
∫

K

F (x, u,Du)dx

≥
∫

Ω0

F (x, u,Du)dx− ε.

Since this is true for every ε > 0, we conclude

lim inf
k→∞

∫
Ω0

F (x, uk,Duk)dx ≥
∫

Ω0

F (x, u,Du)dx.
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On the other hand, since F (x, u(x),Du(x)) ∈ L1(Ω) we have∫
Ω\Ω0

F (x, u,Du)dx = o(1)

with o(1)→ 0 as |Ω \ Ω0| → 0, and we conclude. �
By direct methods we have

Theorem 8.2 (Existence) In addition to the hypothesis of Theorem
8.1, assume that F is a smooth function of growth q > 1, i.e. there
exists A,Λ > 0 such that

A(|p|q − 1) ≤ F (x, u, p) ≤ Λ(|p|q + 1). (8.1)

Then for every g ∈W 1,q(Ω, Rm), F has a minimizer in the set

A :=
{
u ∈W 1,q(Ω, Rm)

∣∣ u− g ∈W 1,q
0 (Ω, Rm)

}
.

Proof. Take a minimizing sequence uk. By (8.1)∫
Ω

|Duk|qdx ≤ F(uk)
A

+ meas(Ω) ≤ c1. (8.2)

By Poincaré’s inequality and (8.2)∫
Ω

|uk|qdx ≤ c2

∫
Ω

|uk − g|qdx + c2

∫
Ω

|g|qdx

≤ c3

∫
Ω

|D(uk − g)|qdx + c2

∫
Ω

|g|qdx

≤ c4

∫
Ω

|Duk|qdx +
∫

Ω

|Dg|qdx + c2

∫
Ω

|g|qdx

≤ c5,

hence the sequence uk is bounded in W 1,q(Ω, Rm), which is reflexive.
Therefore there exists subsequence uk′ weakly converging to some function
u in W 1,q(Ω, Rm). By Theorem 8.1

F(u) ≤ lim inf
k′→∞

F(uk′),

hence u is a minimizer. �
Let us make a few remarks concerning the convexity of F with respect

to p that go back to Morrey.

We say that uk → u in the Lipschitz convergence if

(i) uk → u uniformly

(ii) the uk’s have equibounded Lipschitz norms.
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Proposition 8.3 Suppose that

F(u) =
∫

Ω

F (x, u,Du)dx

(with F smooth) is lower semicontinuous with respect to the Lipschitz
convergence. Then for all D � Ω, all (x0, u0, p0) ∈ Ω×Rn×Rnm and all
φ ∈ C1

c (D, Rm), we have∫
D

F (x0, u0, p0 + Dφ)dx ≥
∫

D

F (x0, u0, p0)dx. (8.3)

Proof. For the sake of simplicity we let F depend only on p and D be the
unit cube Q centered at 0 in Rn. Every φ ∈ C1

c (Q) extends to a periodic
function in Rn. Define φν(x) := ν−1φ(νx), ν ∈ N,

u(x) := u0 + p0 · x, uν(x) := u0 + p0 · x + φν(x).

Then uν → u in the Lipschitz convergence, thus, by the assumption,

|Q|F (p0) ≤ lim inf
ν→∞

∫
Q

F (p0 + Dφν)dx.

Now Dφν(x) = Dφ(νx) and, by the change of variable νx = y and using
the periodicity of φ,

|Q|F (p0) ≤ lim inf
ν→∞

∫
νQ

F (p0 + Dφ(y))
dy

νn

= lim inf
ν→∞ νn

∫
Q

F (p0 + Dφ(y))
dy

νn

=
∫

Q

F (p0 + Dφ)dy,

i.e. (8.3). �
If (8.3) holds for every D � Ω, (x0, u0, p0) ∈ Ω × Rn × Rnm and

φ ∈ C∞
c (D, Rm), one says that F is quasi-convex . In presence of addi-

tional assumptions, it turns out that quasi-convexity of F is equivalent
to semicontinuity of F , as appears from the following two theorems, due
respectively to Morrey and Meyers, and Acerbi-Fusco. We state them
without proof.

Theorem 8.4 Suppose that F ≥ 0 and for some s ≥ 1

|F (p)− F (q)| ≤ k(1 + |p|s−1 + |q|s−1)|p− q|.
Then F is weakly lower semicontinuous in W 1,s if and only if F is quasi-
convex.
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Theorem 8.5 Suppose that F (x, u, p) is measurable in x and continuous
in (u, p), and for some s ≥ 1

0 ≤ F (x, u, p) ≤ λ(1 + |u|s + |p|s).
Then F is weakly lower semicontinuous in W 1,s if and only if F is quasi-
convex.

Of course, by Jensen’s inequality, convexity of F with respect to p
implies quasi-convexity, and in fact it is equivalent to quasi-convexity in
the scalar case. In turn, quasi-convexity implies rank-one convexity, i.e.

F (p + ξ ⊗ η) ≥ F (p) + Aα
i ξiηα,

where Aα
i = Fpi

α
if F is of class C1, the converse being false. Classical

examples of quasi-convex integrands are poly-convex integrands , i.e., con-
vex functions of the determinant minors of the matrix Du. We shall not
dwell any further with these topics; for a first reading we refer e.g. to [49]
and, for further information, to the wide recent literature.

8.2 Regularity of critical points
of variational integrals

Consider the variational integral defined on W 1,2(Ω, Rm)

F(u) =
∫

Ω

F (Du)dx, (8.4)

where F is smooth, |F (p)| ≤ L|p|2 for some L > 0, and Aα
i := Dpi

α
F

satisfy the growth and ellipticity conditions{ |Aα
i (p)| ≤ c|p|, |Dpj

β
Aα

i (p)| ≤M

Dpj
β
Aα

i (p)ξi
αξj

β ≥ λ|ξ|2, ∀ξ ∈ Rn×m,
(8.5)

for some λ,M > 0.
Any minimizer u of F with respect to its boundary datum satisfies the

Euler-Lagrange equation∫
Ω

Aα
i (Du)Dαϕidx = 0, ∀ϕ ∈W 1,2

0 (Ω, Rm). (8.6)

Indeed, using a Taylor expansion and (8.5), we have for ϕ ∈W 1,2
0 (Ω, Rm)

0 ≤
∫

Ω

F (Du + tDϕ)− F (Du)
t

dx

=
∫

Ω

(
Aα

i (Du)Dαϕi + O(t)M |Dϕ|2)dx.

Taking the limit as t→ 0, and also replacing ϕ with −ϕ, we obtain (8.6).
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The associated quasilinear elliptic system

We may differentiate (8.6) using the difference quotient method, to get

Proposition 8.6 Let u ∈ W 1,2(Ω, Rm) be a weak solution to the the
elliptic system (8.6) where Aα

i satisfy the growth condition (8.5). Then
u ∈W 2,2

loc (Ω, Rm) and, for 1 ≤ s ≤ n, Dsu satisfies the elliptic system∫
Ω

Dpj
β
Aα

i (Du)Dβ(Dsu
j)Dαϕidx = 0, ∀ϕ ∈W 1,2

0 (Ω, Rm). (8.7)

Proof. Let {e1, . . . , en} be the standard basis of Rn, and fix an integer s,
1 ≤ s ≤ n. Given a test function ϕ ∈ C∞

c (Ω, Rm), for every h > 0 small
enough, also ϕ(x− hes) is a test function, thus∫

Ω

[
Aα

i (Du(x + hes))−Aα
i (Du(x))

]
Dαϕi(x)dx = 0.

For almost every x ∈ Ω we have

Aα
i (Du(x + hes))−Aα

i (Du(x))

=
∫ 1

0

d

dt
Aα

i (tDu(x + hes) + (1− t)Du(x))dt

=
∫ 1

0

Dpj
β
Aα

i (tDu(x + hes) + (1− t)Du(x))Dβ

[
uj(x + hes)− uj(x)

]
dt.

Setting

Ãαβ
ij(h)(x) :=

∫ 1

0

Dpj
β
Aα

i (tDu(x + hes) + (1− t)Du(x))dt

we have ∫
Ω

Ãαβ
ij(h)(x)Dβ

uj(x + hes)− uj(x)
h

Dαϕidx = 0, (8.8)

where Ãαβ
ij(h)(x) satisfy

|Ãαβ
ij(h)(x)| ≤M

Ãαβ
ij(h)(x)ξi

αξj
β ≥λ|ξ|2.

(8.9)

Insert now the test function

ϕ(x) :=
u(x + hes)− u(x)

h
η2



8.2 Regularity of critical points of variational integrals 173

into (8.8), where η ∈ C∞
c (BR(x0)), B3R(x0) ⊂ Ω, 0 ≤ η ≤ 1, η ≡ 1 on

BR
2
(x0), and |Dη| ≤ c

R . From (8.9), Hölder’s inequality and Proposition
4.8 (i), we get∫

Ω

∣∣∣Du(x + hes)−Du(x)
h

∣∣∣2η2dx ≤ c1

∫
Ω

∣∣∣u(x + hes)− u(x)
h

∣∣∣2|Dη|2dx

≤ c2

R2

∫
Ω

|Du|2dx.

Thus ∫
B R

2
(x0)

∣∣∣Du(x + hes)−Du(x)
h

∣∣∣2dx ≤ c3

where c3 is independent of h. By Proposition 4.8 (ii) and a covering
argument, Du ∈ W 1,2

loc (Ω, Rm). Passing to the limit as h → 0 in (8.8) we
obtain (8.7). �

The regularity of critical points of class C1

A bootstrap procedure based on Theorem 5.17 and Schauder estimates,
shows that if the first derivatives of u are continuous, then u is of class
C∞:

Theorem 8.7 If u ∈ C1(Ω, Rm) is a solution of the elliptic system (8.6)
then u ∈ C∞(Ω, Rm).

Proof. If u ∈ C1(Ω, Rm) then, by Proposition 8.6, Du solves

Dα

(
Aαβ

ij Dβ(Du)
)

= 0,

and the coefficients Aαβ
ij (x) := Dpj

β
Aα

i (Du(x)) are continuous and el-
liptic. By Theorem 5.17 and its corollary, Du is Hölder continuous.
Thus the coefficients Aαβ

ij are Hölder continuous and, by Theorem 5.19,
Du ∈ C1,σ(Ω) for some σ, giving Aαβ

ij ∈ C1,σ(Ω). Finally Theorem 5.20
yields u ∈ C∞(Ω, Rm). �

The C1-regularity of critical points

By Theorem 8.7 a critical point of the variational integral (8.4) is smooth
as soon as its first derivatives are continuous. Thus we need, or better
it suffices to show that the solutions Dsu to the elliptic system (8.7) are
continuous. This is false in general (we shall see counterexamples) but it
is true in the scalar case as proved by Ennio De Giorgi in 1957 [24], and
independently by John F. Nash [83].
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Before stating this theorem we observe that system (8.7), in the scalar
case (m = 1), reduces to the elliptic equation in the unknown Dsu∫

Ω

Fpαpβ
(Du)Dβ(Dsu)Dαϕdx = 0, ∀ϕ ∈W 1,2

0 (Ω),

thus v := Dsu solves an equation of the type

Dα(AαβDβv) = 0,

where Aαβ ∈ L∞ and Aαβξαξβ ≥ |ξ|2, and in this case we would like to
show that v is Hölder continuous. This is exactly the claim of De Giorgi’s
theorem, often referred to also as De Giorgi-Nash-Moser theorem.

8.3 De Giorgi’s theorem:
essentially the original proof

De Giorgi’s class

Definition 8.8 Define the De Giorgi class DG(Ω) as the set of functions
u ∈ W 1,2(Ω) for which there is a constant c such that for all x0 ∈ Ω,
0 < ρ < R < dist(x0, ∂Ω)∫

A(k,ρ)

|Du|2dx ≤ c

(R− ρ)2

∫
A(k,R)

|u− k|2dx, ∀k ∈ R, (8.10)

where A(k, r) := {x ∈ Br(x0) : u(x) > k}, r > 0.

To simplify the notation we usually don’t indicate the point x0 involved
in the definition of A(k,R).

This definition is motivated by the fact that, as we shall see, a solution
to an elliptic equation belongs to the De Giorgi class.

Exercise 8.9 Prove that if u,−u ∈ DG(Ω), then u satisfies the following Cac-
cioppoli inequality:∫

Bρ(x0)

|Du|2dx ≤ c

(R − ρ)2

∫
BR(x0)

|u − λ|2dx,

for every λ ∈ R and Bρ(x0) � BR(x0) � Ω.
[Hint: Use Proposition 3.23.]

Exercise 8.10 Prove that if u ∈ DG(Ω) and λ ∈ R, then also u + λ ∈ DG(Ω).

A subsolution of the elliptic equation

Dα(AαβDβu) = 0,

λ|ξ|2 ≤ Aαβξαξβ ≤ Λ|ξ|2, ∀ξ ∈ Rn
(8.11)
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is a function u ∈W 1,2(Ω) such that∫
Ω

AαβDβuDαϕdx ≤ 0, ∀ϕ ∈W 1,2
0 (Ω), ϕ ≥ 0. (8.12)

Lemma 8.11 Let u ∈W 1,2(Ω) be a subsolution of (8.11).

1. If f ∈ C2(R) is a non-negative, convex, monotone increasing func-
tion with f ′ ∈ L∞(R), then also f ◦ u is a subsolution of (8.11).

2. For any k ∈ R, (u− k)+ is a subsolution of (8.11)

Proof. By density it is enough to prove that f ◦u satisfies (8.12) for every
non-negative ϕ ∈ C∞

c (Ω). For ϕ ∈ C∞
c (Ω), ϕ ≥ 0 define the non-negative

test function
ζ(x) := f ′(u(x))ϕ(x) ∈W 1,2

0 (Ω).

We have by (8.11)

AαβDβuDαζ = AαβDβ(f ◦ u)Dαϕ + f ′′(u)AαβDβuDαuϕ

≥ AαβDβ(f ◦ u)Dαϕ.

Integrating yields

0 ≥
∫

Ω

AαβDβuDαζdx ≥
∫

Ω

AαβDβ(f ◦ u)Dαϕdx, (8.13)

which proves the first claim.
To prove the second claim, notice first that (u − k)+ ∈ W 1,2(Ω) by

Corollary 3.25. Up to a translation we can assume k = 0. Set

fε(t) :=
{ √

t2 + ε2 − ε if t > 0
0 if t ≤ 0

and f(t) := max{t, 0}. Then (8.13) holds with fε instead of f and by
Proposition 3.22 and dominated convergence∫

Ω

AαβDβu+Dαϕdx =
∫

Ω

AαβDβ(f ◦ u)Dαϕdx

=
∫
{x∈Ω:u(x)>0}

Aαβf ′(u)DβuDαϕdx

= lim
ε→0

∫
{x∈Ω:u(x)>0}

Aαβf ′
ε(u)DβuDαϕdx

≤ 0.

�
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Corollary 8.12 For any subsolution (resp. supersolution) u to (8.11),
we have u ∈ DG(Ω) (resp. −u ∈ DG(Ω)).

Proof. By Lemma 8.11, (u− k)+ is a subsolution, hence it satisfies Cac-
cioppoli’s inequality (Theorem 4.4 with fi, F

α
i = 0; notice that the proof

works for subsolutions, not only for solutions):∫
Bρ(x0)

|D(u− k)+|2dx ≤ c

(R− ρ)2

∫
BR(x0)\Bρ(x0)

((u− k)+)2dx, (8.14)

which implies (8.10) (and is actually a slightly stronger) thanks to Corol-
lary 3.25.

To conclude simply observe that if u is a supersolution, then −u is a
subsolution. �

The theorem and its proof

Theorem 8.13 (De Giorgi) If u,−u ∈ DG(Ω), then u ∈ C0,α
loc (Ω) for

some α ∈ (0, 1). Moreover letting ω(R) denotes the oscillation of u in a
BR(x0) � Ω and 0 < ρ < R, then we have

ω(ρ) ≤ c
( ρ

R

)α

ω(R), (8.15)

and

sup
B R

2
(x0)

|u| ≤ c
( ∫

BR(x0)

|u|2dx
) 1

2
. (8.16)

for some constant c > 0 independent of x0, ρ and R.

In particular if u ∈W 1,2
loc (Ω) is a weak solution to the elliptic equation

with L∞ coefficients
Dα(AαβDβu) = 0,

λ|ξ|2 ≤ Aαβξαξβ ≤ Λ|ξ|2,
then, by Corollary 8.12, u and −u belong to DG(Ω) so that u is Hölder
continuous. A consequence of (8.15) and (8.16) we have, when u,−u ∈
DG(Ω)∫

Bρ(x0)

|u− ux0,ρ|2dx ≤ c
( ρ

R

)n+2α
∫

BR(x0)

|u− ux0,R|2dx (8.17)

for Bρ(x0) � BR(x0) � Ω. Indeed, assuming R ≥ 2ρ (otherwise (8.17) is
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obvious)∫
Bρ(x0)

|u− ux0,ρ|2dx ≤ c1ρ
n(ω(ρ))2

≤ c2ρ
n
( ρ

R

)2α

(ω(R/2))2

≤ c3ρ
n
( ρ

R

)2α

sup
BR/2(x0)

|u− ux0,R|2

≤ c4

( ρ

R

)n+2α
∫

BR(x0)

|u− ux0,R|2dx,

where in the last inequality we applied (8.16) to u− ux0,R (compare Ex-
ercise 8.10).

Together with the Caccioppoli and Poincaré inequalities (see Exercise
8.9 and Proposition 3.12), from (8.17) we also infer∫

Bρ(x0)

|Du|2dx ≤ c

ρ2

∫
B2ρ(x0)

|u− ux0,2ρ|dx

≤ c′

ρ2

( ρ

R

)n+2α
∫

BR(x0)

|u− ux0,R|dx

≤ c′′
( ρ

R

)n−2+2α
∫

BR(x0)

|Du|2dx.

(8.18)

In the following we will assume n ≥ 3. The case n = 2 essentially
follows by the hole-filling technique of Widman (Section 4.4), by slightly
modifying the definition of DG(Ω) (the integral on the right-hand side of
(8.10) should be taken, for instance, over A(k,R) \ A(k, ρ), as in (8.14))
and noticing that it implies (4.23).

Lemma 8.14 If u ∈ DG(Ω), 0 < ρ < R ≤ dist(x0, ∂Ω), then∫
A(k,ρ)

|u− k|2dx ≤ C

(R− ρ)2

∫
A(k,R)

|u− k|2dx · |A(k,R)| 2n , ∀k ∈ R,

(8.19)
for some constant C > 0 independent of x0, ρ,R, k.

Proof. By (8.10) we have, for (u− k)+ := max(0, u− k),∫
B R+ρ

2
(x0)

|D(u− k)+|2dx ≤ 4c1

(R− ρ)2

∫
BR(x0)

((u− k)+)2dx.

Choose a cut-off function η ∈ C∞
c (BR+ρ

2
(x0)) such that

η ≡ 1 on Bρ(x0), 0 ≤ η ≤ 1 and |Dη| ≤ 4
R− ρ

.
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Then expanding |D(η(u− k)+)|2 we infer∫
B R+ρ

2
(x0)

|D(η(u− k)+)|2dx ≤
∫

B R+ρ
2

(x0)

η2|D((u− k)+)|2dx

+
c2

(R− ρ)2

∫
B R+ρ

2

((u− k)+)2dx

≤ c3

(R− ρ)2

∫
BR(x0)

((u− k)+)2dx.

Using Sobolev’s inequality with vanishing boundary value, Theorem 7.29,
we then bound(∫

Bρ(x0)

|(u− k)+|2∗
dx

) 2
2∗

≤
(∫

B R+ρ
2

(x0)

|η(u− k)+|2∗
dx

) 2
2∗

≤ c4

∫
B R+ρ

2
(x0)

|D(η(u− k)+)|2dx

≤ c5

(R− ρ)2

∫
BR(x0)

|(u− k)+|2dx,

where c4 = c4(n) does not depend on ρ, as a simple scaling argument
implies. By Hölder’s inequality∫

Bρ(x0)

|(u− k)+|2dx =
∫

A(k,ρ)

|u− k|2dx

≤
(∫

A(k,ρ)

|u− k|2∗
dx

) 2
2∗

|A(k, ρ)|1− 2
2∗ ,

which yields (8.19), since 1− 2
2∗ = 2

n . �

Proposition 8.15 If u ∈ DG(Ω) there exists a constant c > 0 such that,
for 0 < R ≤ dist(x0, ∂Ω), we have

sup
B R

2
(x0)

u ≤ k + c

(
1

Rn

∫
A(k,R)

|u− k|2dx

) 1
2
( |A(k,R)|

Rn

) θ−1
2

, ∀k ∈ R,

(8.20)
for some θ(n) > 1 to be defined.

Proof. Step 1. Since, for h > k and 0 < ρ ≤ R we have A(h, ρ) ⊂ A(k,R)
and, for x ∈ A(h, ρ), (h− k) < (u(x)− k), we see that

|h− k|2|A(h, ρ)| =
∫

A(h,ρ)

|h− k|2dx ≤
∫

A(k,R)

|u− k|2dx. (8.21)
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Define

u(h, ρ) :=
∫

A(h,ρ)

|u− h|2dx ≤
∫

A(k,ρ)

|u− k|2dx =: u(k, ρ),

so that (8.19) and (8.21) become

u(h, ρ) ≤ C

(R− ρ)2
u(k,R)|A(k,R)| 2n ,

|A(h, ρ)| ≤ 1
(h− k)2

u(k,R).

It follows that, for ξ > 0 we have

u(h, ρ)ξ|A(h, ρ)| ≤ Cξ

(R− ρ)2ξ

1
(h− k)2

u(k,R)ξ+1|A(k,R)| 2ξ
n . (8.22)

Set

ξ =
n

2
θ, where θ =

1
2

+

√
1
4

+
2
n

> 1

is the positive solution of θ2 − θ − 2
n = 0. Then

ξ + 1 = θξ, and
2ξ
n

= θ.

If we define
Φ(h, ρ) := u(h, ρ)ξ|A(h, ρ)|,

then (8.22) becomes

Φ(h, ρ) ≤ Cξ

(R− ρ)2ξ

1
(h− k)2

Φ(k,R)θ, for 0 < ρ < R, h > k. (8.23)

Step 2. We claim that, for any k ∈ R, we have

Φ(k + d,R/2) = 0, (8.24)

for

d :=
(
R−2ξ2(2ξ+2) θ

θ−1 CξΦ(k,R)θ−1
) 1

2
.

To see this, we set for � ∈ N

k
 = k + d− d

2


ρ
 =
R

2
+

R

2

.
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Then (8.23) gives

Φ(k
+1, ρ
+1) ≤ Cξ

(ρ
+1 − ρ
)2ξ(k
+1 − k
)2
Φ(k
, ρ
)θ

= Φ(k
, ρ
)
(

Φ(k
, ρ
)θ−1Cξ 2(
+1)(2ξ+2)

R2ξd2

)
,

which setting

ψ
 := 2μ
Φ(k
, ρ
), μ :=
2ξ + 2
θ − 1

becomes
ψ
+1 ≤ ψ


(
ψθ−1


 2(2ξ+2) θ
θ−1 CξR−2ξd−2

)
.

But with our choice of d we have

ψθ−1
0 2(2ξ+2) θ

θ−1 CξR−2ξd−2 = 1,

hence by induction we verify ψ
 ≤ ψ0 for every � ∈ N, i.e.

Φ(k
, ρ
) ≤ Φ(k0, R)
2μ


.

Letting �→∞ we get (8.24).

Step 3. Now (8.24) implies that either u(k + d,R/2) = 0, or |A(k +
d,R/2)| = 0. In both cases

sup
B R

2
(x0)

u ≤ k + d.

Since d is (up to choosing the proper constant c) the second addend on
the right side of (8.20), the proof is complete. �

Corollary 8.16 If u,−u ∈ DG(Ω), then there is a constant c > 0 such
that

sup
B R

2
(x0)

|u| ≤ c
( ∫

BR(x0)

|u|2dx
) 1

2
, (8.25)

for every x0 ∈ Ω, 0 < R ≤ dist(x0, ∂Ω).

Proof. Being u ∈ DG(Ω) (8.20) holds; choosing k = 0 and observing that
|A(k,R)|

Rn ≤ c1, we obtain

sup
B R

2
(x0)

u+ ≤ c
( ∫

BR(x0)

|u+|2dx
) 1

2
. (8.26)
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Similarly from −u ∈ DG(Ω) we have

sup
B R

2
(x0)

u− ≤ c
( ∫

BR(x0)

|u−|2dx
) 1

2
. (8.27)

Now sup |u| = max{supu+, supu−} and we conclude. �

Proposition 8.17 Let u ∈ DG(Ω) and, for 0 < ρ ≤ R ≤ dist(x0, ∂Ω),
set

M(ρ) := sup
Bρ(x0)

u, m(ρ) := inf
Bρ(x0)

u, k0 :=
M(2R)−m(2R)

2
. (8.28)

Assume that

|A(k0, R)| ≤ 1
2
|BR(x0)|.

Then there is a monotone increasing function ζ : R+ → R+ (independent
of x0) with limt→0+ ζ(t) = 0, such that

|A(h,R)| ≤ ζ(M(2R)− h), h < M(2R).

In particular
lim

h→M(2R)
|A(h,R)| = 0.

Proof. For h > k > k0 define v(x) := min{u, h} −min{u, k}. Then∣∣{x ∈ BR(x0) : v(x) = 0
}∣∣ = |BR(x0)\A(k,R)|
≥ |BR(x0)\A(k0, R)|
≥ |BR(x0)|

2

This and the Poincaré inequality (3.4) imply

c

R

∫
BR(x0)

|v|dx ≤
∫

BR(x0)

|Dv|dx (8.29)

thus

‖v‖W 1,1(BR(x0)) ≤ c1

∫
BR(x0)

|Dv|dx

and the Sobolev embedding theorem gives(∫
BR(x0)

|v|1∗
dx

) 1
1∗ ≤ c2

∫
BR(x0)

|Dv|dx, 1∗ =
n

n− 1
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which implies

(h− k)1
∗ |A(h,R)| ≤

∫
A(h,R)

(min{u, h} − k)1
∗
dx

≤
∫

BR(x0)

|v|1∗
dx

≤ c3

(∫
BR(x0)

|Dv|dx

) n
n−1

≤ c3

(∫
A(k,R)\A(h,R)

|Du|dx

) n
n−1

.

(8.30)

Taking the 2n−2
n -th power in (8.30) and using Hölder’s inequality we infer

(h− k)2|A(h,R)| 2n−2
n ≤ c4|A(k,R)\A(h,R)|

∫
A(k,R)\A(h,R)

|Du|2dx

≤ c4|A(k,R)\A(h,R)|
∫

A(k,R)

|Du|2dx.

(8.31)

Since u ∈ DG(Ω) we have, by (8.10),∫
A(k,R)

|Du|2dx ≤ c5

R2

∫
A(k,2R)

(u− k)2dx ≤ c6R
n−2(M(2R)− k)2,

which, together with (8.31), yields

(h− k)2|A(h,R)| 2n−2
n ≤ c7R

n−2(M(2R)− k)2|A(k,R)\A(h,R)|. (8.32)

Now set
ki := M(2R)− M(2R)− k0

2i
, i ∈ N,

so that

ki − ki−1 =
M(2R)− k0

2i
, M(2R)− ki−1 =

M(2R)− k0

2i−1
.

Set h = ki, k = ki−1 in (8.32) to obtain

|A(ki, R)| 2n−2
n ≤ 4c8R

n−2
(|A(ki−1, R)| − |A(ki, R)|).

Summing for 1 ≤ i ≤ N and using |A(ki−1, R)| ≥ |A(ki, R)| we obtain

N |A(kN , R)| 2n−2
n ≤ 4c8R

n−2
(|A(k0, R)| − |A(kN , R)|)

≤ 4c8R
n−2|A(k0, R)|. (8.33)
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As N → ∞ we have kN → M(2R) and |A(kN , R)| → 0. We see at once
from (8.33) that the rate of convergence doesn’t depend on x0, so that
the function ζ exists. �
Proof of De Giorgi’s theorem. Fix x0 ∈ Ω. With the same notation as in
(8.28) we assume

|A(k0, R)| = |{x ∈ BR(x0) : u(x) ≥ k0}| ≤ 1
2

(otherwise we work with −u). By (8.20) with

k = kν := M(2R)− M(2R)−m(2R)
2ν+1

,

we have

M(R) ≤ kν + c(M(2R)− kν)
( |A(kν , 2R)|

Rn

) θ−1
2

.

Thanks to Proposition 8.17 we may choose ν large enough and independ-
ent of x0, such that

c

( |A(kν , 2R)|
Rn

) θ−1
2

<
1
2
.

Then

M(R) ≤ M(2R)− M(2R)−m(2R)
2ν+1

+
1
2
(M(2R)− kν)

= M(2R)− M(2R)−m(2R)
2ν+2

.

Subtract m(R) and obtain

M(R)−m(R) ≤ M(2R)−m(R)− M(2R)−m(2R)
2ν+2

≤ M(2R)−m(2R)− M(2R)−m(2R)
2ν+2

= (M(2R)−m(2R))
(

1− 1
2ν+2

)
,

that is
ω(R) ≤ σω(2R), (8.34)

σ < 1 independent of x0, ω(ρ) := M(ρ) −m(ρ) being the oscillation on
the ball Bρ(x0). Iterating it follows that

ω(ρ) ≤ c1

( ρ

R

)α

ω(R).
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with α = − log σ
log 2 ∈ (0, 1). To conclude that u is locally Hölder continuous,

define
ω(ρ, x) := sup

Bρ(x)

u− inf
Bρ(x)

u

and for x, y ∈ BR(x0), 3R < dist(x0, ∂Ω), we have

|u(x)− u(y)| ≤ ω(|x− y|, x)

≤ c1

( |x− y|
2R

)α

ω(2R, x)

≤ c2

( |x− y|
R

)α

ω(3R, x0).

�

A remark

In the right-hand side of (8.25) one can take the Lp norm of u instead of
its L2 norm, for any p > 0. For p > 2 this follows of course from Jensen’s
inequality, while from p ∈ (0, 2) it can be proven using the following
lemma.

Lemma 8.18 Let φ : [0, T ] → R be a non-negative bounded function.
Suppose that for 0 ≤ ρ < R ≤ T we have

φ(ρ) ≤ A(R− ρ)−α + εφ(R)

for some A,α > 0, 0 ≤ ε < 1. Then there exists a constant c = c(α, ε)
such that for 0 ≤ ρ < R ≤ T we have

φ(ρ) ≤ cA(R− ρ)−α.

Proof. For some 0 < τ < 1, define{
t0 := ρ
ti+1 := ti + (1− τ)τ i(R− ρ), i ≥ 0.

Notice that ti < R since
∞∑

i=1

τ i =
τ

1− τ
,

and prove inductively that

φ(t0) ≤ εkφ(tk) + A(1− τ)−α(R− ρ)−α
k−1∑
i=0

εiτ−iα.
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Choose τ in such a way that ε
τα < 1 and letting k →∞ we get

φ(ρ) ≤ c(α, ε)
A

(R− ρ)α
.

�

Proposition 8.19 For every p > 0 and every u such that u,−u ∈ DG(Ω),
there is a constant c > 0 such that for

x0 ∈ Ω, 0 < ρ < R < dist(x0, ∂Ω), p > 0

one has

sup
Bρ(x0)

|u| ≤ c

(R− ρ)
n
p

(∫
BR(x0)

|u|pdx
) 1

p

, (8.35)

or, equivalently, there exists C > 0 such that

sup
B R

2
(x0)

|u| ≤ C
( ∫

BR(x0)

|u|pdx
) 1

p

, (8.36)

where the constants are independent of x0.

Proof. Step 1. First we prove that for any 0 < τ < 1 we have

sup
BτR(x0)

|u| ≤ c1

(1− τ)
n
2

( ∫
BR(x0)

|u|2dx
) 1

2
,

or, equivalently, for 0 < ρ < R

sup
Bρ(x0)

|u| ≤ c′1
(R− ρ)

n
2

(∫
BR(x0)

|u|2dx
) 1

2
. (8.37)

For any ε > 0 there exists x1 ∈ BτR(x0) such that

u(x1)2 > sup
BτR(x0)

|u|2 − ε.

Then

sup
BτR(x0)

|u|2 ≤ ε + sup
B(1−τ) R

4
(x1)

|u|2dx

≤︸︷︷︸
(8.25)

ε + c

∫
B(1−τ) R

2
(x1)

|u|2dx

≤ ε +
2nc

(1− τ)n

1
|BR|n

∫
B(1−τ) R

2
(x1)

|u|2dx

≤ ε +
c1

(1− τ)n

∫
BR(x0)

|u|2dx.
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By the arbitrariness of ε, we conclude. This takes care of the case p = 2
and, by Jensen’s inequality, also of the case p > 2.

Step 2. Now assume p ∈ (0, 2). From (8.37) we get

sup
Bρ(x0)

|u| ≤ c

(R− ρ)
n
2

(∫
BR(x0)

|u|2dx
) 1

2

≤ c

(R− ρ)
n
2

(∫
BR(x0)

|u|pdx
) 1

2
sup

BR(x0)

|u| 2−p
2

≤ ε sup
BR(x0)

|u|+ c(ε, p)
(R− ρ)

n
p

(∫
BR(x0)

|u|pdx
) 1

p

,

(8.38)

using
ab ≤ εa

2
p + c(ε, p)b

2
2−p .

Applying Lemma 8.18 to (8.38) with

φ(ρ) := sup
Bρ(x0)

|u|, T = R

we obtain (8.35). �

8.4 Moser’s technique and Harnack’s
inequality

We present here Moser’s proof [79] [80] of Harnack’s inequality that, as a
corollary, yields De Giorgi’s theorem.

The iteration technique

Proposition 8.20 Let u ∈W 1,2(Ω) be a subsolution of

Dα(AαβDβu) = 0,

λ|ξ|2 ≤ Aαβξαξβ ≤ Λ|ξ|2, ∀ξ ∈ Rn.
(8.39)

Then for every p > 0 there exists a constant k1 = k1(p, n, λ,Λ) such that

sup
B R

2
(x0)

u ≤ k1

( ∫
BR(x0)

|u|pdx
) 1

p

, ∀x0 ∈ Ω, 0 < R < dist(x0, ∂Ω).

(8.40)
If u is a positive supersolution, then for every q < 0 there exists a constant
k2 = k2(q, n, λ,Λ) such that

inf
B R

2
(x0)

u ≥ k2

( ∫
BR(x0)

|u|qdx
) 1

q

, ∀x0 ∈ Ω, 0 < R < dist(x0, ∂Ω).

(8.41)
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Proof. We divide the proof in several steps
Step 1. Let u be a subsolution. It is enough to consider the case u ≥ 0,
since otherwise we can work with u+, which is again a subsolution thanks
to Lemma 8.11, and get

sup
B R

2
(x0)

u ≤ sup
B R

2
(x0)

u+ ≤ k1

( ∫
BR(x0)

|u+|pdx
) 1

p ≤ k1

( ∫
BR(x0)

|u|pdx
) 1

p

.

For any 0 < ρ < R, take η ∈ C∞
c (BR(x0)), with η ≡ 1 on Bρ(x0) and

|Dη| ≤ 2
R−ρ . Choose ξ ≥ 1, and consider the test function uξη2 ≥ 0:

0 ≥
∫

Ω

AαβDβuDα(uξη2)dx

= ξ

∫
BR(x0)

AαβDβuDαuuξ−1η2dx + 2
∫

BR(x0)

AαβDβuDαηuξηdx.

By ellipticity and boundedness of Aαβ this becomes∫
BR(x0)

|Du|2uξ−1η2dx ≤ c(λ,Λ)
ξ

∫
BR(x0)

|Du|u ξ−1
2 ηu

ξ+1
2 |Dη|dx,

and using 2ab ≤ εa2 + b2

ε with a = |Du|u ξ−1
2 η, we get∫

BR(x0)

|Du|2uξ−1η2dx ≤ c1

ξ2

∫
BR(x0)

uξ+1|Dη|2dx.

Since
⏐⏐⏐D(u

ξ+1
2 )

⏐⏐⏐2

=
(

ξ+1
2

)2

uξ−1|Du|2, we infer

∫
BR(x0)

⏐⏐⏐D(u
ξ+1
2 )

⏐⏐⏐2

η2dx ≤ c2

(
ξ + 1

ξ

)2 ∫
BR(x0)

uξ+1|Dη|2dx.

Now use ⏐⏐⏐D
(
ηu

ξ+1
2

)⏐⏐⏐2

≤ 2
⏐⏐⏐D(u

ξ+1
2 )

⏐⏐⏐2

η2 + 2uξ+1|Dη|2

to get ∫
BR(x0)

⏐⏐⏐D
(
ηu

ξ+1
2

)⏐⏐⏐2

dx ≤ c3

∫
BR(x0)

uξ+1|Dη|2dx

≤ 4c3

(R− ρ)2

∫
BR(x0)

uξ+1dx,
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where c3 is independent of ξ ≥ 1. By the Sobolev inequality (Theorem
7.29) we then have(∫

Bρ(x0)

u
ξ+1
2 2∗

dx

) 2
2∗

≤
(∫

BR(x0)

(
u

ξ+1
2 η

)2∗

dx

) 2
2∗

≤ c4

∫
BR(x0)

∣∣∣D(
ηu

ξ+1
2

)∣∣∣2dx

≤ c5

(R− ρ)2

∫
BR(x0)

uξ+1dx.

(8.42)

Finally, setting μ := 2∗
2 = n

n−2 , p := ξ + 1, (8.42) becomes(∫
Bρ(x0)

uμpdx
) 1

μ ≤ c5

(R− ρ)2

∫
BR(x0)

updx, ∀p ≥ 2, (8.43)

Step 2. Thanks to Lemma 8.11, uμ is still a subsolution of (8.39), so we
can iterate the bound (8.43). Define, for any p ≥ 2,

σi := pμi, Ri := ρ +
R− ρ

2i
, (Ri −Ri+1)2 =

(R− ρ)2

22i+2
.

By (8.43) we have(∫
BRi+1 (x0)

uσi+1dx

) 1
μi+1

=
(∫

BRi+1 (x0)

uμσidx

) 1
μi

1
μ

≤
(

c522i+2

(R− ρ)2

) 1
μi (∫

BRi
(x0)

uσidx
) 1

μi

≤
i∏

k=0

(
c522k+2

(R− ρ)2

) 1
μk

∫
BR(x0)

updx.

Since

log
( i∏

k=0

(
c522k+2

) 1
μk

)
≤

∞∑
k=0

1
μk

((2k + 2) log(2) + log c5) <∞,

i∏
k=0

(
1

(R− ρ)2

) 1
μk

=
(

1
(R− ρ)2

)∑ i
k=0

1
μk

∞∑
k=0

1
μk

=
n

2
,

we have

lim
i→∞

i∏
k=0

(
c522k+2

(R− ρ)2

) 1
μk

≤ c6

(
1

R− ρ

)n

,
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where c6 depends only on p, λ and Λ. Therefore(∫
Bρ(x0)

uσidx
) 1

σi ≤
(∫

BRi
(x0)

uσidx
) 1

σi

≤ c6(R− ρ)−
n
p

(∫
BR(x0)

updx
) 1

p

.

For i→ +∞ the left hand side converges to supBρ(x0) u and this completes
the proof of (8.40) in the case p ≥ 2.

Step 3. We now prove (8.40) for 0 < p < 2. By step 2 we have

sup
Bρ(x0)

u ≤ c6(R− ρ)−
n
2

(∫
BR(x0)

u2dx

) 1
2

,

which implies

sup
Bρ(x0)

u ≤ c7(R− ρ)−
n
2
(

sup
BR(x0)

u
)1− p

2

(∫
BR(x0)

updx

) 1
2

.

Next we use Young’s inequality ab ≤ εaq + c(ε, q)bq′
, with 1

q := 1 − p
2 ,

q′ := 2
p ,

a :=

(
sup

BR(x0)

u

)1− p
2

, b :=
(

c7(R− ρ)−n

∫
BR(x0)

updx

) 1
2

,

inferring

sup
Bρ(x0)

u ≤ 1
2

sup
BR(x0)

u + c8(R− ρ)−
n
p

(∫
BR(x0)

updx

) 1
p

.

Setting φ(ρ) = supBρ(x0) u the conclusion follows at once from Lemma
8.18.

Step 4. Suppose u is a positive supersolution. Proceding exactly as for
subsolutions, but taking first ξ < −1 and then p = ξ + 1 < 0 one easily
deduces (8.41). �

The Harnack inequality

Proposition 8.20 in conjunction with John-Nirenberg’s theorem yields

Theorem 8.21 (Harnack’s inequality) Let u ∈W 1,2(Ω) be a positive
solution of the elliptic equation (8.39). Then there exists a constant

c = c(n, λ,Λ) ∈ (0, 1)
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such that
inf

B R
2

(x0)
u ≥ c sup

B R
2

(x0)

u, (8.44)

for any x0 ∈ Ω, 0 < R ≤ dist(x0, ∂Ω).

Proof. Consider a cut-off function η compactly supported in Bρ(x0) with
η ≡ 1 in B ρ

2
(x0) and |Dη| ≤ 4

ρ . From∫
Ω

AαβDαuDβ

(
η2

u

)
dx = 0,

we infer ∫
Ω

AαβDαuDβu
η2

u2
dx = 2

∫
Ω

AαβDαuDβη
η

u
dx

≤ cΛ
∫

Ω

|Du|
u
|Dη|ηdx.

Using ellipticity and boundedness of Aαβ and 2ab ≤ εa2 + b2

ε , we obtain∫
Ω

|Du|2
u2

η2dx ≤ c1

∫
Ω

|Dη|2dx ≤ c2ρ
n−2. (8.45)

Observe that |D log u|2 = |Du|2
u2 ; by the Poincaré inequality and the prop-

erties of η we then have∫
Bρ(x0)

| log u− (log u)x0,ρ|2dx ≤ c3ρ
2

∫
Bρ(x0)

|D log u|2dx ≤ c4ρ
n,

and since x0 is arbitrary we have log u ∈ L2,n(Ω0) ∼= BMO(Ω0) for Ω0 �
Ω. By Theorem 6.25 part 4, this implies the existence of γ = γ(n) > 0
and c5 = c5(n) such that the function v := eγ log u satisfies∫

BR(x0)

vdx

∫
BR(x0)

1
v
dx ≤ c5.

We now choose p = γ, q = −γ in Proposition 8.20 to conclude

inf
B R

2
(x0)

u ≥ k2

( ∫
BR(x0)

u−γdx
)−1

γ

≥ k2c
− 1

γ

5

( ∫
BR(x0)

uγdx
) 1

γ

≥ k2

k1
c
− 1

γ

5 sup
B R

2
(x0)

u.

�
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A first consequence of Harnack’s inequality is the theorem of De Giorgi.
Corollary 8.22 A solution u ∈ W 1,2(Ω) of equation (8.39) is locally
Hölder continuous.

Proof. Define M(ρ) and m(ρ) as in (8.28), with B2R(x0) ⊂ Ω. We have
that M(2R)−u ≥ 0 in B2R(x0) is a solution of (8.11), hence by virtue of
the Harnack’s inequality, we get

M(2R)−m(R) ≤ 1
c

(
M(2R)−M(R)

)
.

Similarly, with u−m(2R) ≥ 0 we obtain

M(R)−m(2R) ≤ 1
c

(
m(R)−m(2R)

)
.

Summing we obtain

ω(2R) + ω(R) ≤ 1
c

(
ω(2R)− ω(R)

)
for some c ∈ (0, 1), hence

ω(R) ≤ 1− c

1 + c
ω(2R).

Since 1−c
1+c < 1 and c doesn’t depend on x0 and R we conclude as after

equation (8.34). �
A second consequence is

Theorem 8.23 (Strong maximum principle) Let u be a non-negative
solution of equation (8.39). Then either u > 0 or u ≡ 0.

Proof. It suffices to apply the Harnack inequality to u + ε for some ε > 0
and let ε→ 0. �

8.5 Still another proof of De Giorgi’s
theorem

We report here about another proof of De Giorgi’s theorem due to P. Tilli
[106], at least assuming that u is bounded.

Theorem 8.24 (Oscillation lemma) Assume that u is a bounded solu-
tion to (8.11) in the ball B4(0). If∣∣{x ∈ B1(0)

∣∣ u ≤ 0
}∣∣ ≥ 1

2
|B1(0)|, (8.46)

then
sup

B1(0)

u+ ≤ c0

∣∣{x ∈ B2(0)
∣∣ u > 0

}∣∣ 1
2n sup

B4(0)

u+,

for a dimensional constant c0.
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Proof. As in the proof of Caccioppoli’s inequality, testing with the function
(u− k)+η and then letting η tend to the characteristic function of Br(0),
we find∫

Br(0)

|D(u− k)+|2dx ≤ c

∫
∂Br(0)

|D(u− k)+|(u− k)+dHn−1. (8.47)

Now set for ρ ∈ [0, 1]

g(ρ) :=
∫

B2−ρ(0)

|D(u− kρ)+|(u− kρ)+dx.

The function g(ρ) is absolutely continuous and differentiation yields for
a.e. ρ ∈ (0, 1)

−g′(ρ) = a(ρ) + kb(ρ)

where
a(ρ) :=

∫
∂B2−ρ(0)

|D(u− kρ)+|(u− kρ)+dHn−1

and
b(ρ) :=

∫
B2−ρ(0)

|D(u− kρ)+|dx.

Setting M4 := supB4(0) u+ and using (8.47), we also get

g2(ρ) ≤
∫

B2−ρ(0)

|D(u− kρ)+|2dx

∫
B2−ρ(0)

((u− kρ)+)2dx

≤ M
n−2
n−1
4

∫
B2−ρ(0)

|D(u− kρ)+|2dx

∫
B2−ρ(0)

((u− kρ)+)
n

n−1 dx

≤ cM
n−2
n−1
4 a(ρ)

∫
B2−ρ(0)

((u− kρ)+)
n

n−1 dx,

having used (8.47) in the last inequality. Since (u − kρ)+ for k ≥ 0
vanishes on a large portion of B2−ρ(0) because of (8.46), we also have by
the Sobolev embedding and the Poincaré inequality (Proposition (3.15))∫

B2−ρ(0)

|(u− kρ)+| n
n−1 dx ≤ c

(∫
B2−ρ(0)

|D(u− kρ)+|dx

) n
n−1

,

concluding

g2(ρ) ≤ CM
n−2
n−1
4 a(ρ)b(ρ)

n
n−1 .

Using

ab ≤
(a

ε

)p

+ (εb)q with p =
2n− 1
n− 1

, q =
2n− 1

n
,
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we find for every ε > 0

g(ρ)2

CM
n−2
n−1
4

≤
(

a(ρ)p

εp
+ εqb(ρ)q n

n−1

)

=
(

a(ρ)p

εp
+ εqb(ρ)p

)
≤

(
a(ρ)

ε
+ ε

q
p b(ρ)

)p

=
(

a(ρ)
ε

+
ε

n−1
n

k
kb(ρ)

) 2n−1
n−1

.

Finally, if we choose ε = k
n

2n−1 , we find

g(ρ)2
k

n
n−1

CM
n−2
n−1
4

≤ (−g′(ρ))
2n−1
n−1 a.e. ρ ∈ (0, 1). (8.48)

Now we claim that, if we choose

k = c0M
n−2

n
4 g(0)

1
n = c0M

n−2
n

4

(∫
B2(0)

|Du+|u+dx

) 1
n

,

where c0 is large enough, then g(1) = 0. Indeed, if g(1) > 0, then g(ρ) > 0
for a.e. ρ and (8.48) gives

k
n

2n−1

C̃M
n−2
2n−1
4

≤ − d

dρ

(
g(ρ)

1
2n−1

)
,

i.e.

0 < g(1)
1

2n−1 ≤ g(0)
1

2n−1 − k
n

2n−1

C̃M
n−2
2n−1
4

= g(0)
1

2n−1

(
1− c

n
2n−1
0

C̃

)
,

a contradiction if we choose c0 large enough. Thus g(1) = 0, i.e.

sup
B1(0)

u+ ≤ k = c0M
n−2

n
4

(∫
B2(0)

|Du+|u+dx

) 1
n

≤ c0M
n−1

n
4

(∫
B2(0)

|Du+|dx

) 1
n

≤ c0M
n−1

n
4

∣∣{x ∈ B2(0)
∣∣ u(x) > 0

}∣∣ 1
2n

(∫
B2(0)

|Du+|2dx

) 1
2n

≤ c′0M
n−1

n
4

∣∣{x ∈ B2(0)
∣∣ u(x) > 0

}∣∣ 1
2n

(∫
B4(0)

|u+|2dx

) 1
2n

≤ c′0
∣∣{x ∈ B2(0)

∣∣ u(x) > 0
}∣∣ 1

2n sup
B4(0)

u+,

and the proof is complete. �
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Theorem 8.25 A bounded solution of (8.11) is Hölder continuous.

Proof. Let u be a solution. By translation and scaling, we can assume

sup
B4(0)

u = 1, inf
B4(0)

u = −1

and, possibly considering −u, that (8.46) holds. The oscillation lemma,
applied to u− 1 + ε, then yields

sup
B1(0)

u ≤ 1− ε + εc0

∣∣{x ∈ B2(0)
∣∣ u > 1− ε

}∣∣ 1
2n . (8.49)

On the other hand,∣∣{x ∈ B2(0) : u(x) > 1− ε
}∣∣ log

1
ε
≤

∫
{x∈B2(0):u(x)>1−ε}

− log(1− u)dx

≤
∫

B2(0)

max{− log(1− u), 0}dx

and since max{− log(1 − u), 0} = 0 on a large subest of B2(0), by the
Sobolev, Poincaré and Jensen inequalities (see Proposition 3.15) we have∫

B2(0)

max{− log(1− u), 0}dx ≤
(∫

B2(0)

|Du|2
(1− u)2

dx

) 1
2

,

and the integral on the right-hand side can be bounded as in (8.45), since
(1− u) ≥ 0.

Together with (8.49), and choosing ε sufficiently small, we conclude

sup
B1(0)

u ≤ 1− θ, θ > 0,

or, since infB4(0) u = −1,

osc
B1(0)

u ≤ (1− θ)− (−1) =
2− θ

2
osc

B4(0)
u.

By scaling and iterating this inequality, we then easily conclude. �

8.6 The weak Harnack inequality

We have seen that solutions to an elliptic equation with bounded coef-
ficients satisfy the Harnack inequality (8.44). Actually a theorem of
Di Benedetto and Trudinger [28] shows that any function u such that
u,−u ∈ DG(Ω) satisfies the Harnack inequality. For simplicity we state
it on cubes.
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Theorem 8.26 If −u ∈ DG(Q4) and u > 0, then there exist constants
p > 0 and c > 0 such that

inf
Q1

u ≥ c
( ∫

Q1

updx
) 1

p

. (8.50)

Inequality (8.50) is called weak Harnack inequality. Before giving its
proof we observe that Harnack’s inequality (Theorem 8.21) is a straight-
forward consequence of (8.50) with (8.36). Then, with the same proof of
Corollary 8.22 we obtain another proof of De Giorgi’s theorem.

The proof of Theorem 8.26 uses several propositions. The first is
essentially De Giorgi’s oscillation lemma.

Theorem 8.27 (De Giorgi) Suppose that u > 0 in the cube Q4, τ > 0,
δ ∈ (0, 1) and −u ∈ DG(Q4). If

|{x ∈ Q2 : u(x) < τ}| ≤ δ|Q2|,
then

inf
Q1

u ≥ c(δ)τ,

where c(δ) ∈ (0, 1) is non-increasing with respect to δ.

Proof. Step 1. We first prove the Proposition when δ is sufficiently small.
With −τ and −u in place of k and u respectively, (8.20) and a covering
argument yield

sup
Q1

(−u) ≤ −τ + c

(
1
|Q2|

∫
{x∈Q2:u(x)<τ}

(−u + τ)2dx

) 1
2

×
( |{x ∈ Q2 : u(x) < τ}|

|Q2|
) θ−1

2

,

hence

inf
Q1

u ≥ τ − c

(
1
|Q2|

∫
{x∈Q2:u(x)<τ}

(τ − u)2dx

) 1
2

×
( |{x ∈ Q2 : u(x) < τ}|

|Q2|
) θ−1

2

≥ τ − cτ

( |{x ∈ Q2 : u(x) < τ}|
|Q2|

) θ
2

≥ τ
(
1− cδ

θ
2
)
.

Then
inf
Q1

u ≥ 1
2
τ
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for δ = δ0 sufficiently small.

Step 2. Let now δ ∈ (0, 1) be arbitrary. From (8.32) applied to −u and
(8.26) applied to −u− k for some k ≤ 0 we obtain

(h− k)2|{x ∈Q2 : −u(x) > h}| 2n−2
n

≤ c

∫
Q4

((−u− k)+)2dx|{x ∈ Q2 : h ≥ −u(x) > k}|

≤ c|Q4|((−k)+)2|{x ∈ Q2 : h ≥ −u(x) > k}|,

(8.51)

where c depends on δ. In fact δ ∈ (0, 1/2] in Proposition 8.17, but (8.32)
holds for δ ∈ (1/2, 1) as well with constant c = (1−δ)−2c, since it depends
on (8.29), which for δ close to 1 can be replaced by

c

R

∫
BR(x0)

|v|dx ≤ 1
1− δ

∫
BR(x0)

|Dv|dx,

which follows from Proposition 3.15. We now apply (8.51) with

k = −2−sτ, h = −2−s−1τ for some s ∈ N,

getting

∣∣∣{x ∈ Q2 : u(x) <
τ

2s+1

}∣∣∣ 2n−2
n ≤ c1

(∣∣∣{x ∈ Q2 : u(x) <
τ

2s

}∣∣∣
−

∣∣∣{x ∈ Q2 : u(x) <
τ

2s+1

}∣∣∣).

Summing for 0 ≤ s ≤ ν − 1 we obtain

ν
∣∣∣{x ∈ Q2 : u(x) <

τ

2ν

}∣∣∣ 2n−2
n ≤ c1

∣∣∣{x ∈ Q2 : u(x) < τ
}∣∣∣ ≤ c12n,

with c1 depending on δ, hence, choosing ν large enough (depending on δ0

and δ) we obtain ∣∣∣{x ∈ Q2 : u(x) <
τ

2ν

}∣∣∣ ≤ δ0|Q2|,

so that by the previous step

inf
Q1

u ≥ τ

2ν+1
,

hence the theorem is proven with c(δ) = 2−ν−1. �
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We need to slightly extend the previous result.

Proposition 8.28 Assume that u > 0 in Q4, τ > 0, δ ∈ (0, 1) and
−u ∈ DG(Q4). If |{x ∈ Q1 : u(x) ≥ τ}| ≥ δ|Q1|, then

inf
Q1

u ≥ c(δ)τ,

where c(δ) ∈ (0, 1) is non-decreasing with respect to δ.

Proof. Indeed

|{x ∈ Q2 : u(x) ≥ τ}| ≥ |{x ∈ Q1 : u(x) ≥ τ}| ≥ δ|Q1| ≥ δ

2n
|Q2|,

hence

|{x ∈ Q2 : u(x) < τ}| ≤
(

1− δ

2n

)
|Q2|

and we can apply Theorem 8.27. �

Proposition 8.29 Suppose that u > 0 in the cube Q1, τ > 0, and −u ∈
DG(Q4). If

|{x ∈ Q1 : u(x) ≥ τ}| ≥ 2−s|Q1|
for some positive integer s, then

inf
Q1

u ≥ csτ,

c = c(δ) ∈ (0, 1) being as in Proposition 8.28, with δ := 2−n−1.

Proof. For s = 1 the claim is true by Proposition 8.28. Let us assume the
claim true for some s and prove it for s + 1. By hypothesis, if we set

E0 := {x ∈ Q1 : u ≥ τ},
we have |E0| ≥ 2−s−1|Q1|.

If |E0| ≥ 2−s|Q1|, then by the inductive hypothesis

inf
Q1

u ≥ csτ ≥ cs+1τ

and we are done. Otherwise

2−s−1|Q1| ≤ |E0| < 2−s|Q1|.
Set f := χE0 , and apply the Calderón-Zygmund argument to f in Q1 with
parameter 1

2 to find a sequence of dyadic cubes {Qj}j∈J such that

(i)
1
2

<

∫
Qj

fdx ≤ 1
2
2n, i.e., |E0 ∩Qj | > 1

2 |Qj |;
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(ii) f ≤ 1
2 a.e. in Q\⋃j Qj , i.e. E0 ⊂

⋃
j Qj for j ∈ J up to a set of

measure 0;

(iii) if Qj is one of the 2n subcubes of Pi arising during the Calderón-
Zygmund process, then∫

Pi

f ≤ 1
2
, i.e. |E0 ∩ Pi| ≤ 1

2
|Pi|.

From (ii) and (iii) we infer

|E0| = |E0 ∩ (∪iPi)| =
∑

i

|E0 ∩ Pi| ≤ 1
2

∑
i

|Pi|.

On the other hand, if P is one of the P ′
is and Qj is one of its subcubes,

we have
|E0 ∩ P | ≥ |E0 ∩Qj | ≥ 1

2
|Qj | ≥ 1

2 · 2n
|P |;

therefore we can apply Proposition 8.28 to conclude inf
P

u ≥ cτ , i.e.

P ⊂ E1 := {x ∈ Q1 | u > cτ}.

Consequently

2−s−1|Q1| ≤ |E0| ≤ 1
2

∑
i

|Pi| ≤ 1
2
|E1|,

i.e.,
|E1| ≥ 2−s|Q1|.

Then, by inductive hypothesis,

inf
Q1

u ≥ c(cs)τ = cs+1τ.

�
Proof of Theorem 8.26. Given any τ such that

0 < τ < t1 := sup
Q1

u

and choose an integer s such that

λτ := |{x ∈ Q1 : u(x) ≥ τ}| ≥ 2−s|Q1|,

i.e.

s ≥ log
(

λτ

|Q1|
)
·
(

log
1
2

)−1

.
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Then, according to Proposition 8.29, we have

inf
Q1

u ≥ csτ

≥ c
log

(
λτ

|Q1|
)
·(log 1

2 )−1

τ

= exp
(

log c

log 1
2

log
(

λτ

|Q1|
))

τ

=
(

λτ

|Q1|
)γ

τ, γ :=
log c

log 1
2

,

i.e.
λτ

|Q1| ≤ τ− 1
γ inf

Q1
u

1
γ .

Taking into account (6.1), we conclude for

t0 := inf
Q1

u, p <
1
γ

and using (6.1)∫
Q1

updx = p

∫ t1

t0

τp−1 λτ

|Q1|dτ +
λt0

|Q1| t
p
0

≤ c1 inf
Q1

u
1
γ

∫ ∞

t0

τp−1− 1
γ dτ +

(
c2 inf

Q1
u
)p

= c3 inf
Q1

up,

as was to be shown. �

8.7 Differentiability of minimizers
of non-differentiable variational integrals

We conclude the chapter proving two results of Giaquinta-Giusti [41] [42],
[37]. Consider a variational integral

F(u,Ω) :=
∫

Ω

F (x, u,Du)dx, (8.52)

that is not necessarily differentiable in W 1,2.

Theorem 8.30 Let F be as in (8.52) and assume that

|p|2 ≤ F (x, u, p) ≤ Λ|p|2, (8.53)
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and let u ∈ W 1,2
loc (Ω) be a quasi-minimum of F meaning that there exists

Q ≥ 1 such that

F(u, spt(u− v)) ≤ QF(v, spt(u− v))

for all v ∈ W 1,2
loc (Ω) with spt(u − v) � Ω. Then both u and −u belong to

DG(Ω), hence u is locally Hölder continuous by De Giorgi’s theorem.

Proof. Let x0 ∈ Ω and BR(x0) � Ω. For k > 0, 0 < s < R set as before

A(k, s) := {x ∈ Bs(x0) : u(x) > k}.
For any t with 0 < t < s, let η ∈ C∞

c (Ω), spt η ⊂ Bs(x0), η ≡ 1 on Bt(x0),
|Dη| ≤ 2

s−t and define

w := (u− k)+ = max{u− k, 0}, v := u− ηw.

Observing that u differs from v only on A(k, s), using the minimality of
u and (8.53), we find∫

A(k,s)

|Du|2dx ≤
∫

A(k,s)

F (x, u,Du)dx

≤ Q

∫
A(k,s)

F (x, v,Dv)dx ≤ QΛ
∫

A(k,s)

|Dv|2dx

≤ c1

{∫
A(k,s)

(1− η)2|Du|2dx +
∫

A(k,s)

w2|Dη|2dx

}
.

Observing that η ≡ 1 on Bt(x0) and |Dη| ≤ 2
s−t , we get∫

A(k,t)

|Du|2dx ≤ c1

{∫
A(k,s)\A(k,t)

|Du|2dx+
4

(s− t)2

∫
A(k,R)

(u−k)2dx

}
.

Summing c1

∫
Ak,t
|Du|2dx to both sides, we obtain∫

A(k,t)

|Du|2dx ≤ c1

1 + c1

∫
A(k,s)

|Du|2dx +
4c1

(s− t)2

∫
A(k,R)

(u− k)2dx,

and Lemma 8.18 yields at once∫
A(k,ρ)

|Du|2dx ≤ c2

(R− ρ)2

∫
A(k,R)

(u− k)2dx, (8.54)

for 0 < ρ < R < dist(x0, ∂Ω). Therefore u belongs to the De Giorgi class
DG(Ω). The same reasoning applied to −u implies that also −u ∈ DG(Ω)
hence, by virtue of De Giorgi’s theorem, we conclude that u is Hölder
continuous. �
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Remark 8.31 The notion of quasi-minima was introduced in [43]. Its
interest consists in the fact that, under very soft assumptions, minimizers,
solutions of elliptic systems, solutions of problems with obstacles, etc. are
all quasi-minima. The interested reader is referred to [39] [52].

Theorem 8.32 Let u be a minimizer of the variational integral F . As-
sume that the growth condition (8.53) holds and moreover

(i) for every (x, u) ∈ Ω×Rm, F (x, u, p) is twice differentiable in p, and
for some λ,M > 0

|Fpp(x, u, p)| ≤ M

Fpαpβ
(x, u, p)ξαξβ ≥ λ|ξ|2 for all ξ ∈ Rn. (8.55)

(ii) The function (1 + |p|2)−1F (x, u, p) is Hölder continuous in (x, u)
uniformly in p, i.e. there exist contants A > 0, σ ∈ (0, 1) such that

|F (x, u, p)− F (y, v, p)| ≤ A(|x− y|2 + |u− v|2)σ/2|p|2. (8.56)

Then Du ∈ C1,σ
loc (Ω).

Proof. Step 1. Take any x0 ∈ Ω, BR(x0) � Ω, and let v be a minimizer of

F0(v,BR(x0)) :=
∫

BR(x0)

F (x0, ux0,R,Dv)dx, ux0,R :=
∫

BR(x0)

udx,

among the functions in W 1,2(BR(x0)) taking the value u on ∂BR(x0).
Such a minimizer exists because, thanks to (8.53), a minimizing sequence
vj is bounded in W 1,2(BR(x0)), hence it has a weakly converging sub-
sequence. On the other hand (8.55) implies convexity in p, thus weak
semicontinuity. By Proposition 8.6, Dv satisfies an elliptic equation with
bounded coefficients hence, by De Giorgi’s theorem, Dv ∈ C0,δ

loc (BR(x0))
for some δ ∈ (0, 1) and we have by (8.17) the estimate∫

Bρ(x0)

|Dv − (Dv)x0,ρ|2dx ≤ c1

( ρ

R

)n+2δ
∫

BR(x0)

|Dv − (Dv)x0,R|2dx.

Therefore as in (5.22)∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤c2

{( ρ

R

)n+2δ
∫

BR(x0)

|Du− (Du)x0,R|2dx

+
∫

BR(x0)

|D(u− v)|2dx

}
.

Then, noticing that Dsv satisfies an elliptic equation with bounded coef-
ficients for every s, namely

−Dα(FpαpβDβ(Dsv)) = 0,
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we can bound with De Giorgi’s Theorem, (8.16) in particular,∫
Bρ(x0)

|Dv|2dx ≤ sup
Bρ(x0)

|v|2 ≤ sup
BR/2(x0)

|v|2 ≤ c

∫
BR(x0)

|v|2dx

(for ρ ≤ R/2, otherwise the inequality is elementary), hence as in (5.22)∫
Bρ(x0)

|Du|2dx ≤ c2

{( ρ

R

)n
∫

BR(x0)

|Du|2dx +
∫

BR(x0)

|D(u− v)|2dx

}
.

(8.57)
Step 2. We now claim that∫

BR(x0)

|D(u− v)|2dx ≤ 2
λ

[F0(u,BR(x0))−F0(v,BR(x0))
]
. (8.58)

To see that, set F 0(p) := F (x0, ux0,R, p), w := u− v. Taking into account
(8.55) we find

F 0(Du)− F 0(Dv) = F 0
pα

(Dv)Dαw

+
∫ 1

0

(1− t)Fpαpβ
(tDu + (1− t)Dv)DαwDβwdt

≥ F 0
pα

(Dv)Dαw +
λ

2
|Dw|2.

Integrating over BR(x0) and observing that v satisfies that Euler-Lagrange
equation ∫

BR(x0)

F 0
pα

(Dv)Dαϕdx = 0 for all ϕ ∈W 1,2
0 (Ω),

(8.58) follows at once.

Step 3. We have

F0(u,BR(x0))−F0(v,BR(x0))

=
∫

BR(x0)

[
F (x0, ux0,R,Du)− F (x, u,Du)

]
dx

+
∫

BR(x0)

[
F (x, v,Dv)− F (x0, ux0,R,Dv)

]
dx

+ F(u,BR(x0))−F(v,BR(x0))

≤
∫

BR(x0)

A(|x− x0|2 + |u− ux0,R|)σ/2|Du|2dx

+
∫

BR(x0)

A(|x− x0|2 + |v − ux0,R|)σ/2|Dv|2dx.
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Using (8.58), the minimizing property of u, and taking into account (8.56)
and the Hölder continuity of u (Theorem 8.30) and v (De Giorgi’s the-
orem), we infer∫

BR(x0)

|D(u− v)|2dx ≤ c3R
γσ

∫
BR(x0)

|Du|2dx, for some γ ∈ (0, 1).

(8.59)
Combining with (8.57) we get∫

Bρ(x0)

|Du|2dx ≤ c4

[( ρ

R

)n

+ ω1(R)
] ∫

BR(x0)

|Du|2dx,

where ω(R) ≤ cRγσ. This implies, by means of Lemma 5.13, that for
every ε > 0 there is a constant c5 such that∫

Bρ(x0)

|Du|2dx ≤ c5

( ρ

R

)n−ε
∫

BR(x0)

|Du|2dx, 0 < ρ < R. (8.60)

Notice that this implies u ∈ C0,α
loc (Ω) for every α ∈ (0, 1), by Theorem 5.7.

Step 4. To conclude, first observe that (8.60) together with (8.59) implies∫
BR(x0)

|D(u− v)|2dx ≤ c6R
n+2ασ−ε.

Taking ε = ασ we get in conclusion∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c7

( ρ

R

)n+2δ
∫

BR(x0)

|Du− (Du)x0,R|2dx

+ c7R
n+ασ.

By Lemma 5.13∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c8ρ
n+2r, r = min

(ασ

2
,
δ

2

)
,

for all x0 in an open set, hence Du ∈ L2,n+2r
loc (Ω) ∼= C0,r

loc (Ω). �



Chapter 9
Partial regularity in the vector-valued case

No genaralizations nor counterexamples to the theorem of De Giorgi were
found during the years 1957-67 for the vector case m > 1. With the
exception of the special case n = 2, general regularity results for elliptic
systems were not available, and in fact, as shown from 1968 on, not valid.

9.1 Counterexamples to everywhere
regularity

Here we present only three classical counterexamples. For a more com-
prehensive discussion we refer to [37] and to the more recent works [105]
and [65].

9.1.1 De Giorgi’s counterexample

The following example is due to De Giorgi [27]. In B1(0) ⊂ Rn, n ≥ 3
consider on W 1,2(B1(0), Rn) the regular variational integral

F(u) =
∫

B1(0)

F (x,Du)dx

=
1
2

∫
B1(0)

{
|Du|2 +

[ n∑
i,α=1

(
(n− 2)δiα + n

xixα

|x|2
)
Dαui

]2
}

dx.

(9.1)

Its Euler-Lagrange equation is∫
B1(0)

Aαβ
ij DβujDαϕidx = 0, ∀ϕ ∈W 1,2

0 (B1(0), Rn), (9.2)

with

Aαβ
ij (x) = δαβδij +

[
(n− 2)δαi + n

xixα

|x|2
][

(n− 2)δβj + n
xjxβ

|x|2
]
.
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Though these coefficients are bounded and satisfy the Legendre condition,
the vector valued map

u(x) :=
x

|x|γ , γ :=
n

2
[
1− (

(2n− 2)2 + 1
)− 1

2
]
,

which belongs to W 1,2(B1(0), Rn) but is not bounded, is an extremal of
F , hence it satisfies the elliptic system with bounded coefficients (9.2).

9.1.2 Giusti and Miranda’s counterexample

A slight modification of De Giorgi’s counterexample is the following (com-
pare [54]).

F(u) =
∫

B1(0)

F (u,Du)dx

:=
∫

B1(0)

|Du|2 +

⎧⎨⎩
n∑

i,j=1

(
δij +

4
n− 2

uiuj

1 + |u|2
)
Diu

j

⎫⎬⎭
2

,

where B1(0) ⊂ Rn, n ≥ 3. For n large, the unique minimizer of F in
W 1,2(B1(0), Rn) is

u(x) =
x

|x|
and it satisfies an elliptic system with bounded coefficients Aαβ

ij (u), where
the dependence on u is real analytic.

9.1.3 The minimal cone of Lawson and Osserman

The area functional for the graph of a vector valued function u : Ω ⊂
Rn → Rm is

A(u) =
∫

Ω

F (Du)dx =
∫

Ω

√
det

(
I + Du∗Du

)
dx.

Its critical points (whose graphs are called minimal) satisfy the elliptic
system -called minimal surface system-⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

Dα

(√
ggαβ

)
= 0 β = 1, . . . , n

n∑
i,j=1

Dα

(√
ggαβDβui

)
= 0 i = 1, . . . ,m.

(9.3)

where gαβ := 1 +
∑m

i=1 DαuiDβui, (gαβ) := (gαβ)−1.
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Let η : S3 ⊂ R4 → S2 ⊂ R3 be the Hopf’s map defined by

η(z1, z2) = (|z1|2 − |z2|2, 2z1z2) ∈ R× C ∼= R3,

where (z1, z2) ∈ C2 ∼= R4. Then, as proven by Lawson and Osserman [68],
the Lipschitz but not C1 map defined by

u : R4 → R3

u(x) =
√

5
2
|x|η

(
x

|x|
)

, x �= 0 (9.4)

and u(0) = 0 satisfies the minimal surface system (9.3).

9.2 Partial regularity

The counterexamples given in last section show that everywhere regularity
results for critical points or minimizers of regular variational integrals
are in general not possible. Here we shall see some partial regularity
results, i.e. we prove that minimizers of variational integrals or solutions
to nonlinear elliptic systems are regular except in a closed set of small
Hausdorff dimension.

9.2.1 Partial regularity of minimizers

Consider the functional

F(u) :=
∫

Ω

F (Du)dx, u ∈W 1,2(Ω, Rm),

where F : Rm×n → R is smooth, satisfies the growth condition (8.5) and

1
σ
|p|2 ≤ F (p) ≤ σ|p|2

for some σ > 0.
Given a minimizer u ∈W 1,2(Ω, Rm) of F , define the singular set of u

Σ(u) :=
{

x ∈ Ω : lim inf
ρ→0

∫
Bρ(x)

|Du− (Du)x,ρ|2dx > 0
}

.

Notice that if Du is continuous at x, then x �∈ Σ(u). In fact the converse
is true, as the next theorem shows.

Theorem 9.1 The set Σ(u) is closed, u ∈ C1,σ(Ω\Σ(u)) for any σ ∈
(0, 1), and

Hn−2(Σ(u)) = 0,

where Hn−2 is the (n− 2)-dimensional Hausdorff measure.
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Proof. Observe that for every p, p ∈ Rm×n,

F (p) =F (p) + Fpi
α
(p)(pi

α − pi
α)

+
∫ 1

0

(1− t)Fpi
αpj

β
(tp + (1− t)p)(pi

α − pi
α)(pj

β − pj
β)dt.

(9.5)

Fix p := (Du)x0,R for some x0 ∈ Ω, 0 < R < dist(x0,∂Ω)
2 and define

G(v) =
∫

BR(x0)

G(Dv)dx,

where G is the approximation of F given by

G(p) := F (p) + Fpi
α
(p)(pi

α − pi
α) +

1
2
Fpi

αpj
β
(p)(pi

α − pi
α)(pj

β − pj
β). (9.6)

Since G is the sum of a quadratic coercive form, a linear functional and
a constant, by Theorem 3.39, there exists a unique minimizer v for G in
the class {

ζ ∈W 1,2(BR(x0), Rm) : ζ − u ∈W 1,2
0 (BR(x0), Rm)

}
and it satisfies the elliptic system

−Dα

(
Fpi

αpj
β
(p)(Dvj

β − pj
β)

)
= 0, in BR(x0),

thus the energy estimate (5.14). By Proposition 8.6, Du ∈W 1,2
loc (Ω), hence

the Sobolev embedding theorem yields Du ∈ L2∗
loc(Ω). Now thanks to the

Lp-estimates, Theorem 7.1 (actually applied to the function vi(x)−pi
αxα),

for every q ∈ [2, 2∗], there exists a constant c = c(q, λ,Λ) such that∫
BR(x0)

|Dv − p|qdx ≤ c

∫
BR(x0)

|Du− p|qdx.

As in equation (5.22), we obtain∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c
( ρ

R

)n+2
∫

BR(x0)

|Du− (Du)x0,R|2dx

+ c

∫
BR(x0)

|Du−Dv|2dx.

(9.7)
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As usual we want to estimate
∫

BR(x0)
|Du−Dv|2. By a Taylor expansion

∫
BR(x0)

[
F (Dv)− F (Du)

]
dx =

∫
BR(x0)

[
Fpi

α
(Du)(Dαvi −Dαui)

+
∫ 1

0

(1− t)Fpi
αpj

β
(tDu + (1− t)Dv)(Dαvi −Dαui)(Dβvj −Dβuj)dt

]
dx

=
∫

BR(x0)

[ ∫ 1

0

(1− t)Fpi
αpj

β
(tDu + (1− t)Dv)

× (Dαvi −Dαui)(Dβvj −Dβuj)dt

]
dx

≥ λ

2

∫
BR(x0)

|Du−Dv|2dx,

(9.8)

where the second identity comes from the Euler-Lagrange equation of F
(u is a minimizer and u − v is a test function) and the last inequality is
due to the ellipticity of Fpi

αpj
β
, i.e. (8.5). Observing that

|F (p)−G(p)| ≤ ω(|p− p|2)|p− p|2,

being ω the modulus of continuity of Fpi
αpj

β
,1 we get

∫
BR(x0)

|Du−Dv|2dx ≤ 2
λ

∫
BR(x0)

[
F (Dv)− F (Du)

]
dx

≤ 2
λ

∫
BR(x0)

{[
F (Dv)−G(Dv)

]
+

[
G(Dv)−G(Du)

]︸ ︷︷ ︸
≤0

+
[
G(Du)− F (Du)

]}
dx

≤ 2
λ

∫
BR(x0)

{
ω(|Dv − p|2)|Dv − p|2 + ω(|Du− p|2)|Du− p|2dx

}
≤c1

(∫
BR(x0)

|Dv − p|2∗
dx

) 2
2∗

(∫
BR(x0)

ω
(|Dv − p|2)dx

) 2
n

+ c1

(∫
BR(x0)

|Du− p|2∗
dx

) 2
2∗

(∫
BR(x0)

ω
(|Du− p|2)dx

) 2
n

,

where we used the boundedness of ω, so that ω
n
2 = ω ·ω n

2 −1 ≤ c2ω. Using
the Poincaré-Sobolev inequality (Proposition 3.27) and the Caccioppoli

1ω is concave, bounded and |F
pi

αp
j
β
(p1) − F

pi
αp

j
β
(p2)| ≤ ω(|p1 − p2|2) for every

p1, p2 ∈ Rn×m.
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inequality (Theorem 4.4) we obtain(∫
BR(x0)

|Dv − p|2∗
dx

) 2
2∗ ≤ c2

(∫
BR(x0)

|Du− p|2∗
dx

) 2
2∗

≤ c3

∫
BR(x0)

|D2u|2dx

≤ c4

R2

∫
B2R(x0)

|Du− p|2dx.

(9.9)

Putting together (9.8) and (9.9) gives∫
BR(x0)

|Du−Dv|2dx≤ c5

R2

(∫
B2R(x0)

|Du− p|2dx

)

×
(∫

B2R(x0)

[
ω(|Du− p|2) + ω(|Dv − p|2)

]
dx

) 2
n

≤︸︷︷︸
Jensen

c6

(∫
B2R(x0)

|Du− p|2dx

)

× ω

( ∫
B2R(x0)

|Du− p|2dx

) 2
n

Inserting this into (9.7) and recalling that p = (Du)x0,R yield∫
Bρ(x0)

|Du− (Du)x0,ρ|2≤c7

[( ρ

R

)n+2

+ ω

( ∫
B2R(x0)

|Du− (Du)x0,2R|2dx

)]
×

∫
B2R(x0)

|Du− (Du)x0,2R|2dx

By Lemma 5.13 we infer that, if ω
( ∫

–
B2R(x0)

|Du−(Du)x0,2R|2dx
)

is small
enough, then for any β < n + 2∫

Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c8ρ
β . (9.10)

As the function

x0 �→
∫

Bρ(x0)

|Du− (Du)x0,ρ|2dx

is continuous, (9.10) holds for ρ small in a neigborhood U of any point
x0 ∈ Ω\Σ(u), thus Du ∈ L2,β(U) and is Hölder continuous by Cam-
panato’s lemma. The estimate on dimH(Σ(u)) is a direct consequence of
Proposition 9.21 below. �
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9.2.2 Partial regularity of solutions to quasilinear
elliptic systems

The proof above is taken from [45]. It shows that a key point is the higher
integrability of the gradient of the solution. The same idea yields partial
regularity of solutions of systems in variation, Theorem 9.2 below, due to
Giusti-Miranda [53] and Morrey [78]. Recall that, thanks to Proposition
8.6, given a minimizer u of a variational integral of the form (8.4) satifying
the growth condition (8.5), the derivatives of u satisfy the elliptic system
(8.7). The proof below is taken from [40] [46].

Theorem 9.2 Let u ∈W 1,2(Ω, Rm) be a solution of

Dα

(
Aαβ

ij (x, u(x))Dβui(x)
)

= 0, (9.11)

with coefficients Aαβ
ij : Ω ×Mm×n → R uniformly continuous, bounded

and satisfying the Legendre condition: there is a λ > 0 such that

Aαβ
ij (x, u)ξi

αξj
β ≥ λ|ξ|2 for every (x, u) ∈ Ω× Rm.

Then, defined the singular set Σ(u) as

Σ(u) :=
{

x ∈ Ω : lim inf
ρ→0

∫
Bρ(x)

|u− ux,ρ|2dx > 0
}

,

we have that u ∈ C0,σ(Ω\Σ(u)) for every σ ∈ (0, 1) and

dimH Σ(u) < n− 2.

Remark 9.3 The singular set may be characterized in terms of Du by

Σ(u) :=
{

x ∈ Ω : lim inf
ρ→0

1
ρn−2

∫
Bρ(x)

|Du|2dx > 0
}

.

Indeed, if

lim inf
ρ→0

1
ρn−2

∫
Bρ(x)

|Du|2dx = 0, (9.12)

then

lim inf
ρ→0

∫
Bρ(x)

|u− ux,ρ|2dx = 0 (9.13)

by Poincaré’s inequality. The converse is consequence of Caccioppoli’s
inequality.

The following lemma will be crucial in the proof of the theorem.
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Lemma 9.4 In the same hypothesis of Theorem 9.2 there exists p > 2
and c = c(n,m, λ,Λ) such that Du ∈ Lp

loc(Ω) and( ∫
BR(x0)

|Du|pdx
) 1

p ≤ c
( ∫

B2R(x0)

|Du|2dx
) 1

2
.

Proof. By Caccioppoli and Sobolev-Poincaré’s inequalities (Theorem 4.4
and Proposition 3.27) we have∫

BR(x0)

|Du|2dx ≤ c1

R2

∫
B2R(x0)

|u− ux0,2R|2dx

≤ c2

R2

(∫
B2R(x0)

|Du|2∗dx
) 2

2∗
,

where 2∗ := 2n
n+2 , so that (2∗)∗ = 2. Dividing by Rn we obtain( ∫

BR(x0)

|Du|2dx
) 1

2 ≤
( ∫

B2R(x0)

|Du|2∗dx
) 1

2∗
,

so that we may apply Theorem 6.38 to f := |Du|2∗ with q = 2. �
Proof of Theorem 9.2. Fix x0 ∈ Ω and R > 0 such that B2R(x0) ⊂ Ω.
Freezing the coefficients we get∫

BR(x0)

Aαβ
ij (x0, ux0,R)DβuiDαϕjdx

=
∫

BR(x0)

[
Aαβ

ij (x0, ux0,R)−Aαβ
ij (x, u)

]
DβuiDαϕjdx,

(9.14)

for all ϕ ∈ W 1,2
0 (BR(x0), Rm). Write u = v + (u − v), where v is the

solution of⎧⎪⎨⎪⎩
∫

BR(x0)

Aαβ
ij (x0, ux0,R)DβviDαϕj = 0, ∀ϕ ∈W 1,2

0 (BR(x0), Rm)

v − u ∈W 1,2
0 (BR(x0), Rm).

Since Dv satisfies (5.13) by Proposition 5.8, similar to (5.22), we obtain∫
Bρ(x0)

|Du|2dx ≤ c
( ρ

R

)n
∫

BR(x0)

|Du|2dx + c

∫
BR(x0)

|D(u− v)|2dx.

Inserting ϕ = u − v in (9.14), using ellipticity of A and ab ≤ a2

ε + εb2

yields∫
BR(x0)

|D(u− v)|2dx ≤
∫

BR(x0)

|A(x0, ux0,R)−A(x, u)|2|Du|2dx

≤
∫

BR(x0)

ω(|x− x0|2 + |u− ux0,R|2)2|Du|2dx,
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where ω is the modulus of continuity of A, bounded, concave, and satis-
fying limt→0+ ω(t) = 0. You may observe that we have followed the proof
of Theorem 5.17, but now we cannot say that ω is small if R is, since
|u− ux0,R| may be large on BR(x0). Using the higher integrability of the
gradient and the boundedness of ω (so that ωq ≤ c1(q)ω if q > 1), we
obtain with p > 2 given by Lemma 9.4 and Hölder’s inequality∫

BR(x0)

ω(|x− x0|2 + |u− uR|2)2|Du|2dx

≤ c2

(∫
BR(x0)

|Du|pdx
) 2

p
(∫

BR(x0)

ω(|x− x0|2 + |u− uR|2)2
p

p−2 dx
) p−2

p

≤ c3

∫
BR(x0)

|Du|2dx
( ∫

BR(x0)

ω(|x− x0|2 + |u− uR|2)dx
) p−2

p

.

Since ω is concave, we can use Jensen’s inequality and get∫
BR(x0)

ω(|x− x0|2 + |u− uR|2)dx ≤ ω
(
R2 +

∫
BR(x0)

|u− uR|2dx
)
.

In conclusion∫
Bρ(x0)

|Du|2dx ≤ c
[ ( ρ

R

)n

+ ω
(
R2 +

∫
BR(x0)

|u− ux0,R|2dx
) p−2

p
]

×
∫

BR(x0)

|Du|2dx.

(9.15)

If x0 ∈ Ω\Σ(u), we may take R > 0 small enough in order to have

ω

(
R2 +

∫
BR(x0)

|u− ux0,R|2dx

) p−2
p

< ε0

and apply Lemma 5.13 to obtain that, for every ρ < R, we have∫
Bρ(x0)

|Du|2dx ≤ cρn−ε, (9.16)

where ε can be taken arbitrarily small, if R is chosen correspondingly
small (depending on ε). For x ∈ BR

2
(x0), observe that∫

B R
2

(x)

|u− ux, R
2
|2dx ≤

∫
B R

2
(x)

|u− ux0,R|2dx

≤ 2n

∫
BR(x0)

|u− ux0,R|2dx,
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thus what we have done applies to every x in BR
2
(x0), with the con-

sequence that Du ∈ L2,n−ε(BR
2
(x0)) for every ε > 0 (R depending on ε).

Thanks to Morrey’s Theorem 5.7, we have that u is Hölder continuous in
BR

2
(x0), hence locally in Ω \Σ(u). Now the estimate on the dimension of

Σ(u) follows immediately from the characterization of the singular set in
Remark 9.3, and by Lemma 9.4 and Proposition 9.21. �

Remark 9.5 The conclusion of the theorem above can be made more
precise if the coefficients do not depend on x: A = A(u). In this case
inequality (9.15) becomes∫

Bρ(x0)

|Du|2dx ≤ c
[ ( ρ

R

)n

+ ω
( ∫

BR(x0)

|u− ux0,R|2dx
)2 p−2

p
]

×
∫

BR(x0)

|Du|2dx.

By Lemma 5.13 and the discussion at the end of the proof, we infer that
there exists ε = ε(n,m, λ, sup |A|, ω) such that if∫

BR(x0)

|u− ux0,R|2dx ≤ ε,

then u ∈ C0,α(BR
2
(x0)) and we have the following estimate

‖u‖C0,α(B R
2

(x0)) ≤ c1‖Du‖L2,n−ε(B R
2

(x0)) ≤ c(n,m, ε,A)‖Du‖L2(BR(x0)).

A similar conclusion holds in the general case A = A(x, u) for R small
enough.

9.2.3 Partial regularity of solutions to quasilinear
elliptic systems with quadratic right-hand side

Of interest are also systems of quasilinear equations with right-hand side
that grows naturally, i.e., systems of the type

−Dβ

(
Aαβ

ij (x, u(x))Dαui
)

= fj

(
x, u(x),Du(x)

)
, (9.17)

where Aαβ
ij and fj are smooth functions so that A is very strongly elliptic,

i.e.
Aαβ

ij (x, u)ξi
αξj

β ≥ λ|ξ|2, ∀ξ ∈ Rn×m, (9.18)

and f satisfies the so-called natural growth condition

|f(x, u, p)| ≤ a(M)|p|2, ∀x, u, p with |u| ≤M, (9.19)
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where a is a nondecreasing function, or even diagonal systems as

−Δui(x) = f i(x, u(x),Du(x)). (9.20)

As first noticed by S. Hildebrandt and K. O. Widman, weak solutions
of (9.20) need not be regular everywhere. Indeed u(x) := x

|x| is a weak
solution in R3 of the system

−Δu = u|Du|2.
But the argument in the proof of Theorem 9.2 easily extends to prove

Theorem 9.6 Let u ∈W 1,2∩L∞(Ω, Rm) be a weak solution of the system
(9.17) where (9.18), (9.19) and |u| ≤M hold. Assume

2a(M)M ≤ λ. (9.21)

Then u is Hölder continuous in an open set Ω0 ⊂ Ω and the closed singular
set has Hausdorff dimension strictly less than n− 2.

Proof. In fact (9.21) allows us to prove Caccioppoli’s inequality and,
consequently, higher integrability of the gradient of u. The rest of the
proof proceeds exactly as previously. �

The next theorem provides also the possibility of bootstrapping regu-
larity by means of Schauder results.

Theorem 9.7 Let u ∈W 1,2
loc (Ω, Rm) be a weak solution to system

−Dβ

(
Aαβ

ij (x)Dαui
)

= fj

(
x, u(x),Du(x)

)
. (9.22)

Suppose that Aαβ
ij ∈ C0,μ(Ω) for some μ ∈ (0, 1) and satisfy the Legendre

condition, f is smooth and satisfies (9.19). If u ∈ C0,μ(Ω0) for some open
set Ω0 ⊂ Ω, then Du ∈ C0,μ(Ω).

Proof. For the sake of simplicity, we present the details of the proof in the
simpler case of diagonal systems, leaving the rest for the reader. So let
u ∈ W 1,2 ∩ C0,μ(Ω0, Rm) be a weak solution of (9.20). For all x0 ∈ Ω0,
ρ < R < dist(x0, ∂Ω0), letting H ∈W 1,2(BR(x0), Rm) be the solution to

ΔH = 0, H − u ∈W 1,2
0 (BR(x0), Rm),

we have∫
Bρ(x0)

|Du|2dx ≤ c
( ρ

R

)n
∫

BR(x0)

|Du|2dx + c

∫
BR(x0)

|D(u−H)|2dx (9.23)∫
Bρ(x0)

|Du− (Du)x0,ρ|2dx ≤ c
( ρ

R

)n+2
∫

BR(x0)

|Du−(Du)x0,R|2dx (9.24)

+c

∫
BR(x0)

|D(u−H)|2dx,
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From (9.22) we infer∫
BR(x0)

|D(u−H)|2dx =
∫

BR(x0)

(u−H) · f(x, u,Du)dx

≤ c

∫
BR(x0)

|u−H||Du|2dx

≤ cRμ

∫
BR(x0)

|Du|2dx,

(9.25)

since u ∈ C0,μ(Ω0) implies H ∈ C0,μ(Ω0). Therefore we conclude from
(9.23) and Lemma 5.13 that for ρ sufficiently small∫

Bρ(x0)

|Du|2dx ≤ cσρn−2+2σ, for all σ, 0 < σ < 1,

and, as in (9.25), for some ε > 0∫
BR(x0)

|D(u−H)|2dx ≤ cRn+ε.

The estimate (9.24) then yields, as in Schauder theory, that Du is
Hölder continuous with some small positive exponent, which is enough to
get Hölder continuity of Du with all exponents. �

For later use, we also consider the case of continuous solution.

Theorem 9.8 Let u ∈W 1,2
loc (Ω, Rm) be a weak solution to system

−Δui = fj

(
x, u(x),Du(x)

)
, (9.26)

where f is smooth and satisfies (9.19). If u ∈ C0(Ω), we get u ∈ C0,μ
loc (Ω).

Proof. Following the proof of Theorem 9.7, we obtain, instead of (9.25)∫
BR(x0)

|D(u−H)|2dx ≤ cω(R)
∫

BR(x0)

|Du|2dx, (9.27)

where ω is the modulus of continuity of u. Then, again with Lemma 5.13,
we get ∫

Bρ(x0)

|Du|2dx ≤ cερ
n−ε
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for any given ε > 0 and ρ sufficiently small. Taking into account the
inequality of Poincaré, we then get∫

Bρ(x0)

|u− ux0,ρ|2dx ≤ cερ
n+2−ε,

hence Hölder continuity of u follows from Campanato’s theorem (Theorem
5.5). �

Remark 9.9 Actually, bounded solutions of diagonal systems for which
(9.21) (and, in fact, a weaker condition) holds are regular everywhere,
as shown by S. Hildebrandt and K. O. Widman, see [61], while bounded
solutions of scalar equations with right-hand side of natural growth are
everywhere regular without assuming any smallness condition like (9.21),
see [67]. We shall not deal with these topics, the interested reader is
referred, besides the works already mentioned, to [37] for an account.

Here we would like to present an alternative proof of Theorem 9.6.
This proof, taken from [29], has its origin in Simon’s proof of the regularity
theorem of Allard, see Chapter 11, compare [97] and [11], and avoids the
use of the higher integrability result. To illustrate the ideas, we confine
ourselves to the case of diagonal systems (9.20); the reader can easily
supply the missing details to treat the general case.

Let u be a bounded weak solution of (9.20). Fix a ball BR(x0) � Ω
and let H be a harmonic function in BR(x0) with∫

BR(x0)

|DH|2dx ≤
∫

BR(x0)

|Du|2dx.

As we have seen several times, we then have for ρ < R∫
Bρ(x0)

|u−ux0,ρ|2dx ≤ 2
∫

Bρ(x0)

|u−H|2dx + 2
∫

Bρ(x0)

|H −Hx0,ρ|2dx

≤ 2
∫

BR(x0)

|u−H|2dx + c
( ρ

R

)n+2
∫

BR(x0)

|H −Hx0,R|2dx

≤ c

∫
BR(x0)

|u−H|2dx + c
( ρ

R

)n+2
∫

BR(x0)

|u− ux0,R|2dx,

(9.28)

and the point is to estimate the last term. This is accomplished by means
of the following two propositions.

Proposition 9.10 Given any ε > 0 there exists δ > 0 such that for any
g ∈W 1,2(BR(x0), Rm) satisfying∫

BR(x0)

|Dg|2dx ≤ 1,∣∣∣∣ ∫
BR(x0)

DgDϕdx

∣∣∣∣ ≤ δ sup
BR(x0)

|Dϕ|, ∀ϕ ∈ C1
c (BR(x0), Rm),
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then there exists a harmonic function H with
∫
–

BR(x0)
|DH|2dx ≤ 1 satis-

fying
1

Rn+2

∫
BR(x0)

|H − g|2dx ≤ ε.

Proof. We can assume x0 = 0, R = 1, as the result will follow by rescaling.
Were the conclusion false, we could find ε > 0, gk ∈W 1,2(B1(0), Rm) such
that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
–

B1(0)
|gk −H|2dx ≥ ε ∀H harmonic,

∫
–

B1(0)
|DH|2 ≤ 1∫

–
B1(0)

|Dgk|2dx ≤ 1∣∣ ∫
B1(0)

DgkDϕdx
∣∣ ≤ 1

k supB1(0) |Dϕ| ∀ϕ ∈ C1
c (BR(x0), Rm).

(9.29)
Without loss of generality we can assume

∫
–

B1(0)
gkdx = 0; therefore,

by Poincaré’s inequality, the gk are equibounded in W 1,2, and up to a
subsequence

gk ⇀ g weakly in W 1,2, gk → g in L2,

∫
B1(0)

|Dg|2dx ≤ 1.

Consequently∫
B1(0)

DgDϕdx = 0 ∀ϕ ∈ C1
c (BR(x0), Rm),

and that contradicts (9.29) with H replaced by g and k large enough. �

Proposition 9.11 Given any ε > 0, there exists C > 0 such that for any
BR(x0) and any g ∈W 1,2(BR(x0), Rm) we have

inf
H∈Ag

(∫
BR(x0)

|H − g|2dx

) 1
2

≤C sup
ϕ∈C∞

c (BR(x0),R
m)

‖Dϕ‖∞≤ 1
R

1
Rn−2

∫
BR(x0)

DgDϕdx

+ ε

(
1

Rn−2

∫
BR(x0)

|Dg|2dx

) 1
2

,

where

Ag :=
{

H harmonic on BR(x0)
∣∣∣ ∫

BR(x0)

|DH|2dx ≤
∫

BR(x0)

|Dg|2dx

}
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Proof. By a rescaling argument it suffices to consider the case x0 = 0,
R = 1. Set B := B1(0), and let δ be the constant in Proposition 9.10.
First assume that

sup
{∫

B

DgDϕdx
∣∣∣ ϕ ∈ C∞

c (B1(0), Rm), ‖Dϕ‖∞ < 1
}
≤ δ‖Dg‖L2 .

(9.30)
Then

inf
{(∫

B

|H − g|2dx
) 1

2
∣∣∣ H harmonic in B

}
= ‖Dg‖L2 inf

{(∫
B

∣∣∣∣ H

‖Dg‖L2
− g

‖Dg‖L2

∣∣∣∣2dx

) 1
2 ∣∣∣ H harmonic in B

}

≤ ε‖Dg‖L2

by Proposition 9.10. If (9.30) does not hold, we have by the Poincaré
inequality

inf
{(∫

B

|H − g|2dx
) 1

2
∣∣∣ H harmonic in B

}
≤

(∫
B

∣∣∣∣g(x)−
∫

B

g(y)dy

∣∣∣∣2dx

) 1
2

≤ c‖Dg‖L2

≤ c

δ
sup

{∫
B

DgDϕdx
∣∣∣ ϕ ∈ C∞

c (B, Rm), ‖Dϕ‖∞ ≤ 1
}

.

This completes the proof. �
Returning to (9.28), we now estimate the term

∫
–

BR(x0)
|u − H|2dx

using Proposition 9.11 by∣∣∣∣ 1
Rn−2

∫
BR(x0)

DuDϕdx

∣∣∣∣2 +
ε2

Rn−2

∫
BR(x0)

|Du|2dx

≤
(

1
Rn−2

∫
BR(x0)

|Du|2dx + ε2

)
1

Rn−2

∫
BR(x0)

|Du|2dx.

Next we observe that the smallness condition (9.21) allows us to prove
Caccioppoli’s inequality∫

BR(x0)

|Du|2dx ≤ c

R2

∫
B2R(x0)

|u− ux0,2R|2dx,

to conclude that∫
Bρ(x0)

|u− ux0,ρ|2dx ≤ c

[(
ρ

R

)n+2

+
∫

BR(x0)

|u− ux0,R|2dx + ε

]
×

∫
BR(x0)

|u− ux0,R|2dx.
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Now if ∫
BR(x0)

|u− ux0,R|2dx ≤ ε

is true at a point x0, it remains true in a neighborhood of x0, if we allow
for a larger c. Then the Hölder continuity of u follows by Lemma 5.13
and Campanato’s lemma, as we have seen several times.

Remark 9.12 The proof outlined above is indirect. It is to be mentioned
that indirect methods, a blow-up technique that originates in the works of
De Giorgi [25] and in [5] were used in the original works of Giusti-Miranda
and Morrey. Indirect methods were also used for quasiconvex functionals
by [94] and [30], for a direct approach see [38].

9.2.4 Partial regularity of minimizers of non-differen-
tiable quadratic functionals

The study of the regularity of non-differentiable functionals differs from
the study of smooth functionals in the lack of the Euler-Lagrange equa-
tion, and consequently, of Caccioppoli’s inequality. On the other hand,
for quadratic functionals, i.e. functionals of the form

F(u) :=
∫

Ω

Aαβ
ij (x, u)DαuiDβujdx,

Caccioppoli’s inequality is still available, as we see in the following

Proposition 9.13 (Caccioppoli inequality) Let u ∈ W 1,2
loc (Ω, Rm) be

a local minimizer of the functional

F(u) :=
∫

Ω

Aαβ
ij (x, u)DαuiDβujdx,

with Aαβ
ij bounded and elliptic: λ|ξ|2 ≤ Aαβ

ij ξi
αξj

β ≤ Λ|ξ|2. Then there
exists a constant c = c(λ,Λ) such that∫

B R
2

(x0)

|Du|2dx ≤ c

R2

∫
BR(x0)\B R

2
(x0)

|u− ux0,R|2dx (9.31)

for all x0 ∈ Ω, 0 < R < dist(x0, ∂Ω).

Proof. Take x0 ∈ Ω, 0 < t < s < R, and choose a cut-off function
η ∈ C∞

c (Ω) with

1. spt η ⊂ Bs(x0) and η ≡ 1 in Bt(x0);

2. |Dη| ≤ 2
s−t .
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Consider the test function

v := u− η(u− ux0,R)

and use the minimality of u, together with the ellipticity and boundedness
of Aαβ

ij to get∫
Bs(x0)

|Du|2dx ≤ 1
λ

∫
Bs(x0)

Aαβ
ij (x, u)DαuiDβujdx

≤ 1
λ

∫
Bs(x0)

Aαβ
ij (x, v)DαviDβvjdx

≤ Λ
λ

∫
Bs(x0)

|D[u− η(u− ux0,R)]|2dx

≤ c1

{∫
Bs(x0)

(1− η)2|Du|2dx

+
∫

Bs(x0)

|u− ux0,R|2|Dη|2dx
}
.

Therefore∫
Bt(x0)

|Du|2dx ≤ c1

∫
Bs(x0)\Bt(x0)

|Du|2dx

+
4c1

(s− t)2

∫
Bs(x0)\Bt(x0)

|u− ux0,R|2dx.

Adding c1 times the left-hand side to both sides, we get∫
Bt(x0)

|Du|2dx ≤ c1

c1 + 1

∫
Bs(x0)

|Du|2dx

+
c2

(s− t)2

∫
Bs(x0)\Bt(x0)

|u− ux0,R|2dx.

Setting φ(s) :=
∫

Bs(x0)
|Du|2dx, Lemma 8.18 implies that there exists a

constant c depending on c1 = c1(λ,Λ) such that∫
Bρ(x0)

|Du|2dx ≤ c

(R− ρ)2

∫
BR(x0)

|u− ux0,R|2dx,

and the result follows taking ρ = R
2 . �

With the same proof of Lemma 9.4 we get

Lemma 9.14 In the hypothesis of Proposition 9.13, there exist p > 2 and
c = c(n,m, λ,Λ) such that Du ∈ Lp

loc(Ω, Rm) and( ∫
BR(x0)

|Du|pdx
) 1

p ≤ c
( ∫

B2R(x0)

|Du|2dx
) 1

2
,

whenever B2R(x0) � Ω.
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The following result is due to Giaqunta and Giusti [41]

Theorem 9.15 Consider a local minimizer u of the variational integral

F(u) :=
∫

Ω

Aαβ
ij (x, u)DαuiDβujdx,

where the coefficients Aαβ
ij = Aβα

ji are uniformily continuous in (x, u) and
satisfy the Legendre condition

Aαβ
ij (x, u)ξi

αξj
β ≥ λ|ξ|2, ∀x ∈ Ω, u ∈ Rm, ξ ∈ Rn×m.

Then for any σ ∈ (0, 1) there exist ε0 = ε0(n,m, λ, ω, σ) (ω being the
modulus of continuity of Aαβ

ij ) such that u ∈ C0,σ
loc (Ω\Σ(u)), where

Σ(u) :=
{
x ∈ Ω : lim inf

R→0

1
Rn−2

∫
BR(x0)

|Du|2dx > ε0

}
.

Moreover dimH(Σ(u)) < n− 2.

Proof. Step 1. Fix x0 ∈ Ω and R with 0 < 2R < dist(x0, ∂Ω), and
consider the functional

F0(v) :=
∫

BR(x0)

Aαβ
ij (x0, ux0,R)DαviDβvjdx.

Thanks to the ellipticity of the coefficients, the functional is coercive thus,
following the proof of Theorem 3.29, it admits a unique minimizer v in
the class {

ζ ∈W 1,2(BR(x0)) : ζ − u ∈W 1,2
0 (BR(x0))

}
.

By Lemma 9.14, Du ∈ Lp(BR(x0)) for some p > 2. Since the coefficients
of F0 are constant, the corresponding Euler-Lagrange equation is elliptic
with constant coefficients:∫

BR(x0)

Aαβ
ij (x0, ux0,R)DαviDβϕjdx = 0, ∀ϕ ∈W 1,2

0 (Ω, Rm). (9.32)

Step 2. By Lp-theory, Theorem 7.1, we have∫
BR(x0)

|Dv|pdx ≤ c1

∫
BR(x0)

|Du|pdx, c1 = c1(p, λ,Λ), (9.33)

and by Proposition 5.8, for every 0 < ρ < R∫
Bρ(x0)

|Dv|2dx ≤ c2

( ρ

R

)n
∫

BR(x0)

|Dv|2dx.
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If we set w := u− v, the last equation easily implies∫
Bρ(x0)

|Du|2dx ≤ c3

( ρ

R

)n
∫

BR(x0)

|Du|2dx+c3

∫
BR(x0)

|Dw|2dx. (9.34)

Step 3. To estimate the term
∫

BR(x0)
|Dw|2dx we first observe that

λ

∫
BR(x0)

|Dw|2dx ≤
∫

BR(x0)

Aαβ
ij (x0, ux0,R)DαwiDβwjdx,

and by (9.32) with ϕ = w ∈W 1,2
0 (Ω, Rm)∫

BR(x0)

Aαβ
ij (x0, ux0,R)DαwiDβwjdx

=
∫

BR(x0)

Aαβ
ij (x0, ux0,R)DαuiDβwjdx

=
∫

BR(x0)

[
Aαβ

ij (x0, ux0,R)−Aαβ
ij (x, u)

]
Dα(ui + vi)Dβwjdx

+
∫

BR(x0)

[
Aαβ

ij (x, v)−Aαβ
ij (x, u)

]
DαviDβvjdx

+
∫

BR(x0)

Aαβ
ij (x, u)DαuiDβujdx−

∫
BR(x0)

Aαβ
ij (x, v)DαviDβvjdx.

The sum of the last two terms is non-positive because u is a minimizer.
For the other two terms, after using ab ≤ εa2 + b2

ε , we get∫
BR(x0)

|Dw|2dx

≤ c4

∫
BR(x0)

[|Du|2 + |Dv|2](ω(R2 + |u− ux0,R|) + ω(|u− v|2)
)
dx,

where ω is the modulus of continuity of Aαβ
ij .2 Set

ω1 = ω(R2 + |u− ux0,R|), ω2 = ω(|u− v|2).
Using the boundedness of ω and the higher integrability of Du we get∫

BR(x0)

|Du|2(ω1 + ω2)dx

≤ c5

(∫
BR(x0)

|Du|pdx
) 2

p
(∫

BR(x0)

(ω1 + ω2)dx
)1− 2

p

≤ c6

∫
B2R(x0)

|Du|2dx
( ∫

BR(x0)

(ω1 + ω2)dx
)1− 2

p

,

2ω : R+ → R+ is a concave increasing function satisfying limr→0+ ω(r) = 0 and

|Aαβ
ij (x, u) − Aαβ

ij (y, v)| ≤ ω(|x − y|2 + |u − v|2).
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and by (9.33) together with the preceding equation,∫
BR(x0)

|Dv|2(ω1 + ω2)dx≤c6

∫
BR(x0)

|Du|2dx
(∫

B2R(x0)

(ω1 + ω2)dx
)1− 2

p

.

Now by the concavity of ω, we get∫
BR(x0)

ω2dx ≤ ω
(
R2 +

∫
BR(x0)

|u− v|2dx
)

≤︸︷︷︸
Poincaré

ω
(
R2 + c7

1
Rn−2

∫
BR(x0)

|Dw|2dx
)

≤︸︷︷︸
L2 theory

ω
(
R2 + c8

1
Rn−2

∫
BR(x0)

|Du|2dx
)
,

where in the last inequality we used that∫
BR(x0)

|Dw|2dx ≤ 2
∫

BR(x0)

|Du|2dx + 2
∫

BR(x0)

|Dv|2dx

≤ (2 + c)
∫

BR(x0)

|Du|2dx,

and the last inequality follows from L2-theory, since u = v on ∂BR(x0) and
v satisfies the elliptic system with constant coefficients (9.32). Similarly∫

BR(x0)

ω1dx ≤ ω
(
R2 + c8

1
Rn−2

∫
BR(x0)

|Du|2dx
)
.

Step 4. Now estimate (9.34) may be rewritten as∫
Bρ(x0)

|Du|2dx

≤ c9

[( ρ

R

)n

+ ω
(
R2 + c8

1
Rn−2

∫
BR(x0)

|Du|2dx
)1− 2

p
] ∫

BR(x0)

|Du|2dx,

valid for every x0 ∈ Ω, 0 < ρ < R ≤ dist(x0,∂Ω)
2 and with constants c8

and c9 depending on n,m, λ,Λ, p. Since limr→0+ ω(r) = 0, Lemma 5.13
implies that given σ ∈ (0, 1) there are R0 and ε0 depending on n,m, λ,Λ
and σ such that whenever R ≤ R0 and

1
Rn−2

∫
BR(x0)

|Du|2dx ≤ ε0,

(and this last condition can be met when x0 ∈ Ω \ Σ(u)) then∫
Bρ(x0)

|Du|2dx ≤ c
( ρ

R

)n−2+2σ

, 0 < ρ < R0. (9.35)



9.2 Partial regularity 225

Since for a fixed R, 1
Rn−2

∫
BR(x0)

|Du|2dx varies continuously with re-
spect to x0, (9.35) holds in a neighborhood V of x0, yielding Du ∈
L2,n−2+2σ(V ); by Morrey’s Theorem 5.7, u ∈ C0,σ(V ).

The estimate on dimH(Σ(u)) follows from the characterization of Σ(u),
together with Lemma 9.14 and Proposition 9.21. �

In fact one can show, see [37], [42], [45]:

Theorem 9.16 Let u ∈ W 1,r(Ω) (for some fixed r ≥ 2) be a minimizer
of the functional ∫

Ω

F (x, u,Du)dx, (9.36)

where

(i) λ|p|r ≤ F (x, u, p) ≤ Λ|p|r, for some λ,Λ > 0 and every (x, u, p) ∈
Ω× Rm × Rn×m,

(ii) F is twice differentiable in p and for some L,A > 0

|Fpp(x, u, p)| ≤ L(1 + |p|)r−2

Fpi
αpj

β
(x, u, p)ξi

αξj
β ≥ (1 + |p|)r−2|ξ|2, ∀ξ ∈ Rn×m.

(iii) The function (1 + |p|2)1−rF (x, u, p) is continuous in x, u uniformly
with respect to p, and

|F (x, u, p)− F (y, v, p)| ≤ L(1 + |p|r)ω(|x− y|r + |u− v|r),
where ω(t) ≤ Amin{tσ, 1}, for some σ > 0.

Then there exists an open set Ω0 ⊂ Ω such that u has Hölder continuous
first derivatives in Ω0. Moreover Ω\Ω0 = Σ1 ∪ Σ2, where

Σ1 :=
{

x0 ∈ Ω
∣∣∣∣ sup

r>0
|(Du)x0,r| = +∞

}
Σ2 :=

{
x0 ∈ Ω

∣∣∣∣ lim inf
r→0

∫
Br(x0)

|Du− (Du)x0,r|2dx > 0
}

,

hence meas(Ω\Ω0) = 0.

Also considering the previous results, it is natural to ask whether or
not dimH(Σ1 ∪ Σ2) < n. A positive answer was given by Kristensen and
Mingione in [66]; indeed (similar to the case r = 2) there exists a higher
integrability exponent q > r, depending only on n,m, λ,Λ, but otherwise
independent of the minimizer and of the functional considered, such that

Du ∈ Lq
loc(Ω) .
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Then we have
Theorem 9.17 Let u be a minimizer of the functional (9.36) under the
assumptions of Theorem 9.16. Then

dimH(Ω \ Ω0) ≤ n−min{σ, q − r}.
Moreover, in the low dimensional case case n ≤ r+2 the previous estimate
improves in

dimH(Ω \ Ω0) ≤ n− σ.

Finally, Ω0 = Ω holds in the two dimensional case n = 2.

In the case of solutions to nonlinear elliptic systems similar estimates
were obtained by Mingione in [73, 74]. Finally, when the functional has
a splitting type, special structure, of the type considered in [42], it was
shown in [66] that the dimension estimates improve in every dimension.

Theorem 9.18 Let u be a minimizer of the functional∫
Ω

f(x,Du) + g(x, u) dx

under the assumptions of Theorem 9.16 satisfied by the integrand F =
f + g; then

dimH(Ω \ Ω0) ≤ n− σ.

A further refinement of the previous result eventually leads to consider
measurable dependence of x �→ g(x, ·); further cases are also considered
in [66].

9.2.5 The Hausdorff dimension of the singular set

We briefly recall the definitions of Hausdorff measure and dimension.

Definition 9.19 For k > 0 integer, define ωk to be the volume of the
unit ball in Rk, given by

ωk =
2π

k
2

kΓ(k
2 )

, (9.37)

where Γ is the Euler function

Γ(t) :=
∫ +∞

0

xt−1e−xdx, t ≥ 0. (9.38)

Since Γ is defined for every positive number we shall use (9.37) to define
ωk for any real number k > 0.

Given a set A ⊂ Rn and k, δ > 0, define

Hk
δ (A) := inf

{ ∞∑
j=0

ωkρk
j : A ⊂

∞⋃
j=0

Bρj (xj), ρj ≤ δ, xj ∈ Rn

}
.
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Definition 9.20 The k-dimensional Hausdorff measure Hk(A) of a set
A ⊂ Rn is defined as

Hk(A) := sup
δ>0
Hk

δ (A).

The Hausdorff dimension of A is defined as

dimH(A) := inf
{
k ≥ 0 : Hk(A) = 0

}
.

We also recall that for every k > dimH(A), we have Hk(A) = 0, and for
every k < dimH(A), Hk(A) = +∞.

Proposition 9.21 Let Ω ⊂ Rn be an open set and f ∈ L1
loc(Ω), 0 ≤ α <

n. Define

Σα :=
{
x ∈ Ω : lim sup

ρ→0

1
ρα

∫
Bρ(x)

|f |dx > 0
}
.

Then Hα(Σα) = 0. In particular dimH(Σα) ≤ α.

Proof. For s = 1, 2, . . . define

Fs :=
{

x ∈ Ω : lim sup
ρ→0

1
ρα

∫
Bρ(x)

|f |dx >
1
s

}
.

Then Σα =
⋃+∞

s=1 Fs and it suffices to show that Hα
δ (Fs) = 0 for every s,

since it can be easily seen that

Hα
δ (Σα) = lim

s→∞H
α
δ (Fs).

By definition of Fs, for every δ > 0 and x ∈ Fs there exists r = r(x, δ) ≤ δ
such that

1
rα

∫
Br(x)

|f |dx >
1
s
.

Then Fs is covered by {Br(x,δ)(x) : x ∈ Fs} and, by Besicovitch’s covering
lemma, there exists a disjoint countable subfamily {Bri(xi)} such that
{B5ri(xi)} covers Fs, ri = r(xi, δ). Now

+∞∑
i=1

rα
i ≤

+∞∑
i=1

s

∫
Bri

(xi)

|f |dx = s

∫
∪∞

i=1Bri
(xi)

|f |dx, (9.39)

because the balls are disjoint. Therefore

Ln
(+∞⋃

i=1

Bri(xi)
)

= ωn

+∞∑
i=1

rn
i ≤ ωnδn−α

+∞∑
i=1

rα
i ≤ ωnδn−αs

∫
Ω

|f |dx.
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Hence, as δ → 0, the last integral in (9.39) vanishes (absolute continuity
of Lebesgue’s integral). Therefore

Hα
δ (Fs) ≤

n∑
i=1

ωα(5ri)α ≤ 5αs

∫
∪+∞

i=1 Bri
(xi)

|f |dx→ 0, as δ → 0.

�



Chapter 10
Harmonic maps

A harmonic map between two Riemannian manifolds (M,g) and (N, γ) of
dimension n and m respectively is, roughly speaking, a critical point for
the Dirichlet integral

E(u) :=
∫

M

|∇u|2d volM ,

where, for x ∈ M and charts ϕ and ψ at x and u(x) respectively, and
u := ψ ◦ u ◦ ϕ−1,

|∇u|2(x) := γijg
αβDαui

ϕ(x)Dβuj
ϕ(x),

with (gαβ) = (gαβ)−1. If M = Ω ⊂ Rn and N = Rn, then harmonic maps
are simply maps whose components are harmonic functions. In general
the curvature of N introduces an important nonlinearity in the problem.

In this chapter we shall present the results of Giaquinta-Giusti and
Schoen-Uhlenbeck about the regularity of local minimizers of the Dirichlet
integral.

10.1 Basic material

Thanks to a theorem of John Nash we can assume that the target manifold
(N, γ) is isometrically embedded into Rp for some p. For the sake of
simplicity, we shall also assume that the manifold M is an open set Ω
of Rn with the standard Euclidean metric.1 Then the Dirichlet energy
becomes

E(u) :=
∫

Ω

|Du|2dx, (10.1)

1The general case of the results we shall present may be obtained with minor
changes, see [98].
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where

|Du|2 :=
p∑

i=1

n∑
α=1

|Dαui|2.

Definition 10.1 Given Ω and N as above, we define

W 1,2
loc (Ω, N) :=

{
u ∈W 1,2

loc (Ω, Rp) : u(x) ∈ N, for a.e. x ∈ Ω
}
.

Definition 10.2 (Local minimizers) A map u ∈W 1,2
loc (Ω, N) is a local

minimizer of the Dirichlet energy (10.1) if for every ball Bρ(x0) � Ω and
every v ∈W 1,2(Bρ(x0), N) with v = u on ∂Bρ(x0), we have∫

Bρ(x0)

|Du|2dx ≤
∫

Bρ(x0)

|Dv|2dx. (10.2)

10.1.1 The variational equations

Consider a local minimizer u. For a ball Bρ(x0) � Ω and some δ > 0
suppose that there exists a family of maps {us}s∈(−δ,δ) ⊂W 1,2(Bρ(x0), N)
such that

1. u0 ≡ u;

2. us ≡ u on ∂Bρ(x0) for every s ∈ (−δ, δ).

Then by (10.2) we have

d

ds

(∫
Bρ(x0)

|Dus|2dx

)∣∣∣∣
s=0

= 0, (10.3)

whenever the derivative exists.
There are two particularly useful ways of choosing families {us} as

above: we shall refer to them as inner and outer variations.

Outer variations

For any ζ ∈ C∞
c (Bρ(x0), Rp), set

us := Π ◦ (u + sζ),

where Π is the nearest point projection onto N . Clearly for s small enough
the image of u+ sζ lies in a tubolar neighborhood of N , so that us is well
defined. By the Taylor expansion, we find

Dαus = Dαu + s(dΠu(Dαζ) + d2Πu(ζ,Dαu)) + O(s2).
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As one can verify (see e.g. [98, Sec. 2.2]), together with (10.3), this yields
n∑

α=1

∫
Bρ(x0)

[
Dαu ·Dαζ − ζ ·Au(Dαu,Dαu)

]
dx = 0, (10.4)

where Au is the second fundamental form of N at u(x), compare Section
11.1.3. We can also write (10.4) in the form

Δu +
n∑

α=1

Au(Dαu,Dαu) = 0. (10.5)

Inner variations

For any ζ ∈ C∞
c (Bρ(x0), Rn), define

us(x) := u(x + sζ(x)),

well defined for s small enough. Then (10.3) implies∫
Bρ(x0)

[1
2
|Du|2 div ζ −DαuiDβuiDαζβ

]
dx = 0. (10.6)

Proof. Set Qt(x) := x+tζ(x). For |t| small enoughQt is a diffeomorphism
of Bρ(x0) onto itself. Set Ut(x) := u(Q−1

t (x)). Then

Ut ∈W 1,2(Bρ(x0), N), U0 ≡ u

and Ut agrees with u in a neighborhood on ∂Bρ(x0). From (10.3) we have

d

dt

(∫
Bρ(x0)

|DUt|2dx

)∣∣∣∣
t=0

= 0.

Together with∫
Bρ(x0)

|DUt|2dx =
∫

Bρ(x0)

|Du(x)DQ−1
t (Qt(x))|2 detDQt(x)dx,

Du(x) ·DQ−1
t (Qt(x)) = Du(x)(I − tDζ(x) + O(t2)),

detDQt(x) = 1 + tdiv ζ(x) + O(t2),

as t→ 0, gives (10.6). �

Definition 10.3 Let u ∈W 1,2
loc (Ω, N). Then u is said to be a

1. weakly harmonic map if it satisfies (10.4) for every ball Bρ(x0) � Ω
and every ζ ∈ C∞

c (Bρ(x0, Rp));

2. stationary harmonic map if it is weakly harmonic and satisfies (10.6)
for every Bρ(x0) � Ω, ζ ∈ C∞

c (Bρ(x0), Rn).

Remark 10.4 If u ∈ C2(Ω, N), integration by parts yields that (10.4)
implies (10.6). However this is false in general for u ∈W 1,2

loc (Ω, N).
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10.1.2 The monotonicity formula

Proposition 10.5 (Monotonicity formula) Let u be an inner extremal
of the Dirichlet integral, that is (10.6) holds for every ball Bρ(x0) � Ω,
and every ζ ∈ C∞

c (Bρ(x0, Rn)). Then, setting

r :=
x− x0

|x− x0| , R := |x− x0|,

we have for any x0 ∈ Ω and almost every ρ ∈ (0,dist(x0, ∂Ω)),

d

dρ

( 1
ρn−2

∫
Bρ(x0)

|Du|2dx
)

= 2
d

dρ

(∫
Bρ(x0)

1
Rn−2

∣∣∣∂u

∂r

∣∣∣2dx
)
, (10.7)

and for every x0 ∈ Ω and 0 < σ < ρ < dist(x0, ∂Ω)

1
ρn−2

∫
Bρ(x0)

|Du|2dx− 1
σn−2

∫
Bσ(x0)

|Du|2dx

= 2
∫

Bρ(x0)\Bσ(x0)

1
Rn−2

∣∣∣∂u

∂r

∣∣∣2dx.

(10.8)

Proof. Since (10.8) easily follows by integrating (10.7), we only need to
prove (10.7). Fix a smooth radial cut-off function η = η(|x − x0|) with
spt η ⊂ Bρ(x0), 0 ≤ η ≤ 1, η(0) = 1. Inserting ζ(x) = (x− x0)η(|x− x0|)
in (10.6), we find

1
2

∫
Bρ(x0)

|Du|2(nη(|x− x0|) + Rη′(|x− x0|))dx

=
∫

Bρ(x0)

DαuiDβui

(
δαβη(|x− x0|)+η′(|x− x0|) (xα − xα

0 )(xβ − xβ
0 )

|x− x0|
)

dx

i.e. ∫
Bρ(x0)

|Du|2((n− 2)η + Rη′)dx = 2
∫

Bρ(x0)

Rη′
∣∣∣∂u

∂r

∣∣∣2dx.

Choosing a sequence ηj suitably approximating the characteristic function
of [0, ρ], and taking the limit, we get for almost every ρ ∈ (0,dist(x0, ∂Ω))

(n− 2)
∫

Bρ(x0)

|Du|2dx− ρ
d

dρ

(∫
Bρ(x0)

|Du|2dx
)

= −2ρ
d

dρ

(∫
Bρ(x0)

∣∣∣∂u

∂r

∣∣∣2dx
)
.

Dividing by ρn−1 we obtain (10.7). �
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Observing that the right-hand side of (10.8) is positive, we infer

Corollary 10.6 In the hypothesis of the above proposition, the quantity

1
ρn−2

∫
Bρ(x0)

|Du|2dx

is monotone increasing with respect to ρ.

Definition 10.7 (Density) We define the density of the harmonic func-
tion u at x0 as

Θu(x0) := lim
ρ→0+

1
ρn−2

∫
Bρ(x0)

|Du|2dx,

where the limit exists thanks to Corollary 10.6.

10.2 Giaquinta and Giusti’s regularity
results

We now study the regularity of locally energy minimizing harmonic maps.
In this section we assume that the target manifold N is diffeomorphic
to an open set of Rm, or equivalently that there exists a global chart
ψ : N → Rm.

10.2.1 The main regularity result

Let us generalize Definition 10.2 to the case in which Ω is an arbitrary
Riemannian manifold.

Definition 10.8 We define W 1,2
loc (M,N) to be the space of functions u

such that for every chart ϕ : U ⊂M → Rn,

ψ ◦ u ◦ ϕ−1 ∈W 1,2
loc (ϕ(U), Rm).

Definition 10.9 (Local minimizer) A function u ∈ W 1,2
loc (M,N) will

be called local minimizer of the Dirichlet energy if for every chart ϕ : U ⊂
M → Rn, u := ψ ◦ u ◦ ϕ−1 is a local minimizer in W 1,2

loc (ϕ(U), Rm) of

E(u) :=
1
2

∫
ϕ(U)

γij(u(x))gαβ(x)Dαui(x)Dβuj(x)
√

g(x)dx,

where g(x) := det(gαβ(x)).

Let now the chart ϕ : U ⊂M → Rn be fixed. Define

Aαβ
ij (x, u) :=

√
g(x)gαβ(x)γij(u),
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and observe that if u (or u) is locally bounded, say supΩ0
|u| ≤ C(Ω0) for

every Ω0 � ϕ(U), then

λ|ξ|2 ≤ Aαβ
ij (x, u)ξi

αξj
β ≤ Λ|ξ|2, for all x ∈ Ω0,

where λ and Λ depend on Ω0, M∩ϕ−1(Ω0), N∩BC(Ω0)(0). Then Theorem
9.15 gives at once

Theorem 10.10 A (locally) bounded local minimizer u of the Dirichlet
energy is Hölder continuous except in the singular set

Σ :=
{

x ∈M : lim inf
R→0

1
Rn−2

∫
BR(x)

|Du|2dx > 0
}

.

More precisely, for every M0 � M one has

Σ ∩M0 :=
{

x ∈M0 : lim inf
R→0

1
Rn−2

∫
BR(x)

|Du|2dx > ε0

}
.

where ε0 > 0 depends only on M0 and N . Moreover dimH(Σ) < n− 2.

In fact u ∈ C∞(M\Σ, N) by Theorem 9.7 and Schauder estimates.

10.2.2 The dimension reduction argument

Following [44], we now improve the estimate on the dimension of the
singular set, using the dimension reduction argument of Federer. We
shall prove

Theorem 10.11 Let Σ be (as in the previous section) the singular set of
a bounded local minimizer of the Dirichlet energy E. Then

1. for n = 3, Σ contains only isolated points;

2. for n ≥ 4, dimH(Σ) ≤ n− 3.

In fact we have

Theorem 10.12 The same conclusions of Theorem 10.11 hold for locally
bounded minimizers of

J (u) :=
∫

Ω

Aαβ
ij (x, u)DαuiDβujdx, Aαβ

ij = Aβα
ji ,

where the coefficients Aαβ
ij

1. are of the form Aαβ
ij = gαβγij ,

2. are bounded: |A(x, u)| ≤M for some M ,
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3. satisfy the Legendre condition: Aαβ
ij ξi

αξj
β ≥ |ξ|2 for every ξ,

4. are uniformly continuous: |A(x, u) − A(y, v)| ≤ ω(|x − y|2 + |u −
v|2), where ω(t) is a bounded continuous and concave function with
ω(0) = 0,

and ∫ 1

0

ω(t2)
t

dt < +∞. (10.9)

We shall need the following lemma on the convergence of minimizers,
based on Caccioppoli’s inequality and the higher integrability of the gradi-
ent.

Lemma 10.13 Let A(ν)(x, u) = A
αβ(ν)
ij (x, u) be a sequence of continuous

functions in B1(0) × Rm converging uniformly to A(x, u) and satisfying
hypothesis 2,3,4 of Theorem 10.12, uniformly with respect to ν. For each
ν ∈ N let u(ν) be a minimizer in B1(0) of

J (ν)(w;B1(0)) :=
∫

B1(0)

A
αβ(ν)
ij (x,w)DαwiDβwjdx,

and suppose that the sequence (u(ν)) is uniformly bounded in L∞ and
converges weakly in L2(B1(0), Rm) to v. Then v is a minimizer of

J (w;B1(0)) :=
∫

B1(0)

Aαβ
ij (x,w)DαwiDβwjdx.

Moreover, if xν is a singular point for u(ν) and xν → x0, then x0 is a
singular point of v.

Proof.
Step 1. By Proposition 9.13, for every Br(x0) ⊂ B1(0) we have∫

B r
2
(x0)

|Du(ν)|2dx ≤ c1

r2

∫
Br(x0)

|u(ν) − u(ν)
x0,r|2dx, (10.10)

and by Lemma 9.14, there exists p > 2 such that Du(ν) ∈ Lp
loc(B1(0)) and

( ∫
B r

2
(x0)

|Du(ν)|pdx
) 1

p ≤ c2

( ∫
Br(x0)

|Du(ν)|2dx
) 1

2
, (10.11)

where c1, c2 and p do not depend on ν. By the weak L2-convergence,
the L2-norm of u(ν) is equibounded with respect to ν and this implies,
by (10.10) and (10.11), that the L2 and Lp-norms of Du(ν) are locally
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equibounded. In particular there exists a function c(R) such that for
R < 1 ∫

BR(0)

|Du(ν)|pdx ≤ c(R). (10.12)

By Rellich’s theorem, up to a subsequence, u(ν) → v in L2
loc(B1(0)).

Step 2. We now prove that for any R ∈ (0, 1)

J (v;BR(0)) ≤ lim inf
ν→+∞ J

(ν)(u(ν);BR(0)). (10.13)

In order to do that, write∫
BR(0)

A(ν)(x, u(ν))Du(ν)Du(ν)dx−
∫

BR(0)

A(x, v)DvDvdx

=
∫

BR(0)

[
A(ν)(x, u(ν))−A(x, u(ν))

]
Du(ν)Du(ν)dx

+
∫

BR(0)

[
A(x, u(ν))−A(x, v)

]
Du(ν)Du(ν)dx

+
∫

BR(0)

A(x, v)Du(ν)Du(ν)dx−
∫

BR(0)

A(x, v)DvDvdx.

As ν → +∞ we have∫
BR(0)

[
A(ν)(x, u(ν))−A(x, u(ν))

]
Du(ν)Du(ν)dx

≤ sup
BR(0)

[
A(ν)(x, u(ν))−A(x, u(ν))

]
‖Du(ν)‖2L2(BR(0)) → 0

because of the uniform convergence of the coefficients and the equiboun-
dedness of Du(ν) in L2(BR(0)). By Hölder’s inequality∫

BR(0)

[
A(x, u(ν))−A(x, v)

]
Du(ν)Du(ν)dx

≤
(∫

BR(0)

∣∣∣A(x, u(ν))−A(x, v)
∣∣∣qdx

) 1
q
(∫

BR(0)

|Du|pdx

) 2
p

→ 0,

(10.14)

where q := p
p−2 , because, up to a subsequence, u(ν) converges a.e. to v,

hence by continuity and uniform convergence of the coefficients,

A(x, u(ν)(x))→ A(x, v(x)) a.e.,

and (10.14) follows by Lebesgue’s dominated convergence theorem. Fi-
nally

lim inf
ν→+∞

∫
BR(0)

A(x, v)Du(ν)Du(ν)dx ≥
∫

BR(0)

A(x, v)DvDvdx,
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because the function

u �→
∫

BR(0)

Aαβ
ij (x, v)DαuiDβujdx

is continuous in W 1,2(BR(0)), convex thanks to the Legendre condition,
and therefore weakly lower semicontinuous in W 1,2(BR(0)).

Step 3. Again fix R ∈ (0, 1). Let w be an arbitrary function matching v
outside BR(0), and choose η ∈ C1(B1(0)) satisfying:

1. 0 ≤ η ≤ 1;

2. η ≡ 0 in Br(0) for some r < R;

3. η ≡ 1 outside BR(0).

Then v(ν) := w + η(u(ν) − v) equals u(ν) outside BR(0), therefore

J (ν)(u(ν);BR(0)) ≤ J (ν)(v(ν);BR(0)). (10.15)

By the boundedness of A(ν) and by (10.12) we get

J (ν)(v(ν);BR(0))

≤
∫

BR(0)

A(ν)(x, v(ν))DwDwdx + c3(R)‖η‖
L

p
p−2 (BR(0))

+ c4(R, η)‖u(ν) − v‖L2(BR(0))

(
1 + ‖u(ν) − v‖L2(BR(x0))

)
.

Letting ν → +∞, we deduce from (10.13) and (10.15)

J (v;BR(0)) ≤ J (w;BR(0)) + c3‖η‖
L

p
p−2 (BR(0))

.

Taking r close to R, the last term can be made arbitrarily small, and that
proves that v is a minimizer for J .

Step 4. In order to prove the second part of the lemma, let us recall that,
because of Caccioppoli’s inequality (10.10) and Theorem 9.15, a point x
is singular if and only if

lim inf
ρ→0+

1
ρn

∫
Bρ(x)

|u− ux,ρ|2dx ≥ ε0,

where ε0 is independent of ν.
Suppose now that x0 is a regular point of v and x(ν) → x0. Then for

some ρ small enough we have

1
ρn

∫
Bρ(x0)

|v − vx0,ρ|2dx < ε0,
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and hence, by dominated convergence,

lim
ν→+∞

1
ρn

∫
Bρ(x(ν))

|u(ν) − u
(ν)

x(ν),ρ
|2 =

1
ρn

∫
Bρ(x0)

|v − vx0,ρ|2dx < ε0,

which implies that xν is a regular point for u(ν) for ν large enough. This
completes the proof of the lemma. �

Lemma 10.14 (Monotonicity) Let Aαβ
ij satisfy the hypothesis of The-

orem 10.12 and let u be a local minimizer of J on B1(0). Then, for a.e.
ρ,R with 0 < ρ < R < 1, we have∫

∂B1(0)

|u(Rx)− u(ρx)|2dHn−1 ≤ c log
(R

ρ

)
[Φ(R)− Φ(ρ)], (10.16)

where

Φ(t) := tn−2 exp
(

c1

∫ t

0

ω(s2)
s

ds

)∫
Bt(0)

Aαβ
ij (x, u)DαuiDβujdx.

Proof. For simplicity, we shall only consider the case of the Dirichlet
integral, i.e. Aαβ

ij = δαβδij , referring to [44] for the general case. Then
the expression for Φ(t) simplifies to

Φ(t) =
1

tn−2

∫
Bt(0)

|Du|2dx.

For 0 < t < 1 let xt := t x
|x| and ut(x) := u(xt). We have

J (u;Bt(0)) ≤ J (ut;Bt(0)) (10.17)

and since u|∂Bt = ut|∂Bt

J (ut;Bt(0))=
∫

Bt(0)

t2

|x|2
(
δαh− xαxh

|x|2
)(

δαk − xαxk

|x|2
)
Dhui(xt)Dkui(xt)dx.

Assume that n ≥ 3 (the case n = 2 will not be treated). Observing that
for every f ∈ L1

loc(B1(0)) and a.e. t < 1 we have∫
Bt(0)

|x|−2f(xt)dx =
1

(n− 2)t

∫
∂Bt(0)

f(x)dHn−1,

we get

J (ut;Bt(0))= t
n−2

∫
∂Bt(0)

{
|Du|2− xαxh

|x|2
[
2δαk− xαxk

|x|2
]
DhuiDkui

}
dHn−1.
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Therefore

J (ut;Bt(0)) ≤ t

n− 2

{∫
∂Bt(0)

|Du|2dHn−1 −
∫

∂Bt(0)

|〈x,Du〉|2
|x|2 dHn−1

}
,

(10.18)
where 〈x,Du〉 := xαDαu. Now for a.e. t < 1 we have

1
tn−2

∫
∂Bt(0)

|Du|2dHn−1 = Φ′(t) + (n− 2)
Φ(t)

t
,

therefore, from (10.17), (10.18) we get

Φ′(t) ≥ 1
tn−2

∫
∂Bt(0)

|〈x,Du〉|2
|x|2 dHn−1,

and integrating

Φ(R)− Φ(ρ) ≥
∫ R

ρ

t2−n

∫
∂Bt(0)

|〈x,Du〉|2
|x|2 dHn−1dt.

On the other hand

|u(Rx)− u(ρx)|2 ≤
(∫ R

ρ

|〈x,Du(tx)〉|dt

)2

≤ log
(R

ρ

)∫ R

ρ

t|〈x,Du(tx)〉|2dt,

and the conclusion follows at once integrating over ∂B1(0). �

Proof of Theorem 10.11. Assume n = 3 and suppose that u has a sequence
of singular points xν converging to x0; up to translation we can assume
x0 = 0. We use a rescaling argument. Let Rν := 2|xν | < 1 for ν large
enough; the function u(ν)(x) := u(Rνx) is a local minimizer in B1(0) for

J (ν)(u(ν);B1(0)) :=
∫

B1(0)

A(ν)(x, u(ν))Du(ν)Du(ν)dx,

where
A(ν)(x, v) := A(Rνx, v).

Each u(ν) has a singular point yν with |yν | = 1
2 . Since the u(ν)’s are uni-

formly bounded, up to a subsequence, they converge weakly in L2(B1(0))
to some function v.2 By compactness, we may also assume that yν → y0

for some y0 with |y0| = 1
2 .

2By the theorem of Banach-Alaoglu.
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By Lemma 10.13 we conclude that v is a local minimizer of

J 0(v;B1(0)) :=
∫

B1(0)

A(0, v)DvDvdy

and that v is singular at y0. Moreover by monotonicity we shall see that
v is homogeneous of degree zero:

v(τy) = v(y), ∀τ ∈ (0, 1), y ∈ B1(0).

Indeed by Lemma 10.14 Φ(t) is increasing, and therefore tends to a finite
limit as t→ 0; moreover, setting ρ := λRν , R := μRν , 0 < λ < μ < 1, we
have∫

∂B1(0)

|u(ν)(λx)− u(ν)(μx)|2dHn−1 ≤ c log
(μ

λ

)
[Φ(μRν)− Φ(λRν)],

hence, letting ν → 0, we conclude that∫
∂B1(0)

|v(λx)− v(μx)|2dHn−1 = 0

for a.e. λ and μ.
Since v is homogeneous of degree 0, we have that τy0 lies in the singular

set Σ for every τ ∈ (0, 1), hence dimH(Σ) ≥ 1, contradicting Theorem
10.10, thus proving part 1.

To prove part 2, let us recall without proof that for any set A

Hk(A) = 0⇔Hk
∞(A) = 0, 3 (10.19)

and that, given a Borel set Σ, then for Hk-a.e. x ∈ Σ we have

lim sup
r→0+

Hk(Σ ∩B(x, r))
rk

≥ ωk

2k
. (10.20)

Finally, if Q,Qν , ν = 1, 2, . . ., are compact sets such that every open set
A ⊃ Q contains Qν for ν large enough, then

Hk
∞(Q) ≥ lim sup

ν→+∞
Hk

∞(Qν).4 (10.21)

Let Σ be the singular set of u and assume that for some k > 0 we have
Hk(Σ) > 0, so that also Hk

∞(Σ) > 0. Then there exists a point x0, which
we may take to be the origin, such that (10.20) holds. Let Rν → 0 be a
sequence such that

Hk(Σ ∩B(0, Rν))
Rk

ν

≥ ωk

2k+1
, (10.22)

3Compare Definition 9.20
4The same property is false for the measure Hk, and this is why we work with Hk∞.
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and let u(ν)(x) := u(2Rνx). Again by Lemma 10.13, up to a subsequence,
u(ν) converges to a 0-homogeneous local minimizer v. If Σ(ν) denotes the
singular set of u(ν), from (10.22)

Hk
∞(Σ(ν) ∩B 1

2
(0)) ≥ ωk

22k+1
.

Set Σ0 to be the singular set of v; by (10.21) with Q = Σ0, Qν = Σ(ν), we
have

Hk
∞(Σ0 ∩B 1

2
(0)) ≥ ωk

22k+1
.

In particular there exists x0 such that (10.20) holds with Σ0 in place of
Σ. Up to rotation, assume x0 = (0, 0, . . . , a) for some a �= 0 and blow up
at x0 as before. We obtain a local minimizer w1 in Rn independent of xn,
so that

w̃1(x1, . . . , xn−1) := w1(x1, . . . , xn−1, 0)

is a local minimizer in Rn−1. Moreover its singular set Σ1 satisfies

Hk−1(Σ1) > 0,

as comes easily from the invariance of the singular set of w1. Suppose
now k > n− 3 and apply the procedure n− 3 times. We obtain

Hk−(n−3)(Σn−3) > 0, k − (n− 3) > 0,

contradicting the fact that wn−3 is local minimizer in R3, and has only
isolated singularities by step 1. �

10.3 Schoen and Uhlenbeck’s regularity
results

Let us discuss the general results by Schoen and Uhlenbeck [95].

10.3.1 The main regularity result

The following theorem, an ε-regularity result, says that an energy min-
imizing harmonic map is regular in a neighborhood of every point with
density suitably small. It is the analog of Theorem 10.10, and implies that
the (n − 2)-dimensional measure of the singular set is zero. We present
here the original proof of Schoen and Uhlenbeck, which does not make use
of Caccioppoli’s inequality. In fact a Caccioppoli type inequality can be
proved using a lemma of Luckhaus, leading to a different proof of Theorem
10.15 below, see [98], [99].
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Theorem 10.15 (Schoen-Uhlenbeck [95]) Let u ∈W 1,2
loc (B1(0), N) be

a local minimizer of the Dirichlet integral. Assume also that the Rieman-
nian manifold (N, γ) is closed (compact and without boundary). Then
there exist ε0 > 0, σ ∈ (0, 1) depending on (N, γ) such that if for some
ball BR(x0) � B1(x0) we have

1
Rn−2

∫
BR(x0)

|Du|2dx ≤ ε0, (10.23)

then u ∈ C0,α(BσR(x0), N), for some α ∈ (0, 1).

The main step in the proof of the above theorem is the following decay
estimate.

Proposition 10.16 Under the assumptions of Theorem 10.15 there exist
ε0 > 0 and τ ∈ (0, 1) such that if∫

B1(0)

|Du|2dx ≤ ε0, (10.24)

then
1

τn−2

∫
Bτ (0)

|Du|2dx ≤ 1
2

∫
B1(0)

|Du|2dx. (10.25)

Proof of Theorem 10.15. Thanks to Morrey’s Theorem 5.7, it is enough
to prove that for any x in a neighborhood V of x0 we have

1
ρn−2

∫
Bρ(x)

|Du|2dx ≤ cρ2α, ∀ρ > 0 (10.26)

for some c > 0, that is Du ∈ L2,n−2+2α(V ). Since for x ∈ BR
2
(x0) we

have ( 2
R

)n−2
∫

B R
2

(x)

|Du|2dx ≤
( 2

R

)n−2
∫

BR(x0)

|Du|2dx ≤ 2n−2ε0,

we shall first prove (10.26) for x = x0 and then, up to take ε0
2n−2 instead

of ε0, we have that (10.26) holds true in V = BR
2
(x0).

Let u satisfy (10.23), and assume without loss of generality that x0 =
0. Then the rescaled map uR(x) := u(Rx) satisfies∫

B1(0)

|DuR|2dx =
1

Rn−2

∫
BR(0)

|Du|2dx.

This shows that we may also assume R = 1. Now apply Proposition 10.16
to u : B1(0)→ N :

1
τn−2

∫
Bτ (0)

|Du|2dx ≤ 1
2

∫
B1(0)

|Du|2dx.
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Also the rescaled map uτ (x) := u(τx) satisfies the hypothesis of Proposi-
tion 10.16:∫

B1(0)

|Duτ |2dx =
1

τn−2

∫
Bτ (0)

|Du|2dx ≤ 1
2

∫
B1(0)

|Du|2dx ≤ ε0,

Therefore
1

τn−2

∫
Bτ (0)

|Duτ |2dx ≤ 1
2

∫
B1(0)

|Duτ |2dx,

which is the same as

1
(τ2)n−2

∫
Bτ2 (0)

|Du|2dx ≤
(1

2

)2
∫

B1(0)

|Du|2dx,

and iterating

1
(τ i)n−2

∫
Bτi (0)

|Du|2dx ≤
(1

2

)i
∫

B1(0)

|Du|2dx,

for any positive integer i. Given now ρ ∈ (0, 1), choose i such that τ i+1 ≤
ρ ≤ τ i, and set α = log 2

2 log τ−1 . Then, since 2−i = (τ i)
log 2

log τ−1 , we find

( 1
τ i

)n−2
∫

Bρ(0)

|Du|2dx ≤ (τ i)2α

∫
B1(0)

Du2dx,

and finally

1
ρn−2

∫
Bρ(0)

|Du|2dx ≤ 1
τn−2

1
(τ i)n−2

∫
Bτi (0)

|Du|2dx

≤ τ2−n
(1

2

)i
∫

B1(0)

|Du|2dx

≤ 1
τn−2

(τ i)2α

∫
B1(0)

|Du|2dx

≤ 1
τn−2

(ρ

τ

)2α
∫

B1(0)

|Du|2dx

≤
(
τ2−n−2α

∫
B1(0)

|Du|2dx
)
ρ2α.

�
Proof of Proposition 10.16. We shall first approximate u with a smooth
function uh (step 1), then prove a decay estimate similar to (10.25) for
uh (step 2), and finally show how to compare the Dirichlet integral of uh

with the Dirichlet integral of u using the minimining property of u (steps
3 and 4).
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Step 1. Fix a smooth radial mollifier ϕ : Rn → R+, with sptϕ ⊂ B1(0)
and

∫
B1(0)

ϕ(x)dx = 1. Set

u∗ :=
∫

B1(0)

ϕ(x)u(x)dx ∈ R.

By a variant of Poincaré inequality5 we have∫
B1(0)

|u− u∗|2dx ≤ c1

∫
B1(0)

|Du|2dx ≤ c1ε0.

In particular
dist(u∗, N) ≤ c2

√
ε0. (10.27)

By monotonicity, for the map ux,h(y) := u(x− hy), we have∫
B1(0)

|Dux,h(y)|2dy =
1

hn−2

∫
Bh(x)

|Du(y)|2dy

≤ c3

∫
B1(0)

|Du|2dx ≤ c3ε0

for every x ∈ B 1
2
(0) and h ∈ (0, 1/4]. Therefore, if we define for x ∈ B 1

2
(0)

and h ∈ (
0, 1

4

]
the h-mollified function

u(h)(x) :=
∫

B1(0)

ϕ(y)u(x− hy)dy =
∫

Bh(x)

ϕ(h)(x− z)u(z)dz,

where ϕ(h)(x) := 1
hn ϕ

(
x
h

)
, we infer from (10.27)

dist(u(h)(x), N) ≤ c4
√

ε0, ∀x ∈ B 1
2
(0), h ∈

(
0,

1
4

]
. (10.28)

Consequently, for ε0 small enough, depending on N , u(h) lies in a tubolar
neighborhood Nδ := {x ∈ Rp : dist(x,N) < δ} of N , and can be smoothly
projected onto N . If Π : Nδ → N is the normal projection, define uh :
B 1

2
(0)→ N

uh := Π ◦ u(h).

Next observe that∫
B 1

2
(0)

|Du(h)|2dx ≤ c5

∫
B1(0)

|Du|2dx. (10.29)

5Whose simple proof may be obtained using Rellich’s theorem, as in the proof of
Proposition 3.21.
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Moreover, by Jensen’s inequality

|Du(h)(x)|2 =
∣∣∣ ∫

Bh(x)

ϕ(h)(x− y)Du(y)dy
∣∣∣2

≤
∫

Bh(x)

ϕ(h)(x− y)|Du(y)|2dy

≤ c6
1
hn

∫
Bh(x)

|Du|2dy

≤ c7
ε0

hn
,

hence |Du(h)(x)|2 ≤ c7
√

ε0 if we choose h = ε
1
2n
0 . Consequently

sup
x∈B 1

2
(0)

|u(h)(x)− u(h)(0)|2 ≤ c8ε
1
2
0 , h := ε

1
2n.
0 (10.30)

Step 2. Let v ∈ C∞(
B 1

2
(0), Rp

)
be the solution of

{
Δv = 0 in B 1

2
(0),

v = u(h) on ∂B 1
2
(0).

Then by (10.30) and the maximum principle for v, we have

sup
x∈B 1

2
(0)

|v(x)− u(h)(x)|2 ≤ c9ε
1
2
0 . (10.31)

By (5.13) we have

sup
B 1

4
(0)

|Dv|2 ≤ c10

∫
B 1

2
(0)

|Dv|2dx,

while (10.29) and the minimality of v give∫
B 1

2
(0)

|Dv|2dx ≤
∫

B 1
2
(0)

|Du(h)|2dx ≤ c5

∫
B1(0)

|Du|2dx.

Hence we have

sup
B 1

4
(0)

|Dv|2 ≤ c11

∫
B1(0)

|Du|2dx. (10.32)
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Since DΠ is bounded, for any θ ∈ (
0, 1

4

)
, we can estimate

1
θn−2

∫
Bθ(0)

|Duh|2dx ≤ c13
1

θn−2

∫
Bθ(0)

|Du(h)|2dx

≤ c14
1

θn−2

∫
Bθ(0)

(|D(u(h) − v)|2 + |Dv|2)dx

≤ c15
1

θn−2

∫
Bθ(0)

|D(u(h) − v)|2dx

+ c15θ
2

∫
B1(0)

|Du|2dx,

(10.33)

where we also used∫
Bθ(x)

|Dv|2dx ≤
∫

B1(0)

|Dv|2dx ≤
∫

B1(0)

|Du|2dx,

coming from (5.13) (remember that Dv is harmonic). Integration by parts
and (10.31) give∫

B 1
2
(0)

|D(u(h) − v)|2dx = −
∫

B 1
2
(0)

(u(h) − v) ·Δ(u(h) − v)dx

≤ c16ε
1
4
0

∫
B 1

2
(0)

|Δu(h)|dx.

On the other hand, from the Euler-Lagrange equation for u we have

Δu(h)(x) =
∫

Bh(x)

ϕ(h)(x− y)
n∑

i=1

Au(Diu,Diu)dy,

hence, since |Au(Diu,Diu)| ≤ c16|Du|2, Jensen’s inequality gives∫
B 1

2
(0)

|Δu(h)(x)|dx ≤ c17

∫
B1(0)

|Du|2dx.

Therefore we deduce from (10.33)

1
θn−2

∫
Bθ(0)

|Duh|2dx ≤ c18

( ε
1
4
0

θn−2
+ θ2

)∫
B1(0)

|Du|2dx, (10.34)

for any θ ∈ (
0, 1

4

)
, with h := ε

1
2n
0 and c18 depending on N but independent

of ε0 and θ.

Step 3. In order to compare uh to u, we modify uh so that it agrees with
u on ∂B1(0), and then we use the minimality of u.
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Set τ := εγ
0 where γ ∈ (

0, 1
16

]
will be chosen depending only on n.

We assume, by taking ε0 possibly smaller, that τ < 1
2 and let p be the

greatest integer such that p ≤ τ

3ε
1
8
0

, and write

[
τ, τ + 3pε

1
8
0

]
=

p⋃
i=1

Ii, Ii :=
[
τ + 3(i− 1)ε

1
8
0 , τ + 3iε

1
8
0

]
.

Since γ ≤ 1
16 , we have p ≥ τ

3ε
1
8
0

− 1 ≥ 1
3ε

− 1
16

0 − 1 ≥ c19ε
− 1

16
0 . Since

∫
{|x|∈[τ,τ+3pε

1
8
0 ]}
|Du|2dx ≤

p∑
i=1

∫
{|x|∈Ii}

|Du|2dx ≤
∫

B1(0)

|Du|2dx,

we can choose j with 1 ≤ j ≤ p such that∫
{|x|∈Ij}

|Du|2dx ≤ 1
p

∫
B1(0)

|Du|2dx ≤ ε
1
16
0

c19

∫
B1(0)

|Du|2dx. (10.35)

Let θ be such that Ij =
[
θ − ε

1
8
0 , θ + 2ε

1
8
0

]
and let h : R+ → R+ be a

non-increasing smooth function such that (see Figure 10.1)

1. h(r) = h for r ≤ θ;

2. h(r) = 0 for r ≥ θ + ε
1
8
0 ;

3. |h′(r)| ≤ 2hε
− 1

8
0 = 2ε

1
8
0 .

Set

u(h(r))(x) := ϕ(h(r)) ∗ u(x) =
∫

B1(0)

ϕ(h(r))(x− y)u(y)dy, r := |x|,

and by (10.28) we can also define

u0(x) := Π ◦ u(h(r))(x), r := |x|.

It is easily seen that u0 ∈W 1,2
(
B

θ+2ε
1
8
0

(0), N
)

and that

u0(x) =

{
uh(x) for |x| ≤ θ,

u(x) for |x| ≥ θ + ε
1
8
0 .

Therefore from the minimality of u we have∫
{|x|≤θ+ε

1/8
0 }
|Du|2dx ≤

∫
{|x|≤θ+ε

1/8
0 }
|Du0|2dx (10.36)

=
∫

Bθ(0)

|Duh|2dx +
∫
{|x|∈[θ,θ+ε

1/8
0 ]}
|Du0|2dx.
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0 12ττ τ + 3ε
1
8
0

θ θ + 2ε
1
8
0θ − ε

1
8
0

τ + 3pε
1
8
0

Ij

h

h

Figure 10.1: The cut-off function h(r).

We now claim that∫
{|x|∈[θ,θ+ε

1/8
0 ]}
|Du0|2dx ≤ c20

∫
Ij

|Du|2dx. (10.37)

Combining (10.34), (10.35), (10.36) and (10.37) and using the fact that
θ ∈ [τ, 2τ ] we infer

1
τn−2

∫
Bτ (0)

|Du|2dx ≤ 1
τn−2

∫
Bθ(0)

|Duh|2dx +
c19

τn−2
ε

1
16
0

∫
B1(0)

|Du|2dx

≤ c21

( 1
τn−2

ε
1
16
0 + τ2

)∫
B1(0)

|Du|2dx

≤ c21(ε
1
16−γ(n−2)
0 + ε2γ

0 )
∫

B1(0)

|Du|2dx.

Choosing γ := min{[32(n− 2)]−1, 64−1}, we get

1
τn−2

∫
Bτ (0)

|Du|2dx ≤ c22ε
2γ
0

∫
B1(0)

|Du|2dx,

whence (10.25), provided ε0 is small enough so that c22ε
2γ
0 ≤ 1

2 .

Step 4. It remains to prove (10.37). By the boundedness of DΠ it is
enough to prove it for u(h(|x|))(x) instead of u0(x). Remember that

u(h(|x|))(x) =
∫

B1(0)

ϕ(y)u(x− h(x)y)dy.
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First assume u smooth, so that also u(h(|x|))(x) is smooth. Set

Λ := {x : θ ≤ |x| ≤ θ + ε
1
8 }, Λ1 := {x : θ − ε

1
8 < |x| < θ + 2ε

1
8 }.

Next compute

Dαu(h(|x|))(x)=
∫

B1(0)

ϕ(y)
[
Dαu(x−h(x)y)−Dαh(|x|)·Du(x−h(x)y)

]
dy,

thus, observing that h′ ≤ 2, we have∫
Λ

|Du(h(|x|))(x)|2dx ≤ c23

∫
Λ

∫
B1(0)

ϕ(y)2|Du(x− h(x)y)|2dydx.

The map x �→ x − h(x)y for each y ∈ B1(0) defines a diffeomorphism of
Λ into Λ1 with Jacobian close to 1, thus we have∫

Λ

|Du(x− h(x)y)|2dx ≤ 2
∫

Λ1

|Du|2dx;

therefore ∫
Λ

|Du(h(|x|))(x)|2dx ≤ c24

∫
Λ1

|Du|2. (10.38)

Now use (10.38) to prove that if ui → u in W 1,2(Λ1, Rp), then u
(h(x))
i (x)

is a Cauchy sequence in W 1,2(Λ, Rp) and converges to u(h(x))(x). Con-
sequently (10.38) extends by density to any arbitrary u ∈ W 1,2(B1(0))
and (10.37) is proved. �

Corollary 10.17 For any energy minimizing harmonic map

u ∈W 1,2
loc (Ω, N), Ω ⊂ Rn,

we have
Hn−2(Σ(u)) = 0,

where Σ(u) is the singular set of u.

Proof. Apply Proposition 9.21 with f = |Du|2. �

10.3.2 The dimension reduction argument

Finally we prove

Theorem 10.18 The singular set Σ(u) of a locally energy minimizing
harmonic map u ∈W 1,2

loc (Ω, N), Ω ⊂ Rn, N compact

1. contains only isolated points, if n = 3,

2. has dimension at most n− 3, if n > 3.
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As we shall see, essentially the proof of Theorem 10.11 works, if we
can provide a compactness theorem replacing Lemma 10.13. This is done
in Theorem 10.25 and Proposition 10.26.

Remark 10.19 Theorem 10.18 is sharp. For instance the map

u : R3 → S2, u(x) :=
x

|x|

is a locally minimizing harmonic map, compare [16] and [56].

The compactness theorem

In this section we shall prove the compactness theorem of Luckhaus; it
generalizes earlier results of Schoen-Uhlenbeck [95] and Hardt-Lin [57].
Then we shall use it to prove Theorem 10.18.

Definition 10.20 For any v ∈ L2(Sn−1, Rp), set ṽ(rx) := v(x) for every
r > 0, x ∈ Sn−1, and define

W 1,2(Sn−1, Rp) :=
{
v ∈ L2(Sn−1, Rp) : ṽ ∈W 1,2(U, Rp)

for some neighborhood U of Sn−1
}
.

By W 1,2(Sn−1, N) we shall denote the maps v ∈ W 1,2(Sn−1, Rp) such
that v(x) ∈ N for a.e. x ∈ Sn−1.

Similarly, for any v ∈ L2(Sn−1 × [a, b], Rp), set ṽ(rx, t) := v(x, t) for
every r > 0, x ∈ Sn−1, t ∈ [a, b], and

W 1,2(Sn−1 × [a, b], Rp) :=
{
v ∈ L2(Sn−1 × [a, b], Rp) :

ṽ ∈W 1,2(U × [a, b], Rp) for some neighborhood U of Sn−1
}

Lemma 10.21 (Luckhaus) Let N ⊂ Rp be compact, n ≥ 2, and con-
sider u, v ∈ W 1,2(Sn−1, N). Then there is a constant C such that for
every ε > 0 there is a function w ∈ W 1,2(Sn−1 × [0, ε], Rp) such that
w
∣∣
Sn−1×{0} = u, w

∣∣
Sn−1×{ε} = v,∫

Sn−1×[0,ε]

|∇w|2dHn ≤ Cε

∫
Sn−1

(|∇u|2 + |∇v|2)dHn−1

+
C

ε

∫
Sn−1

|u− v|2dHn−1

(10.39)
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and

dist 2(w(x, s), N) ≤ C

εn−1

(∫
Sn−1

(|∇u|2 + |∇v|2)dHn−1

) 1
2

×
(∫

Sn−1
|u− v|2dHn−1

) 1
2

+
C

εn

∫
Sn−1

|u− v|2dHn−1,

(10.40)

for a.e. (x, s) ∈ Sn−1 × [0, ε]. Here ∇ is the gradient on Sn−1 and ∇ is
the gradient on the product space Sn−1 × [0, ε].

Proof. In the case n = 2 we choose the absolutely continuous repres-
entative for u and v on S1. Then by 1-dimensional calculus on S1 and
Cauchy-Schwarz’s inequality we have

sup
S1
|u− v|2 ≤

∫
S1
|∇|u− v|2|dH1 +

1
2π

∫
S1
|u− v|2dH1

≤ C

(∫
S1
|∇(u− v)|2dH1

) 1
2
(∫

S1
|u− v|2dH1

) 1
2

+ C

∫
S1
|u− v|2dH1.

(10.41)

Define now
w(ω, s) :=

(
1− s

ε

)
u(ω) +

s

ε
v(ω).

Then
|∇w| ≤ |∇u|+ |∇(v − u)|+ 1

ε
|v − u|,

hence
|∇w|2 ≤ 8(|∇u|2 + |∇v|2) +

2
ε2
|v − u|2.

By integrating over S1×[0, ε] we get at once (10.39). Moreover, as u(S1) ⊂
N , (10.41) implies that for each ω ∈ S1, s ∈ [0, ε] we have

dist(w(ω, s), N) ≤ C

(∫
S1
|∇(u− v)|2dH1

) 1
4
(∫

S1
|u− v|2dH1

) 1
4

+ C

(∫
S1
|u− v|2dH1

) 1
2

,

which is even stronger than (10.40), since there is no dependence on ε on
the right-hand side.

For the case n ≥ 3, we only show how to construct the function w,
omitting the verification of (10.39) and (10.40). For a complete proof see
[71], [98].
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We first extend u and v to the cube [−1, 1]n by u(rω) := u(ω) and
v(rω) := v(ω) for every ω ∈ Sn−1, r > 0, and then choose absolutely
continuous representatives for u and v on [−1, 1]n.6 Then, for any ε ∈(
0, 1

8

)
, we partition Rn into cubes Qi, i = (i1, . . . , in) ∈ Zn,

Qi := [i1ε, (i1 + 1)ε]× . . .× [inε, (in + 1)ε],

and consider those cubes Q of the form a + Qi for any Qi ⊂
[ − 1

2 , 1
2

]n,
where a is a suitably chosen point inside

[− 1
2 , 1

2

]n. We then define w on
Q× [0, ε] by an inductive procedure. First consider the 1-skeleton7 Q1 of
Q and set

w(x, s) :=
(
1− s

ε

)
u(x) +

s

ε
v(x), x ∈ Q1, s ∈ [0, ε].

For k ≥ 2 we assume that w has been defined on Qk−1× [0, ε] and extend
it to Qk× [0, ε] observing that for any k-dimensional face F k ⊂ Qk, w has
already been defined on

∂(F k × [0, ε]) ⊂
( ⋃

F k−1

F k−1 × [0, ε]
)
∪ F k × {0, ε}.

Hence we can use the homogeneous degree zero extension of w
∣∣
∂(F k×[0,ε])

to F k × [0, ε] with origin at
(
q, ε

2

)
, q being the center of F k, to define w

on F k× [0, ε], thus on Qk× [0, ε]. This induction completes the definition
of w on Q × [0, ε], and choosing several Q’s, we can define w on all of([−1

4 , 1
4

]n\[−1
8 , 1

8

]n)×[0, ε]. By absolute continuity and Fubini’s theorem,
one can find ρ ∈ [

1
8 , 1

4

]
, such that the restriction of w to ∂([−ρ, ρ]n)× [0, ε]

is a W 1,2-function. To obtain a function defined on Sn−1 × [0, ε] it is
enough to radially project ∂([−ρ, ρ]n) onto Sn−1, this being a bilipschitz
tranformation. �

Remark 10.22 Given g ≥ 0 integrable on Bρ(y), using the identity∫
Bρ(y)\B ρ

2
(y)

gdx =
∫ ρ

ρ
2

(∫
∂Bσ(y)

gdHn−1

)
dσ, (10.42)

6An absolutely continuous representative u of a W 1,2-function on a cube [a1, b1] ×
. . . × [an, bn] is an L2-function such that the restrictions

u(j)(xj) := u(x1, . . . , xj−1, xj , xj + 1, . . . , xn)

are absolutely continuous as functions from [aj , bj ] into R for Hn−1-a.e.
(x1, . . . , xj−1, xj+1, . . . , xn). A way to construct such a representative is to define
u(x) := λx at all points where there exists a λx such that

lim
ρ→0

1

ρn

∫
Bρ(x)

|u(y) − λx|dy = 0,

and to define u arbitrarily at the points where such a λx cannot be found.
7The k-skeleton of the cube Q is the union of its k-dimensional faces.
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we have that for all θ ∈ (0, 1)∫
∂Bσ(y)

gdHn−1 ≤ 2
θρ

∫
Bρ(y)\B ρ

2
(y)

gdx (10.43)

for all σ ∈ (
ρ
2 , ρ

)
with the exception of a set of measure at most θρ

2 .
Otherwise, integrating the reverse inequality on a set of measure greater
than θρ

2 would give∫
Bρ(y)\B ρ

2
(y)

gdx <

∫ ρ

ρ
2

(∫
∂Bσ(y)

gdHn−1

)
dσ,

contradicting (10.42).

Remark 10.23 Given w ∈ W 1,2(Ω, R), and a fixed ball Bρ(y) ⊂ Ω,
define wσ ∈ W 1,2(Sn−1, R) by wσ(ω) := w(y + σω), ω ∈ Sn−1. Then it
can be easily verified that for each θ ∈ (0, 1), we have∫

Sn−1
|∇Sn−1

wσ|2dHn−1 ≤ 1
σn−3

∫
∂Bσ(y)

|Dw|2dx

≤ 2
θ

(2
ρ

)n−2
∫

Bρ(y)\B ρ
2
(y)

|Dw|2dx,
(10.44)

for all σ ∈ (
ρ
2 , ρ

)
with the exception of a set of measure at most θρ

2 .

Corollary 10.24 Given a smooth compact manifold N ⊂ Rp and Λ > 0,
there exist δ0(n,N,Λ) and C(n,N,Λ) such that the following holds:

If ε ∈ (0, δ0], and if u, v ∈W 1,2(B(1+ε)ρ(y)\Bρ(y), N) satisfy

1
ρn−2

∫
B(1+ε)ρ(y)\Bρ(y)

(|Du|2 + |Dv|2)dx ≤ Λ,

1
ε2nρn

∫
B(1+ε)ρ(y)\Bρ(y)

|u− v|2 ≤ δ0,

then there is w ∈W 1,2(B(1+ε)ρ(y)\Bρ(y), N) such that

w
∣∣
∂Bρ(y)

= u
∣∣
∂Bρ(y)

, w
∣∣
∂B(1+ε)ρ(y)

= u
∣∣
∂B(1+ε)ρ(y)

and

1
ρn−2

∫
B(1+ε)ρ(y)\Bρ(y)

|Dw|2dx ≤ C
1

ρn−2

∫
B(1+ε)ρ(y)\Bρ(y)

(|Du|2 + |Dv|2)dx

+
C

ε2ρn

∫
B(1+ε)ρ(y)\Bρ(y)

|u− v|2dx.
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Proof. Up to translation, we can assume y = 0. To simplify the notation,
we shall write Bρ := Bρ(0) for every ρ > 0. By (10.43) and (10.44) there
is a set of σ ∈ (

ρ,
(
1 + ε

2

)
ρ
)

of positive measure such that

1
σn−3

∫
∂Bσ

(|Du|2 + |Dv|2)dHn−1 ≤ C

ερn−2

∫
B(1+ε)ρ\Bρ

(|Du|2 + |Dv|2)dx

(10.45)
and

1
σn−1

∫
∂Bσ

|u− v|2dHn−1 ≤ C

ερn

∫
B(1+ε)ρ\Bρ

|u− v|2dx

≤ Cδ2
0ε2n−1.

(10.46)

By (10.44) we know that, for almost all of these σ, u, v ∈W 1,2(∂Bσ, Rp).
Now we can apply Luckhaus’ lemma with ε

4 in place of ε to the functions
ũ(ω) := u(σω) and ṽ(ω) := v(σω), obtaining a function w̃ on Sn−1 ×
[0, ε/4] with w̃ = ũ on Sn−1 × {0}, w̃ = ṽ on Sn−1 × {ε/4} and∫

Sn−1×[0,ε/4]

|∇w̃|2dHn

≤ Cε

∫
Sn−1

(|∇ũ|2 + |∇ṽ|2)dHn−1 +
C

ε

∫
Sn−1

|ũ− ṽ|2dHn−1

≤ Cε

σn−3

∫
∂Bσ

(|Du|2 + |Dv|2)dHn−1 +
C

εσn−1

∫
∂Bσ

|u− v|2dHn−1

≤ C

ρn−2

∫
B(1+ε)ρ\Bρ

(|Du|2 + |Dv|2)dx +
C

ε2ρn

∫
B(1+ε)ρ\Bρ

|u− v|2dx,

(10.47)

by (10.45) and (10.46). Moreover

dist 2(w̃,N) ≤ C

(∫
Sn−1

(|∇ũ|2 + |∇ṽ|2)dHn−1

) 1
2

×
(

1
ε2n−2

∫
Sn−1

|ũ− ṽ|2dHn−1

) 1
2

+
1
εn

∫
Sn−1

|ũ− ṽ|2dHn−1.

(10.48)

Again by (10.45) and (10.46), the right-hand side of (10.48) is bounded
by Cδ0, where C depends only on n,N,Λ, hence for δ0 = δ0(n,N,Λ)
small enough we conclude that w̃ maps into a small neighborhood Nα of
N , where the closest point projection Π : Nα → N is well defined. Now
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define w ∈W 1,2(B(1+ε/2)σ) by

w(x) :=

⎧⎪⎪⎨⎪⎪⎩
u(x) if |x| ≤ σ

Π ◦ w̃
(
ω, |x|

σ − 1
)

if |x| ∈ (σ, (1 + ε/4)σ)

v
(
ψ(|x|) x

|x|
)

if |x| ∈ ((1 + ε/4)σ, (1 + ε/2)σ),

where ψ ∈ C1(R) satisfies

(i) ψ((1 + ε/4)σ) = σ,

(ii) ψ((1 + ε/2)σ) = (1 + ε/2)σ,

(iii) t|ψ′(t)| ≤ 2 for t ∈ ((1 + ε/4)σ, (1 + ε/2)σ).

In view of (10.47) it is straightforward to verify that w satisfies the in-
equality stated in the corollary. �

Theorem 10.25 Consider a sequence of energy minimizing harmonic
maps uj ∈ W 1,2(Ω, N) with locally equibounded energies, i.e. such that
for every BR(x0) ⊂ Ω, we have

sup
j∈N

∫
BR(x0)

|Duj |2dx < +∞.

Then a subsequence ujk
converges in W 1,2

loc (Ω, Rp) to an energy minimizing
harmonic map u ∈W 1,2

loc (Ω, N).

Proof. By Rellich’s and Banach-Alaoglu’s theorems we can assume that,
up to a subsequence,

uj → u strongly in L2
loc(Ω, N) and weakly in W 1,2

loc (Ω, N),

for some u ∈W 1,2
loc (Ω, N). Let Bρ0(y) ⊂ Ω and let δ > 0 and θ ∈ (0, 1) be

given. Choose any positive integer M such that

lim sup
j→∞

1
ρn−2
0

∫
Bρ0 (y)

|Duj |2dx < Mδ,

and note that if ε ∈ (
0, 1−ε

M

)
, then there is some integer l such that

1
ρn−2
0

∫
Bρ0(θ+lε)(y)\Bρ0(θ+(l−2)ε)(y)

|Duj |2dx < δ

for infinitely many j, because otherwise we could sum over l and get

ρ2−n
0

∫
Bρ0 (y)

|Duj |2dx ≥Mδ
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for all sufficiently large j, contrary to the definition of M . Now choose
such an l and set ρ := ρ0(θ + (l − 2)ε); noting that ρ(1 + ε) ≤ ρ0(θ + lε),
we get

1
ρn−2
0

∫
Bρ(1+ε)(y)\Bρ(y)

|Dujk
|2dx < δ (10.49)

for some subsequence ujk
. By weak convergence of Dujk

to Du in L2, we
get

1
ρn−2
0

∫
Bρ(1+ε)(y)\Bρ(y)

|Du|2dx ≤ δ. (10.50)

Since ∫
Bρ0 (y)

|u− ujk
|2dx→ 0,

by Corollary 10.24 we can find a function wjk
∈W 1,2(Bρ(1+ε)(y)\Bρ(y), N)

with wjk
= u on ∂Bρ(y) and wjk

= ujk
on ∂Bρ(1+ε)(y), and

1
ρn−2

∫
Bρ(1+ε)(y)\Bρ(y)

|Dwjk
|2dx

≤ C

ρn−2

∫
Bρ(1+ε)(y)\Bρ(y)

(
|Du|2 + |Dujk

|2 +
|u− ujk

|2
ε2ρ2

)
dx,

(10.51)

where C depends only on n and N . Now take any v ∈ W 1,2(Bθρ0(y), N)
with v = u on ∂Bθρ0(y), extend v to a function ṽ ∈ W 1,2(Bρ0(y), N) by
setting ṽ = u on Bρ0(y)\Bθρ0(y), and define

ũjk
:=

⎧⎪⎪⎨⎪⎪⎩
ujk

on Bρ0(y)\B(1+ε)ρ(y)

wjk
on B(1+ε)ρ(y)\Bρ(y)

ṽ on Bρ(y).

Then, by the minimizing property of uj , we have∫
B(1+ε)ρ(y)

|Dujk
|2dx ≤

∫
B(1+ε)ρ(y)

|Dũjk
|2dx (10.52)

≤
∫

Bρ(y)

|Dṽ|2dx +
∫

B(1+ε)ρ(y)\Bρ(y)

|Dwjk
|2dx,

hence, by (10.49), (10.50), (10.51),

1
ρn−2

∫
Bρ(y)

|Du|2dx ≤ lim inf
k→∞

1
ρn−2

∫
Bρ(y)

|Dujk
|2dx

≤ 1
ρn−2

∫
Bρ(y)

|Dṽ|2dx + Cδ. (10.53)
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Therefore
1

ρn−2

∫
Bθρ0 (y)

|Du|2dx ≤ 1
ρn−2

∫
Bθρ0 (y)

|Dv|2dx.

Since δ > 0 was arbitrary, this shows that u is minimizing on Bθρ0(y),
and in view of the arbitrariness of θ, ρ and y, u is a locally minimizing
harmonic map.

To prove that the convergence is strong, we note that if we use (10.53)
with v = u, then we can conclude

lim inf
k→∞

1
ρn−2

∫
Bρ(y)

|Dujk
|2dx ≤ 1

ρn−2

∫
Bρ(y)

|Du|2dx + Cδ,

hence, by the arbitrariness of θ and δ,

lim inf
k→∞

1
ρn−2

∫
Bρ1 (y)

|Dujk
|2dx ≤ 1

ρn−2

∫
Bρ0 (y)

|Du|2dx,

for each ρ1 < ρ0. It follows from this that

lim inf
k→∞

∫
Bρ(y)

|Dujk
|2dx ≤

∫
Bρ(y)

|Du|2dx, (10.54)

for every ball Bρ(y) ⊂ Ω. Now writing∫
Bρ(y)

|Dujk
−Du|2dx =

∫
Bρ(y)

|Dujk
|2dx +

∫
Bρ(y)

|Du|2dx

− 2
∫

Bρ(y)

Dujk
·Dudx,

and observing that the left-hand side is nonnegative, (10.54) implies strong
convergence on Bρ(y), hence in W 1,2

loc (Ω, N). �
An important consequence of the compactness theorem of Luckhaus

is the semicontinuity of the density:

Proposition 10.26 The density function Θu(y) is upper semicontinuous
with respect to the joint variables y and u, meaning that if yj → y and
{uj} ⊂ W 1,2

loc (Ω) is a sequence of locally energy minimizing maps with
locally equibounded energies and uj ⇀ u in L2, then

Θu(y) ≥ lim supΘuj (yj).

Proof. By Luckhaus’ compactness Theorem 10.25, uj → u strongly in
W 1,2

loc (Ω). Let yj → y and fix ρ, ε > 0 such that Bρ+ε(y) ⊂ Ω. For j large
enough |y − yj | < ε, hence Bρ(yj) ⊂ Bρ+ε(y), implying

Θuj (yj) ≤ 1
ρn−2

∫
Bρ(yj)

|Duj |2dx ≤ 1
ρn−2

∫
Bρ+ε(y)

|Duj |2dx.
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By the W 1,2
loc -convergence we get, for j large enough, that

1
ρn−2

∫
Bρ+ε(y)

|Duj |2dx ≤ 1
ρn−2

∫
Bρ+ε(y)

|Du|2dx + ε,

hence

lim sup
j→∞

Θuj (yj) ≤ 1
ρn−2

∫
Bρ+ε(y)

|Du|2dx + ε.

Letting ε→ 0 first, and then ρ→ 0, completes the proof. �

Proof of Theorem 10.18. Let n = 3 and assume that we have a sequence
of singular points xν converging to x0, and we can assume x0 = 0. Res-
caling as in the proof of Theorem 10.11, we find an equibounded sequence
of harmonic maps u(ν)(x) := u(2|xν |x) with singular points yν = xν

2|xν | ,
|yν | = 1

2 ; by Theorem 10.25 we may assume, up to a subsequence, that
u(ν) → v in W 1,2

loc (B1(0), Rp), where v is energy minimizing. We can also
assume that yν → y0, |y0| = 1

2 , and by Theorem 10.15 and Proposition
10.26, we have that y0 is a singular point.

We now claim that v is positively homogeneous of degree 0: by W 1,2-
convergence, we have

1
ρn−2

∫
Bρ(0)

|Dv|2dx = lim
ν→∞

1
ρn−2

∫
Bρ(0)

|Du(ν)|2dx

= lim
ν→∞

1
(2ρ|xν |)n−2

∫
B2ρ|xν |(0)

|Du|2dx

= Θu(0),

(10.55)

hence the left-hand side does not depend on ρ. Then, by the monotonicity
formula (10.8),

∣∣∂v
∂r

∣∣ = 0 a.e., and the claim follows. We now have that
the whole segment {λy0 : λ > 0}∩B1(0) is singular, contrary to Corollary
10.17.

The second part of the proof follows exactly as in Theorem 10.11. �

10.3.3 The stratification of the singular set

We now discuss the structure of the singular set of a locally energy minim-
izing harmonic map as related to the tangent maps at singular points. The
techniques used here can also be found in the theory of minimal surfaces
and mean curvature flow. We shall closely follow [99], to which we refer
for a deeper discussion of the singular set of energy minimizing harmonic
maps.
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Tangent maps

Let u ∈ W 1,2
loc (Ω, N) be a locally minimizing harmonic map, consider a

ball BR(y) ⊂ Ω and define the rescaled map uy,ρ ∈W 1,2(BR
ρ
(0), N) by

uy,ρ(x) := u(y + ρx). (10.56)

As we already saw in the proof of Theorem 10.18, we have

Proposition 10.27 (Blow-up) There exist a sequence ρj → 0+ and a
locally minimizing harmonic map ϕ ∈ W 1,2

loc (Rn, N) such that uy,ρj → ϕ

in W 1,2
loc (Rn, Rp). Moreover ϕ is positively homogeneous of degree zero:

ϕ(λx) = ϕ(x), for all x ∈ Rn, λ > 0. (10.57)

Remark 10.28 Tangent maps need not be unique, as shown by B. White
[114].

Remark 10.29 By Theorem 10.15 and equation (10.55), for any y ∈ Ω,
the following facts concerning a locally minimizing harmonic map u are
clearly equivalent:

1. u is regular at y;

2. Θu(y) = 0;

3. there exists a constant tangent map ϕ for u at y.

Proposition 10.30 Let ϕ ∈W 1,2
loc (Rn, N) be a locally minimizing homo-

geneous of degree zero harmonic map. Then, for every y ∈ Rn we have
Θϕ(y) ≤ Θϕ(0). Set

S(ϕ) := {y ∈ Rn : Θϕ(y) = Θϕ(0)}. (10.58)

Then S(ϕ) is a linear subspace of Rn and

ϕ(x + y) = ϕ(x), for every x ∈ Rn, y ∈ S(ϕ). (10.59)

Proof. As σ → 0+ in (10.8), we obtain

2
∫

Bρ(y)

1
Rn−2

∣∣∣∂ϕ

∂r

∣∣∣2dx + Θϕ(y) =
1

ρn−2

∫
Bρ(y)

|Dϕ2|dx, (10.60)

where
R := |x− y|, r :=

x− y

|x− y| .
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Since Bρ(y) ⊂ Bρ+|y|(0) and

1
σn−2

∫
Bσ(0)

|Dϕ|2 = Θϕ(0) for every σ > 0,

we have

1
ρn−2

∫
Bρ(y)

|Dϕ|2dx ≤ 1
ρn−2

∫
Bρ+|y|(0)

|Dϕ|2dx

=
(
1 +
|y|
ρ

)n−2 1
(ρ + |y|)n−2

∫
Bρ+|y|(0)

|Dϕ|2dx

=
(
1 +
|y|
ρ

)n−2

Θϕ(0). (10.61)

As we let ρ→ +∞, we infer from (10.60) and (10.61)

2
∫

Rn

1
Rn−2

∣∣∣∂ϕ

∂r

∣∣∣2dx + Θϕ(y) ≤ Θϕ(0). (10.62)

This implies at once that Θϕ(y) ≤ Θϕ(0). Moreover if y ∈ S(ϕ), that is
Θϕ(y) = Θϕ(0), then ∂ϕ

∂r (x) = 0 for a.e. x, with r := x−y
|x−y| . In particular

ϕ(y + λx) = ϕ(y), ∀x ∈ Rn, y ∈ S(ϕ), λ > 0.

Using homogeneity we infer

ϕ(x) = ϕ(λx) = ϕ(y + (λx− y)) = ϕ
(
y +

λx− y

λ2

)
= ϕ

(
λ
(
y +

λx− y

λ2

))
= ϕ(x + ty), t := λ− λ−1.

Since t may be chosen to be any real number, we have obtained

ϕ(x + ty) = ϕ(x), ∀x ∈ Rn, y ∈ S(ϕ), t ∈ R.

For y1, y2 ∈ S(ϕ) and t1, t2 ∈ R we then have

ϕ(x + t1y1 + t2y2) = ϕ(x), ∀x ∈ Rn,

which implies that Θϕ(t1y1 + t2y2) = Θϕ(0), hence t1y1 + t2y2 ∈ S(ϕ) and
the proof is complete. �

Remark 10.31 If ϕ is non-constant, then by homogeneity it is discon-
tinuous at 0, hence 0 lies in Σ(ϕ), the singular set of ϕ. Then by (10.59)
we have

S(ϕ) ⊂ Σ(ϕ), (10.63)

for any non-constant local minimizer homogeneous of degree 0.
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Definition 10.32 Given a locally minimizing harmonic map

u ∈W 1,2
loc (Ω, N)

define

Sj(u) := {x ∈ Σ(u) : dimS(ϕ) ≤ j for every tangent map ϕ of u at x},

where Σ(u) is the singular set of u.

Lemma 10.33 For a locally minimizing harmonic map u ∈ W 1,2
loc (Ω, N)

we have

S0(u) ⊂ S1(u) ⊂ . . . ⊂ Sn−3(u) = Sn−2(u) = Sn−1(u) = Σ(u).

Proof. The inclusions are obvious. Sn−1(u) = Σ(u) is a consequence of
Remark 10.29. Since we also know that

Sn−3(u) ⊂ Sn−2(u) ⊂ Sn−1(u) = Σ(u),

to conclude the proof it is enough to show that Σ(u) ⊂ Sn−3. Consider x ∈
Σ(u). Any tangent map ϕ for u at x is a non-constant locally minimizing
harmonic map. By Remark 10.31 S(ϕ) ⊂ Σ(ϕ). Therefore if dimS(ϕ) ≥
n − 2, then Hn−2(Σ(ϕ)) = +∞, contradicting Corollary 10.17. Hence
dimS(ϕ) ≤ n− 3, and x ∈ Sn−3(u). �

Proposition 10.34 For any j = 0, 1, . . . , n − 3 we have dimH Sj(u) ≤
n − 3. For any α > 0, and n = 3 S0(u) ∩ {x ∈ Ω : Θu(x) > α} is a
discrete set.

A straightforward corollary of this proposition is an alternative proof
of Theorem 10.18.

Corollary 10.35 For any energy minimizing harmonic map

u ∈W 1,2
loc (Ω, N)

we have
dimH Σ(u) ≤ n− 3.

For n = 3, Σ(u) is a discrete set.

Proof. The first assertion is a direct consequence of Lemma 10.33 and
Proposition 10.34. For n = 3 take α = ε0, and apply Theorem 10.15: �
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To prove Proposition 10.34, we need the following

Lemma 10.36 Set ηy,ρ(x) := 1
ρ (x − y). Then for each y ∈ Sj(u) and

each δ > 0, there is an ε = ε(u, y, δ) > 0 such that for every ρ ∈ (0, ε] we
have

ηy,ρ{x ∈ Bρ(y) : Θu(x) ≥ Θu(y)− ε} ⊂ {x ∈ Rn : dist(x,Ly,ρ) < δ},
for some j-dimensional subspace Ly,ρ.

Proof. Were the lemma false, we could find δ > 0, y ∈ Sj and two
sequences ρk → 0, εk → 0 such that

{x ∈ B1(0) : Θuy,ρk
(x) ≥ Θu(y)− εk} � {x ∈ Rn : dist(x,L) < δ},

(10.64)
for every j-dimensional subspace L of Rn, where uy,ρk

(x) := u(y+ρx). Up
to a subsequence uy,ρk

→ ϕ for some tangent map ϕ, and Θu(y) = Θϕ(0).
Since y ∈ Sj we have dimS(ϕ) ≤ j, and we can set L0 to be any j-
dimensional subspace containing S(ϕ). Since for x ∈ B1(0)\S(ϕ) we have
Θϕ(x) < Θϕ(0), we conclude by compactness and upper semicontinuity
of the density that there exists α > 0 such that

Θϕ(x) < Θϕ(0)− α, for all x ∈ B1(0), dist(x,L0) ≥ δ. (10.65)

We want to show that for k large enough, we have

{x ∈ B1(0) : Θuy,ρk
(x) ≥ Θϕ(0)− α} ⊂ {x ∈ Rn : dist(x,L0) < δ}.

(10.66)
Indeed assume the inclusion false for arbitrarily large k. Up to a sub-
sequence, we can find points xk → x0 in B1(0), with dist(xk, L0) ≥ δ,
such that

Θuy,ρk
(xk) ≥ Θϕ(0)− α.

By upper semicontinuity, this implies

Θϕ(x0) ≥ Θϕ(0)− α,

contradicting (10.65). Therefore we have proved (10.66), which implies
that (10.64) cannot be true for every j-dimensional subspace L ⊂ Rn. �
Proof of Proposition 10.34. Fix δ > 0 and for any integer i ≥ 1 set Sj,i(u)
to be the set of points in Sj(u) such that the statement of Lemma 10.36
holds with ε = 1

i . By Lemma 10.36 we have Sj(u) = ∪∞i=1Sj,i(u). Next
for any integer q ≥ 1 define

Sj,i,q(u) :=
{
x ∈ Sj,i(u) : Θu(x) ∈

(q − 1
i

,
q

i

]}
.

Clearly

Sj(u) =
+∞⋃

i,q=1

Sj,i,q(u).
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For any y ∈ Sj,i,q(u) we trivially have

Sj,i,q(u) ⊂
{
x ∈ Sj,u(u) : Θu(x) > Θu(y)− 1

i

}
,

hence, by Lemma 10.36 with ε = 1
i , we have that for any ρ ≤ 1

i

ηy,ρ(Sj,i,q(u) ∩Bρ(y)) ⊂ {x ∈ Rn : dist(x,Ly,ρ) < δ},
for some j-dimensional subspace Ly,ρ ⊂ Rn. Thus every set Sj,i,q has the
δ-approximation property, as defined below, with ρ0 = 1

i , and for every
δ > 0, hence

dimH Sj,i,q(u) ≤ j

by Lemma 10.38 below. Since the Hausdorff dimension does not increase
under countable union, the first part of the propostition is proved.

For the second part, assume that xk ∈ S0(u) = Σ(u) and xk → x0,
xk �= x0. We may assume without loss of generality that x0 = 0. Consider
the rescaled maps uk(x) := u(|xk|x). Up to a subsequence, uk converges
in W 1,2

loc (Rn, Rp) to a tangent map ϕ and xk

|xk| → ξ ∈ Sn−1. By upper
semicontinuity of the density, Θϕ(ξ) > α, thus ξ is singular for ϕ. By
0-homogeneity of ϕ, the half line {λξ : λ > 0} lies in the singular set
Σ(ϕ), hence Hn−2(Σ(ϕ)) = +∞, contradicting Corollary 10.17. �

Definition 10.37 A set A ⊂ Rn is said to satisfy the δ-approximation
property if there is ρ0 > 0 such that for every y ∈ A and every ρ ∈ (0, ρ0]

ηy,ρ(A ∩Bρ(y)) ⊂ {x ∈ Rn : dist(x,Ly,ρ) < δ},
for some j-dimensional subspace Ly,ρ ⊂ Rn.

Lemma 10.38 There is a function β : (0,+∞)→ (0,+∞) with

lim
δ→0+

β(δ) = 0

such that, if δ > 0 and A ⊂ Rn satisfies the δ-approximation property
above, then Hj+β(δ)(A) = 0.

Proof. For δ ≥ 1
8 , fix β(δ) = n−j+1, so thatHj+β(δ)(A) = Hn+1(A) = 0.

From now on let δ ∈ (
0, 1

8

)
. It is easy to see that there is a constant cj

such that for every σ ∈ (
0, 1

2

)
we can cover the closed unit ball B1(0) ⊂ Rj

with a finite collection of balls {Bσ(yk)}k=1,...,Q, yk ∈ B1(0), such that
Q ≤ cj

σj . For any σ we can find β = β(σ) such that Qσj+β(σ) ≤ 1
2 , and

limσ→0+ β(σ) = 0.
Let now L ⊂ Rn be a j-dimensional subspace. From the discussion

above it follows that for any δ ∈ (
0, 1

8

)
, σ := 4δ, we can find balls Bσ(yk) ⊂

Rn such that

{x ∈ Rn ∩B1(0) : dist(x,L) < δ} ⊂
Q⋃

k=1

Bσ(yk), Qσj+β(δ) ≤ 1
2
.
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By scaling we obtain that, for a suitable choice of the centers yk ∈ L ∩
BR(0),

{x ∈ Rn ∩BR(0) : dist(x,L) < δR} ⊂
Q⋃

k=1

BσR(yk),

and
Q(σR)j+β(δ) ≤ 1

2
Rj+β(δ).

Now let A satisfy the δ-approximation property for some ρ0. We as-
sume without loss of generality that A is bounded, we cover it by balls
B ρ0

2
(yk), k = 1, . . . , Q, A ∩ B ρ0

2
(yk) �= ∅, and set T0 := Q

(
ρ0
2

)j+β(δ).
For each k pick zk ∈ A ∩B ρ0

2
(yk); by the δ-approximation property with

ρ = ρ0, A ∩ B ρ0
2

(yk) is contained in the 2ρ0δ-neighborhood of some j-
dimensional subspace Lk. Since Lk ∩B ρ0

2
(yk) is a j-dimensional disk, by

the discussion above, its 2δρ0-neighborhood (and so also A∩B ρ0
2

(yk)) can
be covered by balls Bσρ0

2
(zk,l), l = 1, . . . , P such that

P
(σρ0

2

)j+β(δ)

≤ 1
2

(ρ0

2

)j+β(δ)

.

Therefore A can be covered by balls Bσρ0
2

(wl), l = 1, . . . ,M such that

M
(σρ

2

)j+β(δ)

≤ 1
2
T0.

Proceeding iteratively, for every q ∈ N, we can find a cover of balls

Bσqρ0
2

(wl), l = 1, . . . ,Mq, Rq

(σqρ0

2

)j+β(δ)

≤ T0

2q
.

As Q→∞, this proves that Hj+β(δ)(A) = 0. �

10.4 Regularity of 2-dimensional weakly
harmonic maps

A direct consequence of Schoen-Uhlenbeck’s theorem (Theorem 10.15) is
that a 2-dimensional locally energy minimizing harmonic map is in fact
smooth. Whether this also holds for 2-dimensional weakly harmonic maps
(i.e. W 1,2-functions weakly solving (10.5)) is far from obvious, but still
true, as proven by F. Hélein.

Theorem 10.39 (Hélein [59]) Let u ∈ W 1,2(Ω, N) be a weakly har-
monic map from the 2-dimensional domain Ω ⊂ R2 into the closed (and
smooth) manifold N . Then u ∈ C∞(Ω, N).
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We will present the elegant and simple proof of Hélein when the target
manifold N is the round sphere Sn. Also the general case was obtained
by Hélein, with the moving frame technique, but we will present a more
recent proof, due to T. Rivière [88] (see also [89]), whose interest actually
goes beyond the case of harmonic maps.

Let us also remark that continuous weakly harmonic maps are in fact
smooth:

Proposition 10.40 Let u ∈ W 1,2
loc ∩ C0

loc(Ω, N) be a weakly harmonic
map, where N is a closed manifold and Ω ⊂ Rn. Then u is smooth.

Proof. Since u satisfies (10.5), and∣∣∣∣∣
n∑

α=1

Au(Dαu,Dαu)

∣∣∣∣∣ ≤ c|Du|2

we can apply Theorem 9.10 to show that u is Hölder continuous, and then
bootstrap regularity using Schauder’s theory. �

Then, as in the case of energy minimizing harmonic maps, the problem
is to prove continuity. Notice that u ∈W 1,2

loc (Ω, N) (with N closed) implies
that

|Δu| ≤ c|Du|2 ∈ L1
loc(Ω).

When Ω is 2-dimensional, proving that D2u ∈ L1
loc(Ω) would suffice, since

W 2,1
loc (Ω) ↪→ C0

loc(Ω) for Ω � R2.

On the other hand, as seen in Example 7.5, the Lp-estimates fail for p = 1.
In the following sections we shall see how the lack of Lp-estimates for

p = 1 can be ”compensated” by the special structure of the right-hand
side of (10.5).

10.4.1 Hélein’s proof when the target manifold is Sn

Since the result is local we can assume

Ω = D2 := {x ∈ R2 : |x| < 1}.
Moreover we will set

Sn := {x ∈ Rn+1 : |x| = 1}.
Let u ∈ W 1,2

loc (D2;Sn) be a weakly harmonic map. In this case (10.5)
reduces to the system

−Δu = u|∇u|2, (10.67)

where u = (u1, . . . , um+1). As already discussed, the right-hand side of
(10.67) lies in L1

loc(D
2, Rm), but as seen in Example 7.5, this information
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does not guarantee that u is continuous. On the other hand, we can recast
(10.67) in such a way that the right-hand side has a particular structure,
yielding a better integrability of u than the one given by the Lp-estimates.
Let us first write (10.67) as

−Δui =
n+1∑
j=1

ui∇uj · ∇uj . (10.68)

Then notice that |u| ≡ 1 implies

n+1∑
j=1

uj∇ui ·∇uj = ∇ui ·∇
⎛⎝1

2

n+1∑
j=1

|uj |2
⎞⎠ = ∇ui ·∇

(
1
2
|u|2

)
= 0. (10.69)

Then, subtracting (10.69) from (10.68) we get a new version of (10.67),
namely

−Δui =
n+1∑
j=1

(
ui∇uj · ∇uj − uj∇ui · ∇uj

)
=

n+1∑
j=1

(
ui∇uj − uj∇ui

) · ∇uj .

(10.70)

Now observe that for each i and j the vector field

Ai
j := ui∇uj − uj∇ui ∈ L2

loc(D
2, R2)

is divergence-free: formally (if u ∈ C2)

div Ai
j =

2∑

=1

(
D
(uiD
u

j)−D
(ujD
u
i)
)

= uiΔuj − ujΔui = 0,

where the last identity follows from (10.67). To be more precise we write
for ϕ ∈ C∞

c (D2)∫
D2

div(Ai
j)ϕdx = −

∫
D2

Ai
j · ∇ϕdx

=
∫

D2
(−ui∇uj · ∇ϕ + uj∇ui · ∇ϕ)dx

=
∫

D2
(−∇uj · ∇(uiϕ) +∇ui · ∇(ujϕ))dx

= 0,

since by (10.67)

−
∫

D2
∇uj · ∇(uiϕ)dx =

∫
D2
−uj |∇u|2uiϕdx = −

∫
D2
∇ui · ∇(ujϕ)dx.
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Since for every i, j the vector field Ai
j is divergence-free, by Corollary

10.70 we can find a vector field Bi
j ∈W 1,2

loc (D2, R2) whose curl is Ai
j , i.e.

∇⊥Bi
j := (−D2B

i
j ,D1B

i
j) = Ai

j .

Then we can rewrite (10.70) has

−Δui =
n+1∑
j=1

∇⊥Bi
j · ∇uj =

n+1∑
j=1

(−D2B
i
jD1u

j + D1B
i
jD2u

j
)
. (10.71)

Notice that the right-hand side of (10.71) is still no better than L1
loc

as far as integrability is concerned, but now it presents the same Jac-
obian structure as in Wente’s theorem, Theorem 7.8, which then yields
u ∈ C0

loc(D
2;Sn), hence (together with Proposition 10.40) completing the

proof of Hélein’s theorem in this case.

10.4.2 Rivière’s proof for arbitrary target manifolds

The regularity of 2-dimensional weakly harmonic maps follows from The-
orem 10.41 below (thanks to Proposition 10.44), whose interest goes bey-
ond harmonic maps, since it allows to prove Hildebrandt’s conjecture,
namely that every critical point of a 2-dimensional conformally invariant
functional is continuous.

Theorem 10.41 (Rivière [88]) Consider a vector field

Ω ∈ L2(D2,∧1R2 ⊗ so(m)),

and suppose that u ∈W 1,2
loc (D2, Rm) satisfies

−Δu = Ω · ∇u. (10.72)

Then u ∈ W 1,p
loc (D2, Rm) ∩ C0,α

loc (D2, Rm) for every p ∈ [1,∞) and every
α ∈ [0, 1).

Notation The vector field Ω can be seen as a tensor Ωi

j anti-symmetric

with respect to i and j. The scalar product Ω · ∇u is the vector given by

(Ω · ∇u)i =
m∑

j=1

2∑

=1

Ωi

j

∂uj

∂x

.

Similarly, for matrix-valued functions A,B ∈W 1,2(D2, gl(m)),

∇A · ∇B ∈ L1(D2, gl(m))



268 Harmonic maps

is the matrix-valued function with components

(∇A · ∇B)i
j =

m∑
k=1

2∑

=1

∂Ai
k

∂x


∂Bk
j

∂x

.

We will also often use the curl operator on D2:

∇⊥ :=
(
− ∂

∂x2
,

∂

∂x1

)
.

We will also use the following groups of m×m matrices:

gl(m) = arbitrary m×m matrices,
GL(m) = invertible m×m matrices,
SO(m) = orthogonal m×m matrices with positive determinant,
so(m) = anti-symmetric m×m matrices.

Remark 10.42 While in Hélein’s proof one uses that Ai
j is divergence-

free, such condition is too restrictive for general manifolds (which is the
motivation for introducing the moving-frame technique). Theorem 10.41
shows on the other hand that the anti-symmetry of Ai

j is in fact sufficient
to give regularity. Shifting the attention from the divergence-free property
to the anti-symmetry is natural because, as shown by Rivière in the same
paper [88], weakly harmonic maps into arbitrary manifolds satisfy (10.72)
for some Ω ∈ L2 anti-symmetric. This is the content of Proposition 10.44
below.

Remark 10.43 Theorem 10.41 is sharp for what concerns the regularity
of u. Indeed B. G. Sharp [92, Section 4.3] recently constructed a solution
u of (10.72), under the same assumptions as in Theorem 10.41 but with
u �∈W 1,∞

loc (D2, Rm) ∼= C0,1
loc (D2, Rm).

Proposition 10.44 ([88]) Let u : D2 → N ⊂ Rm be a weakly harmonic
map. Then u satisfies the hypothesis of Theorem 10.41. In particular u
is continuous, hence smooth.

Proof. We have

−Δui =
m∑

j,k=1

Ai
jk(u)∇uk · ∇uj =

m∑
j,k=1

Ai
jk(u)

n∑

=1

∂uk

∂x


∂uj

∂x

,

where we extended the second fundamental form A(u) to a bilinear form
on TuRm. But since A(u) is orthogonal to Tu(N), we have

m∑
j=1

Aj
ik∇uj = 0,
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hence

−Δui =
m∑

j,k=1

(Ai
jk(u)−Aj

ik(u))∇uk · ∇uj = Ωi
j · ∇uj ,

where

Ωi
j(x) := (Ai

jk(u(x))−Aj
ik(u(x)))∇uk(x) ∈ L2(∧1D2 ⊗ so(m)).

Then by Theorem 10.41 we have u ∈ C0,α
loc (D2, N) for α ∈ [0, 1), hence u

is smooth by Theorem 9.8. �

Proof of Theorem 10.41

The proof is split in several steps. By Proposition 10.45 below, Equation
(10.72) can be recast in the form of a conservation law (Equation (10.74)
below) if one can find suitable matrix-valued functions A and B satisfying
(10.73). In the following Theorem 10.46 we see that the solutions (in
W 1,2

loc ) of such a conservation law are Hölder continuous. Theorems 10.47
and 10.48 will deal with the proof of the existence of the matrix-valued
functions A and B needed in Proposition 10.45, at least locally. This
completes the proof of the Hölder continuity of u. But in fact Theorem
10.46 below also gives Du ∈ L2,2α

loc (D2) 8 for α ∈ (0, 1), which then implies

−Δu = Ω · ∇u ∈ L1,α
loc (D2, Rm).

This also implies

Du ∈ Lq
loc(D

2) for some q > 2,

by a result of Adams [1], and by Lp-theory and a simple bootstrap argu-
ment we finally infer

Du ∈ Lq
loc(D

2) for every q ∈ [1,∞).

We will not give the details of this part.

Proposition 10.45 Let Ω ∈ L2(D2,∧1R2 ⊗ so(m)) and

A ∈W 1,2(D2, GL(m)), B ∈W 1,2(D2, gl(m)), A,A−1 ∈ L∞.

Assume that
∇A +∇⊥B = AΩ. (10.73)

Then (10.72) is equivalent to

div(A∇u−B∇⊥u) = 0. (10.74)

8L2,2α
loc (D2) denotes the Morrey space, see Chapter 5.
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Proof. It is enough to observe that, at least formally, (10.73) implies

div(A∇u−B∇⊥u) = ∇A · ∇u + AΔu +∇⊥B · ∇u = AΩ · ∇u + AΔu.

To be rigorous one actually computes for ϕ ∈ C∞
c (D2)

0 =
∫

D2
div(A∇u−B∇⊥u)ϕdx

=
∫

D2
(A∇u−B∇⊥u) · ∇ϕdx

=
∫

D2
(∇(Aϕ) · ∇u−∇A · ∇uϕ−∇(Bϕ) · ∇⊥u +∇B · ∇⊥uϕ)dx

=
∫

D2
∇(Aϕ) · ∇udx−

∫
D2

AΩ · ∇uϕdx.

�

Theorem 10.46 (Rivière [88]) Let u ∈W 1,2(D2, Rm) be a solution to

div(A∇u−B∇⊥u) = 0.

with
A ∈W 1,2(D2, GL(m)), B ∈W 1,2(D2, gl(m)),

A,A−1 ∈ L∞(D2, GL(m)).

Then Du ∈ L2,2α
loc (D2, Rm) for every α ∈ (0, 1). In particular u ∈

C0,α
loc (D2, Rm).

Proof. First notice that

div(A∇u) = div(B∇⊥u) = ∇B · ∇⊥u.

Observe that if A is the identity matrix, then we are in the hypothesis
of Wente’s theorem 7.8, which would immediately give u ∈ C0

loc(D
2, Rm).

Fix now BR(x0) � D2 and define C ∈ W 1,1
0 (D2, Rm) to be the unique

solution to{
ΔC = div(A∇u) = ∇B · ∇⊥u in BR(x0)
C = 0 on ∂BR(x0).

(10.75)

By Wente’s theorem (Theorem 7.8) we have u ∈ C0 ∩W 1,2(BR(x0), Rm)
and ∫

BR(x0)

|∇C|2dx ≤ C0

∫
BR(x0)

|∇B|2dx

∫
BR(x0)

|∇u|2dx. (10.76)

Now observe that
div(A∇u−∇C) = 0,



10.4 Regularity of 2-dimensional weakly harmonic maps 271

hence by the Hodge theory (see Corollary 10.70) there exists a function
D ∈W 1,2(BR(x0), Rm) such that

∇⊥D = A∇u−∇C. (10.77)

Now we bound∫
BR(x0)

|∇D|2dx ≤ 2
∫

BR(x0)

|A∇u|2dx + 2
∫

BR(x0)

|∇C|2dx

≤ 2‖A‖L∞

∫
BR(x0)

|∇u|2dx

+ 2C0

∫
BR(x0)

|∇B|2dx

∫
BR(x0)

|∇u|2dx.

(10.78)

Let v ∈W 1,2(BR(x0), Rm) be the solution to

Δv = 0 in BR(x0), v = D on ∂BR(x0).

Since v is harmonic we get by (5.13)

∫
Br(x0)

|∇v|2dx ≤ c

(
r

R

)2 ∫
BR(x0)

|∇v|2dx, 0 < r ≤ R,

hence as in (5.22) and setting w := D − v

∫
Br(x0)

|∇D|2dx ≤ c

(
r

R

)2 ∫
BR(x0)

|∇D|2dx + c

∫
BR(x0)

|∇w|2dx,

(10.79)
for r ∈ (0, R). On the other hand by (10.77){

Δw = ΔD = −∇A · ∇⊥u in BR(x0)
w = 0 on ∂BR(x0),

and again by Wente’s theorem∫
BR(x0)

|∇w|2dx ≤ C0

∫
BR(x0)

|∇A|2dx

∫
BR(x0)

|∇u|2dx. (10.80)

Then, collecting (10.76), (10.77), (10.78), (10.79), (10.80) and further
assuming that R is so small that∫

BR(x0)

(|∇A|2 + |∇B|2)dx < ε
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for some ε > 0 to be chosen, we bound∫
Br(x0)

|A∇u|2dx≤2
∫

Br(x0)

|∇C|2dx + 2
∫

Br(x0)

|∇D|2dx

≤2C0

∫
BR(x0)

|∇B|2dx

∫
BR(x0)

|∇u|2dx

+ c
( r

R

)2
∫

BR(x0)

|∇D|2dx +
∫

BR(x0)

|∇w|2dx

≤c1‖A‖L∞
( r

R

)2
∫

BR(x0)

|∇u|2dx+c1ε

∫
BR(x0)

|∇u|2dx.

In fact, using that A−1 ∈ L∞, we bound, with a constant c2 depending
on ‖A‖L∞ and ‖A−1‖L∞∫

Br(x0)

|∇u|2dx ≤ c2

( r

R

)2
∫

BR(x0)

|∇u|2dx + c2ε

∫
BR(x0)

|∇u|2dx.

(10.81)
Now by Lemma 5.13 for every α ∈ (0, 1) we can choose ε so that (10.81)
implies ∫

Br(x0)

|∇u|2dx ≤ c3

( r

R

)2α
∫

BR(x0)

|∇u|2dx, (10.82)

where now c3 also depends on α. As usual (10.82) now holds for x in
a neighborhood of x0 (up to modifying the constants slightly), hence we
have actually proven

∇u ∈ L2,2α
loc (D2) for every α ∈ (0, 1),

hence by Theorem 5.7 u ∈ C0,α
loc (D2, Rm). �

Theorem 10.47 (Rivière [88]) There exists ε0 = ε0(m) > 0 such that
if

Ω ∈ L2(D2,∧1R2 ⊗ so(m))

satisfies ‖Ω‖2L2 ≤ ε0, then there exists

A ∈W 1,2(D2, GL(m)), B ∈W 1,2
0 (D2, gl(m))

solving
∇A +∇⊥B = AΩ

and

‖∇A‖2L2 + ‖∇B‖2L2 + ‖dist(A,SO(m))‖L∞ ≤ C(m)‖Ω‖2L2 . (10.83)

In particular A ∈ L∞(D2, GL(m)), and if ε0 is small enough we also have
A−1 ∈ L∞(D2, GL(m)).
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The proof of Theorem 10.47 will require the following result, whose
proof will be presented later.

Theorem 10.48 (Rivière [88]) For Ω ∈ L2(D2,∧1R2 ⊗ so(m)) there
exists ξ ∈W 1,2

0 (D2, gl(m)) and P ∈W 1,2(D2, SO(m)) such that

P−1∇P + P−1ΩP = ∇⊥ξ (10.84)

and
‖∇ξ‖2L2 + ‖∇P‖2L2 ≤ 3‖Ω‖2L2 .

Proof of Theorem 10.47. We first show that for ε0 sufficiently small the
following system, defined for

Ã ∈ L∞ ∩W 1,2(D2, gl(m)), B ∈W 1,2(D2, gl(m))

has a unique solution:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔÃ = ∇Ã · ∇⊥ξ −∇⊥B · ∇P in D2

ΔB = ∇⊥Ã · ∇P−1 + div(Ã∇ξP−1) + div(∇ξP−1) in D2

∂Ã

∂ν
= 0, B = 0 on ∂D2∫

D2 Ãdx = 0,
(10.85)

where ξ and P are as in Theorem 10.48. Indeed consider the operator

T : X → X,

where
X := (L∞ ∩W 1,2(D2, gl(m)))×W 1,2(D2, gl(m)),

associating to (Â, B̂) ∈ X the unique solution (Ã, B) ∈ X to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ΔÃ = ∇Â · ∇⊥ξ −∇⊥B̂ · ∇P in D2

ΔB = ∇⊥Â · ∇P−1 + div(Â∇ξP−1) + div(∇ξP−1) in D2

∂Ã

∂ν
= 0, B = 0 on ∂D2∫

D2 Ãdx = 0.
(10.86)

In fact (Ã, B) ∈ X by Wente’s theorem (Theorem 7.10), which together
with the Poincaré inequality gives

‖Ã‖W 1,2 + ‖Ã‖L∞ ≤ C‖∇ξ‖L2‖∇Â‖L2 + c‖∇P‖L2‖∇B̂‖L2

≤ c‖Ω‖L2(‖∇Â‖L2 + ‖∇B̂‖L2)

≤ cε0‖(Â, B̂)‖X .
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Similarly, using Theorem 7.8, the L2-theory and noticing that

‖Â∇ξP−1‖L2 ≤ ‖Â‖L∞‖∇ξ‖L2 , ‖∇ξP−1‖L2 ≤ ‖∇ξ‖L2

we obtain

‖B‖W 1,2 ≤ c(‖∇Â‖L2‖∇P−1‖L2 + ‖Â‖L∞‖∇ξ‖L2 + ‖∇ξ‖L2)

≤ c‖Ω‖L2(‖∇A‖L2 + ‖Â‖L∞ + 1)

≤ cε0(‖∇A‖L2 + ‖Â‖L∞ + 1).

Then if ε0 is small enough T is a contraction,9 hence it has a fixed point
(Ã, B) ∈ X which solves (10.85) and satisfies

‖Ã‖W 1,2 + ‖Ã‖L2 + ‖B‖W 1,2 ≤ C‖Ω‖.

Finally, setting
A = (Ã + Im)P−1, (Im)j

i := δj
i ,

we conclude as follows. Notice that with A′ := Ã + Im we find

div(∇A′ −A′∇⊥ξ +∇⊥B P ) = 0

by the first equation in (10.85). Then according to Corollary 10.70 we can
write

∇A′ −A′∇⊥ξ +∇⊥B P = ∇⊥D,

where D solves
div(∇D P−1) = 0,

and using that ξ = 0 on ∂D2 and the boundary conditions in (10.85) we
can choose D = 0 on ∂D2.

We now claim that if ε0 is chosen possibly smaller, then D ≡ 0. Indeed
we can write, again by Corollary 10.70,

∇D P−1 = −∇⊥E (10.87)

with E ∈W 1,2(D2, gl(m)), and Neumann boundary conditions (since the
tangential derivative of D on ∂D2 is 0). In particular, applying ∇⊥ to
(10.87) we see that E solves{

ΔE = −∇D · ∇⊥P−1 in D2

∂E

∂ν
= 0 on ∂D2.

9i.e.
‖T (Â1, B̂1) − T (Â2, B̂2)‖X ≤ α‖(Â1 − Â2, B̂1 − B̂2)‖X ,

for some α < 1.
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By Theorem 7.10 we then infer∫
D2
|∇E|2dx ≤ C0

∫
D2
|∇D|2dx

∫
D2
|∇P−1|2dx.

On the other hand, from (10.87) we infer |∇D| ≤ |∇E|, hence∫
D2
|∇E|2dx ≤ C0ε0

∫
D2
|∇E|2dx,

which implies E ≡ 0 if ε0 < C−1
0 . Then from (10.87) we conclude∇D ≡ 0,

hence D ≡ 0, as claimed.
Therefore we have proven

∇A′ −A′∇⊥ξ +∇⊥B P = 0.

This, together with

P−1∇P + P−1ΩP = ∇⊥ξ

finally shows that A := A′P−1 solves

∇A +∇⊥B = ∇(A′P−1) +∇⊥B

= (∇A′ + A′∇P−1 P +∇⊥B P )P−1

= (A′∇⊥ξ + A′∇P−1P )P−1

= (A′P−1∇P + A′P−1ΩP + A′∇P−1P )P−1

= AΩ,

as wished. �

Proof of Theorem 10.48

The proof we present here is due to A. Schikorra [93]. It essentially follows
from the two lemmas below.

Lemma 10.49 For any regular domain D ⊂ Rn and vector field

Ω ∈ L2(D,∧1Rn ⊗ so(m)),

there exists P ∈W 1,2(D,SO(m)) minimizing the variational functional

E(Q) =
∫

D

|Q−1∇Q−Q−1ΩQ|2dx, Q ∈W 1,2(D,SO(m)).

Furthermore,

‖∇P‖L2(D) ≤ 2‖Ω‖L2(D), ‖P−1∇P − P−1ΩP‖L2(D) ≤ ‖Ω‖L2(D).
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Proof. The function Q ≡ I := (δij)ij is clearly admissible. Thus, there
exists a minimizing sequence Qk ∈W 1,2(D,SO(m)) such that

E(Qk) ≤ E(I) = ‖Ω‖2L2 , k ∈ N.

By a.e. orthogonality of Qk(x) ∈ SO(m) we know that Qk(x) is bounded
and

|∇Qk| = |Q−1
k ∇Qk| ≤ |Q−1

k ∇Qk −Q−1
k ΩQk|+ |Ω| a.e. in D,

hence
‖∇Qk‖2L2(D) ≤ 2(E(Qk) + ‖Ω‖2L2(D)) ≤ 4‖Ω‖2L2(D).

Up to choosing a subsequence, we can assume that Qk converges weakly in
W 1,2 to P ∈W 1,2(D, gl(m)). At the same time it shall converge strongly
in L2, and pointwise almost everywhere. The latter implies

P−1P = lim
k→∞

Q−1
k Qk = I a.e.,

and det(P ) = 1 a.e., that is P ∈ SO(m) almost everywhere. Denoting

ΩP := P−1∇P − P−1ΩP

and recalling that

0 = ∇(PP−1) = ∇P P−1 + P∇P−1,

we obtain

Q−1
k ∇Qk −Q−1

k ΩQk = (P−1Qk)−1∇(P−1Qk) + (P−1Qk)−1ΩP (P−1Qk),

and consequently

|Q−1
k ∇Qk −Q−1

k ΩQk|2 = |∇(P−1Qk) + ΩP P−1Qk|2
= |∇(P−1Qk)|2

+ 2〈∇(P−1Qk),ΩP P−1Qk〉+ |ΩP |2,
where in this case 〈·, ·〉 is just the Hilbert-Schmidt scalar product for
tensors: in this case

〈A,B〉 =
n∑


=1

m∑
i,j=1

Ai

jB

i

j .

This implies

E(Qk) =
∫

D

(|∇(P−1Qk)|2 + 2〈∇(P−1Qk),ΩP P−1Qk〉
)
dx + E(P )

≥
∫

D

⏐⏐∇(P−1Qk)
⏐⏐2

dx

+ 2
∫

D

〈∇(P−1Qk),ΩP P−1Qk〉dx + inf
Q

E(Q).
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The middle part of the right-hand side converges to zero as k →∞. To see
this, one can check that ΩP P−1Qk converges to ΩP almost everywhere
and Lebesgue’s dominated convergence theorem implies strong conver-
gence in L2. On the other hand

∇(P−1Qk) ⇀ 0 weakly in L2.

Now using
lim

k→∞
E(Qk) = inf

Q
E(Q),

we have strong W 1,2-convergence of P−1Qk to I. Then Qk converges
strongly to P , which readily implies minimality of P . �

Lemma 10.50 Critical points P ∈W 1,2(D,SO(m)) of

E(Q) =
∫

D

|Q−1∇Q−Q−1ΩQ|2dx, Q ∈W 1,2(D,SO(m)),

with Ω ∈ L2(D,∧1Rn ⊗ so(m)) satisfy

div(P−1∇P − P−1ΩP ) = 0 in D (10.88)

and calling ν the exterior unit normal to ∂D,

ν · (P−1∇P − P−1ΩP ) = 0, on ∂D. (10.89)

If P−1∇P − P−1ΩP is not regular enough (10.88) and (10.89) mean∫
D

(P−1∇P − P−1ΩP ) · ∇ϕdx = 0 for ϕ ∈ C∞(D, gl(m)). (10.90)

Proof. Let P be a critical point of E(Q). A valid perturbation Pε is the
following

Pε := Peεϕα = P + εϕPα + o(ε) ∈W 1,2(D,SO(m))

for any ϕ ∈ C∞(D), α ∈ so(m) and with

lim
ε→0

o(ε)
ε

= 0.

Indeed the exponential function applied to a skew-symmetric matrix is
an orthogonal matrix; in fact the space of skew-symmetric matrices is the
tangential space to the manifold SO(m) ⊂ Rn×n at the identity matrix.
Now

P−1
ε = P−1 − εϕαP−1 + o(ε),

∇Pε = ∇P + εϕ∇P α + ε∇ϕ Pα + o(ε).
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Thus, denoting again ΩP := P−1∇P − P−1ΩP , we obtain

ΩPε = ΩP + εϕ(ΩP α− αΩP ) + ε∇ϕα + o(ε).

Using the anti-symmetry of ΩP and α one verifies that
m∑

i,j=1

(ΩP )i

j(Ω

P α− αΩP )i

j = 0 a.e. for 1 ≤ � ≤ n,

since, ignoring the index �, we see that

〈ΩP ,ΩP α− αΩP 〉 = 2〈ΩP ΩP , α〉 = 0,

the last identity coming from that fact that ΩP ΩP is symmetric, while
α is anti-symmetric and where only in this occasion 〈 , 〉 denotes the
product of matrices in gl(m) (i.e. ignoring the index �). It follows that,

|ΩPε |2 = |ΩP |2 + 2ε〈ΩP , α∇ϕ〉+ o(ε),

which implies

0 =
d

dε
E(Pε)

∣∣∣
ε=0

=
∫

D

〈ΩP , α∇ϕ〉dx. (10.91)

This is true for any ϕ ∈ C∞(D) and α ∈ so(m). Now for arbitrary
1 ≤ s, t ≤ m setting αi

j := δi
sδ

t
j − δs

jδ
i
t we obtain (10.90). If ΩP is also

regular enough, then integrating by parts gives (10.88) and (10.89). �
Proof of Theorem 10.48. Considering Lemma 10.49 and Lemma 10.50, we
find P ∈W 1,2(D2, SO(m)) such that

div(P−1∇P + P−1ΩP ) = 0,

hence by Corollary 10.70

ΩP = P−1∇P + P−1ΩP = ∇⊥ξ,

for some ξ ∈ W 1,2(D2, gl(m)). Assume that ΩP is smooth. Then since
ΩP · ν = 0, we also have that the tangential derivative of ξ on ∂D2

vanishes, hence ξ|∂D2 is a constant, which we can choose to be 0. If ΩP

is only square-summable, we use (10.90), getting with an integration by
parts

0 =
∫

D2
ΩP · ∇ϕdx

=
∫

D2
∇⊥ξ · ∇ϕdx

=
∫

∂D2
ξ∇ϕ · τdH1, for every ϕ ∈ C∞(D2),

where τ is the unit tangent vector to ∂D2, taken with the appropriate
orientation. This implies that ξ is constant on ∂D2, and again we can
choose this constant to be 0. �
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10.4.3 Irregularity of weakly harmonic maps
in dimension 3 and higher

It is natural to wonder whether in dimension 3 and higher weakly har-
monic maps are regular, at least on large regions of their domains. This
is in general not the case, as shown by Rivière:

Theorem 10.51 (Rivière [86]) Let B3 denote the unit ball in R3. For
any non-constant map ϕ ∈ C∞(∂B3, S2) there exists an everywhere dis-
continuous weakly harmonic map u ∈W 1,2(B3, S2) with u = ϕ on ∂B3.

Remark 10.52 Clearly Theorem 10.51 implies the existence of every-
where discontinuous weakly harmonic maps from the unit ball Bn ⊂ Rn

with values into Sp for every n ≥ 3 and p ≥ 2.

Remark 10.53 Actually in [86] a more general version of Theorem 10.51
is proved. In fact the target manifold S2 can be replaced by an arbitrary
manifold Σ homeomorphic to S2. Without any assumption of the target
manifold, things are different. For instance a weakly harmonic map from
B3 into a 2-dimensional torus of revolution is always smooth, see [87].

Remark 10.54 We will not prove Theorem 10.51, but only remark that
it is based on the relaxed Dirichlet energy introduced by Bethuel, Brézis
and Coron [10] (also recast in terms of Cartesian currents by Giaquinta,
Modica and Souček [48]), and on a subtle dipole construction which ex-
tends previous dipole constructions by Brézis, Coron and Lieb [16] and
Hardt, Lin and Poon [58].

10.5 Regularity of stationaryharmonicmaps

As already discussed, a map u ∈W 1,2
loc (D,N) from a domain D ⊂ Rn into

a manifold N ⊂ Rm is called stationary harmonic map if it is a weakly
harmonic map which is also critical for inner variations. In other words
if it satisfies (10.5) and (10.6). In this section we shall prove, using an
approach of Rivière and Struwe, that for stationary harmonic maps an
ε-regularity theorem similar to Theorem 10.15 holds.

Theorem 10.55 Given a closed manifold N ⊂ Rm and a domain D ⊂
Rn there exists ε = ε(n,N) such that if u ∈ W 1,2

loc (D,N) is a stationary
harmonic maps and for some ball BR(x0) � D we have

1
Rn−2

∫
BR(x0)

|∇u|2dx < ε0,

then u is smooth in a neighborhood of x0.
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Theorem 10.55 was first proven by C. Evans [31] when the target
manifold is a round sphere. Then, using the moving frame technique of
F. Hélein, F. Bethuel [9] generalized the result to the case of an arbitrary
(say closed) target manifolds N . The proof of T. Rivière and M. Struwe
which we present here uses the conservation laws technique of Rivière and
avoids the moving frames.10

Theorem 10.55 follows easily from the more general Theorem 10.56
below, since we have already seen in the proof of Proposition 10.44 that
a weakly harmonic map u : D → N ↪→ Rm solves

−Δu = Ω · ∇u

for a vector field Ω ∈ L2(D,∧1Rn ⊗ so(m)) with

|Ω| ≤ C|∇u| a.e. in D.

Moreover the condition (10.94) in Theorem 10.56 follows at once from the
monotonicity formula for maps which are stationary harmonic maps in
B2(0), Proposition 10.5.

Theorem 10.56 ([31], [9], [90]) There is ε ≡ ε(n,m) ∈ (0, 1) such that
for B := B1(0) ⊂ Rn and u ∈W 1,2(B, Rm) a solution of

Δu = Ω · ∇u in B (10.92)

with Ω ∈ L2(B,∧1Rn ⊗ so(m)) such that

sup
Br(x)⊂B

1
rn−2

∫
Br(x)

|Ω|2 dx ≤ ε (10.93)

and

sup
Br(x)⊂B

1
rn−2

∫
Br(x)

|∇u|2 dx <∞, (10.94)

then u ∈ C0,α
loc (B, Rm) for some α ∈ (0, 1).

In the proof of Theorem 10.56 we shall use the following gauge con-
struction, which is the equivalent of Theorem 10.48 in higher dimension,
and which follows at once from Lemma 10.49 and Lemma 10.50.

Theorem 10.57 Let D � Rn be a regular domain and consider

Ω ∈ L2(D,∧1Rn ⊗ so(m)).

10In addition to being relatively simple, this technique works also for target manifolds
of class C2 (a minimal requirement), while the moving-frame technique used by Bethuel
requires N to be of class C5.
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Then there exists P ∈W 1,2(D,SO(m)) such that

div(P−1dP + P−1ΩP ) = 0 in D

and
‖∇P‖L2 + ‖P−1dP + P−1ΩP‖L2 ≤ 3‖Ω‖L2

Proof of Theorem 10.56. The following proof is a slight modification, due
to A. Schikorra [93], of the original proof of T. Rivière and M. Struwe.

Let z ∈ B, 0 < r < R < 1
2 dist(z, ∂B). By Theorem 10.57 there exists

P ∈W 1,2(BR(z), SO(m)) such that

div(ΩP ) = div(P−1∇P − P−1ΩP ) = 0 weakly in BR(z), (10.95)

with the estimate

‖∇P‖L2(BR(z)) + ‖ΩP ‖L2(BR(z)) ≤ 3‖Ω‖L2(BR(z)). (10.96)

We have weakly

div(P−1∇u) = ΩP · P−1∇u :=
n∑


=1

m∑
j,k=1

(ΩP )i

j(P

−1)j
k

∂uk

∂x

, in BR(z).

(10.97)
By the Hodge decomposition (see Theorem 10.66), and identifying the
vector field P−1∇u (with coefficients in Rm) with the 1-form P−1du, we
can find

f ∈W 1,2
0 (BR(z), Rm), g ∈W 1,2

N (BR(z),∧2Rn ⊗ Rm),

and
h ∈ C∞(BR(z),∧1Rn ⊗ Rm)

such that
P−1du = df + δg + h a.e. in BR(z), (10.98)

where f satisfies{
Δf = δ(P−1du) = div(P−1∇u) = ΩP · P−1∇u in BR(z),
f = 0 on ∂BR(z),

(10.99)
g satisfies ⎧⎪⎨⎪⎩

dg = 0 in BR(z),
Δg = dδg = d(P−1du) in BR(z),
gN = 0 on ∂BR(z),
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and h is harmonic. Fix 1 < p < n
n−1 . One estimates with (10.98)∫

Br(z)

|∇u|p dx =
∫

Br(z)

|P−1∇u|pdx

≤ Cp

(∫
Br(z)

|h|p dx +
∫

BR(z)

( |∇f |p + |∇g|p )
dx

)
.

Here and in the following Cp denotes a generic constant depending on p.
Since h is harmonic we have by (5.13)11∫

Br(z)

|h|p dx ≤ Cp

( r

R

)n
∫

BR(z)

|h|p dx, 0 < r < R.

Consequently, again by (10.98),∫
Br(z)

|∇u|p dx ≤ Cp

( r

R

)n
∫

BR(z)

|∇u|p dx

+ Cp

∫
BR(z)

(|∇f |p + |δg|p)dx.

(10.100)

In order to estimate
∫

BR(z)
|∇f |pdx note that since f = 0 on ∂BR(z), by

duality

‖∇f‖Lp(BR(z)) ≤ Cp sup
ϕ∈C∞

0 (BR(z),Rm),‖∇ϕ‖Lq≤1

∫
BR(z)

∇f · ∇ϕdx,

(10.101)
where

∇f · ∇ϕ :=
n∑


=1

m∑
i=1

∂f i

∂x


∂ϕi

∂x


and q = p′ = p
p−1 .12 If

‖∇ϕ‖Lq(BR(z)) ≤ 1

11Actually the Lp-version of (5.13), which can be easily obtained with the same
proof.

12By duality

‖∇f‖Lp(BR(z)) = sup
X∈Lq(BR(z),Rn⊗Rm),‖X‖Lq≤1

∫
BR(z)

∇f · Xdx

= sup
ω∈Lq(BR(z),∧1Rn⊗Rm),‖ω‖Lq≤1

∫
BR(z)

df · ωdx.

On the other hand, applying the Hodge decomposition to ω (Theorem 10.66 and Re-
mark 10.67), we write ω = dα+δβ +h and integration by parts (actually using Stokes’
theorem) implies ∫

BR(z)
(df · ω)dx =

∫
BR(z)

(df · dα)dx,
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one calculates with the Sobolev embedding and a scaling argument

‖ϕ‖L∞(BR(z)) ≤ CpR
1+ n

p −n, ‖∇ϕ‖L2(BR(z)) ≤ CpR
n
p −n

2 . (10.102)

By (10.99), ∫
BR(z)

∇f · ∇ϕdx =
∫

BR(z)

(ΩP · P−1∇u) · ϕdx.

Taking (10.95) into account, we can apply Lemma 10.58 below by choosing

Γ = (ΩP )i

j , c = (P−1)j

kϕi, a = uk, for 1 ≤ i, j, k ≤ m, 1 ≤ � ≤ n,

where i, j, k are fixed. Then (10.101) yields

‖∇f‖Lp ≤ Cp‖ΩP ‖L2

(‖∇P‖L2‖ϕ‖L∞ + ‖∇ϕ‖L2

)‖∇u‖Lp,n−p(B2R(z))

≤ Cp‖Ω‖L2

(‖Ω‖L2‖ϕ‖L∞ + ‖∇ϕ‖L2

)‖∇u‖Lp,n−p(B2R(z))

≤ CpεR
n
p −1‖∇u‖Lp,n−p(B2R(z)),

where we also used (10.96), (10.93) and (10.102) and the above norms are
taken in BR(z), except for the Morrey norm of ∇u. By a similar argument
we will also bound

‖δg‖Lp(BR(z)) ≤ CpεR
n
p −1‖∇u‖Lp,n−p(B2R(z)).

Indeed we have13

‖δg‖Lp ≤ Cp sup
β∈W 1,q

N (BR(z),∧2Rn⊗Rm),‖δβ‖Lq =1

∫
BR(z)

(δg · δβ)dx,

i.e. given X ∈ Lq(BR(z), Rn ⊗ Rm)∫
BR(z)

∇f · Xdx =

∫
BR(z)

∇f · ∇ϕdx,

for some ϕ ∈ W 1,q
0 (BR(z), Rm) with ‖∇ϕ‖Lq ≤ C‖X‖Lq . This proves (10.101).

13Again writing

‖δg‖Lp = sup
ω∈Lq(BR(z),∧1Rn⊗Rm),‖ω‖Lq =1

∫
BR(z)

(δg · ω)dx,

using the Hodge decomposition to write ω = dα + δβ + h and∫
BR(z)

(δg · ω)dx =

∫
BR(z)

(δg · δβ)dx,

since gN = 0 on ∂BR(z).
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and for s satisfying 1
2 + 1

q + 1
s = 1 we bound (up to signs)∫

BR(z)

(δg · δβ)dx =
∫

BR(z)

(Δg · β)dx

=
∫

BR(z)

(dP−1 ∧ du) · βdx

=
∫

BR(z)

(dP−1 · δβ)
(
u− uz,R

)
dx

≤ C‖dP‖L2(BR(z))‖δβ‖Lq(BR(z))‖u− uz,R‖Ls(BR(z))

≤ CεRn/p−1‖∇u‖Lp,n−p(B2R(z)),

where we also used Corollary 6.22 and the Poincaré inequality to bound

‖u− uz,R‖Ls(BR(z)) ≤ CRn/s|u|∗ ≤ CRn/s‖∇u‖Lp,n−p(B2R(z)),

and (10.93), (10.96), |∇P | = |∇P−1| to bound

‖dP‖L2(BR(z)) ≤ CεRn/2−1.

Plugging these estimates into (10.100) we arrive at∫
Br(z)

|∇u|p dx ≤ Cp

( r

R

)n
∫

BR(z)

|∇u|p dx

+ CpεR
n−p‖∇u‖pLp,n−p(B2R(z)).

The right-hand side of this estimate is finite by (10.94). We divide by
rn−p to get

1
rn−p

∫
Br(z)

|∇u|2 dx ≤ Cp

( r

R

)p 1
Rn−p

∫
BR(z)

|∇u|p dx

+ Cp ε

(
R

r

)n−p

‖∇u‖pLp,n−p(B2R(z)).

Hence,

1
rn−p

∫
Br(z)

|∇u|pdx ≤ Cp

(( r

R

)p

+ ε
(R

r

)n−p
)
‖∇u‖pLp,n−p(B2R(z)).

Choose γ ∈ (0, 1
2 ) such that Cpγ

p ≤ 1
4 and set ε := γn. Then for r := γR

we have shown
1

(γR)n−p

∫
BγR(z)

|∇u|pdx ≤ 1
2
‖∇u‖pLp,n−p(B2R(z)).

This is valid for any R > 0, z ∈ D such that B2R(z) ⊂ B. For arbitrary
ρ ∈ (0, 1), y ∈ B, such that B2R(z) ⊂ Bρ(y) and Bρ(y) � B this implies

1
(γR)n−p

∫
BγR(z)

|∇u|pdx ≤ 1
2
‖∇u‖pLp,n−p(Bρ(y)).
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that yields

‖∇u‖pLp,n−p(Bγρ/2(y)) ≤
1
2
‖∇u‖pLp,n−p(Bρ(y)).

As in the proof of Theorem 10.15, iterating we obtain

‖∇u‖Lp,n−p(Bρ(y)) ≤ cρα

for some α > 0, hence
∇u ∈ Lp,n−p+αp

loc (B)

which yields u ∈ C0,α
loc (B) by Theorem 5.7. �

Lemma 10.58 For any p > 1, there is a uniform constant C = C(n, p)
such that for any triple of functions

a ∈W 1,2(Rn), Γ ∈ L2(Rn, Rn), c ∈W 1,2
0 ∩ L∞(Rn)

with div Γ = 0 in the support of c, we have∣∣∣∣ ∫
Rn

(∇a · Γ)cdx

∣∣∣∣ ≤ C‖Γ‖L2 ‖∇c‖L2‖∇a‖Lp,n−p ,

whenever the right-hand side is finite, where

‖∇a‖pLp,n−p := sup
Bρ(x)⊂Rn

1
ρn−p

∫
Bρ(x)

|∇a|pdx.

Proof. First assume that c ∈ C∞
c (Rn), the general case following by

density. We have ∫
Rn

(∇a · Γ)cdx = −
∫

Rn

aΓ · ∇cdx.

Notice that curl(∇c) = 0, hence by Theorem 6.3314 we have

Γ · ∇c ∈ H1(Rn), ‖Γ · ∇c‖H1 ≤ ‖Γ‖L2‖∇c‖L2 .

Observe that by the Poincaré inequality (Proposition 3.12) we have a ∈
BMO(Rn) with

|a|∗ ≤ c‖∇a‖Lp,n−p ,

and the conclusion follows from the duality H1−BMO, Theorem 6.35. �
The original proof of Rivière and Struwe instead of Lemma 10.58, uses

the following lemma, which is similar in many respects. It also follows
from the theorems of Coifman-Lions-Meyer-Semmes and Fefferman-Stein.
We state it because it is interesting to compare it with Wente’s Theorem,
see Remark 10.60.

14Actually Theorem 6.33 would require div Γ = 0 in all of Rn, but from its proof it
is clear than only the behavior of Γ over the support of ∇c matters.
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Lemma 10.59 Given two differential forms

α ∈W 1,2(Rn,Λn−2Rn), β ∈W 1,2(Rn,Λ0Rn) �W 1,2(Rn)

and a function v ∈ BMO(Rn), we have

dα ∧ dβ ∈ H1(Rn,ΛnRn) � H1(Rn)

and ∫
Ω

dα ∧ dβ v ≤ C‖dα‖L2‖dβ‖L2 |v|∗,

where the above integral is defined by density as in the duality H1−BMO
(Theorem 6.35), and |v|∗ denotes the BMO seminorm of v.

Proof. We see the form dβ as a vector field B := ∇β. Then curlB = 0.
Similarly, to the (n− 1)-form

ω := dα =
n∑

i=1

ωid̂xi

we associate the vector field E = (E1, . . . , En), with Ei := (−1)i+1ωi.
Then, the condition dω = 0 yields div E = 0. Then

dβ ∧ dα = (E ·B)dx1 ∧ · · · ∧ dxn,

with E ·B ∈ H1(Rn) thanks to Theorem 6.33 and

‖E ·B‖H1 ≤ C‖E‖L2‖B‖L2 = C‖dα‖L2‖dβ‖L2 .

The conclusion follows from Theorem 6.35. �

Remark 10.60 Theorem 10.59 can be seen as an extension of Wente’s
theorem (Theorem 7.8). In fact Wente’s theorem can be equivalently
stated for 2-forms ψ ∈W 1,2(D2,Λ2R2) solving

Δψ = dα ∧ dβ in D2, ψ = 0 on ∂D2,

with
α ∈W 1,2(D2), β ∈W 1,2(D2).

Then the core of the proof of Wente’s theorem was (in this formulation
with differential forms) the bound∫

D2
log

(1
r

)
dα ∧ dβ ≤ C‖dα‖L2‖dβ‖L2 ,

which follows from Theorem 7.9 observing that log(1/r)χ ∈ BMO(R2),
where χ is a smooth cut-off function supported in B1/2(0).

In fact Δψ ∈ H1 (locally, in a suitable sense) implies that D2ψ ∈W 1,1,
which in turn implies Dψ ∈W 1,2 and ψ ∈ L∞.
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10.6 The Hodge-Morrey decomposition

In the regularity theory for stationary harmonic maps we used the Hodge-
Morrey decomposition of a k-form with coefficients in L2. Before stating
it let us recall some definitions.

Definition 10.61 (Hodge dual) The Hodge dual, also called Hodge-∗
is the linear isomorphism

∗ : ∧kRn → ∧n−kRn

defined on a basis of ∧kRn by

∗dxi1 ∧ · · · ∧ dxik = dxik+1 ∧ · · · ∧ dxin ,

whenever {i1, . . . , in} is an even permutation of {1, . . . , n}. Similarly one
can define the Hodge dual on differential forms, for instance

∗ : W 1,2(Ω,∧kRn)→W 1,2(Ω,∧n−kRn).

Definition 10.62 (Codifferential) Given a differential form

ω ∈W 1,2(Ω,∧kRn) (k ≥ 1),

we define
δω := ∗d ∗ ω ∈W 1,2(Ω,∧k−1Rn).

If k = 0, then δω := 0.

Remark 10.63 There exist definitions of the Hodge-∗ and of the codif-
ferential δ which differ from ours by a sign, which anyway is irrelevant for
our purposes.

Definition 10.64 For ω ∈W 1,2(Ω,∧kRn) let ωT ∈ L2(∂Ω,∧kRn) be the
tangent part of ω|∂Ω. This can be defined as i∗ω, where i : ∂Ω → Rn

is the trivial inclusion (i(x) = x for every x ∈ ∂Ω). Equivalently, given
an orthonormal basis {τ1, . . . , τn} of Rn at x ∈ ∂Ω with {τ1, . . . , τn−1}
spanning Tx∂Ω and τn orthogonal to ∂Ω at x we set

ωT (x)(τi1 , . . . , τik
) = ω(x)(τi1 , . . . , τik

) if 1 ≤ i1 < · · · < ik < n,

and
ωT (x)(τi1 , . . . , τik

) = 0 if 1 ≤ i1 < · · · < ik = n.

We also define

ωN := ω|∂Ω − ωT ∈ L2(∂Ω,∧kRn).

Finally we set

W 1,2
T (Ω,∧kRn) = {ω ∈W 1,2(Ω,∧kRn) : ωT = 0},

W 1,2
N (Ω,∧kRn) = {ω ∈W 1,2(Ω,∧kRn) : ωN = 0}.
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Example 10.65 We consider 3 special cases.
1) When k = 0, ωT = ω|∂Ω, ωN = 0, hence

W 1,2
T (Ω,∧0Rn) = W 1,2

0 (Ω), W 1,2
N (Ω,∧0Rn) = W 1,2(Ω).

2)Similarly when k = n, ωT = 0, ωN = ω|∂Ω. In particual

W 1,2
T (Ω,∧nRn) ∼= W 1,2(Ω), W 1,2

N (Ω,∧nRn) ∼= W 1,2
0 (Ω).

3)When k = 1, if we identify ω = ω1dx1+· · ·+ωndxn with the vector field
X = (ω1, . . . , ωn), then ωT at x ∈ ∂Ω corresponds to the orthogonal pro-
jection of X onto Tx∂Ω and ωN at x ∈ ∂Ω corresponds to the orthogonal
projection onto the normal line Nx∂Ω.

10.6.1 Decomposition of differential forms

We are now ready to state the Hodge-Morrey decomposition of a k-form
in L2. We will assume the the domain Ω is bounded and has smooth
boundary.

Theorem 10.66 (Hodge-Morrey decomposition) For a domain Ω �
Rn (with smooth boundary) and 0 ≤ k ≤ n, consider ω ∈ L2(Ω,∧kRn).
Then there exist

α ∈W 1,2
T (Ω,∧k−1Rn), β ∈W 1,2

N (Ω,∧k+1Rn), h ∈ L2 ∩ C∞(Ω,∧kRn)

such that
ω = dα + δβ + h,

where h is harmonic, i.e. dh = 0, δh = 0 (and it is understood that if
k = 0 then α = 0, and if k = n then β = 0). There also exist

Γ1 ∈W 2,2
T (Ω,∧kRn), Γ2 ∈W 2,2

N (Ω,∧kRn)

such that α = δΓ1, β = dΓ2. In particular δα = 0, dβ = 0. Moreover dα,
δβ and h are mutually orthogonal with respect to the L2-product, and

‖Γ1‖W 2,2 + ‖Γ2‖W 2,2 + ‖h‖L2 ≤ C‖ω‖L2 ,

with C depending on Ω.

We will not prove Theorem 10.66 but refer the interested reader to
[49] (Volume 1) or [23]. We only remark that the core of the proof is the
existence of Γ1 and Γ2, which can be shown with variational methods,
in the spirit e.g. of Theorem 3.29, i.e. minimizing suitable functionals,
which are coercive thanks to the so called Gaffney inequality.
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Remark 10.67 Theorem 10.66 is still valid if we assume ω ∈ Lp(Ω,∧kRn)
for some p ∈ (1,∞). In this case

Γ1 ∈W 2,p
T (Ω,∧kRn), Γ2 ∈W 2,p

N (Ω,∧kRn), h ∈ Lp ∩ C∞(Ω,∧kRn),

and one has the bound

‖Γ1‖W 2,p + ‖Γ2‖W 2,p + ‖h‖Lp ≤ C‖ω‖Lp .

for some constant C depending on Ω and p.

The Poincaré lemma, stating that on a topologically trivial set a closed
form is also exact, can be very useful in conjunction with the Hodge
decomposition.

Lemma 10.68 (Poincaré) Let ω ∈ W 
,p(Ω,∧kRn) with Ω ⊂ Rn con-
tractible (i.e. homotopic to a point), � ≥ 0, p ∈ (1,∞) and 1 ≤ k ≤ n,
satisfy dω = 0. Then

ω = dη for some η ∈W 
+1,p
loc (Ω,∧k−1Rn).

Similarly, if 0 ≤ k ≤ n− 1 and δω = 0 we have

ω = δη for some η ∈W 
+1,p
loc (Ω,∧k+1Rn).

If Ω is also bounded then we actually have in both cases

‖η‖W �+1,p ≤ C‖ω‖W �,p

for a constant depending on �, p and Ω.

10.6.2 Decomposition of vector fields

Using the Hodge decomposition and the Poincaré lemma we easily obtain
the following well-known decomposition results for vector fields.

Corollary 10.69 Let Ω ⊂ R3 be contractible. Then any vector field X ∈
L2(Ω, R3) can be decomposed as

X = ∇p + curlY,

for a function p ∈ W 1,2
0 (Ω) and a vector field Y ∈ W 1,2(Ω, R3). If in

addition div X = 0, then p ≡ 0.

Proof. We can associate to X = (X1,X2,X3) the 1-form

ω =
3∑

i=1

Xidxi ∈ L2(Ω,∧1R3).
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By Theorem 10.66
ω = dα + δβ + h

with α ∈ W 1,2
0 (Ω), β ∈ W 1,2(Ω,∧2R3), h ∈ C∞ ∩ L2(Ω,∧1R3) and h

harmonic. By the Poincaré lemma we can also write h = δH, hence

ω = dα + δ(β + H). (10.103)

Write

β + H =: γ = γ1dx2 ∧ dx3 + γ2dx3 ∧ dx1 + γ3dx1 ∧ dx2.

We obtain

δγ =
(

∂γ3

∂x2
− ∂γ2

∂x3

)
dx1 +

(
∂γ1

∂x3
− ∂γ3

∂x1

)
dx2 +

(
∂γ2

∂x1
− ∂γ1

∂x2

)
dx3,

hence setting
p = α, and Y = (−γ1,−γ2,−γ3)

and switching back to vector fields in (10.103) we obtain

X = ∇p + curlY.

If div X = 0, then since div(curlY ) = 0 we also infer Δp = 0, hence since
p = 0 on ∂Ω we have p ≡ 0. �

Corollary 10.70 Let Ω ⊂ R2 be contractible. Then any vector field X ∈
L2(Ω) can be decomposed as

X = ∇p +∇⊥ξ,

for functions p ∈ W 1,2
0 (Ω) and ξ ∈ W 1,2(Ω). If in addition div X = 0,

then p ≡ 0.

Proof. As in the proof of Corollary 10.69 we write

ω := X1dx1 + X2dx2 = dα + δβ + h = dα + δγ

with
α ∈W 1,2

0 (Ω), γ = γ0dx1 ∧ dx2 ∈W 1,2(Ω,∧2R2).

Then
δγ = −∂γ0

∂x2
dx1 +

∂γ0

∂x1
dx2.

Switching back to vector fields we can choose p = α and ξ = γ0.
As before, if div X = 0, then Δp = 0, hence p ≡ 0. �
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Corollary 10.71 Assume that X ∈ Lp(Ω, Rn) for some p ∈ (1,∞) is a
vector field in a contractible domain Ω ⊂ Rn (not necessarily bounded),
and that curlX = 0, i.e

∂Xi

∂xj
− ∂Xj

∂xi
= 0 weakly for 1 ≤ i < j ≤ n.

Then we can write X = ∇α for some function α ∈W 1,p
loc (Ω).

Proof. Writing

ω :=
n∑

i=1

Xidxi ∈ Lp(Ω,∧1Rn),

the condition curlX = 0 is equivalent to dω = 0. Then by the Poincaré
lemma we can find α ∈W 1,p

loc (Ω) such that ω = dα, i.e. X = ∇α. �



Chapter 11
A survey of minimal graphs

In this chapter we shall discuss minimal graphs, i.e. graphs whose area has
vanishing first variation. After introducing the variational equations, we
shall work on the existence of minimal graphs with prescribed boundary
(Plateau problem), their uniqueness, stability and regularity in codimen-
sion 1.

In higher codimension we shall only discuss the regularity theory. In
particular we shall prove that any area-decreasing Lipschitz minimal graph
is smooth. This result of M-T. Wang is based on the regularity theorem of
Allard and a Bernstein-type theorem for area-decreasing minimal graphs.

Some relevant facts in the theory of abstract and rectifiable varifolds
shall be collected in the last section.

11.1 Geometry of the submanifolds of Rn+m

Let us recall a few facts about submanifolds of Rn+m, and introduce the
concepts of minimal submanifold and minimal graph.

11.1.1 Riemannian structure and Levi-Civita connec-
tion

Given a Riemannian manifold (M,g), a Levi-Civita connection on M is
an application

∇ : T (M)× T (M)→ T (M),

where T (M) is the space of tangent vector fields on M , such that

1. ∇XY is C∞-linear in X: for every f, g ∈ C∞(M), X1,X2, Y ∈
T (M)

∇fX1+gX2Y = f∇X1Y + g∇X2Y ;
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2. ∇XY is R-linear in Y : for every a, b ∈ R, X,Y1, Y2 ∈ T (M)

∇X(aY1 + bY2) = a∇XY1 + b∇XY2;

3. it satisfies the Leibniz rule for the product: for every f ∈ C∞(M),
X,Y ∈ T (M)

∇X(fY ) = f∇X(Y ) + X(f)Y ;

4. it is torsion free: if [X,Y ] := XY − Y X, then

∇XY −∇Y X = [X,Y ], for every X,Y ∈ T (M);

5. it is compatible with the metric: for every X,Y,Z ∈ T (M)

DXg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ).

We recall without proof:

Theorem 11.1 Every Riemannian manifolds admits exactly one Levi-
Civita connection.

In what follows Rn+m has the usual Riemannian structure, in which
the scalar product of two vectors X,Y ∈ Rn+m is denoted by X · Y or
〈X,Y 〉. We identify Rn+m with its tangent space at any of its points. The
Levi-Civita connection ∇ of Rn+m is the flat connection. Let

{e1, . . . , en+m}
be an orthonormal basis of Rm+n; then ∇eiej = 0, for any i, j.

An n-dimensional submanifold Σ ⊂ Rn+m of class Cr, r ≥ 2, will be
seen as a Riemannian manifold with the metric induced by the ambient
space Rn+m. In other words the metric g on Σ is simply the restriction
of the metric of Rn+m on each tangent plane.

We denote by TΣ the tangent bundle of Σ, of class Cr−1, and for each
p ∈ Σ, TpΣ will be the tangent space to Σ at p. Similarly NΣ and NpΣ
will denote respectively the normal bundle and the normal space at p. In
the following {τ1, . . . τn} will always denote an orthonormal basis of TpΣ,
while {ν1, . . . , νm} will denote an orthonormal basis of NpΣ.

The Levi-Civita connection ∇Σ of Σ is simply the projection on TΣ
of the flat connection ∇ of Rn+m. More precisely:

Proposition 11.2 Let X,Y ∈ T (Σ) be tangent vector fields on Σ; given
X̃ and Ỹ , arbitrary extensions to a neighborhood of Σ in Rn+m of X and
Y , we have

∇Σ
XY = (∇X̃ Ỹ )T , (11.1)
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where (∇X̃ Ỹ )T is the orthogonal projection of ∇X̃ Ỹ onto the tangent
bundle TΣ.

Proof. Notice that ∇X̃ Ỹ does not depend on the extensions X̃ and Ỹ , see
Exercise 11.3. Then we shall simply write ∇XY instead of ∇X̃ Ỹ . Thanks
to the uniqueness of the Levi-Civita connection it suffices to prove that the
map (X,Y ) �→ (∇XY )T is a Levi-Civita connection. The C∞-linearity in
X, the R-linearity in Y and the Leibniz rule are obvious. Let’s show that
there is no torsion:

(∇XY )T − (∇Y X)T = (∇XY −∇Y X)T = [X,Y ]T = [X,Y ].

Finally, let’s verify the compatibility with the metric:

DXg(Y,Z) = g(∇XY,Z)+g(X,∇Y Z) = g((∇XY )T , Z)+g(X, (∇Y Z)T ).

�

Exercise 11.3 Show that given X, Y ∈ T (Σ), ∇XY does not depend on the

choice of the extensions X̃ and Ỹ .

[Hint: prove that ∇X̃ Ỹ (p) depends only on X(p) and the value of Y on the
image of any curve γ : (−ε, ε) → Rn+m with γ(0) = p, γ̇(0) = X.]

11.1.2 The gradient, divergence and Laplacian
operators

In what follows Σ will be a submanifold of class C1 at least, although
assuming that Σ is a rectifiable set would suffice in most cases, see Section
11.4.1.

Given a C1 function f : Σ→ R and X ∈ TpΣ, define

DXf(p) =
d

dt

∣∣∣∣
t=0

f(γ(t)),

where γ : (−ε, ε)→ Σ is any C1-curve satisfying γ(0) = p and γ̇(0) = X.
The gradient on Σ of f in p is defined by

∇Σf(p) :=
n∑

j=1

(Dτj f(p))τj ,

for any orthonormal basis {τj}j=1,...,n of TpΣ.
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Exercise 11.4 Prove that ∇Σf(p) does not depend on the particular orthonor-
mal basis {τj}j=1,...,n of TpΣ chosen.

Exercise 11.5 Prove that if f is defined in a neighborhood of p in Rn+m, then

∇Σf(p) = (∇f(p))T ,

where ∇f(p) =
∑n+m

j=1
∂f
∂xj (p)ej , and {ej}j=1,...,n+m is the orthonormal basis of

Rn+m corresponding to the coordinates {xj}j=1,...,n+m, i.e. ej = ∂
∂xj .

Given a chart ϕ : V ⊂ Σ→ Rn, and the corresponding local parametriz-
ation F = ϕ−1, we have

∇Σf =
n∑

i,j=1

gij ∂f

∂xi

∂F

∂xj
, (11.2)

where
∂

∂xi
f(p) =

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)), gij =
∂F

∂xi
· ∂F

∂xj

and (gij) is the inverse matrix of (gij).

The divergence on Σ of a vector field (not necessarily tangent to Σ)

X =
n+m∑
j=1

Xjej ∈ C1(Σ, Rn+m)

is defined by

divΣ X :=
n+m∑
j=1

ej · (∇ΣXj) =
n∑

i=1

(DτiX) · τi. (11.3)

In local coordinates, setting g := det(gij), we have

divΣ X =
1√
g

∂

∂xi
(
√

gXi), (11.4)

where we wrote
X =

∑
i=1n

Xi ∂F

∂xi
.

The Laplacian on Σ of a function f ∈ C2(Σ) is defined as

ΔΣf := divΣ(∇Σf);

this may be written in local coordinates inserting (11.2) into (11.4):

ΔΣf =
1√
g

∂

∂xi

(√
ggij ∂f

∂xj

)
. (11.5)
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11.1.3 Second fundamental form and mean curvature

Let N (Σ) denote the vector space of normal vector fields on Σ, NΣ the
normal bundle of Σ and NpΣ the normal space to Σ at p.

Definition 11.6 (Second fundamental form) The second fundamental
form of Σ

h : T (Σ)× T (Σ)→N (Σ)

is the normal part of the connection of Rn+m in the following sense: given
X,Y ∈ T (Σ)

h(X,Y ) := (∇XY )N .

As before, we need to extend X and Y to a neighborhood of Σ, compare
Exercise 11.3.

Proposition 11.7 The second fundamental form h:

(i) is symmetric: h(X,Y ) = h(Y,X);

(ii) is C∞-linear in both variables;

(iii) h(X,Y )(p) depends only on X(p) and Y (p).

In particular h is well defined as a family of bilinear applications

hp : TpΣ× TpΣ→ NpΣ.

Proof. Since for X,Y ∈ T (Σ) we have [X,Y ] ∈ T (Σ), we have

h(X,Y )− h(Y,X) = (∇XY −∇Y X)N = [X,Y ]N = 0,

hence h is symmetric.
To prove (ii), observe that h is the difference of two connections:

h(X,Y ) = ∇XY −∇Σ
XY,

hence it is C∞-linear in X. By symmetry, h is also C∞-linear in Y .
Finally, both∇XY (p) and∇Σ

XY (p) depend only on Y and X(p), hence
also (iii) follows by symmetry. �

Definition 11.8 (Mean curvature) The mean curvature H of Σ is the
trace of the second fundamental form:

H(p) :=
n∑

i=1

hp(τi, τi)

for any orthonormal basis {τi} of TpΣ.
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Exercise 11.9 If {v1, . . . , vn} is an arbitrary basis of TpΣ, then

H(p) =
n∑

i,j=1

gij(p)hp(vi, vj), (11.6)

where, as usual gij(p) := g(vi, vj) and (gij) = (gij)
−1.

Let F : Ω → Σ be a local parametrization of Σ at p, that is a dif-
feomorphism of Ω (as regular as Σ) onto a neighborhood of p. Then F
induces a basis of TpΣ, given by{

∂F

∂xi

}
i=1,...,n

.

Since

∇ ∂F
∂xi

∂F

∂xj
=

∂2F

∂xi∂xj
,

from (11.6) we infer

H(p) =
( n∑

i,j=1

gij(p)
∂2F

∂xi∂xj
(F−1(p))

)N

, (11.7)

where gij := ∂F
∂xi · ∂F

∂xj .

Lemma 11.10 (Derivative of a determinant) Let

g(s) := det(gij(s)),

where (gij(s)) is a family of square matrices differentiable with respect to
s. Then

∂g

∂s
= ggij ∂gij

∂s
. (11.8)

The proof is left for the reader.

Proposition 11.11 Let F : Ω → Σ be a local parametrization at p of
class C2. Then

H(p) = ΔΣF (p), (11.9)

where the Laplacian of F = (F 1, . . . , Fn+m) is defined componentwise.

Proof. We first prove that ΔΣF (p) is orthogonal to TpΣ. Thanks to (11.5)
we have

ΔΣF · ∂F

∂xk
=

1√
g

∂

∂xi

(√
ggij ∂F

∂xj
· ∂F

∂xk

)− gij ∂F

∂xj
· ∂2F

∂xi∂xk
.
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On the other hand, (11.8) and the symmetry of g yield

1√
g

∂

∂xi

(√
ggij ∂F

∂xj
· ∂F

∂xk

)
=

1√
g

∂

∂xi

(√
ggijgjk

)
=

1√
g

∂
√

g

∂xk

=
1
2
gij ∂

∂xk

( ∂F

∂xi
· ∂F

∂xj

)
= gij ∂2F

∂xk∂xi
· ∂F

∂xj
.

Therefore
ΔΣF · ∂F

∂xk
= 0.

Since k is arbitrary we conclude that ΔΣF is orthogonal to Σ.
To prove (11.9) write the Laplacian in coordinates and differentiate:

ΔΣF =
1√
g

∂

∂xi

(√
ggij ∂F

∂xj

)
=

1√
g

∂

∂xj

(√
ggij

) ∂F

∂xj
+ gij ∂2F

∂xi∂xj
.

The first term on the right-hand side is tangent, and by (11.7) we get

ΔΣF = (ΔΣF )N =
(
gij ∂2F

∂xi∂xj

)N

= H.

�

11.1.4 The area and its first variation

We define the area A(Σ) of an n-dimensional submanifold Σ as its n-
dimensional Hausdorff measure, i.e. A(Σ) := Hn(Σ), compare Definition
9.20. It can be expressed in terms of local parametrizations thanks to the
area formula, compare [32], [49].

Theorem 11.12 (Area formula) Let F : Ω→ Rn+m be a locally Lipschitz
and injective map of an open set Ω ⊂ Rn into Rn+m. Let Σ be the image
of F ; then

Hn(Σ) =
∫

Ω

√
det(dF ∗(x)dF (x))dx, (11.10)

where dF ∗ : Rn+m → Rn is the transposed of the matrix dF =
(

∂F i

∂xα

)
.

If gij := ∂F
∂xi · ∂F

∂xj , we have

(dF ∗dF )ij =
n+m∑
α=1

∂Fα

∂xi

∂Fα

∂xj
= gij .

Therefore if g := det gij , we have

A(Σ) =
∫

Ω

√
g(x)dx. (11.11)
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In particular,
√

gdx is the area element of Σ, hence, given an Hn Σ-
integrable function f , we have∫

Σ

fdHn =
∫

Ω

f(F (x))
√

g(x)dx.

Exercise 11.13 (Area of a graph in codimension 1) Show that if

F (x) = (x, u(x)),

with x ∈ Ω ⊂ Rn and u : Ω → R locally Lipschitz continuous, then

dF ∗dF = (δij + uxiuxj ),

and
det(dF ∗dF ) = 1 + |∇u|2,

so that for Σ := F (Ω) we have

Hn(Σ) =

∫
Ω

√
1 + |∇u|2dx.

Exercise 11.14 (Area of a graph in dimension and codimension 2)
Show that if

F (x, y) = (x, y, u(x, y), v(x, y)), (x, y) ∈ Ω ⊂ R2,

with u, v : Ω → R locally Lipschitz continuous, then

dF ∗dF =

(
1 + u2

x + v2
x uxuy + vxvy

uxuy + vxvy 1 + u2
y + v2

y

)
, (11.12)

and use (11.12) to prove that

det(dF ∗dF ) = 1 + |dU |2 + (det(dU))2,

where U := (u, v) : Ω → R2, so that for Σ := F (Ω) we have

H2(Σ) =

∫
Ω

√
1 + |dU |2 + (det(dU))2dx.

Definition 11.15 Given a Lipschitz and injective map

F : Ω ⊂ Rn → Rn+m,

a variation of Σ := F (Ω) is a family of diffeomorphisms

ϕt : Rn+m → Rn+m, t ∈ (−1, 1)

such that

1. ϕ(t, x) := ϕt(x) is of class C2 in (−1, 1)× Rn+m;
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2. there exists a compact set K non intersecting ∂Σ := F (∂Ω) (possibly
∂Σ = ∅) such that ϕt(x) = x for each x /∈ K and t ∈ (−1, 1);

3. ϕ0(x) = x for each x ∈ Rn+m.

We shall set Σt := ϕt(Σ) and X := ∂ϕt

∂t

∣∣
t=0
∈ C1(Rn+m, Rn+m).

Proposition 11.16 Let F , Σ and Σt be as in the preceding definition.
Then

d

dt
A(Σt)

∣∣∣
t=0

= −
∫

Σ

ΔΣF ·XdHn, (11.13)

where, since F can be differentiated only once, the Laplacian is intended
in the weak sense:

−
∫

Σ

ΔΣF ·XdHn = −
∫

Ω

1√
g

∂

∂xj

(√
ggij ∂Fα

∂xj

)
Xα ◦ F

√
gdx

:=
∫

Ω

√
ggij ∂Fα

∂xj

∂(Xα ◦ F )
∂xi

dx

=
∫

Σ

gij ∂Fα

∂xj

∂(Xα ◦ F )
∂xi

dHn.

Proof. Write the Taylor expansion

ϕt(y) = y + tX(y) + o(t). (11.14)

To differentiate the area formula (11.11) we set

Ft(x) = ϕt(F (x)), gt
ij =

∂Ft

∂xi
· ∂Ft

∂xi
,

and obtain with (11.8)

d

dt
A(Σt) =

d

dt

∫
Ω

√
gtdx

=
∫

Ω

∂
√

gt

∂t
dx

=
∫

Ω

1
2
√

g

(
ggij

∂gt
ij

∂t

)
dx,

(11.15)

where the derivatives with respect to t are evaluated at t = 0 and g = g0.
To compute ∂gt

ij

∂t we observe that, thanks to (11.14),

∂ϕt(F (x))
∂xi

=
∂F

∂xi
+ t

∂X

∂xi
+ o(t)
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and substituting into (11.15) yields∫
Ω

1
2
√

g

(
ggij

∂gt
ij

∂t

∣∣∣∣
t=0

)
dx

=
∫

Ω

1
2
√

ggij ∂

∂t

{(
∂F

∂xi
+ t

∂X

∂xi
+ o(t)

)
·
(

∂F

∂xj
+ t

∂X

∂xj
+ o(t)

)}∣∣∣∣
t=0

dx

=
∫

Ω

1
2
√

ggij

{
∂X(F (x))

∂xi
· ∂F

∂xj
+

∂F

∂xi
· ∂(X(F (x))

∂xj

}
dx.

Due to the symmetry of gij the last term becomes∫
Ω

√
ggij ∂X(F (x))

∂xi
· ∂F

∂xj
dx = −

∫
Σ

ΔΣF ·XdHn, (11.16)

and we conclude. �

Proposition 11.17 Let Σ, ϕt and X be as in Proposition 11.16. Then

d

dt
A(Σt)

∣∣∣
t=0

=
∫

Σ

divΣ XdHn.

Proof. Let {v1, . . . , vn} be a basis of TpΣ, and set gij = vi ·vj . By linearity

divΣ X = gij∇viX · vj .

Consequently, choosing a local parametrization F in p, and setting vi :=
∂F
∂xi and using ∇ ∂F

∂xi
X = ∂(X◦F )

∂xi we obtain

divΣ X = gij ∂X(F (x))
∂xi

· ∂F

∂xj
.

We conclude by comparison with (11.16). �

In fact we have proven that∫
Σ

divΣ XdHn = −
∫

Σ

ΔΣF ·XdHn

whenever F : Ω → Rn+m parametrizes Σ and X vanishes in a neighbor-
hood of ∂Σ.

First variation and mean curvature

The first variation of the area of a submanifold Σ and the mean curvature
of Σ are closely related, as the following proposition shows.
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Proposition 11.18 Let Σ be a C2 submanifold and let ϕt be as in Defin-
ition 11.15; set X := ∂ϕ

∂t

∣∣∣
t=0

, Σt := ϕt(Σ). Then the first variation of the
area of Σ with respect to ϕ is

d

dt
A(Σt)

∣∣∣
t=0

= −
∫

Σ

H ·XdHn. (11.17)

Proof. Insert (11.9) into Proposition 11.16. �

Definition of minimal surface

In the following an n-dimensional Lipschitz submanifold Σ of Rn+m will
be the image of a Lipschitz maps F : Ω ⊂ Rn → Rn+m which is injective
and such that the rank of dF (x) is n for a.e. x ∈ Ω. By ∂Σ := F (∂Ω) we
denote the boundary of Σ. Notice that the condition on the rank of dF
is always satisfied when F (x) = (x, u(x)) parametrizes a graph, which is
the case we shall focus on.

Definition 11.19 (Minimal surface) Let Σ be a Lipschitz n-dimensio-
nal submanifold of Rn+m. We shall say that Σ is minimal if for every
variation ϕt defined as in 11.15, we have

d

dt

∣∣∣
t=0
A(Σt) = 0.

Thanks to Propositions 11.16, 11.17 and 11.18, we have the following
characterization of minimal surfaces.

Proposition 11.20 Given a Lipschitz submanifold Σ of Rn+m, the fol-
lowing facts are equivalent:

1. Σ is minimal;

2. for every vector field X ∈ C1
c (Rn+m, Rn+m) such that X = 0 in a

neighbourhood of ∂Σ ∫
Σ

divΣ XdHn = 0;

3. for any local parametrization F : Ω→ Σ we have ΔΣF = 0.

Moreover, if Σ is of class C2, the preceding statements are equivalent to
H = 0.
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Proof. For every vector field X ∈ C1
c (Rn+m, Rn+m) vanishing in a neigh-

borhood of ∂Σ we may find a family of diffeomorphisms ϕt as in Definition
11.15 satisfying ∂ϕt

∂t

∣∣
t=0

= X. For instance the solution ϕ of⎧⎪⎨⎪⎩
∂ϕ(t, x)

∂t
= X(x)

ϕ(0, x) = 0,

which exists for small times thanks to ODE theory. Then the equivalence
of 1, 2, and 3 follows from Propositions 11.16 and 11.17.

The last claim is an immediate consequence of Proposition 11.18. �

The minimal surface system

Consider a parametrization F : Ω → Rn+m of a Lipschitz submanifold
Σ ⊂ Rn+m. Thanks to Proposition 11.20, Σ is minimal if and only if F
satisfies the following system, called minimal surface system:

n∑
i,j=1

∂

∂xi

(√
ggij ∂Fα

∂xj

)
= 0, α = 1, . . . , n + m, (11.18)

where g = det(gij), gij = ∂F
∂xi · ∂F

∂xj and (gij) = (gij)−1.
A non-parametric Lipschitz surface Σ is by definition the graph

Gu := {(x, u(x)) : x ∈ Ω}
of a Lipschitz function u : Ω→ Rm. Clearly Gu can be parametrized by

F : Ω→ Rn+m, F (x) = (x, u(x)).

In this case, the minimal surface system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

∂

∂xi

(√
ggij

)
= 0 j = 1, . . . , n

n∑
i,j=1

∂

∂xi

(√
ggij ∂uα

∂xj

)
= 0 α = 1, . . . ,m

gij := δij +
m∑

α=1

∂uα

∂xi

∂uα

∂xj
(gij) := (gij)−1.

(11.19)

If u ∈ C2(Ω, Rm), then the system (11.19) reduces to a quasilinear elliptic
system in non-divergence form, as shown in the following proposition.

Proposition 11.21 Let u ∈ C2(Ω, Rm). Then (11.19) is equivalent to
n∑

i,j=1

gij ∂2uα

∂xi∂xj
= 0, α = 1, . . . ,m, (11.20)

where gij = gij(Du) is as in (11.19).
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Proof. Assume (11.20) and set F (x) = (x, u(x)). Then

ΔΣF =
1√
g

∂

∂xi
(
√

ggij)
∂F

∂xj
+ gij ∂2F

∂xi∂xj
.

The last term vanishes by (11.20) and because clearly ∂2xk

∂xi∂xj = 0 for
k = 1, . . . , n. Since ΔΣF ∈ NΣ and 1√

g
∂

∂xi (
√

ggij) ∂F
∂xj ∈ TΣ, they both

vanish, whence ΔΣF = 0.
Conversely, if (11.19) holds and u is C2, then, thanks to Proposition

11.20, H = 0, and we use (11.7) to conclude. �

11.1.5 Area-decreasing maps

The area-decreasing condition will be useful when dealing with the regu-
larity theory for minimal surfaces. Let us first recall

Proposition 11.22 (Singular-value decomposition)
Let L ∈ M(m × n) be any m × n matrix. Then there exist orthogonal
matrices U ∈ O(m) and V ∈ O(n), such that B := ULV ∈ M(m× n) is
a diagonal matrix, i.e. B = {λαi}i=1,...,n

α=1,...,m, with λαi = 0 whenever α �= i.

For the proof of this proposition, the reader can refer to e.g. [70].

Remark 11.23 We can always assume that λαi ≥ 0, as changing the
sign of the basis vectors corresponds to an orthogonal transformation.

The numbers λi := λii in Proposition 11.22 are called singular values
of L. They are the square roots of the eigenvalues of LtL: indeed we can
diagonalize LtL as follows:

V tLtLV = V tLtU tULV = BtB = diag{λ2
1, . . . , λ

2
n},

where if n > m we set λi := 0 for n < i ≤ m.

Exercise 11.24 Let u : Ω → Rm be a Lipschitz map and let λ1(x), . . . , λn(x)
be the singular values of du(x) : Rn → Rm. Show that

A(Gu) =

∫
Ω

√∏n
i=1(1 + λ2

i (x))dx. (11.21)

[Hint: Use (11.10).]

Definition 11.25 (Area-decreasing map) Let u : Ω→ Rm be a Lipschitz
map. Let {λi(x)}i=1,...,n be the singular values of du(x). We shall say that
u is area-decreasing if there exists ε > 0 such that for a.e. x ∈ Ω we have

λi(x)λj(x) ≤ 1− ε, 1 ≤ i < j ≤ n. (11.22)
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The name area-decreasing comes from the following geometric fact:
consider du(x) restricted to a 2 dimensional subspace V of Rn. Then for
each A ⊂ V with H2(A) <∞ we have H2(du(x)(A)) < H2(A).

Remark 11.26 A scalar function u : Ω → R is always area-decreasing.
This follows immediately from the definition because the nonzero singular
values of du(x) correspond to a basis of the image of du(x), therefore there
is at most one of them.

11.2 Minimal graphs in codimension 1

11.2.1 Convexity of the area; uniqueness and stability

The area functional in codimension 1 is

A(u) =
∫

Ω

√
1 + |Du|2dx, (11.23)

compare Exercise 11.13 and (11.21).

Proposition 11.27 (Convexity) The area functional A : Lip(Ω) → R
in codimension 1 is strictly convex, that is

A(λu + (1− λ)v) ≤ λA(u) + (1− λ)A(v), (11.24)

for every u, v ∈ Lip(Ω) and λ ∈ (0, 1) and equality holds if and only if
u = v + c for some c ∈ R.

Proof. The function f(t) =
√

1 + t2, t ∈ R, is strictly convex, as

f ′′(t) =
1

(1 + t2)
3
2

> 0,

and it follows easily that the function

p �→
√

1 + |p|2, p ∈ Rn

is strictly convex. Then inequality in (11.24) follows at once, with identity
if and only if du = dv a.e., hence if and only if u− v is constant. �

Remark 11.28 Convexity is a major property of the area functional in
codimension 1. In fact we shall see that uniqueness and stability of min-
imal graphs in codimension 1 (which do not hold in higher codimension
as shown by Lawson and Osserman [68]) come from convexity.
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Uniqueness and minimizing properties

Theorem 11.29 The graph of a Lipschitz solution u : Ω → R of the
minimal surface system (11.19) minimizes the area among the graphs of
Lipschitz functions v such that

v|∂Ω = u|∂Ω =: ψ.

Moreover u is the unique solution to the minimal surface equation
n∑

i=1

Di
Diu√

1 + |Du|2 = 0, (11.25)

with prescribed boundary data u|∂Ω = ψ.

Proof. Step 1. The minimal surface system implies that the first variation
of the area of the graph Gu vanishes. In particular, for a given function
ϕ ∈ C1

c (Ω) (or in fact ϕ ∈ Lip(Ω) with ϕ|∂Ω = 0) we have

0 =
d

dt

∣∣∣∣
t=0

A(u + tϕ)

=
∫

Ω

∂

∂t

√
1 + |Du + tDϕ|2dx

= −
∫

Ω

n∑
i=1

DiuDiϕ√
1 + |Du|2 dx,

which is the minimal surface equation (11.25).

Step 2. Equation (11.25) means that u is a critical point for the area
functional. On the other hand convexity implies

A(v) ≥ A(u)+
d

dt

∣∣∣∣
t=0

A(u+t(v−u)) = A(u), ∀v ∈ Lip(Ω), v
∣∣
∂Ω

= u
∣∣
∂Ω

.

Step 3. Uniqueness follows at once by the strict convexity of A. �

Remark 11.30 In fact one can also show that a Lipschitz solution u of
(11.25) also solves (11.19).

Stability under parametric deformations

Theorem 11.31 Let u : Ω → R be a Lipschitz solution to the minimal
surface equation (11.25). Then:

1. if Ω is homologically trivial (for instance, Ω convex, star-shaped or
contractible; in fact we only need Hn(Ω) = 0), then the graph of u
minimizes the area among every Lipschitz submanifold Σ ⊂ Ω × R
having the same boundary;
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2. if Ω is convex, then the graph of u minimizes the area among the
Lipschitz submanifolds Σ ⊂ Rn+1 having the same boundary.

The proof is based on the existence of a calibration, that is an exact
n-form ω of absolute value at most 1, whose restriction to Gu is the area
form.

Proposition 11.32 (Calibration) Let ω ∈ L∞(Ω× R;
∧n Rn+1) be an

exact n-form in Ω×R, such that |ω| ≤ 1. Let Σ0 ⊂ Ω×R be a Lipschitz
submanifold and assume that ω

∣∣
Σ0

is the volume form of Σ0. Then Σ0

has least area among all Lipschitz submanifolds Σ ⊂ Ω × R such that
∂Σ = ∂Σ0.

Proof. Let η ∈ W 1,∞(Ω × R;
∧n−1 Rn+1) be an n − 1 form such that

dη = ω. Let Σ be as in the statement of the proposition; then, by Stokes’
theorem and since the two submanifolds have the same boundary,∫

Σ−Σ0

ω =
∫

∂Σ−∂Σ0

η = 0.

On the other hand, since |ω| ≤ 1, and ω
∣∣
Σ0

is the volume form of Σ0,

A(Σ) ≥
∫

Σ

ω =
∫

Σ0

ω = A(Σ0).

�

Proof of Theorem 11.31. Define in Ω× R the calibration form

ω(x, y) :=

(∑n
i=1(−1)n+i−1Diu(x)d̂xi ∧ dy

)
+ dx1 ∧ · · · ∧ dxn√

1 + |Du|2 ,

where
d̂xi := dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn.

By the minimal surface equation (11.25) dω = 0; since Ω× R is homolo-
gically trivial, ω is also exact. Moreover |ω| = 1 and the restriction of ω to
Gu is the volume form of Gu, thus ω is a calibration for Gu and Proposition
11.32 applies.

The second claim follows from the first one: consider Σ ⊂ Rn+1 with
∂Σ = ∂Gu. The closest point projection π : Rn+1 → Ω × R doesn’t
increase the area and fixes the boundary. By part 1

A(Σ) ≥ A(π(Σ)) ≥ A(Gu).

�
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Remark 11.33 The topological hypothesis (or at least some kind of hy-
pothesis) on Ω is necessary: R. Hardt, C. P. Lau and Fang-Hua Lin [55]
proved the existence of a solution of the minimal surface equation whose
graph doesn’t minimize the area among the n-submanifolds of Rn+1 hav-
ing the same boundary.

11.2.2 The problem of Plateau: existence of minimal
graphs with prescribed boundary

Finding a minimal graph with prescribed boundary is equivalent to solv-
ing the Dirichlet problem for the minimal surface system (11.20). In
codimension one that is⎧⎪⎪⎨⎪⎪⎩

n∑
i,j=1

gij ∂2u

∂xi∂xj
= 0 in Ω

u = ψ on ∂Ω,

(11.26)

with, say, ψ ∈ C∞(∂Ω), and

gij = gij(Du) = δij − DiuDju

1 + |Du|2 .

The counterexample of Bernstein seen in section 2.3 shows that finding
minimal graphs on arbitrary domains and for any boundary value is not
possible in general. In fact by Theorem 2.20 a necessary condition to
have existence for any boundary value is that the mean curvature of ∂Ω
be non-negative. The next theorem proves that this condition is also
sufficient.

Theorem 11.34 (Jenkins-Serrin [62]) Let Ω be a smooth, bounded,
connected domain whose boundary has nonnegative mean curvature. Then
for each ψ ∈ C2,α(Ω), there exists a unique function u ∈ C∞(Ω)∩C2,α(Ω)
solving the Dirichlet problem for the minimal surface equation (11.26).

Remark 11.35 Equation (11.26) is quasilinear and elliptic. On the other
hand, it is not uniformly elliptic since the ellipticity constant λ > 0 in

gij(p)ξiξj ≥ λ|ξ|2, ∀ξ, p ∈ Rn.

depends on |p|. In fact

1
1 + η

|ξ|2 ≤ gij(Du(x))ξiξj ≤ |ξ|2, η := sup
Ω
|Du|2, (11.27)

for all ξ ∈ Rn.
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To prove Theorem 11.34, we shall use the fixed point theorem of
Caccioppoli-Schauder, which we recall without proof, see e.g. [47].

Theorem 11.36 Let T : K → K be a completely continuous operator1

which sends a non-empty, convex, closed, bounded subset K of a Banach
space B into itself. Then T has a fixed point, meaning that there exists
x ∈ K such that T (x) = x.

Proposition 11.37 Consider a completely continuous Banach-space op-
erator T : B → B and M > 0 such that for each pair (σ, u) ∈ [0, 1] × B
satisfying u = σT (u) we have ‖u‖ < M . Then T has a fixed point.

Proof. Let K = {u ∈ B | ‖u‖ ≤M} and define the operator on B

T (u) :=

⎧⎪⎨⎪⎩
T (u) if T (u) ∈ K

M
T (u)
‖T (u)‖ if T (u) ∈ B\K.

Then T sends K into itself, hence by Theorem 11.36, it has a fixed point
u ∈ K. Were ‖T (u)‖ ≥M , we would have

u =
M

‖T (u)‖T (u),
M

‖T (u)‖ ∈ [0, 1], (11.28)

thus ‖u‖ < M by hypothesis, absurd because (11.28) implies that ‖u‖ =
M . So ‖T (u)‖ < M and T (u) = T (u) = u. �
Proof of Theorem 11.34. Uniqueness follows from Theorem 11.29 (com-
pare Lemma 11.40 below). We will prove the existence of a solution
u ∈ C2,α(Ω), but then by Schauder estimates (Theorem 5.20) we will
have u ∈ C∞(Ω) ∩ C2,α(Ω).

On the Banach space B = C1,α(Ω), consider the operator T̃ which
associates to a function u ∈ C1,α(Ω) the unique solution v ∈ C2,α(Ω) to
the Dirichlet problem⎧⎪⎨⎪⎩

n∑
i,j=1

gij(Du)
∂2v

∂xi∂xj
= 0 in Ω

v = ψ on ∂Ω,

(11.29)

which exists thanks to Theorem 5.25 and is bounded, i.e. sets bounded
sets into bounded sets, thanks to Theorem 5.23. The inclusion operator
π : C2,α(Ω) ↪→ C1,α(Ω) is compact thanks to Ascoli-Arzelà’s theorem.2

1Continuous and sending bounded sets into relatively compact sets; we do not
assume T to be linear.

2We are using
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Therefore the operator

T := π ◦ T̃ : C1,α(Ω)→ C1,α(Ω)

sends bounded sets into relatively compact sets. We want to show that T
is continuous. Consider the sequences

u(k) C1,α−−−→ u, v(k) := T̃ u(k).

Given a subsequence u(k′), thanks to the compactness of the immersion

C2,α(Ω) ↪→ C2(Ω),

there exists a sub-subsequence u(k′′) such that

v(k′′) C2−−→ v

Also v solves (11.29), as the following diagram explains:

gij(Du(k′′))Dijv
(k′′)= 0

C0,α

⏐⏐; ⏐⏐;C0

gij(Du) Dijv = 0

(the sum over i and j is understood) and by uniqueness we have v = Tu.
The arbitrariness in the choice of the first subsequence implies

Tu(k) C1,α−−−→ Tu,

whence the continuity.
The proof of the theorem will be completed if we can show that T

has a fixed point. By Proposition 11.37, it only remains to prove that
T satisfies the following a priori estimate: there exists M > 0 such that
‖u‖C1,α(Ω) < M whenever u = σT (u) for some σ ∈ (0, 1). This is the
content of the following section. �

Corollary 11.38 The immersion Cr,α(Ω) → Cr(Ω), 0 < α ≤ 1, r ∈ N, is compact.

Proof. Let uj be bounded in Cr,α(Ω), that is ‖uj‖r,α ≤ M for some M > 0. Then the
derivatives of highest order are equicontinuous thanks to the estimate

|Dr
j (x) − Dr

j (y)| ≤ K|x − y|α, ∀j ∈ N, x, y ∈ Ω.

Moreover the lower order derivatives are equicontinuous by boundedness of the highest
order derivatives and we may apply the theorem of Ascoli and Arzelà to each derivat-
ive. �
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11.2.3 A priori estimates

This section is devoted to prove the following a priori estimate.

Theorem 11.39 Let Ω be bounded, smooth, connected, and assume that
the mean curvature of ∂Ω is everywhere non-negative. Let ψ ∈ C2(Ω).
Then there exists a constant C = C(ψ,Ω) such that any solution u ∈
C2(Ω) of ⎧⎪⎨⎪⎩

n∑
i,j=1

gij(Du)
∂2u

∂xi∂xj
= 0 in Ω

u = σψ on ∂Ω.

(11.30)

satisfies ‖u‖C1,α(Ω) < C.

This will be obtained in four steps: we shall estimate

1. supΩ |u|
2. sup∂Ω |Du|
3. supΩ |Du|
4. ‖u‖1,α

The first step is a simple application of the maximum principle:

sup
Ω

|u| ≤ sup
∂Ω
|σψ| ≤ sup

∂Ω
|ψ|,

see e.g. Exercise 1.4.

Gradient estimates

To obtain an estimate of the gradient on the boundary we use barriers,
already introduced in Chapter 2. Here is where the assumption on the
mean curvature of ∂Ω plays a crucial role.

Lemma 11.40 Let u, v ∈ C2(Ω) ∩ C0(Ω) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i,j=1

gij(Du)
∂2u

∂xi∂xj
= 0 in Ω,

n∑
i,j=1

gij(Dv)
∂2v

∂xi∂xj
≤ 0 in Ω,

u ≤ v on ∂Ω.

(11.31)

Then u ≤ v on all of Ω.
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Proof. By the mean value theorem of Lagrange there exists ξ ∈ (0, 1) such
that

gij(Du) = gij(Dv) +
n∑

k=1

∂gij

∂pk
(ξDv + (1− ξ)Du)

( ∂u

∂xk
− ∂v

∂xk

)
.

Subtracting in the previous system and setting w := v − u we get⎧⎪⎪⎨⎪⎪⎩
n∑

i,j=1

gij(Dv)
∂2w

∂xi∂xj
+

n∑
k=1

bk ∂w

∂xk
≤ 0 in Ω

w ≥ 0 on ∂Ω

to which the maximum principle, Exercise 1.4, applies. Hence w ≥ 0
in Ω. �

Proposition 11.41 Let Ω be such that ∂Ω has everywhere nonnegative
mean curvature. Then there exists a constant C = C(Ω, ψ) such that
every C2-solution of (11.30) satisfies

sup
Ω

|Du| ≤ C.

Proof. First we prove that sup∂Ω |Du| ≤ C for a suitable C = C(ψ,Ω).
Let d : Ω→ R be the function distance from the boundary

d(x) := inf
y∈∂Ω

|x− y|,

and define

Nr :=
{
x ∈ Ω

∣∣ d(x) < r
}

, Γr := {x ∈ Ω | d(x) = r};

these domains are smooth for r small enough. Consider on Nr the barrier
v given by

v(x) = σψ(π(x)) + h(d(x)),

where π : Nr → ∂Ω is the closest point projection and h : [0, r] → R+ is
a C∞-function to be determined, which satisfies

h(0) = 0, h′(t) ≥ 1, h′′(t) ≤ 0, t ∈ [0, r]. (11.32)

With these choices we get

(1 + |Dv|2)
n∑

i,j=1

gij(Dv)Dijv ≤ h′′ + Ch′2 + h′3Δd.
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The behaviour of Δd is determined by the mean curvature of ∂Ω : if ∂Ω
has nonnegative mean curvature, then Δd ≤ 0,3 thus,

(1 + |Dv|2)
n∑

i,j=1

gij(Dv)Dijv ≤ h′′ + C(h′)2.

Now, setting h(d) = k log(1 + ρd), we may choose the constants k and
ρ independent of σ in such a way that conditions (11.32) are satisfied,
h(r) ≥ 2 sup∂Ω |ψ| ≥ 2 sup∂Ω |σψ| and h′′ + C(h′)2 ≤ . Then⎧⎪⎪⎨⎪⎪⎩

n∑
i,j=1

gij(Dv)
∂2v

∂xi∂xj
≤ 0 in Nr

v ≥ u on ∂Nr

Then, by Lemma 11.40, u ≤ v in Nr. Since u = v on ∂Ω, we obtain

u(x)− u(y)
|x− y| ≤ v(x)− v(y)

|x− y| , x ∈ Ω, y ∈ ∂Ω. (11.33)

The similar construction of a lower barrier, say w, yields the opposite
inequality, hence

−kρ = Dνw ≤ Dνu ≤ Dνv = kρ,

where Du =
(
D∂Ωu,Dνu

)
, and ν is the interior normal to ∂Ω. Taking

into account u = σψ on ∂Ω we have D∂Ωu = σD∂Ωψ, which together with
(11.33) gives

sup
∂Ω
|Du| ≤

√
sup
∂Ω
|Dψ|2 + (kρ)2,

and this estimate extends to the interior points thanks to the method of
Haar-Radò, Proposition 2.11. �

The C1,α(Ω) a priori estimates

To prove the a priori estimates in C1,α(Ω) we need a global (up to the
boundary) version of De Giorgi’s Theorem 8.13. That has been obtained
by O. Ladyžhenskaya and N. Ural’tseva [67]:

Theorem 11.42 Let w ∈W 1,2(Ω) be a weak solution of{
Dα(AαβDβw) = 0 in Ω,
w = ϕ on ∂Ω (11.34)

3See [50] or [52]
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where λ|ξ|2 ≤ Aαβξαξβ ≤ Λ|ξ|2 and ϕ ∈ Lip(Ω). Then w ∈ C0,α(Ω),
α = α(Ω, λ,Λ), and there is a constant C1 = C1(Ω, λ,Λ) such that

‖w‖C0,α(Ω) ≤ C1‖ϕ‖C0,α(Ω). (11.35)

We shall apply this theorem to the derivatives of the solution u of
(11.30), according to the following proposition.

Proposition 11.43 Set A(p) := p√
1+|p|2 , for p ∈ Rn and let u ∈ C2(Ω)

(or in fact just u ∈W 2,2
loc (Ω)) be a solution of the minimal surface equation

div A(Du(x)) = 0.

Then if we set w := Dsu (s = 1, . . . , n), we have

Dα(aαβDβw) = 0,

where aαβ(x) := Dpβ
Aα(Du(x)) = 1√

1+|Du|2
(
δαβ − DαuDβu

1+|Du|2
)

.

Proof. Differentiate the minimal surface equation with respect to xs. �

Corollary 11.44 In the hypothesis of Proposition 11.41, there exists a
constant M = M(Ω, ψ) such that

‖u‖C1,α(Ω) ≤M.

Proof. By Proposition 11.41, supΩ |Du| ≤ C, with C depending on Ω and
ψ; by Theorem 11.42 and Proposition 11.43,

‖Du‖C0,α(Ω) ≤ C1‖Dψ‖C0,α(Ω). (11.36)

The constant C1 depends on Ω, λ and Λ; by the ellipticity estimate (11.27),
we may choose Λ = 1 and

λ =
1

1 + sup |Du|2 ≥
1

1 + C
,

depending only on ψ and Ω. Putting together (11.36) and Proposition
11.41 we conclude. �

11.2.4 Regularity of Lipschitz continuous minimal
graphs

As a consequence of De Giorgi’s theorem, every Lipschitz solution to the
minimal surface equation is smooth.
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Theorem 11.45 Let u ∈ Lip(Ω) be a Lipschitz solution to the minimal
surface equation (11.25). Then u ∈ C∞(Ω).

Proof. Since |Du| ≤ C the function

A(p) =
p√

1 + |p|2

satisfies (8.5), at least for |p| ≤ supΩ |Du| ≤ C (the behavior of A(p) for
|p| > supΩ |Du| is of course irrelevant). Then by Proposition 8.6 we have
u ∈W 2,2

loc (Ω), and by Proposition 11.43 Dsu satisfies an elliptic equation,
whose ellipticity constant λ can be estimated as in Corollary 11.44. Then
by Theorem 11.42 we have Du ∈ C1,α

loc (Ω). The higher order regularity
follows from Schauder estimates, Theorem 5.20. �

Let us remark that a minimal surface (defined in a suitable generalized
sense) in codimension 1 which cannot be expressed locally as a Lipschitz
graph (for instance a varifold, an area minimizing current, or the boundary
of a Caccioppoli set of least area) need not in general be regular. Indeed
Bombieri, De Giorgi and Giusti [12] have shown that Simons’ cone

C :=
{
x = (x1, . . . , x8) ∈ R8

∣∣ x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8

}
,

which is singular at {0}, is an area-minimizing current (if given an orient-
ation).

Moreover the product C×Rp ⊂ R8+p is also minimal, and its singular
set is {0} × Rp. This makes the conclusion of the following theorem,
concerning area-minimizing integral currents, optimal, compare [97].

Theorem 11.46 Let T ⊂ Rn+1 be an n-dimensional area-minimizing
integral current. Then

(i) If n < 7, T is regular.

(ii) If n = 7, T has only isolated singularities.

(iii) If n > 7, the Hausdorff dimension of the singular set of T is at most
n− 7.

11.2.5 The a priori gradient estimate of Bombieri,
De Giorgi and Miranda

The a priori estimate for the gradient of solutions to the minimal surface
equation was obtained by Bombieri, De Giorgi and Miranda in 1968 [13],
and will be the key tool in the proof of the regularity of BV minimizers
of the area problem, whose existence is granted by Theorem 2.34.
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Theorem 11.47 (Bombieri-De Giorgi-Miranda [13]) Let u ∈ C2(Ω)
be a solution of the minimal surface equation

div
(

Du√
1 + |Du|2

)
= 0.

Then

|Du(x0)| ≤ C1 exp
[
C2

supΩ u− u(x0)
d

]
, d := dist(x0, ∂Ω), (11.37)

where C1 and C2 are constants depending only on n.

The proof we shall present here is due to N. S. Trudinger [108].
Let Σ := Gu be the graph of u, and let ν = (ν1, . . . , νn+1) ∈ Rn+1 be

the normal unit vector to Σ pointing upward (νn+1 > 0). At p = (x, u(x))
this is given by

νi =
−Diu√
1 + |Du|2 , for i = 1, . . . , n, νn+1 =

1√
1 + |Du|2 ,

where the derivatives are computed at x. Define also the following oper-
ators on Σ:

δi := Di − νiνjDj , i = 1, . . . , n + 1,
δ := (δ1, . . . , δn+1),

ΔΣ := δiδi,

where the summation over repeated indices is understood, and Di is the
partial derivative in the i-th direction in Rn×R. The operator ΔΣ is the
Laplace-Beltrami operator. The reader can verify that the scalar mean
curvature of Σ (the length of the mean curvature vector) is

H(p) =
n∑

i=1

δiνi(p), p ∈ Σ. (11.38)

When Σ is minimal, i.e. H = 0, (11.38) yields

ΔΣω ≥ |δω|2, on Σ (11.39)

where ω(x, u(x)) := ln
√

1 + |Du(x)|2 = − ln νn+1(x, u(x)). This means
that ω is subharmonic on Σ.

The following lemma can be considered a generalization of the mean
value inequality for subharmonic functions on Rn, compare Proposition 1.9.
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Lemma 11.48 Let ω be as before. Then, for

x0 ∈ Ω, 0 < R < dist(x0, ∂Ω), p := (x0, u(x0)),

we have
ω(x0) ≤ c

Rn

∫
ΣR(p)

ωdHn, (11.40)

where ΣR(p) := {q ∈ Σ : |p− q| < R} and the constant c depends only on
n.

Proof. We can assume that p = 0. Assume also n > 2; the case n = 2,
being similar, will be omitted. For 0 < ε < R and z ∈ Rn+1 we set

ϕε(z)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
2(n− 2)

(ε2−n −R2−n) +
1
2n

(R−n − ε−n)|z|2 if 0 ≤ |z| < ε

|z|2−n

n(n− 2)
+

1
2n
|z|2R−n − 1

2(n− 2)
R−n if ε ≤ |z| ≤ R

0 if |z| > R.

Since ϕε ≥ 0 and both ϕε and Dϕε vanish on ∂Ω, we have by (11.39)∫
Σ

ωΔΣϕεdHn =
∫

Σ

ϕεΔΣωdHn ≥ 0.

Since
ΔΣ|z|α = α(α− 2)|z|α−2

(
1− z · ν
|z|2

)
+ αn|z|α−2,

we have

ΔΣϕε(z) :=

⎧⎪⎪⎨⎪⎪⎩
R−n − ε−n if 0 ≤ |z| < ε

R−n − |z|−2−n(z · ν)2 if ε ≤ |z| ≤ R

0 if |z| > R.

Therefore

0 ≤
∫

Σε(0)

(R−n − ε−n)ωdHn +
∫

ΣR(0)\Σε(0)

(R−n − |z|−2−n(z · ν)2)ωdHn

≤ 1
Rn

∫
ΣR(0)

ωdHn − 1
εn

∫
Σε(0)

ωdHn.

To complete the proof it is enough to observe that

ω(0) = lim
ε→0

1
ωnεn

∫
Σε(0)

ωdHn.

�
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Proof of Theorem 11.47. After a translation, we can assume that 0 ∈ Ω
and u(0) = 0. We may rewrite (11.40) as

ω(0) ≤ c

Rn

∫
|x|2+|u|2≤R2

ω
√

1 + |Du|2dx ≤ c

Rn

∫
|x|≤R
|u|≤R

ω
√

1 + |Du|2dx.

(11.41)
Now take any R < 1

3 dist(0, ∂Ω), and set

uR :=

⎧⎨⎩ 2R if u ≥ R
u + R if |u| ≤ R
0 if u ≤ −R.

Take η ∈ C1
c (B2R(0)), with 0 ≤ η ≤ 1, η ≡ 1 on BR(0), |Dη| ≤ 2

R .
Inserting the test function ϕ := ωuRη in the minimal surface equation∫

Ω

DiuDiϕ√
1 + |Du|2 dx = 0, ϕ ∈ C1

c (Ω), (11.42)

and observing that |Du| ≤√
1 + |Du|2, we get∫

|u|≤R
|x|≤R

ω|Du|2√
1 + |Du|2 dx ≤ 2R

∫
|x|≤2R
u>−R

(
ω|Dη|+ η|Dω|)dx. (11.43)

Multiplying (11.39) by a test function φ2 ∈ C1
c (C2R(0)), integrating over

Σ intersected with the cylinder C2R(0) := B2R(0)×R, and integrating by
parts, we infer∫

Σ∩C2R(0)

φ2|δω|2dHn ≤ −2
∫

Σ∩C2R(0)

φδiωδiφdHn,

and, since ab ≤ εa2 + b2

ε ,∫
Σ∩C2R(0)

φ2|δω|2dHn ≤ c2

∫
Σ∩C2R(0)

|δφ|2dHn.

This implies, by Hölder’s inequality,∫
Σ∩C2R(0)

φ|δω|dHn ≤ c2 max
Σ∩C2R(0)

|δφ|Hn(Σ ∩ sptφ). (11.44)

Now choose φ(x, y) := η(x)τ(y), with τ ∈ C1
c (−2R,R + sup

B2R(0)

u),

0 ≤ τ ≤ 1, τ ≡ 1 in (−R, sup
B2R(0)

u),
∣∣∣dτ

dy

∣∣∣ ≤ c

R
.
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Then, since Dn+1ω = 0 implies |Dω|νn+1 ≤ |δω|, using (11.44) we find∫
|x|≤2R
u≥−R

η|Dω|dx =
∫
|x|≤2R
u≥−R

η|Dω|νn+1dHn

≤
∫
|x|≤2R
u≥−R

η|δω|dHn

≤
∫

Σ∩C2R(0)

φ|δω|dHn

≤ c3

R
Hn(Σ ∩ sptφ)

≤ c3

R

∫
|x|≤2R
u≥−2R

√
1 + |Du|2dx.

Since ω ≤√
1 + |Du|2, we also have∫

|x|≤2R
u≥−R

ω|Dη|dx ≤ 2
R

∫
|x|≤2R
u≥−R

√
1 + |Du|2dx.

Combining these last two estimates with (11.43), we find∫
|u|≤R
|x|≤R

ω
√

1 + |Du|2dx ≤
∫
|u|≤R
|x|≤R

ω√
1 + |Du|2 dx

+
∫
|u|≤R
|x|≤R

ω|Du|2√
1 + |Du|2 dx

≤ c4

(
Rn +

∫
u≥−2R
|x|≤2R

√
1 + |Du|2dx

)
.

(11.45)

To estimate the last integral, take ϕ = η max{u+2R, 0} in (11.42), where

η ∈ C1
c (B3R(0)), η ≡ 1 in B2R(0), |Dη| ≤ 2

R
.

We then obtain∫
|x|≤2R
u≥−2R

√
1 + |Du|2dx ≤ Rn

(
C1 +

C2

R
sup

B3R(0)

u
)
. (11.46)

Putting together (11.41), (11.45) and (11.46) and exponentiating we fi-
nally obtain

|Du(0)| ≤
√

1 + |Du|2 ≤ C1 exp
(

C2

R
sup

B3R(0)

u

)
,

from which (11.37) follows by translation. �
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11.2.6 Regularity of BV minimizers of the area
functional

We shall now prove that a BV minimizer u of the area functional (as
defined for BV -functions in Section 2.5) is smooth. Thanks to Theorem
11.45, it suffices to prove that u is locally Lipschitz continuous.

Recall that for u ∈ BV (Ω) we define the relaxed area of its graph as

A(u) =
∫

Ω

√
1 + |Du|2

:= sup
{∫

Ω

(
u

n∑
i=1

Digi + gn+1

)
dx : g ∈ C1

c (Ω, Rn+1), |g| ≤ 1
}

.

(11.47)

The absence of the term ”dx” in the first integral of (11.47) comes from
the fact that

√
1 + |Du|2 is a measure which is in general not absolutely

continuous with respect to the Lebesgue measure.

Exercise 11.49 If u ∈ W 1,1(Ω), then (11.47) reduces to

A(u) =

∫
Ω

√
1 + |Du|2dx,

where the last integral is intended is the classical sense, since Du is absolutely
continuous with respect to the Lebesgue measure.
[Hint: Start with u ∈ C1(Ω). The vector (−Du(x), 1) ∈ Rn+1 has length√

1 + |Du|2.]

Lemma 11.50 Let Ω be connected, let g ∈ L1(∂Ω) and assume that there
are two functions u, v ∈ BV (Ω), with v locally Lipschitz, both minimizing
the area functional

I(u) :=
∫

Ω

√
1 + |Du|2

over the set
S := {w ∈ BV (Ω) : w|∂Ω = g}.

Then u = v.

Proof. With the same proof as in Proposition 11.27, it is easy to infer
that the functional

A(p) :=
∫

Ω

√
1 + |p|2dx,

is strictly convex on L1(Ω, Rn). Now apply the Lebesgue decomposition
to the vector measure Du with respect to the Lebesgue measure:

Du = Du(a) + Du(s),
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where Du(a) is the absolutely continuous part, and Du(s) is the singular
part. We can still denote by Du(a) ∈ L1(Ω, Rn) the Radon-Nikodym rep-
resentative of the absolutely continuous part. Since Du(s) is concentrated
on a set of measure zero, we have

I(u) =
∫

Ω

√
1 + |Du(a)|2dx +

∫
Ω

|Du(s)|,

where ∫
Ω

|Du(s)| := |Du(s)|(Ω)

is the total variation of Du(s) on Ω. By the strict convexity of A(p) we
have that, unless Du(a) = Dv a.e.,

I
(

u + v

2

)
=

∫
Ω

√
1 +

∣∣∣∣Du(a) + Dv

2

∣∣∣∣2dx +
∫

Ω

∣∣∣∣Du(s)

2

∣∣∣∣
<

1
2

(∫
Ω

√
1 + |Du(a)|2dx +

∫
Ω

√
1 + |Dv|2dx

)
+

1
2

∫
Ω

|Du(s)|

=
1
2
(I(u) + I(v)),

contradicting the minimality of u and v. Therefore Du(s) = Dv a.e., but
then

I(u) = I(v) +
∫

Ω

|Dus|,

hence, again by minimality of u, Du(s) = 0. Therefore Du = Dv, and
since u = v on ∂Ω, we get u = v. This follows for instance by the
Poincaré inequality applied to u− v, observing that u, v ∈W 1,1(Ω) since
their derivatives are absolutely continuous. �

Lemma 11.51 Let u ∈ BV (Ω) be a local minimizer of the area functional
A, i.e.

A(u) ≤ A(v)

for every v ∈ BV (Ω) such that spt(u−v) � Ω. Then u is locally bounded.

Proof. Assume that there exists a minimizer u such that supK |u| = ∞,
where K ⊂ Ω is compact, say dist(K, ∂Ω) > ε. Then we can find a
sequence of points pj = (xj , u(xj)) ∈ Gu such that |pj−pk| ≥ 2ε for every
j �= k. Moreover, by standard measure theory, such points can be chosen
such that

Θ(pj) := lim
ρ→0+

Hn (Gu ∩Bρ(pj))
ωnρn

= 1.
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By the monotonicity formula, Proposition 11.94,4 and since Bε(pj) ∩
Bε(pk) = ∅ for j �= k, it follows that

Hn(Gu) ≥
∞∑

j=1

Hn(Gu ∩Bε(pj)) ≥ ωn

∞∑
j=1

εnΘ(pj) =∞,

hence J (u) =∞, contradiction. �

Theorem 11.52 Let u ∈ BVloc(Ω) be a local minimizer of the area func-
tional

A(u,Ω) :=
∫

Ω

√
1 + |Du|2,

compare (11.47). Then u is locally Lipschitz continuous, hence smooth.

The following proof is due to C. Gerhardt [36].

Proof. Set uε := u ∗ ρε, where ρε is a family of smooth mollifiers, and
let x0 ∈ Ω, R > 0 be such that B3R(x) � Ω (if ε is small enough uε is
well-defined on B3R(x0)). According to Theorems 11.29 and 11.34, there
exist a unique minimizer vε ∈ C∞(BR(x0)) of the area functional

A(w,BR(x0)) :=
∫

BR(x0)

√
1 + |Dw|2dx,

in the class

B :=
{
w ∈ Lip(BR(x0)) : w

∣∣
∂BR(x0)

= uε

∣∣
∂BR(x0)

}
.

By the maximum principle, and assuming ε ≤ R,

sup
BR(x0)

|vε| ≤ sup
BR(x0)

|uε| ≤ sup
B3R(x0)

|u| =: L,

where L <∞ by the Lemma 11.51. By the a priori estimate (11.37), for
every ρ < R there is a constant M depending on ρ,R and L such that

sup
Bρ(x0)

|Dvε| ≤M.

By Ascoli-Arzelà’s theorem a sequence vεk
converges uniformly on Bρ(x0)

to a Lipschitz function v, and by a diagonal procedure, we have locally

4In fact, in order to apply the monotonicity formula one should first prove that
(∂(SGu)) ∩ Ω × R can be seen as a minimal variold, where

SGu := {(x, y) : y < u(x)}.
We skip the details.
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uniform convergence of a subsequence (still denoted by vεk
) to a locally

Lipschitz function v in BR(x0). Set now

vεk
:=

{
vεk

in BR(x0),

uεk
in B2R(x0)\BR(x0).

Then ∫
B2R(x0)

|Dvεk
|dx ≤

∫
B2R(x0)

√
1 + |Dvεk

|2dx

≤
∫

B2R(x0)

√
1 + |Duεk

|2dx

≤
∫

B2R+ε(x0)

√
1 + |Du|2,

where the last inequality is justified by the convexity of the area and
the fact that the convolution is an average. We then have that the vεk

’s
are equibounded in BV (B2R(x0)), and by Theorems 2.32 and 2.33, a
subsequence, still denoted by vεk

converges in L1 to

v :=

{
v in BR(x0),

u in B2R(x0)\BR(x0),

and ∫
B2R(x0)

√
1 + |Dv|2 ≤ lim inf

k→∞

∫
B2R(x0)

√
1 + |Dvεk

|2

≤ lim inf
k→∞

∫
B2R(x0)

√
1 + |Duεk

|2dx

≤
∫

B2R+ε(x0)

√
1 + |Du|2,

and letting ε→ 0 we conclude∫
B2R(x0)

√
1 + |Dv|2 ≤

∫
B2R(x0)

√
1 + |Du|2. (11.48)

We now have
v
∣∣
∂B2R(x0)

= u
∣∣
∂B2R(x0)

(11.49)

and of course u minimizes

I(w) :=
∫

B2R(x0)

√
1 + |Dw|2,

in
S := {w ∈ BV (B2R(x0)) : w|∂B2R(x0) = u|∂B2R(x0)}.
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By (11.48) and (11.49) also v minimizes I over S, hence, by Lemma 11.50,
u = v in B2R(x0), therefore u = v is locally Lipschitz in BR(x0), hence in
all of Ω by the arbitrariness of the ball BR(x0). From Theorem 11.45 we
finally infer u ∈ C∞(Ω). �

11.3 Regularity in arbitrary codimension

To study the regularity of minimal graphs in arbitrary codimension we
shall use a blow-up procedure, i.e. we rescale a minimal graph and analyse
the limit. The blow-up of the graph of a smooth function converges to
a plane. Allard’s theorem says that, in the case of minimal graphs, the
converse is also true: if the blow-up at a point p of a minimal graph con-
verges to a plane, then the graph is smooth in a neighborhood of p. This
reduces the regularity problem to the classification of the objects arising
as blow-ups of minimal graphs. Since such objects are entire minimal
graphs, the result we need is a Bernstein-type theorem: entire minimal
graphs, under suitable assumptions, are planes. In fact we shall prove
that any area-decreasing entire minimal graph (see Definition 11.25) is a
plane (Theorem 11.59), and consequently that an area decreasing minimal
graph is smooth (Theorem 11.69).

Throughout this section V = v(Σ, θ) := θHn Σ will denote a rectifi-
able varifold with support Σ and multiplicity θ, where Σ is rectifiable and
θ ≥ 0 is locally Hn-integrable. In fact we will make a very limited use of
varifolds, and we refer the reader to Section 11.4 for a brief introduction
to the subject.

11.3.1 Blow-ups, blow-downs and minimal cones

The following propositions are the basic tools in the blow-up argument.

Proposition 11.53 Consider a sequence of equi-Lipschitz equibounded
maps

uj : Ω→ Rm with sup
Ω

(|uj |+ |Duj |) ≤M for some M.

Assume that each uj satisfies the minimal surface system (11.19), i.e.
each Guj is a minimal Lipschitz submanifold. Then there exists a sub-
sequence uj′ uniformly converging to a Lipschitz function

v : Ω→ Rm with sup
Ω

(|v|+ |Dv|) ≤M,

which is a solution to the minimal surface system. Moreover

v(Guj′ , 1) ⇀ v(Gv, 1)

in the sense of varifolds.
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Proof. This proof requires the notion of varifolds, discussed in Section
11.4, and can be skipped at a first reading.
Step 1. By Ascoli-Arzelà’s theorem there exists a subsequence, still de-
noted by uj , with uj → v uniformly and

sup
Ω

(|v|+ |Dv|) ≤M.

We shall prove that the convergence is also in the sense of varifolds.
By Proposition 11.93, the rectifiable varifolds Uj := v(Σj , 1), Σj :=

Guj are minimal, and this implies that

‖δUi‖ = 0 in Ω× Rm,

compare Definition 11.105 (here we identify a rectifiable varifold and the
corresponding abstract varifold, see Remark 11.101). By Allard’s com-
pactness theorem, Theorem 11.108, up to extracting a further subsequence
we have Uj → V in the sense of varifolds, where V = v(Γ, θ) is a min-
imal integer multiplicity rectifiable varifold. We only need to prove that
V = v(Gv, 1), i.e. Γ = Gv and θ = 1 Hn-a.e on Γ.

Step 2. Let us show that V = v(Gv, 1). Clearly sptV ⊂ Gv: indeed
let A ⊂ Rn+m be open with A ∩ Gv = ∅. Since Gv is closed, for any
f ∈ C0

c (A), we have dist(spt f,Gv) = ε > 0. By uniform convergence we
have |uj(x)− v(x)| < ε for j large enough, hence

Uj(f) =
∫

Σj

f(x)dHn(x)→ 0.

Hence V (f) = 0 and by the arbitrariness of A we have that Γ = sptV ⊂
Gv.

We now prove that for Hn-a.e. p ∈ Gv we have θ(p) = 1. Indeed the
convergence Uj → V in the sense of varifolds implies that

π#Uj → π#V (11.50)

in the sense of varifolds, where π : Rn+m → Rn+m is the orthogonal
projection onto Rn × {0}. Indeed by (11.80) we have

v(Ω× {0}, 1)(f) = π#Uj(f)

=
∫

Gn

f(π(x), dπxS)Jπ(x, S)dUj

→
∫

Gn

f(π(x), dπxS)Jπ(x, S)dV

= π#V (f)

= v(Ω× {0}, θ̃)(f), θ̃(x) := θ(x, v(x)),
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for any f ∈ C0
c (Gn), where Gn = Gn(Ω× Rm) is the Grassmann bundle

on Ω× Rm, as defined in 11.99, and v(Ω× {0}, 1) is seen as an abstract
varifold, compare Remark 11.101.

Therefore θ = 1 Hn-a.e on Gv. �

Proposition 11.54 (Blow-up) Let u : Ω → Rm be a Lipschitz map
solving the minimal surface system (11.19). Let uλ = uλ,x0 be defined by

uλ(x) :=
1
λ

(u(x0 + λx)− u(x0)),

for a given x0 ∈ Ω. Then there exists a sequence λ(i) → 0 such that
uλ(i) → v locally uniformly in Rn, where v is a Lipschitz solution of the
minimal surface system and the graph of v : Rn → Rm is a (minimal)
cone with vertex at the origin5.

Proof. The convergence of a sequence uλ(i) to a Lipschitz minimal graph
is an immediate consequence of Proposition 11.53. From the convergence
is the sense of varifolds, we have

Hn(Bρ(0) ∩ Gv)
ωnρn

= lim
i→∞

Hn(Bρ(0) ∩ Guλ(i))
ωnρn

= lim
i→∞

Hn(Bλ(i)ρ(p0) ∩ Gu)
ωn(λ(i)ρ)n

= Θn(Gu, p0),

where p0 := (x0, u(x0)) and the last limit exists thanks to the monoton-
icity formula (11.72). Then the ratio Hn(Bρ(0)∩Gv)

ωnρn does not depend on ρ.
Letting ρ→∞ and σ → 0 in the monotonicity formula (11.72) yields∫

Gv

∣∣(∇r)⊥
∣∣2

rn
dHn = 0,

where r(p) := |p| for p ∈ Rn+m, and (∇r)⊥ is the projection of ∇r into
the tangent bundle TGv. Therefore ∇r(p) ∈ TpGv for a.e. every p ∈ Gv,
hence Gv is a cone, i.e. v(τx) = τv(x) for every τ > 0. �

Proposition 11.55 (Blow-up of a cone) Let u : Rn → Rm be a Lipschitz
map solving the minimal surface system (11.19). For x0 ∈ Rn \ {0} set

uλ(x) :=
1
λ

(u(x0 + λx)− u(x0)).

5A cone C ⊂ Rn+m with vertex at the origin is a set such that for every λ > 0 we
have λC = C.
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Then there exists a sequence λ(i) → 0 such that uλ(i) → v, locally uni-
formly in Rn to a solution of the minimal surface system, and

v(Guλ(i) , 1) ⇀ v(Gv, 1)

in the sense of varifolds and Gv is a (minimal) cone. Moreover Gv is a
product of the form C ×R (up to a rotarion), where C is a minimal cone
of dimension n− 1 in Rn+m−1 which is also a graph.

Let x̃ = (x1, . . . , xn−1). The last assertion means that there exists an
orthonormal system of coordinates Rn, a function ṽ : Rn−1 → Rm and
σ ∈ Rm such that

v(x1, . . . , xn) = σxn + ṽ(x̃) (11.51)

and Gṽ is a minimal cone.

Proof. Considering Proposition 11.54, we have that uλ(i) → v locally uni-
formly, where v : Rn → Rm solves the minimal surface system. Moreover
the convergence of the graphs is in the sense of varifolds. That up to a
rotation or Rn we can write v as in (11.51) is a simple exercise left for
the reader. Hence Gv = C × R is the sense specified above. It remains
to prove that C = Gṽ, which is an (n − 1)-dimensional cone in Rn−1+m,
is also minimal, i.e. also ṽ satisfies the minimal surface system. But this
can be done easily using that v solves the minimal surface system and
that Dv, hence gij = gij(Dv), do not depend on xn. �

Proposition 11.56 (Blow-down) Let u : Rn → Rm be a Lipschitz solu-
tion to the minimal surface system 11.19. Let uλ be defined by

uλ(x) =
1
λ

(u(λx)− u(0)), λ > 0.

Then there exists a sequence λ(i)→∞ such that uλ(i) → v uniformly on
compact sets, where v solves the minimal surface system. Moreover the
convergence of the graphs Guλ(i) to Gv is in the sense of varifolds and Gv

is a (minimal) cone.

Proof. The proof is identical to the proof of Proposition 11.54, with
λ→∞ instead of λ→ 0, except that we shall use that the limit

lim
i→∞

Hn(Bλ(i)ρ(p0) ∩ Gu)
ωn(λ(i)ρ)n

, p0 := (0, u(0)),

exists thanks to the monotonicity formula (11.72) and is finite because√
det(I + (du)∗du) ≤ C(M), M := sup

Rn

|du|.

�
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11.3.2 Bernstein-type theorems

As we shall see, Bernstein-type theorems play a crucial role in the regular-
ity theory of minimal graphs, particularly in codimension greater than 1.

A Bernstein-type theorem is a rigidity theorem which, under suitable
hypothesis, implies that an entire minimal graph, i.e. the minimal graph
of a function defined on all of Rn, is an affine subspace. The following is
the first such theorem, as formulated by Bernstein in a memoir published
in 1927.

Theorem 11.57 (Bernstein [8]) Let u : R2 → R be a C2 function sat-
isfying the minimal surface equation. Then u is affine, i.e. u(x, y) =
y0 + σ1x + σ2y, with σ1, σ2 ∈ R.

Several generalizations have been proved since then. In 1965 De Giorgi
[26] proved a Bernstein-type theorem for 3 dimensional graphs in R4,
while Simons [100] generalized Bernstein’s theorem to Rn+1 for n ≤ 7.
This result is sharp for what concerns the dimensions because Bombieri,
De Giorgi and Giusti [12] showed that there exists a non-affine function
u : R8 → R whose graph is minimal. Some years before Moser [79] had
proved that the minimal graph of a scalar function whose gradient is
bounded is an affine subspace.

In higher codimension, Lawson and Osserman [68] have shown that
the cone over Hopf’s map (9.4) is minimal. Since it is the graph of a
function with bounded gradient this shows that Moser’s result does not
extend to higher codimension.

The first Bernstein-type theorems in arbitrary codimension were proved
by Hildebrandt, Jost and Widman [60] who studied the Gauss map of a
minimal graph. With a similar approach, Jost and Y. L. Xin [64] improved
the result of [60], obtaining the following theorem.

Theorem 11.58 Let u : Rn → Rm be a smooth function satisfying the
minimal surface system (11.19). Let

∗ω(x) =
1√

det(I + Du(x))∗Du(x))

and take β0 > 0 such that

β0 <

{
2 if m ≥ 2
∞ if m = 1. (11.52)

Then, if ∗ω ≥ 1
β0

, u is affine.
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Observe that

∗ω(x) ≥ 1
β0

implies |Du(x)| ≤ β2
0 − 1,

while in codimension 1, although Moser’s theorem requires Du to be
bounded, say |Du| ≤ M , we do not have any restriction on M . The
theorem we shall prove below, due to M-T. Wang [109], implies the result
of Moser for codimension 1 and the result of Jost and Xin in arbitrary
codimension. It is a natural extension of Moser’s theorem because it only
requires Du to be bounded and area-decreasing, Definition 11.25, and this
latter assumption is always true in codimension 1, see Remark 11.26.

Theorem 11.59 (M-T. Want [109]) Let u : Rn → Rm be a smooth
area-decreasing map with bounded gradient and satisfying the minimal
surface system (11.19). Then u is linear. The same is true if u ∈
C∞(Rn\{0}, Rm), as will be the case later.

To prove the theorem we study the behaviour of the function

∗ω(x, y) =
1√

det(I + (Du(x))∗Du(x))
=

1√∏n
i=1(1 + λi(x)2)

,

where x ∈ Rn, y ∈ Rm, (i.e. we now extend ∗ω to the product space
Rn+m) and the numbers λi(x) are the singular values of Du(x), i.e. the
square roots of the eigenvalues of (Du(x))∗Du(x).

Exercise 11.60 Verify that

∗ω >
1√

2 − δ
⇒ |Du|2 < 1 − δ; |Du| <

√
(2 − δ)1/n − 1 ⇒ ∗ω >

1√
2 − δ

.

Let Σ ⊂ Rn+m be an n-dimensional submanifold of Rn+m and define ω
to be the n-form on Rn+m given by

ω(e1, . . . , en) = 1

ω(ei1 , . . . , ein) = 0 if i1 < . . . < in, in > n,

where {e1, . . . , en+m} is the standard basis of Rn+m. Its covariant deriv-
ative and its Laplacian on Σ are, by definition,

∇Σ
Xω(Y1, . . . , Yn) := DX(ω(Y1, . . . , Yn))−

n∑
i=1

ω(Y1, . . . ,∇Σ
XYi, . . . , Yn).

ΔΣω(p) :=
n∑

k=1

∇Σ
τk
∇Σ

τk
ω(p),

where {τk} is an orthonormal frame of TΣ in a neighborhood of p.
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Exercise 11.61 For p ∈ Σ, prove that

∗ω(p) = ω(τ1, . . . , τn)

for any orthonormal basis {τ1, . . . , τn} of TpΣ.

[Hint: Choose {τi} according to the singular value decomposition of Du.]

Lemma 11.62 Consider an orthonormal frame {τ1, . . . , τn} of TΣ in a
neighborhood of a point p ∈ Σ. Then

(ΔΣω)(τ1, . . . , τn) = ΔΣ(ω(τ1, . . . , τn)) = ΔΣ(∗ω).

Proof. Set

ω(τ1, . . . , τn) = ω1···n, (ΔΣω)(τ1, . . . , τn) = (ΔΣω)1···n.

Then

(ΔΣω)1···n = Dτk

(
(∇Σ

τk
ω)(τ1, . . . , τn)

)− n∑
i=1

∇Σ
τk

ω(τ1, . . . ,∇Σ
τk

τi, . . . , τn)

= Dτk
Dτk

(ω(τ1, . . . , τn))

− 2
n∑

i,k=1

Dτk

(
ω(τ1, . . . ,∇Σ

τk
τi, . . . , τn)

)
+

n∑
i,j,k=1

i�=j

ω
(
τ1, . . . ,∇Σ

τk
τi, . . . ,∇Σ

τk
τj , . . . , τn

)

+
n∑

j,k=1

ω(τ1, . . . ,∇Σ
τk
∇Σ

τk
τj , . . . , τn)

=: a + b + c + d.

Now
a = ΔΣ(ω(τ1, . . . , τn))

because {τk} is an orthonormal frame, b = 0 because

τi · (∇Σ
τk

τi) =
1
2
Dτk

(τi · τi) = 0

and ω is alternating. Finally, also c + d = 0: using that for i �= j

0 = Dτk
〈τi, τj〉 = 〈∇Σ

τk
τi, τj〉+ 〈τi,∇Σ

τk
τj〉,

i.e.
〈∇Σ

τk
τi, τj〉 = −〈τi,∇Σ

τk
τj〉,
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and that

∇Σ
τk

τi =
n∑


=1

〈∇Σ
τk

τi, τ
〉τ
 =
n∑


=1

�=i

〈∇Σ
τk

τi, τ
〉τ
,

because
2〈∇Σ

τk
τi, τi〉 = Dτk

〈τi, τi〉 = Dτk
1 = 0,

we compute

c + d = −
n∑

i,j,k=1
i�=j

〈∇Σ
τk

τi, τj〉〈τi,∇Σ
τk

τj〉ω1···n

−
n∑

j,k=1

ω(τ1, . . . , 〈∇Σ
τk
∇Σ

τk
τj , τj〉τj , . . . , τn)

=
( n∑

i,j,k=1
i�=j

〈∇Σ
τk

τi, τj〉2 −
n∑

j,k=1

〈∇Σ
τk

τj ,∇Σ
τk

τj〉
)

ω1···n

= 0,

where the last identity is justified by

n∑
j=1
i�=j

〈∇Σ
τk

τi, τj〉2 =
⏐⏐∇Σ

τk
τi

⏐⏐2
= 〈∇Σ

τk
τi,∇Σ

τk
τi〉,

and we also used that

〈∇Σ
τk
∇Σ

τk
τj , τj〉 = Dτk

〈∇Σ
τk

τj , τj〉 − 〈∇Σ
τk

τj ,∇Σ
τk

τj〉 = −〈∇Σ
τk

τj ,∇Σ
τk

τj〉.

�

We recall without proof an important identity from Riemannian geo-
metry:

Lemma 11.63 (Codazzi’s equation) Let hα
ij :=

(∇τiτj

)·να and hα :=
H · να be the coefficients in local coordinates of the second fundamental
form and of the mean curvature, respectively:

h(X,Y ) = hα
ijX

iY jνα, H = hανα.

Then
hα

ik;k = hα
;i (11.53)

where the semicolons denote the covariant derivatives.
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Notation Assume given a local orthonormal frame {τi}i=1,...,n of TΣ and
a local orthonormal frame

{να}α=1,...,m

of the normal bundle NΣ at a generic point p ∈ Σ. In what follows we
shall write

ω1···αi···βj ···n := ω1···(i−1)α(i+1)···(j−1)β(j+1)···n
:= ω(τ1, . . . , τi−1, να, τi+1, . . . , τj−1, νβ , τj+1, . . . , τn)

to denote that να occurs in the i-th place and νβ in the j-th. With a little
abuse of notation the Greek letters will always denotes components in the
normal bundle. For instance in general

ω(να, τ2, . . . , τn) =: ωα2...n �= ωi2...n := ω(τi, τ2, . . . , τn), even if α = i.

Proposition 11.64 On a smooth (embedded) surface Σ ⊂ Rn+m which
is minimal, i.e. which has H ≡ 0, ω satisfies

−ΔΣω1···n = ω1···n|A|2 − 2
n∑

i,j,k=1
i<j

m∑
α,β=1

ω1···αi···βj ···nhα
ikhβ

jk, (11.54)

where

|A| :=
√√√√ n∑

i,k=1

m∑
α=1

(hα
ik)2

is the norm of the second fundamental form. In fact the same holds if we
just assume H to be parallel, i.e. ∇ΣH ≡ 0.

Proof. Since ω is constant in Rn+m we have ∇ω = 0. Thus(∇Σ
τk

ω
)
1···n =

(
(∇Σ

τk
−∇τk

)ω
)
1···n =

n∑
i=1

ω(τ1, . . . ,∇τk
τi−∇Σ

τk
τi, . . . , τn).

Observing that

(∇τk
τi)N =

m∑
α=1

hα
ikνα

we get

ω1···n;k := ∇Σ
τk

ω(τ1, . . . , τn) =
n∑

i=1

m∑
α=1

ω1···αi···nhα
ik. (11.55)

Similarly

ω1···αi···n;k = −
n∑


=1

ω1···
i···nhα
lk +

n∑
j=1
j �=i

m∑
β=1

ω1···βj ···αi···nhβ
jk,
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where we also defined
∇Σ

τk
να := (∇τk

να)T

while originally ∇Σ
τk

was defined only on tangent vector fields, and using
that να · τi = 0, we also computed

(∇τk
−∇Σ

τk
)να = −

n∑

=1

hα
k
τ
.

Then

ω1···n;kk =
m∑

α=1

n∑
i=1

ω1···αi···n;khα
ik +

m∑
α=1

n∑
i=1

ω1···αi···nhα
ik;k. (11.56)

By Codazzi’s equation (11.53) and by (11.56) we get:

ω1···n;kk = −
m∑

α=1

n∑
i,l,k=1

ω1···li···nhα
lkhα

ik +
n∑

i,j=1
i�=j

ω1···βj ···αi···nhβ
jkhα

ik

+
m∑

α=1

n∑
i=1

ω1···αi···nhα
;i

= −ω1···n
n∑

i,k=1

m∑
α=1

(hα
ik)2 + 2

∑
1≤i<j≤n

ω1···βj ···αi···nhβ
jkhα

ik

+
m∑

α=1

n∑
i=1

ω1···αi···nhα
;i.

The last term vanishes because H ≡ 0 (in fact it sufficies ∇ΣH ≡ 0), and
we conclude with Lemma 11.62. �

Let us come back to the case in which Σ is the graph of a smooth
function u : Ω ⊂ Rn → Rm. For any x0 ∈ Ω by the singular value
decomposition, Proposition 11.22, applied to the linear map Du(x0) :
Rn → Rm, we can find orthonormal basis {vi}i=1,...,n and {wα}α=1,...,m

of Rn and Rm respectively with respect to which Du is represented by
a diagonal matrix, say λiα, with λiα = 0 if i �= α. To such basis we
associate a basis of the tangent space and a basis of the normal space to
Σ := Gu at p := (x0, u(x0)). Set λi := λii if i ≤ min{m,n}, λi = 0 if
min{m,n} < i ≤ n, and{

τi :=
1√

1 + λ2
i

(
vi +

m∑
β=1

λiβwβ

)}
i=1,...,n{

να :=
1√

1 + λ2
α

(wα −
n∑

j=1

λjαvj)
}

α=1,...,m

.
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Since u is smooth, also the τi’s and να’s can chosen to depend smoothly
on x0. Observe that if we define π to be the projection of Rn+m on the
first n coordinates, we have

π(να) = −
n∑

j=1

λjαπ(τj). (11.57)

Since ω(a1, . . . , an) = ω(π(a1), . . . , π(an)), we may use (11.57) to compute

ω1···αi···βj ···n = ω1···n(λβjλαi − λβiλαj)

Now Proposition 11.64 can be written in terms of the singular values of
Du:

−ΔΣ(∗ω) = ∗ω
(
|A|2 + 2

n∑
i,j,k=1

i<j

m∑
α,β=1

(−λβjλαi + λβiλαj)hα
ikhβ

jk

)

= ∗ω
(
|A|2 + 2

n∑
i,j,k=1

i<j

(−λjλih
i
ikhj

jk + λjλih
i
jkhj

ik)
)

.

(11.58)

We are now ready to prove Theorem 11.59.

Proof of Theorem 11.59. Let ε > 0 be such that λi(x)λj(x) ≤ 1 − ε for
i �= j and for every x ∈ Rn, where the λi(x)’s are the singulare values of
Du(x).

Step 1. Denote by ΔΣ the Laplacian on Σ := Gu. We have

ΔΣ(ln ∗ω) =
∗ωΔΣ(∗ω)− ⏐⏐∇Σ(∗ω)

⏐⏐2

|∗ω|2 . (11.59)

The covariant derivative of ∗ω may be computed using the singular value
decomposition of Du and equations (11.57) and (11.55):

(∗ω);k = − ∗ ω

(
n∑

i=1

m∑
α=1

λαih
α
ik

)
= − ∗ ω

(
n∑

i=1

λih
i
ik

)
. (11.60)
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Inserting (11.58) and (11.60) into (11.59) yields

ΔΣ(− ln ∗ω) = |A|2 + 2
n∑

i,j,k=1
i<j

λjλih
i
jkhj

ik − 2
n∑

i,j,k=1
i<j

λjλih
i
ikhj

jk

+
n∑

k=1

( n∑
i=1

λih
i
ik

)2

= |A|2 + 2
n∑

i,j,k=1
i<j

λiλjh
i
jkhj

ik +
n∑

i,k=1

λ2
i (h

i
ik)2

≥ |A|2 + 2
n∑

i,j,k=1
i<j

λiλjh
i
jkhj

ik

≥ |A|2 +
n∑

i,j,k=1

λiλj(hi
jk)2

≥ |A|2 − (1− ε)|A|2
= ε|A|2,

(11.61)

where we also used the inequality 2hi
jkhj

ik ≤ (hi
jk)2 + (hj

ik)2.
Step 2. We perform a blow-down of the graph of u. By Proposition 11.56
there exists an equi-Lipschitz sequence

uλ(j)(x) =
1

λ(j)
u(λ(j)x), λ(j)→∞

uniformly converging to an area-decreasing Lipschitz function u. Moreover
the convergence is also in the sense of varifolds and Gu is a minimal cone
with vertex in the origin. The differential of u is positively homogeneous,
that is

Du(tx) = Du(x), t > 0, x ∈ Rn\{0}.
We shall assume that u is smooth in Rn\{0}. The general case is studied
in Step 3. The homogeneity of Du implies that on every annulus with
center in the origin ∗ω attains an interior minimum; this, together with
(11.61) and the maximum principle, implies |A| = 0 in every annulus and
so in Rn\{0}. Therefore the cone is a linear subspace, i.e., u is linear. We
now prove that Du(x) = Du(0) for every x ∈ Rn, whence u is linear. Let
δ and γ be as in Allard’s Theorem 11.98, j0 and ρ such that for every
j ≥ j0

Hn(Guj ∩B1(0))
ωn

≤ 1 + δ,
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where this is possible because from the varifold convergence we get

lim
j→∞

Hn(Guj ∩B1(0))
ωn

=
Hn(Gu ∩B1(0))

ωn
= 1.

Then uj ∈ C1,α(Bn
γ (0))6 with uniform bounds in C1,α(Bn

γ (0)), thanks to
(11.78). By Ascoli-Arzelà’s theorem, a subsequence, still denoted by uj ,
converges in C1(Bn

γ (0)) to the linear map u. For every x ∈ Rn we have,
for j large enough, x

λ(j) ∈ Bγ(0) and⏐⏐⏐⏐Duj

(
x

λ(j)

)
−Du

(
x

λ(j)

)⏐⏐⏐⏐ < ε.

As ε goes to 0, observing that Duj

(
x

λ(j)

)
= Du(x), we get that Du is

constant hence u is linear.

Step 3. If the blow-up generates a cone which has at least a singularity
in x0 �= 0, we may perform a blow-up in x0 and, by Proposition 11.55 we
obtain a minimal cone C of dimension n− 1 in Rn+m−1. If such a cone is
smooth except at the origin, we apply Step 2 to prove that C is actually
a plane, which is a contradiction by Allard’s theorem, since then

lim
r→0

Hn(Gu ∩Br(p0))
ωnrn

= 1, p0 := (x0, u(x0)).

Otherwise we iterate the procedure until we get a cone of dimension 1,
which cannot be singular and minimal at the same time, and obtain a
contradition. �

Remark 11.65 Theorem 11.59 implies Theorem 11.58 because (11.52)
yields, for 1 ≤ i < j ≤ n and for some δ > 0

4− δ ≥ 1
(∗ω)2

=
n∏


=1

(1 + λ2

)

≥ 1 + λ2
i + λ2

j + λ2
i λ

2
j

≥ 1 + 2λiλj + λ2
i λ

2
j

= (1 + λiλj)2,

which yields
λi(x)λj(x) ≤ √4− δ − 1 = 1− δ′

for some δ′ > 0 and for every x ∈ Rn.
6Here we let Br(x) denote the ball of radius r in Rn+m centered at x ∈ Rn+m and

Bn
r (x) denote the ball of radius r in Rn centered at x ∈ Rn.
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Remark 11.66 To prove that − ln ∗ω is a subharmonic function, we only
used the area-decreasing condition |λiλj | ≤ 1− ε and the minimal surface
system (in fact a weaker version corresponding to∇ΣH ≡ 0): thus we have
shown that − ln ∗ω is subharmonic on any area-decreasing smooth min-
imal graph (or any area-decreasing graph with parallel mean curvature).

Remarks on Bernstein’s theorem: the Gauss map

Wang’s proof of Theorem 11.59 is based on inequality (11.61) which says
that − ln ∗ω is a subharmonic function on Σ (with respect to the Rieman-
nian metric of Σ). We shall sketch a geometric interpretation of that.

Definition 11.67 (Gauss map) Given a smooth n-dimensional subman-
ifold of Σ ⊂ Rn+m, its Gauss map

γ : Σ→ G(n,m)

is the map associating to each x ∈ Σ the tangent space TxΣ, seen as an
element of the Grassmannian G(n,m) of n-planes in Rn+m.

The differentiable and Riemannian structures of G(n,m) have been
studied by Yung-Chow Wong [116] and Jost and Xin [64]. An important
theorem concerning the Gauss map of a minimal surface is due to Ruh
and Vilms:

Theorem 11.68 (Ruh-Vilms [91]) The Gauss map γ of a submanifold
Σ ⊂ Rn+m is harmonic if and only if the mean curvature H of Σ is
parallel, i.e. if

∇ΣH ≡ 0.

In particular, if Σ is minimal, i.e. H ≡ 0, the Gauss map of Σ is
harmonic on Σ. Jost and Xin observed that the condition ∗ω ≥ 1

β0
,

determines a region of the Grassmannian over which

f(L) := − ln
√

det(I + L∗L) (11.62)

is convex7 (in (11.62) we identify a plane with the linear map L : Rn →
Rm of which it is the graph; we shall only consider the region of the
Grassmannian given by such planes). In [110], M-T. Wang proved that

7Convex here means that, given a geodesic σ → Ξ, where Ξ ⊂ G(n, m) is the subset
of the Grassmannian containing the graphs of area-decreasing linear maps, we have
that

d2

dt2

(
− ln

√
det(I + L∗L) ◦ σ

)
≥ 0.

This notion of convexity is different from the one used in codimension 1 when we say
that

√
1 + |Du|2 is a convex function: in the latter case, indeed, the 1×n-matrix space

where Du lives is endowed with the flat metric, which is different from the Riemannian
metric on the Grassmannian.
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f is convex on a larger region of the Grassmannian: the graphs of area-
decreasing linear maps. Thus ∗ω = f ◦ γ is subharmonic because it is the
composition of a harmonic map and a convex function.

11.3.3 Regularity of area-decreasing minimal graphs

As a consequence of Theorem 11.59, Allard’s theorem (compare Theorem
11.98 below), and the dimension reduction argument of Federer, we obtain
a regularity result for minimal graphs of Lipschitz maps which are area-
decreasing (Theorem 11.69). As before, we remark that since the area-
decreasing hypothesis is always met in codimension 1, this new result
generalizes Theorem 11.45 to arbitrary codimension. We also remark
that, due to the minimal cone of Lawson and Osserman (see (9.4)), an
hypothesis on Du, other than its boundedness, is necessary.

Theorem 11.69 (M-T. Wang [111]) Consider a Lipschitz map u : Ω ⊂
Rn → Rm satisfying the minimal surface system (11.19) and assume that
there exists ε > 0 such that

λi(x)λj(x) ≤ 1− ε, for 1 ≤ i < j ≤ min{m,n}, x ∈ Ω,

where the λi(x)’s are the singular values of Du(x). Then u ∈ C∞(Ω, Rm).

Proof.
Step 1. Let x0 ∈ Ω. Up to translation, we may assume x0 = 0 and u(0) =
0. Performing a blow-up in 0, by Proposition 11.54 we get ui := uλ(i) → v
uniformly and in the sense of varifolds for a sequence λ(i)→ 0 as i→∞,
where Gv is a minimal cone. Moreover the uniform convergence preserves
the area-decreasing.

If v ∈ C∞(Rn\{0}) then v is affine by Theorem 11.59. In particular

Hn(Gv ∩B1(0)) = ωn.

From the varifold convergence we infer as i→∞

Hn(Gu ∩Bλ(i)(0))
ωnλ(i)n

=
Hn(Guλ(i) ∩B1(0))

ωn
→ H

n(Gv ∩B1(0))
ωn

= 1.

In particular for every δ > 0 we can find i large enough so that

Hn(Gu ∩Bλ(i)(0))
ωnλ(i)n

≤ 1 + δ.

By Allard’s theorem (a suitably scaled version of Theorem 11.98) we get
u ∈ C1,σ(Bn

γλ(0)) for some σ, γ > 0.
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Step 2. Now assume that v is not smooth in all of Rn\{0}. As in the proof
of Theorem 11.59, assume that there exists a singularity in x0 �= 0. We
may generate another cone in (x0, v(x0)) with another blow-up. Thanks
to Proposition 11.55, such a cone factorizes and we obtain an (n − 1)-
dimensional area-decreasing cone which is minimal. If this cone is smooth
except at most at the origin, then applying Step 1 we obtain that v is
smooth is x0, contradiction.

Then, by induction, we perform blow-ups and find cones with sin-
gularities until we find a minimal cone of dimension 1, union of two
straight lines, which must be flat. Since x0 was arbitrary, we obtain
u ∈ C1,σ

loc (Ω, Rm) for some σ > 0.

Step 3. The existence of the higher order derivatives is consequence of
Schauder estimates, Theorem 5.20. �

Remark 11.70 By a theorem of Allard’s [4], the solutions u of the Di-
richlet problem for the minimal surface system are smooth up to the
boundary if Ω is strictly convex and the boundary data is smooth.

11.3.4 Regularity and Bernstein theorems for Lipschitz
minimal graphs in dimension 2 and 3

The proof of Theorems 11.59 and 11.69 can be recast in dimensions 2 and
3 without the assumption that u be area decreasing.

Theorem 11.71 (Barbosa [7], Fisher-Colbrie [33]) Assume that

u ∈ C∞(Rn, Rm)

has bounded gradient and satisfies the minimal surface system (11.19).
Assume also that n = 2 or n = 3. Then u is linear. The same is true if
u ∈ C∞(Rn\{0}, Rm).

Proof. The only place in the proof of Theorem 11.59 where the area-
decreasing assumption was used was (11.61). Let us assume n = 2. From
the first lines of (11.61) we infer

ΔΣ(− ln ∗ω) = |A|2 + 2
2∑

i,j,k=1
i<j

λiλjh
i
jkhj

ik +
2∑

i,k=1

(λih
i
ik)2

= |A|2 + 2λ1λ2h
1
21h

2
11 + 2λ1λ2h

1
22h

2
12

+ (λ1h
1
11)

2 + (λ1h
1
12)

2 + (λ2h
2
21)

2 + (λ2h
2
22)

2

=: (I)

(11.63)
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Now using the assumption H = 0, i.e.

h1
11 + h1

22 = 0, h2
11 + h2

22 = 0

and the symmetry hi
jk = hi

kj , we compute

(I) = |A|2 + (λ1h
1
12 + λ2h

2
11)

2 + (λ1h
1
11 − λ2h

2
21)

2,

hence
ΔΣ(− ln ∗ω) ≥ |A|2, (11.64)

which is the equivalent of (11.61), and the proof is complete for n = 2.
When n = 3, we first blow-down as in Step 2 of the proof of Theorem

11.59, obtaining a minimal cone which is the graph of a Lipschitz function
v. Assuming that v ∈ C∞(R3\{0}, Rm), we can again prove (11.64), as for
n = 2, this time using that the second fundamental form vanishes in one
direction, hence reducing essentially to the one 2-dimensional case. If v
has singularities away from 0, we apply the dimension reduction argument
as in the proof of Theorem 11.59. The details are left for the reader. �

Remark 11.72 The above proof is due to M-T. Wang [109].

With the same proof of Theorem 11.69, replacing Theorem 11.59 with
Theorem 11.71, we obtain:

Theorem 11.73 Let u ∈ Lip(Ω, Rm) solve the minimal surface system
(11.19), with Ω ⊂ R2 or Ω ⊂ R3. Then u is smooth.

Remark 11.74 Theorems 11.71 and 11.73 are sharp for what concerns
the dimension (n = 2 or n = 3), since the cone of Lawson and Osserman
(Section 9.1.3) is a 4-dimensional entire minimal graph which is Lipschitz
continuous and singular at the origin.

11.4 Geometry of Varifolds

We recall a few facts about rectifiable and general varifolds. For more
details see [97].

11.4.1 Rectifiable subsets of Rn+m

Definition 11.75 A Borel subset M ⊂ Rn+m is said to be countably
n-rectifiable (or simply n-rectfiable) if

M ⊂ N0 ∪
( ∞⋃

j=1

Nj

)
, (11.65)

where Hn(N0) = 0 and, for j ≥ 1, Nj is a C1-submanifold of Rn+m of
dimension n.
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The connection between rectifiable sets and Lipschitz functions is es-
sentially a consequence of the theorems of Rademacher and Whitney, see
[32], [49] and [97].

Theorem 11.76 (Rademacher) Every Lipschitz function f : Rn → R
is almost everywhere differentiable. In particular its gradient is a.e. well
defined

∇f :=
( ∂f

∂x1
, · · · , ∂f

∂xn

)
and for a.e. x0 ∈ Rn we have

lim
x→x0

f(x)− f(x0)−∇f · (x− x0)
|x− x0| = 0.

Remark 11.77 The gradient ∇f is the a.e. limit of measurable func-
tions (the difference quotients) and is thus measurable. Moreover, if f is
Lipschitz with Lipschitz constant K, it is clear that |∇f | ≤ K, so that
∇f ∈ L∞(Rn).

Theorem 11.78 (Whitney) Let f : Rn → R be a Lipschitz function.
Then for every ε > 0 there exists a function h : Rn → R of class C1 such
that

Ln
({x ∈ Rn : f(x) �= h(x)} ∪ {x ∈ Rn : ∇f(x) �= ∇h(x)}) < ε,

where Ln is the Lebesgue measure on Rn.

Observe that, thanks to Rademacher’s theorem, the right term in the
union is well defined up to Ln-null sets.

Proposition 11.79 (Characterization of rectifiable sets) A subset
M ⊂ Rn+m is countably n-rectifiable if and only if there exists a sequence
of Lipschitz maps Fj : Rn → Rn+m and a set M0 with Hn(M0) = 0 such
that

M = M0 ∪
( n⋃

j=1

Fj(Aj)
)
, (11.66)

where Aj ⊂ Rn is measurable for every j.

Proof. (⇒) Every C1-submanifold Nj in Rn+m is locally the image of
C1-maps which we denote by hij : B1(0) ⊂ Rn → Rn+m. Therefore

Nj ⊂ Ej ∪
( ∞⋃

i=1

hij(B1(0))
)
, Hn(Ej) = 0. (11.67)
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If (11.65) holds, choose hij as in (11.67). Let

Aij := h−1
ij (M), N0 :=

n⋃
j=1

Ej ∩M.

Then

M = N0 ∪
( n⋃

i,j=1

hij(Aij)
)
.

Since Aij is Borel (because inverse image of a Borel set) and since we may
assume hij to be Lipschitz, we get (11.66).

(⇐) Let Fj be as in (11.66). By Whitney’s theorem we may find
a family hij : Rn → Rn+m of C1-maps and a measurable set Ej with
Ln(Ej) = 0 such that

Fj(Aj) ⊂ Ej ∪
( ∞⋃

i=1

hij(Rn)
)
, ∀j ≥ 1. (11.68)

Indeed we may choose hij as in the statement of Whitney’s theorem with

Dij := {x ∈ Rn : Fj(x) �= hij(x)} ∪ {x ∈ Rn : ∇Fj(x) �= ∇hij(x)},

and
D1j ⊃ D2j ⊃ · · · ⊃ Dij ⊃ D(i+1)j ⊃ . . . , Ln(Dij) ≤ 1

i
.

Setting Dj := ∩iDij we have Ln(Dj) = 0 and by the area formula

Hn(Fj(Dj)) = 0.

Then set Ej := Fj(Dj) and we have (11.68).
Set Cij := {x ∈ Rn : rankhij(x) < n}. Then Hn(hij(Cij)) = 0 by

Sard’s lemma. Set

N0 :=
( ∞⋃

j=1

Ej

)
∪

( ∞⋃
i,j=1

Cij

)
.

Then Hn(N0) = 0 and

M ⊂ N0 ∪
(
Nij

)
,

with Nij := hij(Rn\Cij) countable union of C1-submanifold thanks to the
rank-max theorem (Nij is a C1-submanifold if hij is injective, otherwise
we use the local injectivity of hij to write Nij as countable union of C1-
submanifolds and a null set). �
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Corollary 11.80 The image of a Lipschitz map

F : Ω ⊂ Rn → Rn+m

is a countably n-rectifiable set. In particular the graph of a Lipschitz
function u : Ω→ Rm is n-rectifiable.

Since the only rectifiable sets Σ we shall use are the graphs of Lipschitz
function, we shall assume that Hn Σ is locally finite, that is, for every
compact set K ⊂ Rn+m, Hn(Σ ∩K) <∞.

Definition 11.81 (Tangent plane) Given a countably n-rectifiable set
Σ in Rn+m we define the tangent plane to Σ at p, if it exists, to be the
only n-dimensional subspace P in Rn+m such that

lim
λ→0

∫
ηp,λ(Σ)

f(y)dHn(y) =
∫

P

f(y)dHn(y), ∀f ∈ C0
c (Rn+m),

where ηp,λ(y) := λ−1(y − p) for every y ∈ Rn+m. Such plane P will be
denoted by TpΣ.

Given an n-rectifiable Σ ⊂ Rn+m, for instance a Lipschitz submanifold,
its tangent plane at p is well defined for Hn-a.e. p ∈ Σ. It is clear that
if Σ is of class C1, then the tangent plane just defined is the same as
the tangent plane defined for smooth submanifolds as the set of tangent
vectors. Given Σ n-rectifiable, thanks to Proposition 11.79, for Hn-a.e.
p ∈ Σ there exists Nj(p) C1-submanifold such that p ∈ Nj(p). It may be
seen that TpM = TpNj(p) for Hn-a.e. p ∈ Σ; in particular TpNj(p) doesn’t
depend on the choice of the manifolds Nj covering Σ, nor on the choice
of j(p).

For these reasons, given U ⊂ Rn+m open and given f ∈ Lip(U), it is
Hn-a.e. well defined in Σ ∩ U the gradient ∇Σf := ∇Nj f . The latter is
Hn Nj-a.e. well defined thanks to Rademacher’s theorem.

11.4.2 Rectifiable varifolds

Definition 11.82 A rectifiable n-dimensional varifold in Rn+m with sup-
port Σ and multiplicity θ, V = v(Σ, θ), where Σ ⊂ Rn+m is n-rectifiable
and θ is positive and locally integrable on Σ, is the Radon measure (i.e. a
Borel measure which is finite of compact sets)

V := θHn Σ,

i.e.

V (A) :=
∫

A∩Σ

θ(y)dHn(y), ∀A ⊂ Rn+m Borel.
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Remark 11.83 Equivalently we may see a rectifiable varifold as an equi-
valence class of couples (Σ, θ) as above under the equivalence relation

(Σ1, θ1) ∼ (Σ2, θ2) if Hn(Σ1\Σ2 ∪ Σ2\Σ1) = 0 and θ1 = θ2, Hn − a.e.
(11.69)

The simple proof of the equivalence of the two definitions is left for the
reader.

Remark 11.84 An n-rectifiable subset Σ ⊂ Rn+m such that Hn Σ is
locally finite can be seen as an n-rectifiable varifold with multiplicity θ = 1
(in this case we identify, without further comments Σ and V = Hn Σ).
For instance the graph of a Lipschitz function can be seen as a varifold.

Definition 11.85 Given a rectifiable varifold V = v(Σ, θ), the tangent
plane of V at p ∈ Σ is defined as

TpV := TpΣ,

compare Definition 11.81. The definition is well posed Hn-a.e. and does
not depend on Σ, except for an Hn-null set (recall that V is a measure
which determines Σ only up to sets of null Hn-measure).

The mass of a varifold V is its mass in the sense of measures and is
denoted by M(V ):

M(V ) := V (Rn+m) =
∫

Σ

θdHn.

The convergence we define on the space of rectifiable varifolds, differ-
ent from the convergence in the sense of varifolds which we shall define
for abstract varifolds, is the weak-∗ convergence induced by the duality
between Radon measures and compactly supported continuous functions:

Definition 11.86 (Weak convergence) We say that a sequence of vari-
folds Vj converges weakly to V (and we write Vj ⇀ V ) if

lim
j→∞

∫
Rn+m

fdVj =
∫

Rn+m

fdV,

for every f ∈ C0
c (Rn+m).

Proposition 11.87 The mass is continuous with respect to the weak con-
vergence in a compact set K ⊂ Rn+m, i.e. if Vj ⇀ V , sptVj ⊂ K for
every j ≥ 0, then M(Vj)→M(V ).

Proof. Set R > 0 such that K ⊂ BR(0) and ϕ ∈ C0
c (Rn+m) such that

ϕ = 1 on BR(0). Then

M(Vj) =
∫

Rn+m

ϕdVj →
∫

Rn+m

1dV = M(V ),

since also sptV ⊂ K. �



346 A survey of minimal graphs

11.4.3 First variation of a rectifiable varifold

The concept of first variation, which we defined for Lipschitz submanifolds
of Rn+m, compare Definition 11.15, may be easily extended to a rectifiable
varifold V = v(Σ, θ).

Definition 11.88 (Image varifold) Given f : Rn+m → Rn+m Lipschitz
and proper8 and an n-rectifiable varifold V = v(Σ, θ), the image varifold
of V under f is defined by

f#V := v(f(Σ), θ̃),

where
θ̃(y) =

∑
x∈Σ∩f−1(y)

θ(x).

Thanks to Proposition 11.79, f(Σ) is rectifiable and, since f is proper,
we have that θ̃Hn f(Σ) is locally finite: indeed, given a compact set K,
by the area formula we get

f#V (K) =
∫

K∩f(Σ)

θ̃dHn =
∫

f−1(K)∩Σ

(Jf)θdHn,

where
Jf :=

√
det(df∗df).

The last integral is finite because Jf is bounded, f−1(K) is compact and
θHn Σ is locally finite.

Definition 11.89 (First variation) Let ϕ : Rn+m × (−1, 1) be of class
C2 and such that

1. there exists a compact set K ⊂ Rn+m such that ϕt(x) := ϕ(x, t) = x
for every x /∈ K;

2. ϕ0(x) = x for every x ∈ Rn+m.

Then the first variation of a varifold V with respect to ϕ is

d

dt

∣∣∣∣
t=0

M(Vt), Vt := (ϕt)#V.

With the same proof of Proposition 11.17 we get

Proposition 11.90 Consider a family of diffeomorphisms ϕt as in Defin-
ition 11.89 and an n-rectifiable varifold V = v(Σ, θ). Let

X(x) :=
d

dt

∣∣∣∣
t=0

ϕt(x)

8For every compact K ⊂ Rn+m f−1(K) is compact.
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be the first variation field of ϕ. Then

d

dt

∣∣∣∣
t=0

M((ϕt)#V ) =
∫

Σ

divΣ XθdHn. (11.70)

Definition 11.91 (Minimal varifold) We say that an n-rectifiable vari-
fold V = v(Σ, θ) is minimal in an open set U ⊂ Rn+m if its first variation
is zero for every choice of ϕ in 11.89 with K � U ; equivalently, V is min-
imal in U if for every vector field X ∈ C1

c (U, Rn+m) we have∫
Σ

divΣ XθdHn = 0. (11.71)

Definition 11.92 (Minimal graph) We say that the graph Gu of a Lipschitz
function u : Ω→ Rm is minimal in the sense of varifolds if the associated
varifold V := v(Gu, 1) is minimal in Ω× Rm.

This means that the mass of V (Gu, θ) is stationary with respect to vari-
ations compactly contained in Ω × Rm, thus fixing the boundary of the
graph.

Proposition 11.93 Let u : Ω→ Rm, Ω ⊂ Rn, be a Lipschitz map. Then
u satisfies the minimal surface system (11.19) if and only if the associated
varifold v(Gu, 1) is minimal in Ω× Rm.

Proof. This follows at once by Proposition 11.20 and (11.71), since choos-
ing F (x) = (x, u(x)) in Proposition 11.20 the equation ΔΣF = 0 (with
Σ = Gu) reduces to (11.19). �

11.4.4 The monotonicity formula

Proposition 11.94 Consider an n-dimensional rectifiable varifold V =
v(Σ, θ) in Rn+m which is minimal in U ⊂ Rn+m. Then we have

V (Bρ(x0))
ρn

− V (Bσ(x0))
σn

=
∫

Bρ(x0)\Bσ(x0)

∣∣(∇r)⊥
∣∣2

rn
dV, (11.72)

for every x0 ∈ Rn+m, 0 < σ < ρ < dist(x0, ∂U), where r(x) := |x − x0|
and (∇r)⊥ is the component of ∇r orthogonal to Σ. Therefore the function

ρ �→ V (Bρ(x0))
ρn

, 0 < ρ < d(x0, ∂U)

is monotone increasing. In particular the density at x0 is well defined as

Θn(V, x0) := lim
ρ→0+

V (Bρ(x0))
ωnρn

.
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Proof. Fix ρ > 0 and define a function γ ∈ C1(R) such that

1. γ̇(t) ≤ 0 for every t ≥ 0;

2. γ(t) = 1 for every t ≤ ρ
2 ;

3. γ(t) = 0 for every t ≥ ρ.

Consider the vector field

X(x) := γ(r)(x− x0), r := |x− x0|.
Let x ∈ Σ be such that TxΣ exists; then

divΣ X(x) =
n+m∑
j=1

ej · (∇ΣXj)

= γ(r)
n+m∑
j=1

ejj + rγ̇(r)
n+m∑
j,l=1

xj − xj
0

r

xl − xl
0

r
ejl

where ejl is the (n + m) × (n + m)-matrix projecting Rn+m onto TxΣ.
The trace of the projection is

∑
ejj = n; moreover the quantity

n+m∑
j,l=1

xj − xj
0

r

xl − xl
0

r
ejl = |(∇r)T |2 = 1− |(∇r)⊥|,

is equal to the scalar product between the projection of Dr onto TxΣ and
Dr = x−x0

r itself. This implies

divΣ X(x) = nγ(r) + rγ̇(r)(1− |(∇r)⊥|2).
Apply (11.71) to X and get

n

∫
Σ

γ(r)dV +
∫

Σ

rγ̇(r)dV =
∫

Σ

rγ̇(r)|(∇r)⊥|2dV. (11.73)

Now consider a family of functions γ arising from the rescaling of a
function Φ ∈ C1(R) satisfying

1. Φ̇(t) ≤ 0 for every t ≥ 0;

2. Φ(t) = 1 for every t ≤ 1
2 ;

3. Φ(t) = 0 for every t ≥ 1.

More precisely, let γ(r) := Φ
(

r
ρ

)
for a fixed ρ > 0. It is clear that

rγ̇(r) =
r

ρ
Φ̇
( r

ρ

)
= −ρ

d

dρ

(
Φ
( r

ρ

))
.



11.4 Geometry of Varifolds 349

It follows that, defining

I(ρ) :=
∫

Σ

Φ
( r

ρ

)
dV, J(ρ) =

∫
Σ

Φ
( r

ρ

)⏐⏐(∇r)⊥
⏐⏐2

dV,

we obtain
nI(ρ)− ρİ(ρ) = −ρJ̇(ρ),

which may be rewritten multipling by ρ−n−1 as

d

dρ

(
I(ρ)
ρn

)
=

J̇(ρ)
ρn

. (11.74)

If we let Φ converge from below to the characteristic function of (−∞, 1],
we obtain

I(ρ)→ V (Bρ(x0)), J(ρ)→
∫

Bρ(x0)

⏐⏐(∇r)⊥
⏐⏐2

dV,

thus, in the sense of distributions, (11.74) becomes

d

dρ

(
V (Bρ(x0))

ρn

)
=

d

dρ

∫
Bρ(x0)

⏐⏐(∇r)⊥
⏐⏐2

rn
dV.

The claim of the theorem follows integrating with respect to ρ. �

11.4.5 The regularity theorem of Allard

The theorem of Allard is a basic tool in the regularity theory for min-
imal surfaces. Generalized by Allard, the theorem was first proved by De
Giorgi [25] in codimension 1. De Giorgi had the fundamental idea of ap-
proximating a minimal surface with harmonic functions, introducing the
excess to estimate the error.

Definition 11.95 (Excess) Given a varifold V = v(Σ, θ), x0 ∈ Σ, an
n-plane T and R > 0, define the excess

E(x0, R, T ) :=
1

Rn

∫
BR(x0)

‖pTxM − pT ‖2dV (x), (11.75)

where pT and pTxM are the projections onto T and TxM respectively, and
for an (n + m)× (n + m) matrix A = (Aij) we set

‖A‖ :=

√√√√n+m∑
i,j=1

A2
ij .
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Theorem 11.96 (Allard) Let V = v(Σ, θ) be a rectifiable n-varifold in
Rn+m which is minimal in the open set U ⊂ Rn+m, x0 ∈ sptV , BR(x0) �
U . Then for every σ, α ∈ (0, 1) there are constants ε, γ depending on
n,m, σ, α such that if

1. 1 ≤ θ ≤ 1 + ε, V -a.e. in U ,

2. V (BR(x0))
ωnRn ≤ 2− α,

3. E(x0, R, T ) ≤ ε for some n-plane T ⊂ Rn+m.

Then
V BγR(x0) = v(Gu ∩BγR(x0), 1),

where u : T ∩BγR(x0)→ T⊥ is a smooth function. This means, that up to
a rotation of Rn+m sending T onto Rn×{0} and T⊥ onto {0}×Rm and
a translation sending x0 to 0, we can take u ∈ C∞(Bn

γR(0), Rm), where
Bn

γR(0) ⊂ Rn.

Second version of Allard’s theorem

The following version of Allard’s theorem can be deduced from the previ-
ous one and it is the one we shall actually use.

Theorem 11.97 Let V = v(Σ, θ) be a rectifiable n-varifold in Rn+m

which is minimal in the open set U ⊂ Rn+m, 0 ∈ sptV , B1(0) � U . Then
for every σ ∈ (0, 1) there exist positive numbers δ, γ and c depending on
m,n and σ such that if ⎧⎨⎩ θ ≥ 1, V − a.e.,

V (B1(0))
ωn

≤ 1 + δ,
(11.76)

then, up to a rotation of Rn+m there exists u ∈ C1,σ(Bn
γ (0)) with u(0) = 0

such that
V Bγ(0) = v

(Gu ∩Bγ(0), θ
)
.

Moreover
‖u‖C1,σ(Bγ(0)) ≤ cδ

1
4n . (11.77)

In the case of Lipschitz minimal graphs Proposition 11.93 and Theorem
11.97 give:

Theorem 11.98 Let u ∈ Lip(Ω, Rm), Ω ⊂ Rn, be a solution to the min-
imal surface system (11.19). Assume (up to a translation and a dilation)
that B1(0) � Ω and u(0) = 0. There for σ ∈ (0, 1) there exist positive
numbers δ, γ and c depending on m, n and σ such that if

Hn(Gu ∩B1(0)) ≤ (1 + δ)ωn,
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then u ∈ C1,σ(Bn
γ (0)) and

‖u‖C1,σ(Bn
γ (0)) ≤ cδ

1
4n . (11.78)

11.4.6 Abstract varifolds

Rectifiable varifolds are Radon measures in Rn+m. A compactness the-
orem for measures assures that a sequence of varifolds with equibounded
masses admits a subsequence converging in the sense of measures. The
limit, however, is a Radon measure whose support in general might not
be rectifiable. This motivates the introduction of a stronger convergence
and of a larger class of objects.

Definition 11.99 Given an open set U ⊂ Rn+m, the Grassmannian fiber
bundle of n-planes on U is

Gn(U) := U ×G(n,m), π : Gn(U)→ U

where
G(n,m) ∼= O(n + m)

O(n)×O(m)

is the Grassmannian of n-planes in Rn+m and π(x, S) = x for every x ∈ U
and every n-plane S. We endow Gn(U) with the product topology.

Definition 11.100 An n-varifold in U ⊂ Rn+m is a Radon measure V
on the Grassmannian fiber bundle Gn(U). Associated to V there is a
measure μV on U defined by

μV (A) := V (π−1(A)), ∀A ⊂ U measurable.

Finally we define the mass of V ,

M(V ) := μV (U).

Remark 11.101 The class of abstract varifolds contains the class of rec-
tifiable varifolds: to a rectifiable n-varifold v(Σ, θ) we can associate the
abstract varifold V defined by

V (B) = v(Σ, θ)(π(B ∩ TΣ)), B ⊂ Gn(U) measurable,

being
TΣ := {(x, TxΣ) : x ∈ Σ∗} ⊂ Gn(U)

the tangent bundle of Σ (Σ∗ is the set of points of Σ where the approximate
tangent plane is defined). Clearly in this case μV = v(Σ, θ) because

μV (A) = V (π−1(A)) = v(Σ, θ)(π(π−1(A) ∩ TΣ)) = v(Σ, θ)(A).
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We give the space of n-dimensional varifolds in U the weak-∗ topology
of Radon measures, so that Vn ⇀ V if and only if for every f ∈ C0

c (Gn(U))
we have ∫

Gn(U)

f(x, S)dVn(x, S)→
∫

Gn(U)

f(x, S)dV (x, S).

Remark 11.102 The convergence just defined, which we call conver-
gence in the sense of varifolds, is stronger than the convergence defined
for rectifiable varifolds. For instance, if Vk = v(Σk, θk) ⇀ V is a sequence
of rectifiable varifolds converging in the sense of varifolds, then in a cer-
tain sense, both the supports (with multiplicity) and the tangent planes
of the varifolds Vk converge. As we shall see, this does not yet guarantee
(without further assumptions) that V is also rectifiable.

11.4.7 Image and first variation of an abstract vari-
fold

Definition 11.103 Given a proper Lipschitz map ϕ : U ⊂ Rn+m → U
and an n-dimensional varifold V , define the image varifold

ϕ#V (A) :=
∫

F−1(A)

Jϕ(x, S)dV (x, S), ∀A ⊂ Gn(U), (11.79)

where F : Gn(U)→ Gn(U) is given by

F (x, S) := (ϕ(x), dϕxS), x ∈ U, S ∈ G(n,m),

while
Jϕ(x, S) :=

√
det

(
(dϕx

∣∣
S
)∗dϕx

∣∣
S

)
.

Remark 11.104 The image varifold ϕ#V can also be defined using the
duality with continuous functions on Gn(U):

ϕ#V (f) =
∫

Gn(U)

fdϕ#V =
∫

Gn(U)

f(ϕ(x), dϕxS)Jϕ(x, S)dV (x, S).

(11.80)
It is possible to pass from (11.79) to (11.80) using the characteristic func-
tions of subsets A ⊂ Gn(U) and then approximating.

We define the first variation of an abstract varifold in a way similar to
that used for rectifiable varifolds: let ϕt be as in Definition 11.89. Then
the first variation of a varifold V with respect to ϕt is

δV (X) :=
d

dt

∣∣∣∣
t=0

M(ϕt#V ), (11.81)
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with

X(x) :=
∂ϕt(x)

∂t
(x, 0).

The definition is well posed, since δV (X) only depends on the vector field
X. In fact with the same computation as in Propositions 11.16 and 11.17
and one can see that

δV (X) =
∫

Gn(U)

divS X(x)dV (x, S), (11.82)

being

divS X(x) :=
n∑

i=1

τi · (∇τiX),

for a choice of an orthonormal basis {τ1, . . . , τn} of S.

Definition 11.105 Given a varifold V in U ⊂ Rn+m, its (total) first
variation in W ⊂ U is

‖δV ‖ := sup
X∈C1

c (U,Rn+m)
sup |X|≤1, spt X⊂W

|δV (X)|, (11.83)

where δV (X) is defined in (11.82).

Remark 11.106 If V is the abstract varifold induced by a rectifiable vari-
fold v(Σ, θ) (compare Remark 11.101), then ϕ#V is the abstract varifold
corresponding to ϕ#v(Σ, θ) (compare Definition 11.88). For this reason
the first variation of a rectifiable varifold is the same as the first variation
of the corresponding abstract varifold.

11.4.8 Allard’s compactness theorem

Allard’s compactness theorem gives a natural condition under which a
sequence of rectifiable integer multiplicity varifolds admits a subsequence
converging in the sense of varifolds (i.e. on the Grassmannian) to an
integer multiplicity rectifiable varifold.

Example 11.107 Consider the sequence of functions un : [0, 1] → R
defined by

un(x) =
{nx}

n
, (11.84)

where {x} denotes x minus its integral part.9 The graph of un is an integer
multiplicity rectifiable 1-varifold in R2 (see Figure 11.1), and as n→ +∞,

9For instance {π} = 0, 14159265 . . .
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Figure 11.1: The functions u2 and u4 in (11.84).

the weak limit of v(Gun , 1) as rectifiable varifolds is
√

2H1 ([0, 1]×{0}),
whose corresponding abstract varifold is

√
2H1 ([0, 1]× {0})× δ0,

identifying a line in R2 (an element of G1(R2)) with the angle it spans
with the x-axis, in this case 0. On the other hand, the weak limit in the
sense of varifolds is

√
2H1 ([0, 1]× {0})× δπ

4
,

which is not rectifiable.

It is not hard to prove that in the preceding example ‖δGun‖ → +∞
and the following theorem of Allard, for the proof of which we refer to
[97], does not apply.

Theorem 11.108 (Compactness) Consider a sequence of integer mul-
tiplicity rectifiable varifolds Vj in a bounded open set U whose masses and
first variations are locally equibounded, that is such that for every W � U

sup
j≥1

(
M(Vj

∣∣
W

) + ‖δVj‖(W )
)

< +∞.

Then there exists a subsequence Vj′ converging in the sense of varifolds to
an integer multiplicity rectifiable varifold V , and

‖δV ‖(W ) ≤ lim inf
j→+∞

‖δVj‖, ∀W � U.
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[84] J. Nečas, J. Stará, Principio di massimo per i sistemi ellittici
quasilineari non diagonali, Boll. UMI 6 (1972), 1-10.
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