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Morrey space



Campanato space



Properties of Morrey and Campanato spaces



For λ ∈ [0, n) Morrey=Campanato



For λ ∈ (n, n + p] Campanato=Hölder



Corolaries

Corollary

If Ω has the extension property and u ∈W 1,p(Ω) with p > n then
u ∈ C 0,1−n/p(Ω) and (C = C (Ω, p))

‖u‖C0,1−n/p ≤ C‖u‖W 1,p .

Corollary (Morrey)

Let u ∈W 1,p
loc (Ω), ∇u ∈ Lp,n−p+pε

loc (Ω), for some ε > 0. Then u ∈ C 0,ε
loc(Ω).
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Sobolev Poincare inequality

Theorem (Sobolev-Poincare)

For every bounded and connected domain Ω with the extension property,
p ≥ 1, q ∈ [1, p∗) there is a constant c = c(n, p, q,Ω) such that for each
u ∈W 1,p(Ω) we have

(  
Ω
|u − uΩ|q

) 1
q ≤ c

(  
Ω
|∇u|p)

1
p .

When Ω = Br or cube of sidelength r then c ≤ c(n, p, q)r

I p∗ = np/(n − p) if n > p and +∞ otherwise =⇒ compactness of
the embedding W 1,p ↪→ Lq

I uΩ is mean over Ω
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Caccioppoli inequality



Caccioppoli inequality



Basic estimate



Liouville



Regularity with constant coefficients
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Regularity with continuous coefficients



Regularity with continuous coefficients



Regularity with Hölder continuous coefficients

Remark
We will show F ∈ L2,λ =⇒ ∇u ∈ L2,λ for λ ∈ [0, n + 2).



Counterexamples to full regularity

From now on we follow [Beck, 2016].
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Partial regularity—assumptions
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Partial regularity—basic concepts
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Partial regularity
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Hausdorff measure and dimension



Hausdorff measure and dimension
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Hausdorff measure of singular set



Hausdorff measure of singular set



Approaches to proof of the decay estimate

I Blow-up

I A harmonic approximation

I direct approach
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Decay estimate via blow-up



Decay estimate via blow-up



Decay estimate via A-harmonic approximation



Decay estimate via A-harmonic approximation



Decay estimate — direct approach



Gehring theorem

[Beck, 2016]

[Iwaniec, 1998]
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