nmma583

Petr Kaplický

December 17, 2020

Campanatovy a Morreyovy prostory

Elliptic systems with constant coefficients

Morrey space

Let Ω be a bounded connected open set in $\,R^n\,$ and let us denote

$$\Omega(\mathbf{x}, \rho) = \Omega \cap B(\mathbf{x}, \rho)$$

diam
$$\Omega = \sup \{|x-y| : x, y \in \Omega\}$$
.

DEFINITION 1.1 (Morrey spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $L^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

(1.2)
$$\|u\|_{L^{p,\lambda}(\Omega)} = \left\{ \sup_{\substack{\mathbf{x}\in\Omega\\\mathbf{0}\leq\rho\leq\dim\Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x},\rho)} |u|^p d\mathbf{x} \right\}^{\frac{1}{p}} \leq +\infty.$$

It is easy to see that $\|u\|_{p,\lambda}$ in (1.2) is a norm respect to which $L^{p,\lambda}(\Omega)$ is a Banach space.

Campanato space

Set

$$u_{x_0,\rho} = \frac{1}{|\Omega(x_0,\rho)|} \int_{\Omega(x_0,\rho)} u(x) dx$$
.²⁾

DEFINITION 1.2 (Campanato spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $\mathbb{C}^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

(1.3)
$$[u]_{\mathbf{p},\lambda} = \left\{ \sup_{\substack{\mathbf{x}_0 \in \Omega \\ 0 \leq \rho \leq \dim \Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x}_0,\rho)} |u(\mathbf{x}) - u_{\mathbf{x}_0,\rho}|^p d\mathbf{x} \right\}^{\frac{1}{p}} \leq +\infty .$$

 $\mathfrak{L}^{\mathrm{p},\lambda}(\Omega)$ are Banach spaces with the norm

$$\|\mathbf{u}\|_{\mathcal{D}^{\mathbf{p},\lambda}(\Omega)} = \|\mathbf{u}\|_{\mathbf{L}^{\mathbf{p}}(\Omega)} + [\mathbf{u}]_{\mathbf{p},\lambda}$$

and one sees that u $\epsilon \, {\mathbb C}^{p,\lambda}(\Omega)$ if and only if

$$\sup_{\substack{x \in \Omega \\ 0 \leq \rho \leq \dim \Omega}} \rho^{-\lambda} \inf_{c \in R} \int_{\Omega(x,\rho)} |u-c|^p dx \leq +\infty.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のんの

Properties of Morrey and Campanato spaces

DEFINITION 1.3. Let A > 0. The bounded set Ω is said to be of type (A) if for all $x_0 \in \Omega$ and $\rho \leq \text{diam } \Omega$

$$|\Omega(\mathbf{x}_0, \rho)| \ge \mathbf{A} \rho^{\mathbf{n}}$$
.

-- -----

Let Ω be a bounded connected open set in R^n and let us denote

$$\Omega(\mathbf{x},\rho) = \Omega \cap \mathcal{B}(\mathbf{x},\rho)$$

diam
$$\Omega = \sup \{|x-y| : x, y \in \Omega\}$$
.

DEFINITION 1.1 (Morrey spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $L^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

(1.2)
$$\|u\|_{L^{p,\lambda}(\Omega)} = \left\{ \sup_{\substack{\mathbf{x}\in\Omega\\\mathbf{0}\leq\rho\leq\dim\Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x},\rho)} |u|^{p} d\mathbf{x} \right\}^{\frac{1}{p}} < +\infty.$$

It is easy to see that $||u||_{p,\lambda}$ in (1.2) is a norm respect to which $L^{p,\lambda}(\Omega)$ is a Banach space.

B Proposition.

・ロト ・ 同ト ・ ヨト ・ ヨト

PROPOSITION 1.1. We have

a)
$$L^{p,0}(\Omega) \simeq L^{p}(\Omega)$$

b) $L^{p,n}(\Omega) \simeq L^{\infty}(\Omega)$
c) $L^{p,\lambda}(\Omega) = \{0\} \text{ for } \lambda > n$
d) $L^{q,\mu}(\Omega) \subset L^{p,\lambda}(\Omega) \text{ if } p \le q, \frac{n-\lambda}{p} \le \frac{n-\mu}{q}$

For $\lambda \in [0, n)$ Morrey=Campanato

PROPOSITION 1.2. Let Ω be of type (A) and $0 \leq \lambda \leq n$. Then $\mathcal{Q}^{p,\lambda}(\Omega)$ is isomorphic to $L^{p,\lambda}(\Omega)$.

DEFINITION 1.2 (Campanato spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $\mathfrak{L}^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

(1.3)
$$[u]_{\mathbf{p},\lambda} = \left\{ \sup_{\substack{\mathbf{x}_0 \in \Omega \\ 0 \le \rho \le \operatorname{diam} \Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x}_0,\rho)} |u(\mathbf{x}) - u_{\mathbf{x}_0,\rho}|^p d\mathbf{x} \right\}^{\frac{1}{p}} \le +\infty.$$

DEFINITION 1.1 (Morrey spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $L^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

・ロト ・ 同ト ・ ヨト ・ ヨト

э

(1.2)
$$\|u\|_{L^{p,\lambda}(\Omega)} = \left\{ \sup_{\substack{\mathbf{x}\in\Omega\\0<\rho\leq\operatorname{diam}\Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x},\rho)} |u|^p d\mathbf{x} \right\}^{\frac{1}{p}} < +\infty.$$

For $\lambda \in (n, n + p]$ Campanato=Hölder

THEOREM 1.2 (An integral characterization of Hölder continuous functions). Let Ω be of type (A) and $n < \lambda \le n + p$. Then $\mathfrak{L}^{p,\lambda}(\Omega)$ is isomorphic to the space $C^{0,\alpha}(\Omega)$ with $\alpha = \frac{\lambda - n}{p}$. Moreover if $u \in \mathfrak{L}^{p,\lambda}(\Omega)$ with $\lambda > n + p$, then u is constant in Ω .

DEFINITION 1.2 (Campanato spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $\mathfrak{L}^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

(1.3)
$$[u]_{\mathbf{p},\lambda} = \left\{ \sup_{\substack{\mathbf{x}_0 \in \Omega \\ 0 \le \rho \le \operatorname{diam} \Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x}_0,\rho)} |u(\mathbf{x}) - u_{\mathbf{x}_0,\rho}|^p d\mathbf{x} \right\}^{\frac{1}{p}} \le +\infty.$$

DEFINITION 1.1 (Morrey spaces). Let $p \ge 1$ and $\lambda \ge 0$. By $L^{p,\lambda}(\Omega)$ we denote the linear space of functions $u \in L^p(\Omega)$ such that

・ロト ・四ト ・ヨト ・ヨト

(1.2)
$$\|u\|_{L^{p,\lambda}(\Omega)} = \left\{ \sup_{\substack{\mathbf{x}\in\Omega\\0<\rho<\operatorname{diam}\Omega}} \rho^{-\lambda} \int_{\Omega(\mathbf{x},\rho)} |u|^p d\mathbf{x} \right\}^{\frac{1}{p}} < +\infty.$$

Corolaries

Corollary

If Ω has the extension property and $u \in W^{1,p}(\Omega)$ with p > n then $u \in C^{0,1-n/p}(\overline{\Omega})$ and $(C = C(\Omega, p))$

 $||u||_{C^{0,1-n/p}} \leq C ||u||_{W^{1,p}}.$

Corolaries

Corollary

If Ω has the extension property and $u \in W^{1,p}(\Omega)$ with p > n then $u \in C^{0,1-n/p}(\overline{\Omega})$ and $(C = C(\Omega, p))$

$$||u||_{C^{0,1-n/p}} \leq C ||u||_{W^{1,p}}.$$

Corollary (Morrey) Let $u \in W^{1,p}_{loc}(\Omega)$, $\nabla u \in L^{p,n-p+p\epsilon}_{loc}(\Omega)$, for some $\epsilon > 0$. Then $u \in C^{0,\epsilon}_{loc}(\Omega)$. Campanatovy a Morreyovy prostory

Elliptic systems with constant coefficients

Sobolev Poincare inequality

Theorem (Sobolev-Poincare)

For every bounded and connected domain Ω with the extension property, $p \ge 1$, $q \in [1, p^*)$ there is a constant $c = c(n, p, q, \Omega)$ such that for each $u \in W^{1,p}(\Omega)$ we have

$$\left(\int_{\Omega}|u-u_{\Omega}|^{q}\right)^{\frac{1}{q}}\leq c\left(\int_{\Omega}|\nabla u|^{p}\right)^{\frac{1}{p}}.$$

When $\Omega = B_r$ or cube of sidelength r then $c \leq c(n, p, q)r$

- ▶ $p^* = np/(n-p)$ if n > p and $+\infty$ otherwise \implies compactness of the embedding $W^{1,p} \hookrightarrow L^q$
- u_{Ω} is mean over Ω

Setting

leading part with constant coefficients 5)

(2.1)
$$- D_{\alpha} (A_{ij}^{\alpha\beta} D_{\beta} u^{j}) = 0 \qquad i = 1, \dots, N.$$

Elliptic means that the coefficients satisfy the Legendre-Hadamard condition

(2.2)
$$A^{\alpha\beta}_{ij}\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \geq \nu|\xi|^{2}|\eta|^{2} \qquad \forall \eta, \xi; \nu > 0$$

Setting

leading part with constant coefficients⁵⁾

(2.1)
$$-D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = 0 \qquad i = 1, \dots, N.$$

Elliptic means that the coefficients satisfy the Legendre-Hadamard condition

(2.2)
$$A^{\alpha\beta}_{ij}\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \geq \nu|\xi|^{2}|\eta|^{2} \qquad \forall \eta, \xi; \nu > 0$$

Definition 3.36 A matrix of coefficients $(A_{ij}^{\alpha\beta})_{1 \le i,j \le m}^{1 \le \alpha,\beta \le n}$ is said to satisfy

1. the very strong ellipticity condition, or the Legendre condition, if there is a $\lambda > 0$ such that

$$A_{ij}^{\alpha\beta}\xi_{\alpha}^{i}\xi_{\beta}^{j} \ge \lambda |\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{m \times n};$$
(3.16)

2. the strong ellipticity condition, or the Legendre-Hadamard condition, if there is a $\lambda > 0$ such that

$$A_{ij}^{\alpha\beta}\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \ge \lambda|\xi|^{2}|\eta|^{2}, \quad \forall \xi \in \mathbb{R}^{n}, \forall \eta \in \mathbb{R}^{m}.$$
(3.17)

Setting

leading part with constant coefficients⁵⁾

(2.1)
$$-D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = 0 \qquad i = 1, \dots, N.$$

Elliptic means that the coefficients satisfy the Legendre-Hadamard condition

(2.2)
$$A^{\alpha\beta}_{ij}\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \geq \nu|\xi|^{2}|\eta|^{2} \qquad \forall \eta, \xi; \nu > 0$$

Definition 3.36 A matrix of coefficients $(A_{ij}^{\alpha\beta})_{1\leq i,j\leq m}^{1\leq \alpha,\beta\leq n}$ is said to satisfy

1. the very strong ellipticity condition, or the Legendre condition, if there is a $\lambda > 0$ such that

$$A_{ij}^{\alpha\beta}\xi_{\alpha}^{i}\xi_{\beta}^{j} \ge \lambda |\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{m \times n};$$
(3.16)

2. the strong ellipticity condition, or the Legendre-Hadamard condition, if there is a $\lambda > 0$ such that

$$A_{ij}^{\alpha\beta}\xi_{\alpha}\xi_{\beta}\eta^{i}\eta^{j} \ge \lambda |\xi|^{2}|\eta|^{2}, \quad \forall \xi \in \mathbb{R}^{n}, \forall \eta \in \mathbb{R}^{m}.$$

$$(3.17)$$

Definition 3.41 A bilinear form \mathcal{B} on $W_0^{1,2}(\Omega, \mathbb{R}^m)$ is said to be weakly coercive if there exist $\lambda_0 > 0$ and $\lambda_1 \ge 0$ such that

$$\mathcal{B}(u,u) \ge \lambda_0 \int_{\Omega} |Du|^2 dx - \lambda_1 \int_{\Omega} |u|^2 dx.$$
(3.23)

Theorem 3.42 (Gårding's inequality) Assume that $A_{ij}^{\alpha\beta}$ are uniformly continuous on Ω and that they satisfy the Legendre-Hadamard condition (3.17) for some $\lambda > 0$ independent of $x \in \Omega$. Then the bilinear form on $W_0^{1,2}(\Omega, \mathbb{R}^m)$ defined by

$$\mathcal{B}(u,v) := \int_{\Omega} A_{ij}^{lphaeta} D_{lpha} u^i D_{eta} v^j dx$$

is weakly coercive. If $A_{ij}^{\alpha\beta}$ are constant then \mathcal{B} is in fact coercive.

Caccioppoli inequality

PROPOSITION 2.1. Let $u \in H^1(\Omega, \mathbb{R}^N)$ be a weak solution to system (2.1), i.e.

(2.3)
$$\int_{\Omega} A^{\alpha\beta}_{ij} D_{\beta} u^{j} D_{\alpha} \phi^{i} dx = 0 \qquad \forall \phi \in H^{1}_{0}(\Omega, \mathbb{R}^{N}).$$

Then for all $x_0\in\Omega$ and all $R\leq\frac{1}{2}\,dist\,(x_0,\partial\Omega)$ the following inequality holds

(2.4)
$$\int_{\mathbf{B}_{\mathbf{R}}(\mathbf{x}_{0})} |\nabla \mathbf{u}|^{2} d\mathbf{x} \leq \frac{c}{\mathbf{R}^{2}} \int_{\mathbf{B}_{2\mathbf{R}}(\mathbf{x}_{0})} |\mathbf{u}|^{2} d\mathbf{x}.$$

Caccioppoli inequality

PROPOSITION 2.1. Let $u \in H^1(\Omega, \mathbb{R}^N)$ be a weak solution to system (2.1), i.e.

(2.3)
$$\int_{\Omega} A^{\alpha\beta}_{ij} D_{\beta} u^{j} D_{\alpha} \phi^{i} dx = 0 \qquad \forall \phi \in H^{1}_{0}(\Omega, \mathbb{R}^{N}).$$

Then for all $x_0 \in \Omega$ and all $R \leq \frac{1}{2} \operatorname{dist}(x_0, \partial \Omega)$ the following inequality holds

(2.4)
$$\int_{\mathbf{B}_{\mathbf{R}}(\mathbf{x}_{0})} |\nabla u|^{2} dx \leq \frac{c}{\mathbf{R}^{2}} \int_{\mathbf{B}_{2\mathbf{R}}(\mathbf{x}_{0})} |u|^{2} dx.$$

if u is a solution to system (2.1), then for all $x_0 \in \Omega$ and for all $\rho \leq R \leq dist(x_0, \partial \Omega)$ the following estimate holds:

・ロト ・回ト ・ヨト ・ヨト

æ

(2.5)
$$\int_{\mathbf{B}_{\rho}(\mathbf{x}_{0})} |\nabla \mathbf{u}|^{2} d\mathbf{x} \leq \frac{c}{(\mathbf{R}-\rho)^{2}} \int_{\mathbf{B}_{\mathbf{R}} \setminus \mathbf{B}_{\rho}} |\mathbf{u}-\lambda|^{2} d\mathbf{x} .$$

THEOREM 2.1. Let u be a weak solution to system (2.1). Then there exists a constant c depending on the constants of the system such that for each $x_0 \in \Omega$ and $0 \le \rho \le R \le \text{dist}(x_0, \partial\Omega)$ the following estimates hold

(2.7)
$$\int_{\mathbf{B}_{\rho}(\mathbf{x}_{0})} |\mathbf{u}|^{2} d\mathbf{x} \leq c \left(\frac{\rho}{R}\right)^{n} \int_{\mathbf{B}_{R}(\mathbf{x}_{0})} |\mathbf{u}|^{2} d\mathbf{x}$$

~

n

(2.8)
$$\int_{B_{\rho}(x_{0})} |u - u_{x_{0},\rho}|^{2} dx \leq c \left(\frac{\rho}{R}\right)^{n+2} \int_{B_{R}(x_{0})} |u - u_{x_{0},R}|^{2} dx .$$

Liouville

Theorem 5.12 Let $u : \mathbb{R}^n \to \mathbb{R}^m$ be an entire solution to the elliptic system (5.12), and assume that there exists a constant M > 0 and an integer $k \ge 0$ such that

$$|u(x)| \le M(1+|x|^k), \quad \forall x \in \mathbb{R}^n.$$

Then u is a polynomial of degree at most k.

Regularity with constant coefficients

Theorem 5.14 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.19)$$

with $A_{ij}^{\alpha\beta}$ constant and satisfying the Legendre-Hadamard condition (3.17). If $F_i^{\alpha} \in \mathcal{L}_{loc}^{2,\mu}(\Omega), \ 0 \leq \mu < n+2$, then $Du \in \mathcal{L}_{loc}^{2,\mu}(\Omega)$, and

$$\|Du\|_{\mathcal{L}^{2,\mu}(K)} \le c \Big(\|Du\|_{L^{2}(\Omega)} + [F]_{\mathcal{L}^{2,\mu}(\widetilde{\Omega})} \Big), \tag{5.20}$$

for every compact $K \Subset \widetilde{\Omega} \Subset \Omega$, with $c = c(n, m, K, \widetilde{\Omega}, \lambda, \Lambda, \mu)$.

Regularity with constant coefficients

Theorem 5.14 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.19)$$

with $A_{ij}^{\alpha\beta}$ constant and satisfying the Legendre-Hadamard condition (3.17). If $F_i^{\alpha} \in \mathcal{L}_{loc}^{2,\mu}(\Omega), \ 0 \leq \mu < n+2$, then $Du \in \mathcal{L}_{loc}^{2,\mu}(\Omega)$, and

$$||Du||_{\mathcal{L}^{2,\mu}(K)} \le c \Big(||Du||_{L^{2}(\Omega)} + [F]_{\mathcal{L}^{2,\mu}(\widetilde{\Omega})} \Big),$$
 (5.20)

for every compact $K \in \widetilde{\Omega} \in \Omega$, with $c = c(n, m, K, \widetilde{\Omega}, \lambda, \Lambda, \mu)$.

Lemma 5.13 Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non-negative and non-decreasing function satisfying

$$\phi(\rho) \le A \Big[\Big(\frac{\rho}{R} \Big)^{\alpha} + \varepsilon \Big] \phi(R) + B R^{\beta},$$

for some $A, \alpha, \beta > 0$, with $\alpha > \beta$ and for all $0 < \rho \le R \le R_0$, where $R_0 > 0$ is given. Then there exist constants $\varepsilon_0 = \varepsilon_0(A, \alpha, \beta)$ and $c = c(A, \alpha, \beta)$ such that if $\varepsilon \le \varepsilon_0$, we have

$$\phi(\rho) \le c \Big[\frac{\phi(R)}{R^{\beta}} + B \Big] \rho^{\beta}.$$
(5.17)

イロト イヨト イヨト イヨト

æ

for all $0 \leq \rho \leq R \leq R_0$.

Regularity with constant coefficients

Theorem 5.14 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.19)$$

with $A_{ij}^{\alpha\beta}$ constant and satisfying the Legendre-Hadamard condition (3.17). If $F_i^{\alpha} \in \mathcal{L}_{loc}^{2,\mu}(\Omega), \ 0 \leq \mu < n+2$, then $Du \in \mathcal{L}_{loc}^{2,\mu}(\Omega)$, and

$$\|Du\|_{\mathcal{L}^{2,\mu}(K)} \le c \Big(\|Du\|_{L^{2}(\Omega)} + [F]_{\mathcal{L}^{2,\mu}(\widetilde{\Omega})} \Big), \tag{5.20}$$

for every compact $K \in \widetilde{\Omega} \in \Omega$, with $c = c(n, m, K, \widetilde{\Omega}, \lambda, \Lambda, \mu)$.

Lemma 5.13 Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a non-negative and non-decreasing function satisfying

$$\phi(\rho) \le A\left[\left(\frac{\rho}{R}\right)^{\alpha} + \varepsilon\right]\phi(R) + BR^{\beta},$$

for some $A, \alpha, \beta > 0$, with $\alpha > \beta$ and for all $0 < \rho \le R \le R_0$, where $R_0 > 0$ is given. Then there exist constants $\varepsilon_0 = \varepsilon_0(A, \alpha, \beta)$ and $c = c(A, \alpha, \beta)$ such that if $\varepsilon \le \varepsilon_0$, we have

$$\phi(\rho) \le c \Big[\frac{\phi(R)}{R^{\beta}} + B \Big] \rho^{\beta}.$$
(5.17)

for all $0 \leq \rho \leq R \leq R_0$.

Corollary 5.15 In the hypothesis of the theorem, if $F_i^{\alpha} \in C^{k,\sigma}(\overline{\Omega}), k \geq 1$, then $u \in C_{\text{loc}}^{k+1,\sigma}(\Omega)$ and

$$||u||_{C^{k+1,\sigma}(K)} \le c \Big(||Du||_{L^2(\Omega)} + ||F||_{C^{k,\sigma}(\overline{\Omega})} \Big)$$

with $c = c(n, m, K, \Omega, \lambda, \Lambda, \sigma)$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

Regularity with continuous coefficients

Theorem 5.17 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.25)$$

with $A_{ij}^{\alpha\beta} \in C_{\text{loc}}^0(\Omega)$ satisfying the Legendre-Hadamard condition (3.17). Then, if $F_i^{\alpha} \in L_{\text{loc}}^{2,\lambda}(\Omega)$ for some $0 \leq \lambda < n$, we have $Du \in L_{\text{loc}}^{2,\lambda}(\Omega)$ and the following estimate

$$\|Du\|_{L^{2,\lambda}(K)} \le c \Big(\|Du\|_{L^{2}(\widetilde{\Omega})} + \|F\|_{L^{2,\lambda}(\widetilde{\Omega})}^{2} \Big)$$

$$(5.26)$$

holds for every compact $K \in \widetilde{\Omega} \in \Omega$, where $c = c(n, m, \lambda, \Lambda, K, \widetilde{\Omega}, \omega)$ and ω is the modulus of continuity of $(A_{ij}^{\alpha\beta})$ in $\widetilde{\Omega}$:

$$\omega(R) := \sup_{\substack{x,y \in \tilde{\Omega} \\ |x-y| \le R}} |A(x) - A(y)|,$$

Regularity with continuous coefficients

Theorem 5.17 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.25)$$

with $A_{ij}^{\alpha\beta} \in C_{\text{loc}}^0(\Omega)$ satisfying the Legendre-Hadamard condition (3.17). Then, if $F_i^{\alpha} \in L^{2,\lambda}_{\text{loc}}(\Omega)$ for some $0 \leq \lambda < n$, we have $Du \in L^{2,\lambda}_{\text{loc}}(\Omega)$ and the following estimate

$$\|Du\|_{L^{2,\lambda}(K)} \le c \Big(\|Du\|_{L^{2}(\widetilde{\Omega})} + \|F\|_{L^{2,\lambda}(\widetilde{\Omega})}^{2} \Big)$$

$$(5.26)$$

holds for every compact $K \Subset \widetilde{\Omega} \Subset \Omega$, where $c = c(n, m, \lambda, \Lambda, K, \widetilde{\Omega}, \omega)$ and ω is the modulus of continuity of $(A_{ij}^{\alpha\beta})$ in $\widetilde{\Omega}$:

$$\omega(R) := \sup_{\substack{x,y \in \tilde{\Omega} \\ |x-y| \le R}} |A(x) - A(y)|,$$

Corollary 5.18 In the same hypothesis of the theorem, if $\lambda > n-2$, then $u \in C^{0,\sigma}_{\text{loc}}(\Omega, \mathbb{R}^m), \ \sigma = \frac{\lambda - n + 2}{2}$.

Regularity with Hölder continuous coefficients

Theorem 5.19 Let $u \in W^{1,2}_{loc}(\Omega, \mathbb{R}^m)$ be a solution to

$$D_{\alpha}(A_{ij}^{\alpha\beta}D_{\beta}u^{j}) = -D_{\alpha}F_{i}^{\alpha}, \qquad (5.29)$$

with $A_{ij}^{\alpha\beta} \in C_{\text{loc}}^{0,\sigma}(\Omega)$ satisfying the Legendre-Hadamard condition (3.17) for some $\sigma \in (0,1)$. If $F_i^{\alpha} \in C_{\text{loc}}^{0,\sigma}(\Omega)$, then we have $Du \in C_{\text{loc}}^{0,\sigma}(\Omega)$. Moreover for every compact $K \in \widehat{\Omega} \in \Omega$

$$\|Du\|_{C^{0,\sigma}(K)} \le c \Big(\|Du\|_{L^{2}(\widetilde{\Omega})} + \|F\|_{C^{0,\sigma}(\widetilde{\Omega})} \Big),$$
(5.30)

c depending on K, $\widetilde{\Omega}$, the ellipticity and the Hölder norm of the coefficients $A_{ij}^{\alpha\beta}$.

Remark We will show $F \in \mathcal{L}^{2,\lambda} \implies \nabla u \in \mathcal{L}^{2,\lambda}$ for $\lambda \in [0, n+2)$.

From now on we follow [Beck, 2016].

 $u(\alpha, x) \coloneqq |x|^{-\alpha} x$

From now on we follow [Beck, 2016].

$$u(\alpha, x) \coloneqq |x|^{-\alpha} x$$

$$A_{ij}^{\kappa\lambda}(b_1, b_2, x) = \delta_{\kappa\lambda}\delta_{ij} + \left(b_1\delta_{i\kappa} + b_2\frac{x_ix_\kappa}{|x|^2}\right)\left(b_1\delta_{j\lambda} + b_2\frac{x_jx_\lambda}{|x|^2}\right)$$

From now on we follow [Beck, 2016].

$$u(\alpha, x) \coloneqq |x|^{-\alpha} x$$

$$A_{ij}^{\kappa\lambda}(b_1, b_2, x) = \delta_{\kappa\lambda}\delta_{ij} + \left(b_1\delta_{i\kappa} + b_2\frac{x_ix_\kappa}{|x|^2}\right)\left(b_1\delta_{j\lambda} + b_2\frac{x_jx_\lambda}{|x|^2}\right)$$

Example 4.1 (De Giorgi) Assume $n \ge 3$ and let $u: \mathbb{R}^n \supset B_1 \to \mathbb{R}^n$ be given by

$$u(\alpha, x) = |x|^{-\alpha} x$$
 for $\alpha \coloneqq \frac{n}{2} (1 - ((2n-2)^2 + 1)^{-1/2}).$

Then $u \in W^{1,2}(B_1, \mathbb{R}^n)$ is an unbounded weak solution of the elliptic system

$$\operatorname{div} \left(A(n-2, n, x) D u(\alpha) \right) = 0 \qquad in B_1.$$

From now on we follow [Beck, 2016].

$$u(\alpha, x) \coloneqq |x|^{-\alpha} x$$

$$A_{ij}^{\kappa\lambda}(b_1, b_2, x) = \delta_{\kappa\lambda}\delta_{ij} + \left(b_1\delta_{i\kappa} + b_2\frac{x_ix_\kappa}{|x|^2}\right)\left(b_1\delta_{j\lambda} + b_2\frac{x_jx_\lambda}{|x|^2}\right)$$

Example 4.1 (De Giorgi) Assume $n \ge 3$ and let $u: \mathbb{R}^n \supset B_1 \to \mathbb{R}^n$ be given by

$$u(\alpha, x) = |x|^{-\alpha} x$$
 for $\alpha \coloneqq \frac{n}{2} (1 - ((2n-2)^2 + 1)^{-1/2}).$

Then $u \in W^{1,2}(B_1, \mathbb{R}^n)$ is an unbounded weak solution of the elliptic system

$$\operatorname{div} \left(A(n-2, n, x) D u(\alpha) \right) = 0 \qquad in B_1.$$

$$\tilde{A}_{ij}^{\kappa\lambda}(u) = \delta_{\kappa\lambda}\delta_{ij} + \left(\delta_{i\kappa} + \frac{4}{n-2}\frac{u_i u_\kappa}{1+|u|^2}\right) \left(\delta_{j\lambda} + \frac{4}{n-2}\frac{u_j u_\lambda}{1+|u|^2}\right),$$

▲□▶ ▲圖▶ ▲温▶ ▲温▶ ---

Ξ.

From now on we follow [Beck, 2016].

$$u(\alpha, x) \coloneqq |x|^{-\alpha} x$$

$$A_{ij}^{\kappa\lambda}(b_1, b_2, x) = \delta_{\kappa\lambda}\delta_{ij} + \left(b_1\delta_{i\kappa} + b_2\frac{x_ix_\kappa}{|x|^2}\right)\left(b_1\delta_{j\lambda} + b_2\frac{x_jx_\lambda}{|x|^2}\right)$$

Example 4.1 (De Giorgi) Assume $n \ge 3$ and let $u: \mathbb{R}^n \supset B_1 \to \mathbb{R}^n$ be given by

$$u(lpha, x) = |x|^{-lpha} x$$
 for $lpha \coloneqq rac{n}{2} \left(1 - ((2n-2)^2 + 1)^{-1/2}
ight).$

Then $u \in W^{1,2}(B_1, \mathbb{R}^n)$ is an unbounded weak solution of the elliptic system

$$\operatorname{div} \left(A(n-2, n, x) D u(\alpha) \right) = 0 \qquad in B_1.$$

$$\tilde{A}_{ij}^{\kappa\lambda}(u) = \delta_{\kappa\lambda}\delta_{ij} + \left(\delta_{i\kappa} + \frac{4}{n-2}\frac{u_i u_\kappa}{1+|u|^2}\right) \left(\delta_{j\lambda} + \frac{4}{n-2}\frac{u_j u_\lambda}{1+|u|^2}\right),$$

Example 4.3 (Giusti and Miranda) Assume $n \geq 3$ and let $u : \mathbb{R}^n \supset B_1 \to \mathbb{R}^n$ be given by u(x) = x/|x|. Then $u \in W^{1,2}(B_1, \mathbb{R}^n) \cap L^{\infty}(B_1, \mathbb{R}^n)$, and u is a discontinuous weak solution of the elliptic system

$$\operatorname{div}\left(\tilde{A}(u)Du\right) = 0 \qquad in \ B_1. \tag{4.1}$$

Partial regularity—assumptions

$$\operatorname{div}\left(a(x,u)Du\right) = 0 \quad \text{in } \Omega.$$
(4.13)

Partial regularity—assumptions

$$\operatorname{div}\left(a(x,u)Du\right) = 0 \quad \text{in } \Omega.$$
(4.13)

$$a(x,u)\xi \cdot \xi \ge |\xi|^2 \tag{4.6}$$

$$a(x,u)\xi \cdot \tilde{\xi} \le L|\xi||\tilde{\xi}| \tag{4.7}$$

for almost every $x \in \Omega$, all $u \in \mathbb{R}^N$, all $\xi, \tilde{\xi} \in \mathbb{R}^{Nn}$, and some $L \ge 1$.

Partial regularity—assumptions

$$\operatorname{div}\left(a(x,u)Du\right) = 0 \quad \text{in } \Omega.$$
(4.13)

$$a(x,u)\xi \cdot \xi \ge |\xi|^2 \tag{4.6}$$

$$a(x,u)\xi \cdot \tilde{\xi} \le L|\xi||\tilde{\xi}| \tag{4.7}$$

for almost every $x \in \Omega$, all $u \in \mathbb{R}^N$, all $\xi, \tilde{\xi} \in \mathbb{R}^{Nn}$, and some $L \ge 1$.

there exists

or a modulus of continuity $\omega \colon \mathbb{R}_0^+ \to \mathbb{R}_0^+$ (concave and monotonically non-decreasing) satisfying $\lim_{t\searrow 0} \omega(t) = \omega(0) = 0$ such that

$$|a(x,u) - a(\tilde{x},\tilde{u})| \le \omega(|x - \tilde{x}| + |u - \tilde{u}|)$$

$$(4.14)$$

for all $x, \tilde{x} \in \Omega$ and all $u, \tilde{u} \in \mathbb{R}^N$.

Partial regularity—basic concepts

 $\mbox{introduce the (open) α-regular set of a measurable function $f\colon \Omega\to\mathbb{R}^N$ via}$

 $\operatorname{Reg}_{\alpha}(f) := \{ x_0 \in \Omega \colon f \text{ is locally continuous }$

near x_0 with Hölder exponent α

for $\alpha \in [0, 1]$, and the singular set of f as its complement in Ω , i.e.

 $\operatorname{Sing}_{\alpha}(f) \coloneqq \Omega \setminus \operatorname{Reg}_{\alpha}(f)$.

Partial regularity—basic concepts

introduce the (open) $\alpha\text{-regular set of}$ a measurable function $f\colon \Omega\to\mathbb{R}^N$ via

 $\operatorname{Reg}_{\alpha}(f) \coloneqq \{ x_0 \in \Omega \colon f \text{ is locally continuous }$

near x_0 with Hölder exponent α

for $\alpha \in [0, 1]$, and the singular set of f as its complement in Ω , i.e.

$$\operatorname{Sing}_{\alpha}(f) \coloneqq \Omega \setminus \operatorname{Reg}_{\alpha}(f).$$

$$E(u; x_0, \varrho) := \int_{B_{\varrho}(x_0)} |u - (u)_{B_{\varrho}(x_0)}|^2 \, dx \tag{4.15}$$

Partial regularity

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u; x_0, R) < \varepsilon_0^2, \qquad (4.16)$$

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Partial regularity

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u;x_0,R) < \varepsilon_0^2, \tag{4.16}$$

then we have the excess decay estimate

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Theorem 4.23 (Giusti and Miranda, Morrey) Let $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ be a weak solution to the system (4.13) with continuous coefficients a: $\Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14). Then we have the characterization of the singular set via

$$\operatorname{Sing}_{0}(u) = \left\{ x_{0} \in \Omega \colon \liminf_{\varrho \searrow 0} f_{\Omega(x_{0},\varrho)} | u - (u)_{\Omega(x_{0},\varrho)} |^{2} \, dx > 0 \right\}$$

and in particular $\mathcal{L}^{n}(\operatorname{Sing}_{0}(u)) = 0$. Moreover, for every $\alpha \in (0,1)$ there holds $\operatorname{Reg}_{0}(u) = \operatorname{Reg}_{\alpha}(u)$, i.e. $u \in C^{0,\alpha}(\operatorname{Reg}_{0}(u), \mathbb{R}^{N})$.

Definition 9.19 For k > 0 integer, define ω_k to be the volume of the unit ball in \mathbb{R}^k , given by

$$\omega_k = \frac{2\pi^{\frac{k}{2}}}{k\Gamma(\frac{k}{2})},\tag{9.37}$$

where Γ is the Euler function

$$\Gamma(t) := \int_0^{+\infty} x^{t-1} e^{-x} dx, \quad t \ge 0.$$
(9.38)

Since Γ is defined for every positive number we shall use (9.37) to define ω_k for any real number k > 0.

Given a set $A \subset \mathbb{R}^n$ and $k, \delta > 0$, define

$$\mathcal{H}^k_{\delta}(A) := \inf \bigg\{ \sum_{j=0}^{\infty} \omega_k \rho_j^k : A \subset \bigcup_{j=0}^{\infty} B_{\rho_j}(x_j), \ \rho_j \le \delta, \ x_j \in \mathbb{R}^n \bigg\}.$$

Definition 9.19 For k > 0 integer, define ω_k to be the volume of the unit ball in \mathbb{R}^k , given by

$$\omega_k = \frac{2\pi^{\frac{k}{2}}}{k\Gamma(\frac{k}{2})},\tag{9.37}$$

where Γ is the Euler function

$$\Gamma(t) := \int_0^{+\infty} x^{t-1} e^{-x} dx, \quad t \ge 0.$$
(9.38)

Since Γ is defined for every positive number we shall use (9.37) to define ω_k for any real number k > 0.

Given a set $A \subset \mathbb{R}^n$ and $k, \delta > 0$, define

$$\mathcal{H}^k_{\delta}(A) := \inf \bigg\{ \sum_{j=0}^{\infty} \omega_k \rho_j^k : A \subset \bigcup_{j=0}^{\infty} B_{\rho_j}(x_j), \ \rho_j \le \delta, \ x_j \in \mathbb{R}^n \bigg\}.$$

Definition 9.20 The k-dimensional Hausdorff measure $\mathcal{H}^k(A)$ of a set $A \subset \mathbb{R}^n$ is defined as

$$\mathcal{H}^k(A) := \sup_{\delta > 0} \mathcal{H}^k_\delta(A).$$

The Hausdorff dimension of A is defined as

$$\dim^{\mathcal{H}}(A) := \inf \Big\{ k \ge 0 : \mathcal{H}^k(A) = 0 \Big\}.$$

We also recall that for every $k > \dim^{\mathcal{H}}(A)$, we have $\mathcal{H}^{k}(A) = 0$, and for every $k < \dim^{\mathcal{H}}(A)$, $\mathcal{H}^{k}(A) = +\infty$.

Proposition 9.21 Let $\Omega \subset \mathbb{R}^n$ be an open set and $f \in L^1_{loc}(\Omega)$, $0 \leq \alpha < n$. Define

$$\Sigma_{\alpha} := \Big\{ x \in \Omega : \limsup_{\rho \to 0} \frac{1}{\rho^{\alpha}} \int_{B_{\rho}(x)} |f| dx > 0 \Big\}.$$

Then $\mathcal{H}^{\alpha}(\Sigma_{\alpha}) = 0$. In particular dim^{$\mathcal{H}}(\Sigma_{\alpha}) \leq \alpha$.</sup>

Proposition 9.21 Let $\Omega \subset \mathbb{R}^n$ be an open set and $f \in L^1_{loc}(\Omega)$, $0 \leq \alpha < n$. Define

$$\Sigma_{\alpha} := \Big\{ x \in \Omega : \limsup_{\rho \to 0} \frac{1}{\rho^{\alpha}} \int_{B_{\rho}(x)} |f| dx > 0 \Big\}.$$

Then $\mathcal{H}^{\alpha}(\Sigma_{\alpha}) = 0$. In particular dim^{$\mathcal{H}}(\Sigma_{\alpha}) \leq \alpha$.</sup>

Lemma 1.72 (Vitali covering lemma) Let \mathcal{G} be an arbitrary family of closed balls B in \mathbb{R}^n with radius $r(B) \in (0, R]$ for some uniform constant $R < \infty$. There exists an at most countable subfamily \mathcal{G}' of pairwise disjoint balls such that

$$\bigcup_{B \in \mathcal{G}} B \subset \bigcup_{B \in \mathcal{G}'} \widehat{B} \quad \text{with } \widehat{B} = B_{5r}(x_0) \text{ if } B = B_r(x_0).$$

Hausdorff measure of singular set

Proposition 9.21 Let $\Omega \subset \mathbb{R}^n$ be an open set and $f \in L^1_{loc}(\Omega)$, $0 \le \alpha < n$. Define

$$\Sigma_{\alpha} := \Big\{ x \in \Omega : \limsup_{\rho \to 0} \frac{1}{\rho^{\alpha}} \int_{B_{\rho}(x)} |f| dx > 0 \Big\}.$$

Then $\mathcal{H}^{\alpha}(\Sigma_{\alpha}) = 0$. In particular dim $^{\mathcal{H}}(\Sigma_{\alpha}) \leq \alpha$.

Theorem 4.23 (Giusti and Miranda, Morrey) Let $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ be a weak solution to the system (4.13) with continuous coefficients a: $\Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14). Then we have the characterization of the singular set via

$$\operatorname{Sing}_{0}(u) = \left\{ x_{0} \in \Omega \colon \liminf_{\varrho \searrow 0} \oint_{\Omega(x_{0},\varrho)} |u - (u)_{\Omega(x_{0},\varrho)}|^{2} \, dx > 0 \right\}$$

and in particular $\mathcal{L}^n(\operatorname{Sing}_0(u)) = 0$. Moreover, for every $\alpha \in (0,1)$ there holds $\operatorname{Reg}_0(u) = \operatorname{Reg}_\alpha(u)$, i.e. $u \in C^{0,\alpha}(\operatorname{Reg}_0(u), \mathbb{R}^N)$.

Hausdorff measure of singular set

Proposition 9.21 Let $\Omega \subset \mathbb{R}^n$ be an open set and $f \in L^1_{loc}(\Omega)$, $0 \le \alpha < n$. Define

$$\Sigma_{\alpha} := \Big\{ x \in \Omega : \limsup_{\rho \to 0} \frac{1}{\rho^{\alpha}} \int_{B_{\rho}(x)} |f| dx > 0 \Big\}.$$

Then $\mathcal{H}^{\alpha}(\Sigma_{\alpha}) = 0$. In particular dim $^{\mathcal{H}}(\Sigma_{\alpha}) \leq \alpha$.

Theorem 4.23 (Giusti and Miranda, Morrey) Let $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ be a weak solution to the system (4.13) with continuous coefficients a: $\Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14). Then we have the characterization of the singular set via

$$\operatorname{Sing}_{0}(u) = \left\{ x_{0} \in \Omega \colon \liminf_{\varrho \searrow 0} \oint_{\Omega(x_{0},\varrho)} |u - (u)_{\Omega(x_{0},\varrho)}|^{2} \, dx > 0 \right\}$$

and in particular $\mathcal{L}^n(\operatorname{Sing}_0(u)) = 0$. Moreover, for every $\alpha \in (0,1)$ there holds $\operatorname{Reg}_0(u) = \operatorname{Reg}_\alpha(u)$, i.e. $u \in C^{0,\alpha}(\operatorname{Reg}_0(u), \mathbb{R}^N)$.

Corollary 4.25 Let $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ be a weak solution to the system (4.13) under the assumptions of Theorem 4.23. Then we have $\dim_{\mathcal{H}}(\operatorname{Sing}_0(u)) \leq n-2$.

Approaches to proof of the decay estimate

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u;x_0,R) < \varepsilon_0^2, \qquad (4.16)$$

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Approaches to proof of the decay estimate

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u; x_0, R) < \varepsilon_0^2, \qquad (4.16)$$

(日) (同) (日) (日)

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

- Blow-up
- A harmonic approximation
- direct approach

Decay estimate via blow-up

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u; x_0, R) < \varepsilon_0^2, \qquad (4.16)$$

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Decay estimate via blow-up

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u;x_0,R) < \varepsilon_0^2, \qquad (4.16)$$

then we have the excess decay estimate

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Lemma 4.20 ([41], Lemma 2) Let $(b_j)_{j \in \mathbb{N}}$ be a sequence of bilinear forms such that for every $j \in \mathbb{N}$ the functions $b_j: B_1 \to \mathbb{R}^{Nn \times Nn}$ are measurable, bounded and elliptic in the sense of

$$b_j(x)\xi \cdot \xi \ge |\xi|^2$$
$$b_j(x)\xi \cdot \tilde{\xi} \le L|\xi||\tilde{\xi}|$$

for almost every $x \in B_1$, all $\xi, \tilde{\xi} \in \mathbb{R}^{Nn}$ and some $L \geq 1$. Suppose that b_j converges pointwise almost everywhere in B_1 to some bilinear form $b: B_1 \rightarrow \mathbb{R}^{Nn \times Nn}$. Let further $(u_j)_{j \in \mathbb{N}}$ be a sequence in $W^{1,2}(B_1, \mathbb{R}^N)$ such that u_j solves the system div $(b_j(x)Du_j) = 0$ in B_1 in the weak sense for every $j \in \mathbb{N}$, and which converges weakly in $L^2(B_1, \mathbb{R}^N)$ to a function $u \in L^2(B_1, \mathbb{R}^N)$. Then $u \in W^{1,2}_{loc}(B_1, \mathbb{R}^N)$, and we have

- (i) $u_j \to u$ strongly in $L^2(B_{\varrho}, \mathbb{R}^N)$, $Du_j \to Du$ weakly in $L^2(B_{\varrho}, \mathbb{R}^{Nn})$ for every $\varrho < 1$;
- (ii) u solves the system div (b(x)Du) = 0 in B_1 in the weak sense.

Decay estimate via A-harmonic approximation

Definition 4.26 Let $\mathcal{A} \in \mathbb{R}^{Nn \times Nn}$. A function $h \in W^{1,1}(\Omega, \mathbb{R}^N)$ is called \mathcal{A} -harmonic if it satisfies

$$\int_{\Omega} \mathcal{A}Dh \cdot D\varphi \, dx = 0 \qquad \text{for all } \varphi \in C_0^1(\Omega, \mathbb{R}^N) \,.$$

Lemma 4.27 (De Giorgi; Duzaar and Grotowski) Let $L \ge 1$ be a fixed constant, $n, N \in \mathbb{N}$ with $n \ge 2$ and $B_{\varrho}(x_0) \subset \mathbb{R}^n$. For every $\varepsilon > 0$ there exists $\delta = \delta(n, N, L, \varepsilon) > 0$ with the following property: if \mathcal{A} is a constant bilinear form on \mathbb{R}^{Nn} which is elliptic with (4.3) and bounded by L with (4.4), and if $u \in W^{1,2}(B_{\varrho}(x_0), \mathbb{R}^N)$ satisfies

$$\varrho^{2\gamma-n} \int_{B_{\varrho}(x_0)} |Du|^2 \, dx \le 1$$

(for some $\gamma \in \mathbb{R}$) and is approximately A-harmonic in the sense of

$$\left| \varrho^{\gamma-n} \int_{B_{\varrho}(x_0)} \mathcal{A}Du \cdot D\varphi \, dx \right| \leq \delta \sup_{B_{\varrho}(x_0)} |D\varphi| \quad \text{for all } \varphi \in C_0^1(B_{\varrho}(x_0), \mathbb{R}^N) \,,$$

then there exists an \mathcal{A} -harmonic function $h \in W^{1,2}(B_{\varrho}(x_0), \mathbb{R}^N)$ which satisfies

$$\varrho^{2\gamma-n-2}\int_{B_{\varrho}(x_0)}|u-h|^2\,dx\leq\varepsilon\quad and\quad \varrho^{2\gamma-n}\int_{B_{\varrho}(x_0)}|Dh|^2\,dx\leq 1\,.\ (4.21)$$

・ロト ・ 一 ト ・ ヨト ・ ヨト

Decay estimate via A-harmonic approximation

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u;x_0,R) < \varepsilon_0^2, \qquad (4.16)$$

then we have the excess decay estimate

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Lemma 4.28 (Approximate *A*-harmonicity I) Let $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ be a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.7) and (4.14). Then, for every $B_{\varrho}(x_0) \subset \Omega$ and all $u_0 \in \mathbb{R}^N$, we have

$$\begin{split} \left| \varrho^{1-n} \int_{B_{\varrho}(x_0)} a(x_0, u_0) Du \cdot D\varphi \, dx \right| \\ & \leq c(n, L) \omega^{1/2} \Big(\varrho + \Big(\int_{B_{\varrho}(x_0)} |u - u_0|^2 \, dx \Big)^{\frac{1}{2}} \Big) \\ & \times \Big(\varrho^{2-n} \int_{B_{\varrho}(x_0)} |Du|^2 \, dx \Big)^{\frac{1}{2}} \sup_{B_{\varrho}(x_0)} |D\varphi \end{split}$$

for all $\varphi \in C_0^1(B_\varrho(x_0), \mathbb{R}^N)$.

・ロト・日本・モート ヨー うくぐ

Decay estimate — direct approach

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4) For every $\tau \in (0, 1)$ there exist two positive constants ε_0 , R_0 depending only on n, N, L, ω , and τ such that the following statement is true: if $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a weak solution to the system (4.13) with continuous coefficients $a: \Omega \times \mathbb{R}^N \to \mathbb{R}^{Nn \times Nn}$ satisfying (4.6), (4.7) and (4.14), and if for some ball $B_R(x_0) \subset \Omega$ with $R \leq R_0$ there holds

$$E(u; x_0, R) < \varepsilon_0^2, \qquad (4.16)$$

then we have the excess decay estimate

$$E(u; x_0, \tau R) \le c_*(n, N, L)\tau^2 E(u; x_0, R).$$
(4.17)

Theorem 1.22 (Gehring; Giaquinta and Modica) Let $f \in L^1(B_R(x_0))$, $\sigma \in (0, 1)$, and $m \in (0, 1)$. Suppose that there exist a constant A and a function $g \in L^q(B_R(x_0))$ for some q > 1 such that for all balls $B_\varrho(y) \Subset B_R(x_0)$ there holds

$$\int_{B_{\sigma\varrho}(y)} |f| \, dx \le A \Big(\int_{B_{\varrho}(y)} |f|^m \, dx \Big)^{\frac{1}{m}} + \int_{B_{\varrho}(y)} |g| \, dx \, .$$

Then there exists an exponent $p \in (1, q]$ depending only on A, m and n such that $f \in L^p_{loc}(B_R(x_0))$. Moreover, for every $\tau \in (0, 1)$ we have

$$\left(\int_{B_{\tau R}(x_0)} |f|^p \, dx\right)^{\frac{1}{p}} \le K(A, m, n, \tau) \left[\int_{B_R(x_0)} |f| \, dx + \left(\int_{B_R(x_0)} |g|^p \, dx\right)^{\frac{1}{p}}\right].$$

Gehring theorem

Theorem 1.22 (Gehring; Giaquinta and Modica) Let $f \in L^1(B_R(x_0))$, $\sigma \in (0, 1)$, and $m \in (0, 1)$. Suppose that there exist a constant A and a function $g \in L^q(B_R(x_0))$ for some q > 1 such that for all balls $B_\rho(y) \in B_R(x_0)$ there holds

$$\oint_{B_{\sigma_{\varrho}}(y)} |f| \, dx \le A \Big(\oint_{B_{\varrho}(y)} |f|^m \, dx \Big)^{\frac{1}{m}} + \oint_{B_{\varrho}(y)} |g| \, dx.$$

Then there exists an exponent $p \in (1, q]$ depending only on A, m and n such that $f \in L^p_{loc}(B_R(x_0))$. Moreover, for every $\tau \in (0, 1)$ we have

$$\left(\int_{B_{\tau R}(x_0)} |f|^p \, dx\right)^{\frac{1}{p}} \le K(A, m, n, \tau) \left[\int_{B_R(x_0)} |f| \, dx + \left(\int_{B_R(x_0)} |g|^p \, dx\right)^{\frac{1}{p}}\right].$$

[Beck, 2016]

Proposition 6.1. Let Ω be a cube in \mathbb{R}^n and let $g, h \in L^p(\Omega)$, 1 , be nonnegative functions satisfying:

$$\left(f_{Q}g^{p}\right)^{\frac{1}{p}} \leq K f_{2Q}g + \left(f_{2Q}h^{p}\right)^{\frac{1}{p}}$$

$$(6.1)$$

ヘロト ヘヨト ヘヨト

for all cubes $Q \subset 2Q \subset \Omega$. Then for each $0 < \sigma < 1$ and $p < s < p + \frac{p-1}{10^{n+p}4^nK^p}$ we have

$$\left(f_{\sigma\Omega}g^{s}\right)^{\frac{1}{s}} \leq \frac{100^{n}}{\sigma^{\frac{n}{s}}(1-\sigma)^{\frac{n}{p}}}\left[\left(f_{\Omega}g^{p}\right)^{\frac{1}{p}} + \left(f_{\Omega}h^{s}\right)^{\frac{1}{s}}\right]$$
(6.2)

[Iwaniec, 1998]

Gehring theorem

Lemma 3.2. Suppose g and h are nonnegative functions of class $L^p(\mathbb{R}^n)$, with 1 , and satisfy

$$\left(f_{Q}g^{p}\right)^{\frac{1}{p}} \leq K f_{2Q}g + \left(f_{2Q}h^{p}\right)^{\frac{1}{p}}$$
(3.14)

for all cubes $Q \subset \mathbb{R}^n$. Then there exist a new exponent s = s(n, p, K) > pand a constant C = C(n, p, K) such that

$$\int_{\mathbb{R}^n} g^s \le C \int_{\mathbb{R}^n} h^s \tag{3.15}$$

Gehring theorem

Lemma 3.2. Suppose g and h are nonnegative functions of class $L^p(\mathbb{R}^n)$, with 1 , and satisfy

$$\left(f_{Q}g^{p}\right)^{\frac{1}{p}} \leq K f_{2Q}g + \left(f_{2Q}h^{p}\right)^{\frac{1}{p}}$$
(3.14)

for all cubes $Q \subset \mathbb{R}^n$. Then there exist a new exponent s = s(n, p, K) > pand a constant C = C(n, p, K) such that

$$\int_{\mathbb{R}^n} g^s \le C \int_{\mathbb{R}^n} h^s \tag{3.15}$$

Proposition 6.1. Let Ω be a cube in \mathbb{R}^n and let $g, h \in L^p(\Omega)$, 1 , be nonnegative functions satisfying:

$$\left(f_{Q}g^{p}\right)^{\frac{1}{p}} \leq K f_{2Q}g + \left(f_{2Q}h^{p}\right)^{\frac{1}{p}}$$

$$(6.1)$$

for all cubes $Q \subset 2Q \subset \Omega$. Then for each $0 < \sigma < 1$ and $p < s < p + \frac{p-1}{10^{n+p}4^n K^p}$ we have

$$\left(f_{\sigma\Omega}g^{s}\right)^{\frac{1}{s}} \leq \frac{100^{n}}{\sigma^{\frac{n}{s}}(1-\sigma)^{\frac{n}{p}}}\left[\left(f_{\Omega}g^{p}\right)^{\frac{1}{p}} + \left(f_{\Omega}h^{s}\right)^{\frac{1}{s}}\right]$$
(6.2)

Bibliography

Beck, L. (2016). Elliptic regularity theory. Springer.

lwaniec, T. (1998).

The Gehring lemma.

In Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), pages 181-204. Springer, New York.