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Plan

Campanatovy a Morreyovy prostory

Elliptic systems with constant coefficients



Morrey space

Let Q be a bounded connected open set in R" and let us denote
Qx,p) = AN B, p)
diam @ = sup {|x-y|:x,y Q).

DEFINITION 1.1 (Morrey spaces). Let p>1 and. A>0. By LP'A(Q)
we denote the linear space of functions u € LP(Q) such that

1
(1.2) full A = sup lpmj'l f lu|PdxbP < 4o,
LP S el

0<p<diam @ 20op)

It is easy to see that [|-.1||p 5 in (1.2) is a norm respect to which
LP’)’(Q) is a Banach space.



Campanato space

Set

S S dx 2
“op g Pl f uedx
Q(xo,p}

DEFINITION 1.2 (Campanato spaces). Let p 2 1 and A >0. By

£P"\(Q) we denote the linear space of functions u ¢ LP(f)) such that

1
= A — P IT{ B0
1.3 iU]p_A = :KSL::[;I p f lu(x) Uy ! dx toa,
0
o<p<diam {2 Dxg.p)

Ep"“(ﬂ) are Banach spaces with the norm

fJull + [ulg )

all
l'ull'EP’)‘(Q P

and one sees that u ¢ fp"\(ﬂ) if and only if

sup ,a“?t inf J. lu—c|Pdx < +eo.
xef) ceR

o<p<diam{} Qx,p)



Properties of Morrey and Campanato spaces

B Rl

DEFINITION 1.3, Let A >0. The bounded set {} is said to be of type
(A} if for all xg €l and p <diam Q

FQ‘(XU:P) 2 Apn .

Let Q be a bounded connected open set in R" and let us denote
Q(X, P) =an B(x, P)
diam @ = sup {|x-y|:x,y ¢ Q}.

DEFINITION 1.1 (Morrey spaces). Let p>1 and A>0. By LPAQ)
we denote the linear space of functions u ¢ LP(Q) such that

1
A PaxlP < 4 oo
1.2 ull - sup p f lu|Pdx too,
R
ﬂ‘(p{diamﬂ Q(x,p)

It is easy to see that l|u||p 5 in (1.2) is a norm respect to which

Lp’)’(ﬂ) is a Banach space.

S mmm s ey pre et anan,

PROPOSITION 1.1, We have
a) LPOQ) =~ LPy
b) LPMD) =~ L™
) LPADQ) = [0} for A>n
) LYK ¢ LPAQ) if pe<q, A ik,



For A € [0, n) Morrey=Campanato

PROPOSITION 1.2. Let Q 5
; 2. e of type (A) and 0 < A A
is isomorphic to Lp’h(ﬂ)‘ e T SO

ampanato spaces). Let p>1 and A>0. By

DEFINITION 1.2 (C
LP()) such that

ff-‘"\(ﬂ) we denote the linear space of functions u ¢

1
1.3) [n]p'l\ = sup pA f lu(x)—uxolplpdx R
‘KO(Q

o<pediam @ Hxg)

DEFINITION 1.1 (Morrey spaces). Let p>1 and A>0. By LPAQ)
we denote the linear space of functions u € LP(Q) such that

1

N L

1.2 = s [ulPdx}P < .

a2l pag, i S f . xl h
0<p<diam ] Qx,p



For A € (n, n+ p] Campanato=Holder

THEOREM 1.,2 (An integral characterization of Holder continuous functions).
Let Q be of type (A) and n <A < n+p. Then $PNQ) is isomorphic
to the space CO%R) with a ="%ﬂ. Moreover if u e £PNQ) with

A>n+p, then u is constant in Q.

DEFINITION 1.2 (Campanato spaces). Let p> 1 and A>0. By

i t
€PNy we denote the linear space of functions u ¢ LP()) such tha

1
- P o0,
a3 lu, - sup P A f [u(x)uxwp',?dx} <h

Xo(
Mp(diamﬂ Qxgp0)

A,
DEFINITION 1.1 (Morrey spaces). Let p>1 and A>0. By LPA ()
we denote the linear space of functions u € LP(Q) such that

1
= d < 400
1.2 u = sup P f [u|Pax}P .
a.2) I HLP"\(Q} ‘ xel 0
0<p<diam ] x.p)



Corolaries

Corollary

If Q has the extension property and u € WYP(Q) with p > n then
ue CO=n/P(Q) and (C = C(Q,p))

HUHCO,lfn/p S CHUH wip-



Corolaries

Corollary

If Q has the extension property and u € WYP(Q) with p > n then
ue CO=n/P(Q) and (C = C(Q,p))

HUHCO,lfn/p S CHUH wip-

Corollary (Morrey)
Let u € WEP(Q), Vu e LP"PTPY(Q), for some € > 0. Then u € C5(RQ).

loc loc
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Elliptic systems with constant coefficients



Sobolev Poincare inequality

Theorem (Sobolev-Poincare)

For every bounded and connected domain Q0 with the extension property,

p>1, q€|l,p*) there is a constant ¢ = c(n, p, q, Q) such that for each
u € WHP(Q) we have

(]i |u— UQ|C’)% < c(]f2 IV ulP)s.

When Q = B, or cube of sidelength r then ¢ < c(n, p, q)r

» p* =np/(n—p)if n> p and +oo otherwise = compactness of
the embedding WP «— L9

> uq is mean over €2



Setting

leading part with constant coefficients 5

ao g .
@.1) DAY Dguh <0 i1,

Elliptic means that the coefficients satisfy the Legendre-Hadamard

condition

@.2) AP Eabgrind > e vt s



Setting

leading part with constant coefficients 5

2.1 D (A%Pp i :

( ) Da(Alj Dﬁuj)to 1=]_r...'N’

Elliptic means that the coefficients satisfy the Legendre-Hadamard
condition

9.9 afl .

2.2) Aij fafﬁvlvjzvfﬂzh}lz V>0

Definition 3.36 A matriz of coefficients (A;ﬁ)i?;ii? is said to satisfy

1. the very strong ellipticity condition, or the Legendre condition, if
there is a A > 0 such that

A EE) 2 NP, vE e R™™, (3.16)
2. the strong ellipticity condition, or the Legendre-Hadamard condi-
tion, if there is a A > 0 such that

AT Ealom'n’ 2 MelPInl?, V€ € R™, v e R™ (3.17)



Setting

leading part with constant coefficients 5

2.1 D (A%Pp i :
( ) Da(Alj Dﬁuj)to 1=]_r...'N’
Elliptic means that the coefficients satisfy the Legendre-Hadamard
condition
9.9 afl .
2.2) Aij fafﬁf?lfsz v|€]2(n|? v,é0>0

1<a,8<n

I<ij<m 8 said to satisfy

Definition 3.36 A matriz of coefficients (Aaﬁ)

ij
1. the very strong ellipticity condition, or the Legendre condition, if
there is a A > 0 such that

APEEL > NE[P, vEe R™ (3.16)

2. the strong ellipticity condition, or the Legendre-Hadamard condi-
tion, if there is a A > 0 such that

AT Ealom'n’ 2 MelPInl?, V€ € R™, v e R™ (3.17)

Definition 3.41 A bilinear form B on W&’Z(Q,Rm} is said to be weakly
coercive if there exist Ag > 0 and A1 > 0 such that

Blu,u) > Ao / |Duf?de — M / |u[2dz. (3.23)
Ja JOQ

Theorem 3.42 (Garding'’s inequality) Assume that Af;fﬂ are unifor-
mly continuous on ) and that they satisfy the Legendre-Hadamard condi-
tion (3.17) for some A > 0 independent of x € 2. Then the bilinear form
on W32 (Q,R™) defined by

B(u,v):= /ﬂA?}ﬁDauiD‘gvjda:

is weakly coercive. If Af;fa are constant then B is in fact coercive.



Caccioppoli inequality

ProprP
(QRIC; [.)SITION 21. Let ue HI(Q, R™ be a weak solution to system
1), ie.

B .
2.3) fAii‘BDBuJDagﬁ'dx =0 Vg eHIQRY).
Q

Then f 1 g '
ho;}; orall x,¢Q andall R< 5 dist (x, A2) the following ‘inequality

2. '
2.4) .f|Vu2dx§Ec§ f [ul?dx .

BL(
R xOJ BER(XO)



Caccioppoli inequality

ProprP
(QRIC; [.)SITION 21. Let ue HI(Q, R™ be a weak solution to system
1), ie.

afl : :
(2.3) fAii DBuJDagﬁ‘dx =0 Vo e HY(Q,RY) .
Q

Then f 1 g '
ho;}; orall x,¢Q andall R< 5 dist (x, A2) the following ‘inequality

2. '
(2.4) : f IVu!?dx < ECE f [u|2dx .

B (
R xOJ B2R(x0)

if u is a solution to system (2.1), then for all x; ¢ and for all

p <R <dist(x, d0) the following estimate holds:

2.5) f [Vu|?dx < —E f lu—A|%dx .
(R-p)?

Bg\B,

B, (xg)



Basic estimate

THEOREM 2.1. Let u be a weak solution to system (2.1). Then there
exists a constant c depending on the constants of the system such that
for each x4 ¢Q and 0<p <R Sdist(x,, )) the following estimates
hold

2.7 f lu|?dx < c(%)n f [u]?dx

BP(’(U) BR(XO)

n+2
(2.8) j |u—uxo,pF2dx < C(%) f ‘u—uxD’Rlex .

BP(XD) BR(XO)



Liouville

Theorem 5.12 Let u : R — R™ be an entire solution to the elliptic
system (5.12), and assume that there exists a constant M > 0 and an
integer k > 0 such that

u(z)] < M(1 + [2[*), Vo eR™

Then u is a polynomial of degree at most k.



Regularity with constant coefficients

Theorem 5.14 Let u € VVli’f(Q,Rm) be a solution to

Do(ADgu?) = —Do P, (5.19)

with A%ﬂ constant and satisfying the Legendre-Hadamard condition (3.17).
IfF* € LH(Q), 0 < < n+2, then Du € L*(Q), and

IDulgznaey < e(IDull 2@y + [Fleaay)- (5.20)

for every compact K @ Q € Q, with ¢ = c(n,m, K, QN A, ).



Regularity with constant coefficients

Theorem 5.14 Let u € VVli’Q(Q,Rm) be a solution to

C
Do(ADgu?) = —Do P, (5.19)

with A%ﬂ constant and satisfying the Legendre-Hadamard condition (3.17).
IfF* € LH(Q), 0 < < n+2, then Du € L*(Q), and

IDulgznaey < e(IDull 2@y + [Fleaay)- (5.20)

for every compact K @ Q € Q, with ¢ = c(n,m, K, QN A, ).

Lemma 5.13 Let ¢ : Rt — RT be a non-negative and non-decreasing
Sfunction satisfying

olp) < A[(£) +eotr) + BR,
for some A, o, 3 > 0, with a > 3 and for all0 < p < R < Ry, where Ry >
0 is given. Then there exist constants g = €o(A, o, 5) and ¢ = ¢(A, e, 3)
such that if ¢ < eqg, we have

o(R)
RA

é(p) < c[ —I—B]pﬁ. (5.17)

for all 0 < p < R < Ry.



Regularity with constant coefficients

Theorem 5.14 Let u € VVIOC (2, R™) be a solution to
Do(ADgu?) = —Do P, (5.19)

with A%ﬂ constant and satisfying the Legendre-Hadamard condition (3.17).
IfF* € LH(Q), 0 < < n+2, then Du € L*(Q), and

IDulgznaey < e(IDull 2@y + [Fleaay)- (5.20)
for every compact K @ Q € Q, with ¢ = c(n,m, K, QN A, ).
Lemma 5.13 Let ¢ : Rt — RT be a non-negative and non-decreasing
Sfunction satisfying
olp) < A[(£)" +e]otr) + BR,
for some A, o, 3 > 0, with a > 3 and for all0 < p < R < Ry, where Ry >

0 is given. Then there exist constants g = €o(A, o, 5) and ¢ = ¢(A, e, 3)
such that if ¢ < eqg, we have

¢(p) < ¢ [](_.:;) } (5.17)

for all 0 < p < R < Ry.

Corollary 5.15 In the hypothesis of the theorem, if F* € C*(Q), k >
1, then u € CFTM7(Q) and

loc

lullorssoue) < e(IDullaey + 1 Fllone) )

with ¢ = e(n,m, K,Q,\, A, 0)



Regularity with continuous coefficients

Theorem 5.17 Let u € Wﬁ)’f(ﬂ, R™) be a solution to
af A @
Do (A7 Dpu?) = = Do FY, (5.25)

with A%ﬂ € CP () satisfying the Legendre-Hadamard condition (3.17).
Then, if F* € LENQ) for some 0 < X < n, we have Du € L3N () and
the following estimate

IDull e xy < e(I1Dul o) + I1FI22 ) (5.26)
holds for every compact K € Qe Q, where~c =c(n,m,\, A, K, ﬁ,w) and
w 18 the modulus of continuity of (Aio‘jﬂ) n

w(R):= sup [A(z)— A(y)l,
z,yeN
lz—y|<R



Regularity with continuous coefficients

Theorem 5.17 Let u € Wlf)’cz(ﬂ, R™) be a solution to
af A @
Do (A7 Dpu?) = = Do FY, (5.25)

with Af;-ﬂ € CP () satisfying the Legendre-Hadamard condition (3.17).
Then, if F* € LENQ) for some 0 < X < n, we have Du € L3N () and
the following estimate

IDullzzn ) < e(I1Dul o) + I1FI22 ) (5.26)
holds for every compact K € Q € Q, where ¢ = c(n,m,\, A\, K, ﬁ,w) and
w 18 the modulus of continuity of (Aio‘jﬂ) n

w(R):= sup [A(z)— A(y)l,
z,yeN
lz—y|<R

Corollary 5.18 In the same hypothesis of the theorem, if A > n—2, then
ueCRI(QR™), g = 2542,

loc



Regularity with Holder continuous coefficients

Theorem 5.19 Let u € W22 (Q, R™) be a solution to

loc

Do(ASP Dgul) = Do FY, (5.29)

with Af‘jﬂ € CY2(Q) satisfying the Legendre-Hadamard condition (3.17)

loc

for some o € (0,1). If F* € C22(Q), then we have Du € CY7(Q).

"loc loc

Moreover for every compact K € Q € Q)

IDulleo.rxe) < e(I1Dull 2y + 1F oo @) (5.30)
c dgpendmg on K, S~2, the ellipticity and the Holder norm of the coefficients
[e%
A7
Remark

We will show F € L2 = Vu € L3> for A\ € [0,n+2).



Counterexamples to full regularity

From now on we follow [Beck, 2016].

w(o, ) = |z| "%z



Counterexamples to full regularity

From now on we follow [Beck, 2016].

w(o, ) = |z| "%z

A (b1, b2, @) = Gndij + (bl5m + szz l;) (5153)\ + ble'jT;)



Counterexamples to full regularity

From now on we follow [Beck, 2016].

w(o, ) = |z| "%z

m‘c‘,ﬁ.

A%)\(bl:b% T) = derdij + (bl‘sm +h2 s |2

(o +0352)

Example 4.1 (De Giorgi) Assumen > 3 and let u: R" D By — R"™ be
given by

u(a,z) = |z| %z for o = ;(1 —((2n—2)*+ 1)—1/2) _
Then v € WH2(By, R™) is an unbounded weak solution of the elliptic system

div (A(n — 2,n,2)Du(a)) =0  in B;.



Counterexamples to full regularity

From now on we follow [Beck, 2016].

w(o, ) = |z| "%z

m‘c‘,ﬁ.

A;})\(bl:b% T) = derdij + (bl(sw +h2 s |2

(o +0352)

Example 4.1 (De Giorgi) Assumen > 3 and let u: R" D By — R"™ be
given by

u(a,z) = |z| %z for o = ;(1 —((2n—2)*+ 1)—1/2) _
Then v € WH2(By, R™) is an unbounded weak solution of the elliptic system

div (A(n — 2,n,2)Du(a)) =0  in B;.

~ 4 U U 4 Uiy,
AN (w) = 8,003 Oig + ————= ) J
i (u) A j+( +n—21—|—|u|2)(”+ 21—|—|u|2)



Counterexamples to full regularity

From now on we follow [Beck, 2016].

w(o, ) = |z| "%z

m‘c‘,ﬁ.

A%)\(bl:b% T) = derdij + (bl(sw +h2 s |2

(o +0352)

Example 4.1 (De Giorgi) Assumen > 3 and let u: R" D By — R"™ be
given by

u(a,z) = |z| %z for o = ;(1 —((2n—2)*+ 1)—1/2) _
Then v € WH2(By, R™) is an unbounded weak solution of the elliptic system

div (A(n — 2,n,2)Du(a)) =0  in B;.

~ 4 U U 4 Uiy,
AN (w) = 8,003 Oig + ————= ) J
i (u) A j+( +n—21—|—|u|2)(”+ 21—|—|u|2)

Example 4.3 (Giusti and Miranda) Assume n > 3 and let uv: R® D
B, — R™ be given by u(z) = = /|x|. Then u € WH2(B;,R") N L*®(B,, R"),
and w is a discontinuous weak solution of the elliptic system

div (A(u)Du) =0  in B,. (4.1)



Partial regularity—assumptions

div (a(z,u)Du) =0  in £2. (4.13)



Partial regularity—assumptions

div (a(z,u)Du) =0  in £2. (4.13)
a(z,u)€ - € > €[ (4.6)
a(x,u)€ € < LIE|IE] (4.7)

for almost every = € 2, allu € RY, a]l&,ée RN" and some L > 1.



Partial regularity—assumptions

div (a(z,u)Du) =0  in £2. (4.13)
a(z,u)€ - € > €[ (4.6)
a(x,u)€ € < LIE|IE] (4.7)

for almost every = € 2, allu € RY, a]l&,ée RN" and some L > 1.

there exists

or a modulus of continuity w: Ry — R{ (concave and monotonically non-
decreasing) satisfying lims\ o w(t) = w(0) = 0 such that

la(z, u) — a(Z,0)| < w(|z —Z|+ u—al) (4.14)

for all z,# € £2 and all u,7 € RV,



Partial regularity—basic concepts

introduce the (open) a-regular set of
a measurable function f: 2 — RN via

Reg,(f) = {x0 € 2: f is locally continuous
near xg with Holder exponent a}

for @ € [0, 1], and the singular set of f as its complement in {2, i.e.

Sing,(f) = 2\ Reg,(f) .



Partial regularity—basic concepts

introduce the (open) a-regular set of
a measurable function f: 2 — RN via

Reg, (f) = {zo € 12: f is locally continuous
near xg with Holder exponent a}

for @ € [0, 1], and the singular set of f as its complement in {2, i.e.

Sing,(f) = 2\ Reg,(f) .

E(u; 20, 0) = ][B o s (4.15)



Partial regularity

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every 7 € (0,1) there exist two positive constants 9, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(02,RY) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RN"XN® gotisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zg) C 2 with R < Rq there holds

E(u;zo, R) < €, (4.16)

then we have the excess decay estimate

E(u; o, 7R) < cy(n, N, L)T*E(u; z0, R) . (4.17)



Partial regularity

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every 7 € (0,1) there exist two positive constants 9, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(02,RY) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RN"XN® gotisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zg) C 2 with R < Rq there holds

E(u;zo, R) < €, (4.16)

then we have the excess decay estimate

E(u; o, 7R) < cy(n, N, L)T*E(u; z0, R) . (4.17)

Theorem 4.23 (Giusti and Miranda, Morrey) Let u € WH2(2, RY)
be a weak solution to the system (4.13) with continuous coefficients a: 2 x

RY — RN"XN satisfying (4.6), (4.7) and (4.14). Then we have the
characterization of the singular set via

. _ e _ 2
Singg(u) = {:z:g e f: ]_Lgri‘l_gf oo [u — () 2(z0,0)|“ dz > U}

and in particular L™(Sing,(u)) = 0. Moreover, for every o € (0,1) there
holds Reg,(u) = Reg,, (u), i.e. u € C%*(Reg,(u), RY).



Hausdorff measure and dimension

Definition 9.19 For k > 0 integer, define wy to be the volume of the
unit ball in R*, given by

2n (9.37)
RTYOR ‘
where I' is the Euler function
—+oo
[(t):= / et~ te ™ dr, t>0. (9.38)
0

Since T' is defined for every positive number we shall use (9.37) to define
wg for any real number k > 0.

Given a set A C R™ and k,d > 0, define

HE(A) = inf { S wrpl  AC | By, (%)), p; <6, 35 € Rn}.
j=0 j=0



Hausdorff measure and dimension

Definition 9.19 For k > 0 integer, define wy to be the volume of the
unit ball in R*, given by

ors
T
= , 9.37
where I' is the Euler function
—+oo
[(t):= / et~ te ™ dr, t>0. (9.38)
0

Since T' is defined for every positive number we shall use (9.37) to define
wg for any real number k > 0.

Given a set A C R™ and k,d > 0, define

HE(A) = inf { S wrpl  AC | By, (%)), p; <6, 35 € Rn}.

J=0 J=0

Definition 9.20 The k-dimensional Hausdorff measure H*(A) of a set
A C R" is defined as

H*(A) := sup HE(A).
>0

The Hausdorff dimension of A is defined as
dim™(A) := inf {k >0 HF(A) = 0}‘

We also recall that for every k > dim’*(A), we have H*(A) = 0, and for
every k < dim’(A), H*(A) = 4c0.



Hausdorff measure and dimension

Proposition 9.21 Let 2 C R™ be an open set and f € L (), 0 < a <
n. Define

1
Yo = {:UEQ:limsupa/ |f|da:>0}.
p—0  P7 JB,(z)

Then H*(X) = 0. In particular dim™(3,) < a.



Hausdorff measure and dimension

Proposition 9.21 Let 2 C R™ be an open set and f € L (), 0 < a <
n. Define

1
Yo = {er:limsupa/ |f|da:>0}.
P~ JBo(2)

p—0

Then H*(X) = 0. In particular dim™(3,) < a.

Lemma 1.72 (Vitali covering lemma) Let G be an arbitrary family of
closed balls B in R™ with radius r(B) € (0,R] for some uniform constant

R < co. There exists an at most countable subfamily G’ of pairwise disjoint
balls such that

UUBc U B  with B=Bs.(x0) if B=B(x0).
Beg Beg’



Hausdorff measure of singular set

Proposition 9.21 Let Q C R™ be an open set and f € Li (), 0 < a <
n. Define

1
Yo 1= {IEQ:limsupaf |f|da:>0}.
P~ JBy(x)

p—0

Then H*(B) = 0. In particular dim™(3,) < a.

Theorem 4.23 (Giusti and Miranda, Morrey) Let u € WH2(2,RY)
be a weak solution to the system (4.13) with continuous coefficients a: 2 x

RY — RN™N" satisfying (4.6), (4.7) and (4.14). Then we have the
characterization of the singular set via

Sing,(u) = {:z:g € (2: ]jminf][ [ — () 0(r,0)|* doz > 0}
o0 S

ro,0)
and in particular L™(Sing,(u)) = 0. Moreover, for every o € (0,1) there
holds Reg,(u) = Reg, (u), i.e. u € C%*(Reg,(u), RN).



Hausdorff measure of singular set

Proposition 9.21 Let Q C R™ be an open set and f € Li (), 0 < a <
n. Define

1
Yo 1= {IEQ:limsupaf |f|da:>0}.
p—0 P JB,(x)

Then H*(B) = 0. In particular dim™(3,) < a.

Theorem 4.23 (Giusti and Miranda, Morrey) Let u € WH2(2,RY)
be a weak solution to the system (4.13) with continuous coefficients a: 2 x

RY — RN™N" satisfying (4.6), (4.7) and (4.14). Then we have the
characterization of the singular set via

Sing,(u) = {:z:g € (2: ]jminf][ [ — () 0(r,0)|* doz > 0}
o0 S

ro,0)
and in particular L™(Sing,(u)) = 0. Moreover, for every o € (0,1) there
holds Reg,(u) = Reg, (u), i.e. u € C%*(Reg,(u), RN).

Corollary 4.25 Let u € WY, RY) be a weak solution to the
system (4.13) wunder the assumptions of Theorem 4.23. Then we have
dimy (Sing,(u)) <n —2.



Approaches to proof of the decay estimate

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every T € (0,1) there exist two positive constants g, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RN) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RN™N® satisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zq) C 2 with R < Rq there holds

E(u;zo, R) < €2, (4.16)

then we have the excess decay estimate

E(u; 20, 7R) < c.(n, N, L)T?E(u; 2o, R) . (4.17)



Approaches to proof of the decay estimate

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every T € (0,1) there exist two positive constants g, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RN) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RN™N® satisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zq) C 2 with R < Rq there holds

E(u;zo, R) < €2, (4.16)
then we have the excess decay estimate

E(u; 20, 7R) < c.(n, N, L)T?E(u; 2o, R) . (4.17)

» Blow-up
» A harmonic approximation

» direct approach



Decay estimate via blow-up

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every T € (0,1) there exist two positive constants 9, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RN) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RNXN® sotisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zg) C 2 with R < Rq there holds

E(u;z0,R) < €3, (4.16)

then we have the excess decay estimate

E(u; 20, 7R) < cu(n, N, L)T?E(u; 2o, R) . (4.17)



Decay estimate via blow-up

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every T € (0,1) there exist two positive constants 9, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RN) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RNXN® sotisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zg) C 2 with R < Rq there holds

E(u;zo, R) < &2, (4.16)

then we have the excess decay estimate

E(u; 20, 7R) < cu(n, N, L)T?E(u; 2o, R) . (4.17)

Lemma 4.20 ([41], Lemma 2) Let (b;)jen be a sequence of bilinear forms
such that for every j € IN the functions b;: By — RN™N" are measurable,
bounded and elliptic in the sense of

bj(2)€ - € > €]
bj(z)¢ - & < LI¢[[€]

for almost every x € By, all £, € RN™ and some L > 1. Suppose that b;
converges pointwise almost everywhere in By to some bilinear form b: By —
RNn>Nn - Let further (uj)jen be a sequence in WH2(By, RY) such that u;
solves the system div (b;(x)Du;) = 0 in By in the weak sense for every j € NN,
and which converges weakly in L?(By,RN) to a function u € L*(By,RN).
Then u € Wl’Q(Bl,IRN), and we have

loc
(i) uj — u strongly in L?*(By,RY), Duj — Du weakly in L*(B,,RN") for
every o < 1;
(ii) w solves the system div (b(z)Du) = 0 in By in the weak sense.



Decay estimate via A-harmonic approximation

Definition 4.26 Let A € RY™*N" A function h € WH1(2,RY) is called
A-harmonic if it satisfies

/ ADh-Dpdr =0  forall p € C3(2,RY).
2

Lemma 4.27 (De Giorgi; Duzaar and Grotowski) Let L > 1 be a fized
constant, n, N € IN with n > 2 and By(xo) C R™. For every e > 0 there exists
8 =4d(n,N,L,e) > 0 with the following property: if A is a constant bilinear
form on RN™ which is elliptic with (4.3) and bounded by L with (4.4), and if
u € WH2(By(xo), RN) satisfies

o2 / |Du|?dx <1
J/ By(zo)

(for some v € R) and is approzimately A-harmonic in the sense of

|Q'y_n / ADu - Dpdz| <& sup |Dy| for all ¢ € C}(B,(z0), RY),
JBy(z0)

By (o)

then there exists an A-harmonic function h € W1Y2(B,(x), RY) which
satisfies

o272 / |u—hffdz<e and > " [ |Dh|?dz < 1. (4.21)
J Bo(zo) / Be(zo)



Decay estimate via A-harmonic approximation

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every 7 € (0,1) there exist two positive constants o, Ro depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RYN) is a weak solution to the system (4.13) with continuous
coefficients a: £2 x RN — RN"*N® gatisfying (4.6), (4.7) and (4.14), and if
for some ball Br(xo) C 2 with R < Rg there holds

E(u;wo, R) < 2, (4.16)

then we have the excess decay estimate

E(u; 20, 7R) < cu(n, N, L)T*E(u; 7o, R) . (4.17)

Lemma 4.28 (Approximate A-harmonicity I) Let u € WH2(02,RY) be
a weak solution to the system (4.13) with continuous coefficients a: QxRN —
RNmXN® satisfying (4.7) and (4.14). Then, for every By(zo) C 2 and all
ug € RN, we have

‘Ql_"/ a(xo,uo)Du - Dy dx‘
BQ(IO)

1

gc(n,L)w1/2<g+ (][ |u—u0|2dx)§>

Bo(z0)

1

X (92_"/ |Du|2d:v>§ sup |Dy|
BQ(ZO)

BQ(‘TO)

for all p € CY(B,y(wo), RY).



Decay estimate — direct approach

Lemma 4.21 (Excess decay estimate via blow up; [41], Lemma 4)
For every 7 € (0,1) there exist two positive constants o, Ry depending
only on n, N, L, w, and 7 such that the following statement is true: if
u € WH2(2,RYN) is a weak solution to the system (4.13) with continuous
coefficients a: 2 x RN — RN"*N" satisfying (4.6), (4.7) and (4.14), and if
for some ball Br(zo) C 2 with R < Rg there holds

E(u; 0, R) < €2, (4.16)
then we have the excess decay estimate

E(u; 20, 7R) < cu(n, N, L)T*E(u; 7o, R) . (4.17)

Theorem 1.22 (Gehring; Giaquinta and Modica) Let f €
LY(Bg(z0)), 0 € (0,1), and m € (0,1). Suppose that there exist a constant A

and a function g € Li(Bgr(xzo)) for some ¢ > 1 such that for all balls
B,(y) € Bgr(xo) there holds

1

fowasza(f iran)T e f gl
Boo(y) Bo(y) B, (y)

Then there exists an exponent p € (1,q] depending only on A, m and n such
that f € LY (Br(z0)). Moreover, for every T € (0,1) we have

(]{am(%) s dz)i < K(A,m,n,T) []iﬂ(xo) |f| da: + (]iR(xo) ol d:r) %] |



Gehring theorem

Theorem 1.22 (Gehring; Giaquinta and Modica) Let f €
LY(Bgr(%0)), o € (0,1), and m € (0,1). Suppose that there exist a constant A

and a function g € Li(Bgr(xzo)) for some ¢ > 1 such that for all balls
B,(y) € Bgr(xo) there holds

1
foowdeza(f iran)T e f gl
Boo(y) Bo(y) )

Then there exists an exponent p € (1,q] depending only on A, m and n such
that f € LY (Br(xz0)). Moreover, for every T € (0,1) we have

(]{3 ( )|f|pd”£>%§K(A,m,n,T)b€3( )|f|dw+<]{3( )|g|pdx>%].
+Rr(zo (2o (20

[Beck, 2016]

Proposition 6.1. Let Q) be a cube in R" and let g,h € LP(2), 1 <p < o0,
be nonnegative functions satisfying:

(o) ssfor(fr)

for all cubes @ C 2Q C Q. Then for each 0 < 0 < 1 andp < 8 «
P+ m—,.fﬁl.,w we have

(£9) <o () + (A)] il

[lwaniec, 1998]



Gehring theorem

with 1 < p < 00, and satisfy

Lemma 3.2. Suppose g and h are nonnegative functions of class LP(R™),

() <5 (o)

(3.14)
for all cubes Q C R™. Then there exist a new exponent s = s(n,p,K) > p
and a constant C = C(n,p, K) such that
S s
/ng =C R™ h

(3.15)




Gehring theorem

with 1 < p < 00, and satisfy

Lemma 3.2. Suppose g and h are nonnegative functions of class LP(R™),
1 1
P 1 4
() <xhore (L)
Q 2Q 2Q
Jor all cubes Q C R™. Then there exist a new exponent s = s(n,p, K) > p
and a constant C = C(n,p, K) such that

(3.14)
5 S C hs
/ n g ]R'n

(3.15)|
Proposition 6.1. Let ) be a cube inR" and let g,h € LP(Q), 1 <p < o0
be nonnegative functions satisfying:

(hr) <5 for+ ()’

(6.1
for all cubes @ C 2Q C Q. Then for each 0 < 0 < 1 andp < s
p+ W&]—l,.—ﬁ we have

g 100"
s <
(fang) T oi(1-o0)r

() + ()]
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