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Quiz 

Here is a plot of the 2-norms I l etA l 1  for the two matrices 
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to A nne and Kristine 



Note to the Reader 

The style of this book is unusual . There are sixty short sections , and 
nobody will read them all. For easy study a la carte, each has been written 
as a self-contained essay. 

But please , though you won't read all the words, look at all the figures ! 
You will quickly feel the pleasure we have found in years of exploring spectra 
and pseudospectra. 



Contents __________________________________ _ 

Preface xiii 
Acknowledgments xv 

I. Introduction 1 
1 .  Eigenvalues 3 
2. Pseudospectra of matrices 12 
3 .  A matrix example 22 
4 .  Pseudospectra of linear operators 27 
5. An operator example 34 
6 .  History of pseudospectra 41 

II. ToepIitz Matrices 47 
7 . Toeplitz matrices and boundary pseudomodes 49 
8 .  Twisted Toeplitz matrices and wave packet pseudomodes 62 
9. Variations on twisted Toeplitz matrices 74 

III. Differential Operators 85 
10. Differential operators and boundary pseudomodes 87 
1 1 .  Variable coefficients and wave packet pseudomodes 98 
12 .  Advection-diffusion operators 1 1 5  
1 3 .  Lewy-Hormander nonexistence o f  solutions 126 

IV. Transient Effects and Nonnormal Dynamics 133 
14 . Over,{iew of transients and pseudospectra 135 
15 .  Exponentials of matrices and operators 148 
16 .  Powers of matrices and operators 158 
17 .  Numerical range, abscissa, and radius 166 
18 .  The Kreiss Matrix Theorem 176 
19 .  Growth bound theorem for semi groups 185 

V. Fluid Mechanics 193 
20. Stability of fluid flows 195 
21 .  A model of transition to turbulence 207 
22. Orr-Sommerfeld and Airy operators 2 15  
23 .  Further problems in  fluid mechanics 224 



x CONTENTS 

VI. Matrix Iterations 
24. Gauss-Seidel and SOR iterations 
25. Upwind effects and SOR convergence 
26. Krylov subspace iterations 
27. Hybrid iterations 
28. Arnoldi and related eigenvalue iterations 
29. The Chebyshev polynomials of a matrix 

VII. Numerical Solution of Differential Equations 
30. Spectral differentiation matrices 
3 1 .  Nonmodal instability of PDE discretizations 
32. Stability of the method of lines 
33. Stiffness of ODEs 
34. GKS-stability of boundary conditions 

VIII. Random Matrices 
35. Random dense matrices 
36. Hatano-Nelson matrices and localization 
37. Random Fibonacci matrices 
38. Random triangular matrices 

IX. Computation of Pseudospectra 
39. Computation of matrix pseudospectra 
40. Projection for large-scale matrices 
4 1 .  Other computational techniques 
42. Pseudospectral abscissae and radii 
43. Discretization of continuous operators 
44 . A flow chart of pseudospectra algorithms 

X. Further Mathematical Issues 
45. Generalized eigenvalue problems 
46 . Pseudospectra of rectangular matrices 
47. Do pseudospectra determine behavior? 
48 . Scalar measures of nonnormality 
49 . Distance to singularity and instability 
50. Structured pseudospectra 
5 1 .  Similarity transformations ansi canonical forms 
52. Eigenvalue perturbation theory 
53. Backward error analysis 
54. Group velocity and pseudospectra 

229 
231 
237 
244 
254 
263 
278 

287 
289 
295 
302 
314 
322 

331 
333 
339 
351 
359 

369 
371 
381 
391 
397 
405 
416 

421 
423 
430 
437 
442 
447 
458 
466 
473 
485 
492 



CONTENTS 

XI. Further Examples and Applications 
55. Companion matrices and zeros of polynomials 
56. Markov chains and the cutoff phenomenon 
57. Card shuffling 
58. Population ecology 
59. The Papkovich-Fadle operator 
60. Lasers 

References 
Index 

xi 

499 
501 
508 
519 
526 
534 
542 

555 
597 





Preface __________________________________ __ 

This book sprang from computer plots of eigenvalues of matrices . In the 
late 1980s LNT was a junior faculty member at MIT in the habit of drawing 
plots in MATLAB on a workstation. Eigenvalues of nonsymmetric matrices 
were full of surprises. They might describe one pattern in the complex plane 
for a matrix A, then quite another if you added a small perturbation, or 
even if you just took the transpose ! Yet mathematical scientists seemed to 
care about eigenvalues and reach conclusions based on them. Numerical 
analysts designed matrix iterations and judged stability of discretizations 
based on eigenvalues . Could this be right? 

One thing was clear : Eigenvalues might be meaningful in theory, but 
they could not always be trusted on a computer. It took some time to 
realize that although rounding error effects are fascinating, the significance 
of fragile eigenvalues goes deeper. Indeed , the rounding errors are a sign 
that the eigenvalues are probably not so meaningful in theory after all .  
By 1990 LNT had converged to the view that is the theme of this book: 
what matters most about nonnormality is its effect on the behavior of 
the unperturbed matrix or operator . And to study nonnormality, a fruit­
ful technique is to look beyond eigenvalues to pseudospectra, the sets in 
the complex plane bounded by level curves of the norm of the resolvent . 
Related work had been done by Varah, Landau, Godunov, Chatelin, Hin­
richsen, and Pritchard. By 1990, pseudospectra were LNT's main research 
interest. 

Nonnormal eigenvalue problems became a theme linking one field with 
another. Numerical iterations and discretizations were joined by Toeplitz 
matrices, random matrices , fluid mechanics , card shufRing, laser cavities , 
and food webs. In particular it was an extraordinary thing to learn from 
Brian Farrell and others that trouble with eigenvalues had been a perva­
sive theme through a century of fluid mechanics . With this new field in 
the picture , LNT, now at Cornell , became persuaded that tools for going 
beyond eigenvalues must take a permanent place in applied mathematics. 

Meanwhile ME was finishing his degree at Virginia Tech and moving to 
Oxford for graduate school. He got hooked on pseudospectra after reading 
a blue A5-sized Oxford Numerical Analysis Group Report . A year later 
LNT moved to Oxford as the head of that group, and the two of us hit it 
off immediately. We found that we shared a love of linear algebra and a 
taste for careful numerical experiments, as well as a birthday in common 
with Carl Runge and Olga Taussky and Cameron Diaz .  And new related 
topics kept appearing, including non-Hermitian quantum mechanics , ex­
plored by Hatano and Nelson and our UK colleague Brian Davies , and the 
Lewy-Hormander theory of nonexistence of solutions to certain partial dif-
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ferential equations , whose connections with pseudospectra were pointed out 
by Zworski . The study of nonnormal effects in Toeplitz matrices expanded 
as ME pursued a number of such investigations with Albrecht Bottcher. 

This book had been envisioned, even started, in 1990, but it was moving 
forward too slowly. Soon there were 50 publications on pseudospectra, then 
100, and the book was not keeping up . By this time ME had completed his 
D .Phil. and become a post-doc working with LNT and had built the online 
Pseudospectra Gateway, which includes a bibliography of all papers we 
know of on pseudospectra (we will probably stop when the number reaches 
1000) . We decided to make the book a team effort . The collaboration 
continued electronically after ME moved to Rice University in 2002. 

This would have been a very different book if it been been finished seven 
or eight years ago. The unifying treatment of Toeplitz and twisted Toeplitz 
matrices and of constant and variable coefficient differential operators , the 
subject of Parts II and III, had not been developed. Most of the lower 
bounds of Part IV that quantify the use of pseudospectra for analyzing 
transient behavior had not been derived. The preliminary triangularization 
idea of Shiu-Hong Lui had not yet speeded up calculations by a factor of 10 
or more. Most important of all , Thomas Wright 's extraordinary software 
system EigTool , whose influence can be seen in almost every section, had 
not been created. For any nonnormal matrix, whether of dimension 10 or 
10 ,000, the best first step to examining its spectral properties is the same: 
check it out in EigTool ! 

Each of our sixty sections has been written as a self-contained essay. We 
have tried to make each of these documents the perfect introductory survey 
of its topic , complete with the right references and illustrations . We hardly 
mention any details of the computations that lie behind these illustrations , 
but we are proud of them. We will be glad if this volume serves as an 
example of a kind of mathematics that it is now possible to write , in which 
nontrivial computations help to communicate mathematical ideas without 
themselves being the subject . 

At times we have felt oppressed by the volume of topics that we could 
not include , whether for reasons of space, time, or competence. This book 
says next to nothing about geophysical dynamos or plasma physics ; about 
matrix preconditioners or biorthogonal iterations or differential-algebraic 
equations ; about bases and diagonalization of linear operators in infinite­
dimensional spaces ; about multiplicity of pseudoeigenfunctions or their use 
in computation; about why perturbed eigenvalues tend to line up so beau­
tifully along pseudospectra boundaries ; about the use of adjoints in en­
gineering design and optimization; about atmospheric science or chemical 
kinetics or pseudo differential operatm;s or C* -algebras or functions of ma­
trices or control theory. Logically, each of these topics should be the subject 
of a section of this book, or more. Luckily, it is not always best to push a 
book to its logical conclusion. 
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l · Eigenva l ues ______________________________ __ 

Eigenvalues are among the most successful tools of applied mathematics. 
Here are some of the fields where they are important , with a representative 
citation from each. 

acoustics [563] chemistry [722] 
control theory [443] earthquake engineering [ 151 ] 
ecology [ 130] economics [739] 
fluid mechanics [669] functional analysis [630] 
helioseismology [33 1 ] magnetohydrodynamics [135] 
Markov chains [582] matrix iterations [338] 
partial differential equations [178] physics of music [279] 
quantum mechanics [666] spectroscopy [349] 
structural analysis [1 54] vibration analysis [376] 
numerical solution of differential equations [639] 

Figures 1 . 1 and 1.2 present images of eigenvalues in two quite different 
applications. 

In the simplest context of matrices , the definitions are as follows. Let A 
be an N x N matrix with real or complex coefficients; we write A E <cN x N. 
Let v be a nonzero real or complex column vector of length N, and let ..\ 
be a real or complex scalar ; we write v E <cN and ..\ E <C. Then v is an 
eigenvector of A, and ..\ E <C is its corresponding eigenvalue, if 

Av=..\v. ( 1 . 1 )  
(Even if A i s  real , its eigenvalues are i n  general complex unless A i s  self­
adjoint . ) The set of all the eigenvalues of A is the spectrum of A, a 
nonempty subset of the complex plane <C that we denote by a (A) . The 
spectrum can also be defined as the set of points z E <C where the resolvent 
matrix, 

(z - A) -I, 

does not exist . Throughout this book, z - A is shorthand for zI - A, where I is the identity. 
Unlike singular values [414 , 776] , eigenvalues conventionally make sense 

only for a matrix that is square . This reflects the fact that in applications , 
they are generally used where a matrix is to be compounded iteratively, for 
example, as a power Ak or an exponential etA = 1+ tA + � (tA)2 + .... 

For most matrices A, there exists a complete set of eigenvectors, a set 
of N linearly independent vectors VI' . . .  ' vN with AVj = \vj. If A has 
N distinct eigenvalues , then it is guaranteed to have a complete set of 
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Figure 1.1: Spectroscopic image of light from the sun. The black 'Fraunhofer 
lines ' correspond to various differences of eigenvalues of the Schrodinger operator 
for atoms such as H, Fe , Ca, Na, and Mg that are present in the solar atmosphere . 
Light at these frequencies resonates with frequencies of the transitions between 
energy states in these atoms and is absorbed. Spectroscopic measurements such 
as these are a crucial tool in chemical analysis, not only of astronomical bodies , 
and by making possible the measurement of redshifts of distant galaxies, they 
led to the discovery of the expanding universe . Original image courtesy of the 
Observatories of the Carnegie Institution of Washington. 

eigenvectors , and they are unique up to normalization by scalar factors . 
For any matrix A with a complete set of eigenvectors {v), let V be the 
N x N matrix whose jth column is vj , a matrix of eigenvectors. Then we 
can write all N eigenvalue conditions at once by the matrix equation 

AV=VA, ( 1 .2 )  

where A i s  the diagonal N x N matrix whose jth diagonal entry is  Aj. 
Pictorially, 

) 
Since the eigenvectors Vj are linearly independent , V is nonsingular , and 
thus we can multiply ( 1 .2 )  on the right by V-I to obtain the factorization 

( 1 .3) 

known as an eigenval1Le decomposition or a diagonalization of A. In view 
of this formula, a matrix with a complete set of eigenvectors is said to be 
diagonalizable. An equivalent term is non defective. 

The eigenvalue decomposition expresses a change of basis to 'eigen­
vector coordinates ' ,  i .e . , coefficients in' an expansion in eigenvectors . If 
A = V A V-I, for example , then we have 

( 1 .4) 



1 , EIGENVALUES 5 

1828 • AU 

------ 1371 .' F 
N 
� 

;>, u AU .:: 914 Q) 
5-

685,5 .-- F Q) <!:: 
548.4 • CU 

457 .- AU 
228.5 ---. AU 

-2 -1,8 -1,6 -1.4 -1,2 -1 -0.8 -0.6 -0.4 -0,2 0 

decay rate (e-foldings/(27r) - 1 -second) 

Figure 1-2: Measured eigenvalues in the complex plane of a minor third A4� 
carillon bell (figure from [418] based on data from [696] ) .  The grid lines show the 
positions of the frequencies corresponding to a minor third chord at 456 . 8  Hz, 
together with two octaves above the fundamental and one below. Immediately 
after the bell is struck, the ear hears all seven of the frequencies portrayed; a little 
later, the higher four have decayed and mostly the lowest three are heard; still 
later , the lowest mode, the 'hum', dominates. The simple rational relationships 
among these frequencies would not hold for arbitrarily shaped bells , but are the 
result of generations of evolution in bell shapes to achieve a pleasing effect . 

Now the product V-1 (Akx) is equal to the vector c of coefficients in an 
expansion Akx = V C = I: cj Vj of Akx as a linear combination of the 
eigenvectors {vj}, and similarly, V-I x is the vector of coefficients in an 
expansion of x. Thus, ( 1 .4) asserts that to compute Akx, we can expand x 
in the basis of eigenvectors , apply the diagonal matrix Ak , and interpret the 
result as the coefficients for another expansion in the basis of eigenvectors . 
In other words, the change of basis has rendered the problem diagonal and 
hence trivial . For etAx , similarly, we have 

( 1 .5 )  

so diagonalization makes this problem trivial too, and likewise for other 
functions f (A) . 

So far we have taken A to be a matrix, but eigenvalues are also im­
portant when A is a more general linear operator such as an infinite ma­
trix, a differential operator , or an integral operator . Indeed, eigenvalue 
problems for matrices often come about through discretization of linear 
operators. The spectrum O'(A) of a closed operator A defined in a Banach 
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(or Hilbert) space is defined as the set of numbers z E (]J for which the 
resolvent (z - A) - l does not exist as a bounded operator defined on the 
whole space (§4) . It can be any closed set in the complex plane, including 
the empty set . Eigenvalues and eigenvectors (also called eigenfunctions or 
eigenmodes) are still defined by ( 1 . 1 ) ,  but among the new features that 
arise in the operator case is the phenomenon that not every z E o-(A) is 
necessarily an eigenvalue . This book avoids fine points of spectral theory 
wherever possible , for the main issues to be investigated are orthogonal to 
the differences between matrices and operators . In particular , the distinc­
tion between spectra and pseudospectra has little to do with the distinction 
between point and continuous spectra. In certain contexts, of course , it will 
be necessary for us to be more precise. 

This book is about the limitations of eigenvalues , and alternatives to 
them. In the remainder of this introductory section, let us accordingly con­
sider the question, What are eigenvalues useful for? Why are eigenvalues 
and eigenfunctions-more generally, spectra and spectral theory-among 
the standard tools of applied mathematics? Various answers to these ques­
tions appear throughout this volume, but here , we shall make our best 
attempt to summarize them in a systematic way. 

We begin with a one-paragraph history [96 , 208, 721] . It is not too 
great an oversimplification to say that a major part of eigenvalue anal­
ysis originated early in the nineteenth century with Fourier 's solution of 
the heat equation by series expansions . Fourier 's ideas were extended by 
Poisson, and other highlights of the nineteenth century include Sturm and 
Liouville 's treatment of more general second-order differential equations in 
the 1830s; Sylvester and Cayley's diagonalization of symmetric matrices in 
the 1850s (the origins of this idea go back to Cauchy, Jacobi, Lagrange, 
Euler, Fermat , and Descartes) ; Weber and Schwarz 's treatment of a vi­
brating membrane in 1869 and 1885 (whose origins in vibrating strings go 
back to D .  Bernoulli , Euler, d 'Alembert , . . .  , Pythagoras) ; Lord Rayleigh's 
treatise The Theory of Sound in 1877 [618] ; and further developments by 
Poincare around 1890. By 1900, eigenvalues and eigenfunction expansions 
were well-known, especially in the context of differential equations . The 
new century brought the mathematical theory of linear operators due to 
Fredholm, Hilbert , Schmidt , von Neumann, and others; the terms 'eigen­
value' and 'spectral theory' appear to have been coined by Hilbert . The 
influential book by Courant and Hilbert , first published in 1924, surveyed 
a large amount of material concerning eigenvalues of differential equations 
and vibration problems [ 168] . Just two years later came the explosive ideas 
of quantum mechanics , which in a short time, in the hands of Heisenberg, 
Jordan, Schrodinger, Dirac, and others , moved matrices and operators to 
center stage of the scientific world. Quantum 'matrix mechanics ' revealed 
that energy states of atoms and molecules could be viewed as eigenfunctions 
of a Schr6dinger operator, thereby explaining Figure 1.1, the periodic ta-
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ble of the elements, and countless other scientific observations besides [384] , 
and from that time on, every mathematical scientist has known the basics 
of matrices , operators , eigenvalues , and eigenfunctions . 

What exactly do eigenvalues offer that makes them useful for so many 
problems? We believe there are three principal answers to this question, 
more than one of which may be important in a particular application. 

1. Diagonalization and separation of variables: use of the eigenfunctions 
as a basis. One thing eigenvalues may accomplish is the decoupling, as in 
( 1 . 3)-( 1 . 5 ) ,  of a problem involving vectors or functions into a collection 
of problems involving scalars, which may make subsequent computations 
easier . For example, in Fourier 's problem of heat conduction in a solid 
bar with zero temperature at both ends , the eigenmodes are sine waves 
that decay independently as a function of time. If an arbitrary initial 
temperature distribution is expanded as a sum of these sine waves, then 
the solution at a later time can be calculated by summing the components 
of the expansion. 

2 .  Resonance: heightened response to selected inputs. Diagonalization 
is an algorithmic idea; the other uses of eigenvalues are more physical . One 
is the analysis of the phenomenon of resonance, perhaps most familiar in 
the context of vibrating strings , drums, and mechanical structures. Any 
visitor to science museums has seen demonstrations showing that certain 
systems respond preferentially to vibrations at special frequencies . These 
frequencies are the eigenvalues of the linear or linearized operator that gov­
erns the system in question , and the form of the response is associated with 
the corresponding eigenfunctions . Examples of resonance are familiar : One 
thinks of soldiers breaking step as they cross bridges ; of the less fortunate 
Tacoma Narrows Bridge in the 1940s , whose collapse was initiated by a 
wind-induced flow oscillation too close to a structural eigenfrequency; of 
buildings and their response to the vibrations of earthquakes-an appli­
cation where eigenvalues are written into legal codes ; of that old cartoon 
standby, the soprano whose high E shatters windows. In other examples 
resonance is desired rather than feared: examples include AM radio, where 
the signal from a far-off station is selected from a sea of background noise 
by a finely tuned resonant circuit , and the cochlea of the human ear ,  whose 
basilar membrane resonates preferentially in different locations according 
to the frequency of the sound input and thus in a sense tunes in all stations 
at once. These last two examples illustrate the wide range of complexity 
in applications of eigenvalue ideas, for the radio problem is straightforward 
and almost perfectly linear , whereas the ear is a complicated nonlinear sys­
tem, not yet fully understood, for which eigenmodes are only a crude first 
step. 

3. Asymptotics and stability: dominant response to general inputs. A 
related application of eigenvalues is to questions of the form, What will 



8 I · INTRODCCTION 

happen as time elapses (or in the extreme, t ----+ (0) to a system that has 
experienced some more or less random disturbance? Fourier 's heat problem 
again affords an example: Whatever the shape of the initial temperature 
distribution, the higher sine waves decay faster than the lowest one, and 
therefore almost any initial distribution will eventually come to look like 
the half-wavelength sine with zeros just at the two ends of the interval . 
Similarly, what makes a church bell as in Figure 1 . 2  chime musically? As 
the clapper strikes , all frequencies are excited , but differential decay rates 
soon filter out all but a few dominant ones , and the result is a pleasing 
sound. Kettledrums operate on the same principle , as do Markov chains in 
probability theory. Sometimes the crucial issue is a question of stability : 
Are there modes that grow rather than decay with t ?  For example, in fluid 
mechanics a standard technique to determine whether small perturbations 
to a laminar flow will be amplified into large ones- -which may then trig­
ger the onset of turbulence-is to calculate whether the eigenvalues of the 
system all lie in the left half of the complex plane. (We shall see in §20 
that this technique is not always successful . )  Similar questions arise in 
control theory and in numerical analysis ,  where time is discrete and sta­
bility depends on eigenvalues being less than 1 in modulus . Problems of 
convergence of matrix iterations in numerical analysis are also related, the 
convergence rate being determined by how close certain eigenvalues are to 
zero . 

Principles 1 ,  2 ,  and 3 account for most applications of eigenvalues . 
(Sometimes the latter two are hard to distinguish, as , for example, in 
the operation of bowed or blown musical instruments. The significance 
of eigenvalues in quantum mechanics also may have special features , not 
well captured by 1-3 . )  In view of the ubiquity of vibrations , oscillations , 
and linear or approximately linear processes in the physical world , they 
amply justify the great attention that has been given to eigenvalues over 
the years . 

And we think there is a fourth reason, too, for the success of eigenvalues . 

4. They give a matrix a personality. We humans like images ; our brains 
are specially adapted to interpret them. Eigenvalues enable us to take the 
abstraction of a matrix or linear operator, for whose analysis we possess 
no hardwired talent , and portray it as a picture . 

This book is about a class of problems for which eigenvalue methods 
may fail :  problems involving matrices or operators for which the matrix 
V-I of ( 1 .3 )-( 1 . 5 ) ,  if it exists, contains very large entries : 

( 1 .6 )  

(This often turns out to mean exponentially large with respect to a param­
eter . )  This formulation of the matter assumes that the matrix V itself is in 
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some sense reasonably scaled, with I IV I I  roughly of order 1 .  If no assump­
tions are made about the scaling of I IVI I , then ( 1 .6) should be replaced by 
a statement about the condition number of V in the norm I I  . I I ,  

I IVI I I IV- I l l  » 1 ,  ( 1 . 7) 

and to be still more precise we should require that ( 1 .  7) hold not just for 
some eigenvector matrix V, whose eigenvector columns might be badly 
scaled relative to one another , but for any eigenvector matrix V. For 
operators as opposed to matrices , a suitable generalization of ( 1 .7) can be 
applied in some cases , but not all .  

The conditions ( 1 .6 )  and ( 1 . 7) depend upon the choice of norm I I · I I . 
Though sometimes it is essential to consider other possibilities (see, e .g . , 
§56 and §57) , most of our examples will be based on the use of the 2-norm, 
defined by I I x l 1 2 = (2: I Xj I 2 ) 1 /2 for a vector x and then by 

I IAx l 1 2 I IA I 1 2 = m;x TxF ( 1 .8) 

for a matrix A. This choice of norm corresponds mathematically to formu­
lation in a Hilbert space and physically to consideration of energy defined 
by a sum of squares, and in this important special case , ( 1 . 7) amounts to 
the condition that the eigenvectors of A, if they exist , are far from orthog­
onal. At the other extreme is a normal matrix, one that has a complete 
set of orthogonal eigenvectors ; real symmetric and Hermitian matrices fall 
in this category. In this case , if each Vj is normalized by I I vj l 1 2 = 1 ,  then 
V is a unitary matrix (in the real case we say orthogonal ) , with V- I = V* 
(V* denotes the conjugate transpose) and I IVI 1 2 = I IV- 1 1 1 2 = 1 . Thus for 
I I· II = II . 1 1 2 ' ( 1 . 7) is a statement that A is in some sense far from normal. 
In this norm, it is the nonnormal matrices for which eigenvalue analysis 
may fail , and in this book, starting with the subtitle on the cover, we often 
speak of problems that are 'nonnormal ' or ' far from normal ' when a more 
careful statement would refer to a more general condition, such as ( 1 . 7) . 

The majority of the familiar applications of eigenvalue analysis involve 
matrices or operators that are normal or close to normal , having eigenfunc­
tions orthogonal or nearly so . Among the examples mentioned so far , all 
of the physical ones are in this category except certain problems of fluid 
mechanics . The familiar mechanical oscillations are governed by normal 
operators, for example, and so are the oscillations of quantum mechanics , 
at least in their standard formulation. As a consequence, our intuition 
about eigenvalues has been formed by the normal case. Two centuries of 
successes have generated confidence that the eigenvalue idea is both pow­
erful in practice and fundamental in concept . It has not always been noted 
that as most of these successes involve problems governed by normal or 
near-normal operators , our grounds for confidence in the nonnormal case 
are less solid . 
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With this in mind, we shall now briefly indicate what can go vrong 
with I, 2, and 3 in certain applications . 

First , consider 2. If a linear operator is normal , then the deg:ee of 
resonant amplification that may occur in response to an input at freq.lency 
w is equal to the inverse of the distance in the complex plane between 
w and the nearest eigenvalue. (This formula can be found in firs;-year 
physics textbooks, usually without the word 'eigenvalue' . ) For a nonmrmal 
operator, however, the resonant amplification may be orders of magritude 
greater. The resonances of a nonnormal system are not determined by the 
eigenvalues alone. This phenomenon is at the heart of the topic knovvn as 
'receptivity' in fluid mechanics (§23) . 

Next , consider 3 .  It is true that for a purely linear , constant-coeffrient , 
homogeneous problem, eigenvalues govern the asymptotic behavior as t ----+ 

00. If the problem is normal, this statement is robust; the eigenvaluES also 
have relevance to short-time or transient behavior, and moreover , their 
influence tends to persist if the problem is altered in small ways. If the 
problem is far from normal , however, conclusions based on eigenvalms are 
in general not robust. First , there may be a long transient that looks quite 
different from the asymptote and has no connection to the eigenV1lues . 
Second, even the asymptote may change beyond recognition if the problem 
is modified slightly. Eigenvalues do not always govern the transient behav­
ior of a nonnormal system, nor the asymptotic behavior in the prese�ce of 
nonlinear terms, variable coefficients, lower order terms, inhomogeneous 
forcing data, or other complications. Few applied problems are free of all 
these effects .  For those that are, it is rare that one is interested so pur::ly in 
the limit t ----+ 00 as one may at first imagine . These issues are at the heart 
of convergence and stability investigations in numerical analysis , aId we 
discuss them, for example, in Parts VI and VII .  For a high-level schema, 
see Figure 33 .3 .  

This brings us to 1 .  Unlike 2 and 3 ,  the algorithmic idea of diagomliza­
tion is not in general invalidated if 1 1V1 1 1 1V-11 1  i s  large (although in  exlreme 
cases there may be difficulties caused by rounding errors on a complter) . 
On the other hand, there is a different difficulty that sometimes males di­
agonalization less useful than one might expect , even for normal problems. 
In practice, for differential or other operators one works with trurrated 
expansions ; an infinite series is approximated by finite sum. The difliculty 
that arises sometimes is that the choice of the basis of eigenfunctio:n.s for 
such an expansion may necessitate taking an unacceptably large number 
of terms in the expansion to achieve the required accuracy. Eigenfunc­
tion expansions may be exceedingly inefficient. This fact was publicized by 
Orszag around 1970 in the context of spectral methods for the num�rical 
solution of differential equations [588, 775] . Spectral methods , by con­
trast , are based on expansions in functions that have nothing to do with 
the eigenfunctions of the problem at hand, but which may converge ge-
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ometrically, where an expansion in eigenfunctions converges only linearly. 
Thirty Chebyshev polynomials may resolve a problem as well as a thousand 
eigenfunctions . An example is considered in §59. 

What about 4,  a matrix or operator's personality? In the highly non­
normal case, vivid though the image may be, the location of the eigenvalues 
may be as fragile an indicator of underlying character as the hair color of 
a Hollywood actor. We shall see that pseudospectra provide equally com­
pelling images that may capture the spirit underneath more robustly. 

In summary, eigenvalues and eigenfunctions have a distinguished his­
tory of application throughout the mathematical sciences ; we could not get 
along without them. Their clearest successes, however, are associated with 
problems that involve well-behaved systems of eigenvectors , which in most 
contexts means matrices or operators that are normal or nearly so. This 
class of problems encompasses the majority of applications, but not all . 
For nonnormal problems, the record is less clear , and even the conceptual 
significance of eigenvalues is open to question . 



2 . Pseudospectra of matrices ---______ _ 

In certain applications , eigenvalue analysis proves to be misleading. Here 
are some examples , with a single citation in each case . (Listing a field 
like 'ecology' , of course , does not mean that eigenvalue analysis is always 
misleading in that field, just that it sometimes is . )  Most of these examples 
are discussed in detail later in the book, where many more references are 
provided. 

atmospheric science [261] 
ecology [574] 
lasers [688] 
Markov chains [435] 
rounding error analysis [133] 

control theory [401] 
hydrodynamic stability [780] 
magnetohydrodynamics [74] 
matrix iterations [342] 
operator theory [93] 

non-Hermitian quantum mechanics [377] 
numerical solution of differential equations [796] 

This book is about phenomena that arise in such applications due to trou­
blesome eigenvalues and about ways to understand them mathematically. 
Specifically, this book describes the mathematical tool known as pseudo­
spectra. In this section we introduce pseudospectra of finite-dimensional 
matrices, and we generalize to linear operators in Banach space in §4 . The 
history of these ideas is detailed in §6 . 

Let I I  . I I  denote a norm on <eN, the space of  complex N-vectors , and 
also the associated induced norm on <eNXN, the space of complex N x N 
matrices . (Vector and matrix norms are described, for example, in [414] 
and [776] . )  In most of the computed examples in this book, we take I I  . I I  
to  be the 2-norm I I . 1 1 2 defined by the Euclidean inner product as in ( 1 .8) ; 
norms induced by other inner products require only minor modifications . 
We shall generally let A denote a matrix in <eN x N or a linear operator on 
an infinite-dimensional space . 

One can motivate the idea of pseudospectra as follows. As observed 
throughout applied mathematics , the question 'Is A singular? ' is not ro­
bust , for an arbitrarily small perturbation can change the answer from yes 
to no. For applied purposes , a better question is, ' Is I I A - 1 1 1  large? ' Now, 
the condition defining eigenvalues is a condition of matrix singularity. To 
ask, ' Is z an eigenvalue of A? ' is the same as to ask, 

Is z - A singular? 

Therefore, the property of being an eigenvalue of a matrix is also not robust . 
A better question may be, 

Is I I (z - A) - I I I  large? 



2 · PSEUDOSPECTRA OF MATRICES 13 

This pattern of thinking leads naturally to our first definition of pseudo­
spectra: 1 

First definition of pseudospectra 

Let A E CGNxN and E > 0 be arbitrary. The E-pseudospectrum aAA) 
of A is the set of z E CG such that 

(2 . 1 )  

The matrix (z - A)�l is known as the resolvent of A at z .  In  (2 . 1 )  and 
throughout this book we employ the convention that 

I I (z - A)�l l l  = 00 for z E a (A) , (2 .2 )  

where a (A) i s  the spectrum (set of eigenvalues) of A, so that in partic­
ular , the spectrum is contained in the E-pseudospectrum for every E > o. 
In words, the E-pseudospectrum is the open subset of the complex plane 
bounded by the E�l level curve of the norm of the resolvent. 2 

It is perhaps not obvious at first whether the idea of pseudospectra 
serves much purpose . Is not I I (z - A) � l li large precisely when z is close to 
an eigenvalue of A? For a normal matrix, when I I · I I = I I · 1 1 2 '  as we shall 
see in a moment , this intuition is correct (see Figure 2 . 1 ) .  The importance 
of pseudospectra arises for matrices that are far from normal, for which 
I I (z - A) � l l l  may be large even when z is far from the spectrum, or more 
generally for matrices satisfying the conditions ( 1 .6) or ( 1 . 7) discussed in 
the last section (Figures 2 . 1  and 2 .2 ) . 

Our second definition of pseudospectra is based on the connection be­
tween the resolvent norm and eigenvalue perturbation theory [448] . 

1 In this book, reversing the pattern of our earlier papers on this subject , we define 
pseudospectra by strict rather than weak inequalities. This choice proves to be more 
convenient for infinite-dimensional operators , as has been pointed out by various authors , 
such as Davies [1 79] , and emphasized particularly strongly by Chaitin-Chatelin and 
Harrabi [ 134] . 

2Thus , unlike the spectrum, the pseudospectra depend on the norm. At first sight 
this lack of norm-invariance may seem a defect in the idea of pseudospectra, and it has 
certainly contributed to the fact that the development of a theory of nonnormality has 
lagged far behind the development of standard spectral theory. (Pseudospectra are an 
idea of analysis; eigenvalues belong to algebra. ) Yet what one really needs to know 
about an applied problem is usually norm-dependent. For example , many nonnormal 
operators can be made normal by a transformation to an exponentially weighted inner 
product and norm, but such a transformation will generally distort physical notions 
such as energy beyond recognition. We shall see examples in almost every section of this 
book. 
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@) @) @) 
(a) normal (b) nonnormal 

Figure 2 . 1 :  The geometry of pseudospectra: schematic view. In each plot , the 
contours represent the boundary of (To (A) for two values of E. 

Figure 2 . 2 :  The resolvent norm as a function of z E ([; for the matrix of Fig­
ure 2 . 1 (b) . The contours here-level sets of I I (z - A) - 1 11 2-match those shown 
in Figure 2 . 1 (b) . The spikes occur at eigenvalues of A; in principle they extend 
to infinity. 

Second definition of pseudospectra 

O'E (A) is the set of z E <C such that 

z E O'(A + E) 

for some E E <cN x N with I I EII < c . 

(2 .3 )  

In words, the c-pseudospectrum is the set of numbers that are eigenvalues 
of some perturbed matrix A + E with IIEII < c .  
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From either of these definitions , it follows that the pseudospectra asso­
ciated with various E are nested sets , 

(2 .4) 

and that the intersection of all the pseudospectra is the spectrum, 

n as(A) = a(A) . (2 .5 )  
s>o 

Figure 2 .3 illustrates the equivalence of (2 . 1 )  and (2 .6) for a highly non­
normal 12 x 12 matrix arising in the field of spectral methods for partial 
differential equations [74 1 ,  782] ; see §30. Contours of constant resolvent 
norm are plotted on the left ,  and eigenvalues of randomly perturbed matri­
ces on the right . Evidently (z - A)-l has norm of order 105 or larger even 
when the distance from z to the spectrum is of order 1 .  Equivalently, the 
eigenvalues of A are highly sensitive to perturbations . This example also 
illustrates that there may be more geometric structure to a matrix or oper­
ator in the complex plane than is revealed by the spectrum alone. Here , a 
conspicuous geometric feature is the group of almost exactly straight sec­
tions of pseudospectral boundaries near the origin of the complex plane. 
This feature reflects the construction of this matrix as an approximation 
to a certain differential operator (see §§5 and 30) . 

0.1 0.1 

o o 

-0.1 -0.1 
-0.2 -0.1 o -0.2 -0.1 o 

Figure 2 .3 :  Pseudospectra of a 12  x 1 2  Legendre spectral differentiation matrix. 
The left plot shows the eigenvalues (solid dots) and the boundaries of the 2-
norm c:-pseudospectra for c: = 10-3 , 10-4 , . . .  , 10-7 (from outer to inner) . The 
right side shows a superposition of the eigenvalues of 100 randomly perturbed 
matrices A + E, where each E is a matrix with independent normally distributed 
complex entries of mean 0 scaled so that I IEI I = 10-3 . If all possible perturbations 
with I IEI I  < 10-3 were considered, the dots would exactly fill the region bounded 
by the outermost curve on the left . 
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Here is a third characterization of the c-pseudospectrum: 

Third definition of pseudospectra 

ac(A) is the set of z E ([: such that 

I I(z - A)vll < c 

for some v E ([:N with I lvll = 1 .  

(2 .6 )  

The number z in (2 .6 )  (or equivalently in any of our definitions) is  an c­
pseudoeigenvalue of A, and v is a corresponding c-pseudoeigenvector. (Syn­
onymous terms include pseudoeigenfunction, pseudoeigenmode, and pseu­
domode. ) In words, the c -pseudospectrum is the set of c-pseudoeigenvalues . 

We begin the substance of this book by establishing the equivalence of 
these three definitions. 

Equivalence of the definitions of pseudospectra 

Theorem 2 . 1  For any matrix A E ([:NXN, the three definitions above 
are equivalent. 

Proof. For z E a(A) the equivalence is trivial , so assume z rj. a(A) , 
implying the existence of (z - A) -I . To prove (2 .3)=*(2 .6) , suppose that 
(A + E)v = zv for some E E ([:NxN with I I E I I  < c and some nonzero 
v E ([:N, which we may take to be normalized, I lvll = 1. Then I I (z - A)vll = 
I I Evl1 < c, as required. To prove (2 .6)=*(2 . 1 ) ,  suppose (z - A)v = su for 
some v, u E ([:N with I lvll = I lull = 1 and s < c. Then (z - A) -IU = 8-IV, 
so I I (z  - A)-II I?: 8-1 > Cl . Finally, to prove (2 . 1 )=*(2.3) , suppose 
I I ( z - A) -111 > ci. Then (z - A) -Iu = S-lv and consequently zv- Av = 
su for some v, u E ([:N with I lvll = I lull = 1 and 8 < c. To establish (2 .3 ) , 
it is enough to show that there exists a matrix E E ([:NxN with I I EII = 8 
and Ev = su, for then v will be an eigenvector of A + E with eigenvalue 
z. In fact, E can be taken to be a rank- 1 matrix of the form E = suw* for 
some w E ([:N with w*v = 1 .  If I I . I I  is the 2-norm, this is evident simply 
by taking w = v. In the case of an arbitrary norm I I  . I I , the existence 
of a vector w satisfying the required conditions can be interpreted as the 
existence of a linear functional L on ([:N with I I Lvl1 = 1 and I I LII = 1, which 
is guaranteed by the Hahn-Banach theorem. A less highbrow version of 
the same proof can be carried out by the method of dual norms; see [414 ,  
Chap. 5] and [830] . 3  • 

So far we have taken I I  . I I to be an arbitrary norm; when we come to 

3The proof of (2 . 1 ),*(2.3) for arbitrary II· II first appeared in [830] using dual norms, 
and , using the Hahn-Banach theorem, in [796] . 
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operators in §4, this will correspond to a setting of Banach spaces . Now, 
however, let us indicate some of the additional properties that emerge in the 
special case of Hilbert spaces . From now on in this section we shall often 
restrict attention to the case in which ([;N is endowed with the standard 
inner product 

(u, v) = v*u 
and I I  . I I  i s  the corresponding 2-norm, 

I l v l l  = I I v l 12 = Vv*v. 

(2 .7) 

(2 .8) 

With this choice of inner product and norm, the Hermitian conjugate (con­
jugate transpose) of a matrix is the same as its adjoint ; we use the symbol 
A*. Applications where more general weighted inner products and norms 
are desired can be handled within the framework of the 2-norm by introduc­
ing a similarity transformation A 1-+ WAW- l , where W is nonsingular ; 
see § §45 and 5 1 .  

If I I  . I I  = I I  . 1 1 2 ' the norm of  a matrix i s  its largest singular value and 
the norm of the inverse is the inverse of the smallest singular value.4 In 
particular , 

(2 .9 )  

where Smin (Z - A) denotes the smallest singular value of z - A, suggesting 
a fourth definition. 

Fourth definition of pseudospectra (2-norm) 

For 1 1 · 1 1 = 1 1· 1 1 2, a,, (A) is the set of Z E ([; such that 

Smin (Z - A) < E. (2 . 10) 

From (2.9) it is clear that (2 . 10) is equivalent to (2 . 1 )  and therefore also to 
our other characterizations of pseudospectra. In the proof of Theorem 2 . 1 ,  
the rank-1 matrix E = BUV* can now be  understood as follows: s,  u , and v 
are the smallest singular value and associated left and right singular vectors 
of Z - A. 

We come now to the matter of nonnormality. First , note that if V is a 
unitary matrix (i .e . ,  V* = V-I ), then 

(z - VAV* ) - l = [V(z - A)V*rl = V (z - A) - IV* ,  (2 . 1 1 )  

and therefore 

Vz E ([;. 

4We assume the reader is familiar with the singular value decomposition (SVD); 
see [415] or [776] . 
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Thus the resolvent norm is invariant with respect to unitary similarity 
transformations , which implies that the same is true of the pseudospectra, 
still assuming I I . I I = I I . 11 2 : 

'iE � o .  (2 . 12) 

A normal matrix is a matrix with the special property that there exists a 
unitary similarity transformation that makes it diagonal . 

Normal matrix 

A matrix A E <cN x N is normal 5 if it has a complete set of orthogonal 
eigenvectors, that is , if it is unitarily diagonalizable : 

A = UAU* . (2 . 13) 

(Here U is unitary and A is a diagonal matrix of eigenvalues . )  For a normal 
matrix, the E-pseudospectrum is just the union of the open E-balls about 
the points of the spectrum, as suggested in Figure 2 . 1 .  In other words, 
the eigenvalues all have condition number exactly 1 with respect to matrix 
perturbations (see §52) ; equivalently, the resolvent norm satisfies 

- 1 1 
I I  (z - A) 1 1 2 = 

dist (z ,  O' (A) ) , (2 . 14) 

where dist (z , 0' (A) ) denotes the usual distance of a point to a set in the 
complex plane. The next theorem expresses these facts with the aid of the 
following notation for an open E-ball : 

�c: = {z E <C :  I z I < E} . ( 2 . 15 )  

In this theorem a sum of sets has the usual meaning: 

which is equal to {z : dist (z ,  O'(A) ) < E} . 

5 An equivalent characterization is that A is normal if it commutes with its adjoint : 
AA* = A*A. This may seem a long way from (2 . 13 ) ,  but the link is that both are 
equivalent to a third statement : A and A* have the same eigenvectors; that is, they are 
simultaneously diagonalizable. For a catalogue of equivalent conditions for normality, 
see [242, 351 ] . 
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Pseudospectra of a normal matrix 

Theorem 2 .2  For any A E <cNXN, 

and if A is normal and I I  . I I  = I I · 1 12, then 

I:jE > 0 ,  

I:jE > O .  

19 

(2 . 16) 

(2 . 17) 

Conversely, if 1 1 · 1 1 = 1 1 · 1 12, then ( 2 . 17) implies that A is normal. 

Proof. If z is an eigenvalue of A, then z + 6 is an eigenvalue of A + 6 for 
any 6 E <C; since 1 1 61 1 1  = 1 6 1 , this establishes (2 . 16) . For (2 . 17) we note that 
if A is normal , it can be assumed without loss of generality to be diagonal 
without any effect on norms if I I  . II = II . 1 12, with diagonal elements ajj 
equal to the eigenvalues >"j. In this case the resolvent is also diagonal, which 
implies that it satisfies (2 . 14) , and as noted above, ( 2 . 1 )  implies that this 
is equivalent to (2 . 17) . Finally, for the converse , here is a sketch of a proof 
that can be made precise with the aid of results from §52 . Equation (2 . 1 7) 
implies that each eigenvalue of A has condition number 1 .  By a standard 
formula for eigenvalue condition numbers (see §52) , if 1 1 · 1 1 = 1 1 · 1 12, it follows 
that each right eigenvector of A is also a left eigenvector , i .e . , that A and 
A* are simultaneously diagonalizable. Therefore A is normal. _ 

Now suppose A is diagonalizable but not necessarily normal, and let 
V E <cNxN be a matrix of eigenvectors of A as in ( 1 .2 )  and ( 1 .3 ) . With 
I I . II = I I . 1 12, the condition number of this basis of eigenvectors , mentioned 
already in ( 1 . 7) ,  is 

(2 . 18) 

where smax (V) and Smin (V) are the largest and smallest singular values of 
V.6 In general, K,(V) may be any number in the range 1 :::; K,(V) < 00,7 
and the value K,(V) = 1 is possible if and only if A is normal . 

The condition number of V provides an upper bound for the condition 
numbers of the individual eigenvalues of A. This fact is known as the 
Bauer-Fike theorem. 

6Since V is not unique, K(V) is not uniquely defined for a given A. If the eigenvalues 
of A are distinct , however, then K(V) becomes unique if the eigenvectors are normalized 
by I l vj l l  = 1. Though this choice is not necessarily the one that minimizes K(V) , it 

exceeds the optimal value by at most a factor of ..fN [788] . For more details on scalar 
measures of nonnormality, see §48. 

7We shall also write K(V) = 00 as a convenient shorthand in the case of nondiago­
nalizable A.  
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Bauer-Fike theorem 

Theorem 2 .3  Suppose A E <cNxN is diagonalizab le, A = Y A y- l . 
Then for each E > 0, with I I  . I I  = I I  . 1 1 2 , 

(2 . 19 )  

Proof (cf. [32 , 729 , 827] ) .  The first inclusion was established in (2 . 16 ) . For 
the second we calculate 

which implies 

1 ( 1 I\; (Y) 
I I (z - A) - 1 1 2 :::; I\; Y) I I (z - A) - 1 1 2 = dist (z , o-(A) )

, 

and the definition (2 . 1 )  completes the proof. _ 
Theorem 2 .3 holds for a more general class of norms than we have stated 

here, and in their famous paper, Bauer and Fike [32] prove stronger results 
along similar lines ; see [729, p. 177] . 

The following theorem collects some basic properties of pseudospectra, 
whose proofs make good exercises in the basic definitions of this section. 

Properties of pseudospectra 

Theorem 2.4 Let A E <cNxN and E > 0 be  arbitrary. 

(i) CT", (A) is nonempty, open, and bounded, with at most N connected 
components, each containing one or more eigenvalues of A.  

(ii) If I I · I I  = I I  . 11 2 , then CTE (A* )  = CTE (A) . 

(iii) If 1 1 · 1 1  = I I · 1 1 2 , then CT", (A1 EEl A2 ) = CT", (Ad U CTE (A2 ) .  

(iv) For any c E <C ,  CTE (A + c) = c + CTE (A) . 

(v) For any nonzero c E <C,  CTl c [ c (cA) = CCTE (A) . 

In part (iii) , Al 8 A2 denotes the direct sum of two square matrices Al 
and A2 , whose dimensions need not be equal ; in other words it is the block 
diagonal matrix ( Al Al EEl A2 = 

0 

To prove the assertion about connected components in (i) , one can use the 
fact that log I I (z - A) -l l l  is a subharmonic function and hence satisfies the 



2 ·  PSEUDOSPECTRA OF MATRICES 21  

maximum principle except at the eigenvalues of A (Theorem 4 .2 ) . Part (v) 
is also worth a comment , for although elementary, it is surprising at first : 
the E-pseudospectrum of 2A is not twice the E-pseudospectrum of A,  but 
twice the Ej2-pseudospectrum of A. Together parts (iv) and (v) describe 
the pseudospectra of linear functions of A; Lui has established a mapping 
theorem for more general functions [521] . 

Where in the complex plane does a matrix A ' live ' ? If A is normal , 
then the spectrum 0'(  A) is a satisfactory answer to that question for almost 
every purpose . The family of pseudospectra {aAA) } is an attempt to pro­
vide a satisfactory answer in the case where A is not normal, perhaps far 
from normal. It is not a perfect answer; pseudospectra lack the simplicity 
of spectra, yet despite their complexity, they do not provide exact answers 
to the questions one would like to ask about the behavior of A (see §47) . In 
this book we shall see that they do provide approximate answers , however, 
in the form of bounds that are often reasonably tight . (An overview of 
such bounds is given in § 14 . )  Through the equivalence of definitions (2 . 1 )  
and (2 .3) they provide a reminder that eigenvalues that are sensitive to 
perturbations may be of limited significance in determining the behavior 
of A. Finally, they provide an appealing geometric interpretation of non­
normality. The fact is, nonnormal matrices and operators do not live in 
the complex plane, but one can get a good start in predicting their behav­
ior if, in addition to the usual calculation of eigenvalues , one plots a few 
contour lines of the resolvent norm or the eigenvalues of a few randomly 
perturbed matrices . Beautiful plots can be obtained in seconds for matrices 
of dimensions in the hundreds with the MATLAB system EigTool [838] . 

Following the German Eigenwert and Eigenvektor, we find it conve­
nient in informal work to use the abbreviations ew and ev for eigenvalue 
and eigenvector , 'ljJew and 'ljJev for pseudoeigenvalue and pseudoeigenvector. 
Those who find it worthy of remark that the word 'eigenvalue' is a blend 
of two languages may take pleasure in noting that 'pseudoeigenvalue' , for 
better or worse, is a combination of three . 
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Consider the tridiagonal Toeplitz matrix 

A =  

o 
1 
'I 

1 

o 1 

1 'I o 
1 
'I 

1 

o 

E <eN x N . (3 . 1 ) 

This matrix is nonsymmetric, but it can be symmetrized by the diagonal 
similarity transformation 

DAD- I = S 

with D = diag(2 , 4, . . .  , 2N ) and 

S =  

o 
1 2 

1 
2 
o 1 2 

1 2 o 
1 2 

1 2 
o 

(3 .2 )  

(3 .3 )  

It follows that the eigenvalues of A are the same as those of S ,  namely 

br 
Ak (A) = AdS) = cos 

N + 1 ' 
1 ::::; k ::::; N. (3 .4) 

Thus the spectrum of A consists of N distinct real numbers in the interval 
( - 1 , 1 ) . 

The pseudospectra of A, however, lie far from the real axis . For N = 64, 
Figure 3 . 1  plots the boundaries of uE (A) for E = 10-2 , 10-3 , . . .  , 10-8 with 
I I . I I = I I . Ib revealing wide oval-shaped regions in the complex plane. 
In fact , the E-pseudospectrum of A is approximately equal to the region 
bounded by the ellipse that is the image of the circle I z l  = E I /N under the 
mapping 

J(z)  = z- I + j-z ,  (3 .5) 

which is known as the symbol of A. In §7 we make this statement precise 
by stating the following results, among others . For each z inside the ellipse 
J (1I') , where 1I' = {z E <e : I z l  = I } ,  the resolvent norm I I (z - A) - I I I  grows 
exponentially as N -> 00 . On the other hand, for each z outside J (1I') , 
I I (z  - A) - I I I is bounded uniformly with respect to N. 
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o 

_1 L-----�------------�----------�----� 
-1 o 

Figure 3 . 1 :  Boundaries of pseudo spectra O"c (A) , E: = 10-2 , 10-3 , . . .  , 10-8 , for the 
matrix (3 . 1 )  of dimension N = 64. The eigenvalues are marked by solid dots. 

o 

-1 L------_1
L-------------OL-------------�----� 

Figure 3 . 2 :  Superposition of eigenvalues of 100 matrices A + E, where A is the 
tridiagonal Toeplitz matrix (3 . 1 )  of dimension N = 64 and each E is a random 
matrix with I IE I I  = 10-3 . The eigenvalues of A are real (larger dots) , but the 
perturbation introduced by E moves them far into the complex plane, close to 
the ellipse defined by (3 .5 )  with J z J  = ( . 001) 1 /64 (solid curve) .  The dashed ellipse 
corresponds to N -> 00 and J z J  = 1 .  

Figure 3 .2  illustrates the pseudospectra of A in another way by pre­
senting eigenvalues of randomly perturbed matrices . The figure shows Hie 
eigenvalues (3 .4) in the complex plane as solid dots. Superimposed as 
smaller dots on the same plot are 6400 1O-3-pseudoeigenvalues : the eigen­
values of 100 matrices A + E, where each E is a random matrix with 
I I E I I  = 10-3 .  The connection with ellipses is again obvious . 
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These pictures change quantitatively but not qualitatively i f  N i s  varied . 
To illustrate this, Figure 3 .3  shows nine sets of dots corresponding to the 
same experiment as in Figure 3 .2 ,  but for N = 16 ,  32, 64 and I I EI I  = 10-2 , 
10-3 , 10-4 . Each tile of this figure depicts a superposition of eigenvalues 
of 640/N randomly perturbed matrices A + E-640 dots altogether . The 
sensitivity of the eigenvalues becomes more pronounced as N increases, but 
qualitatively, all nine pictures are much the same. 

To appreciate how such small perturbations to A can move eigenvalues 
so dramatically, consider a modification to the (N ,  1 )  entry of A: 

1 

o 

1 
4 

Now apply the similarity transformation that symmetrized A to obtain 

N = 16 N =  32 

L
<'�#��'�':'�>'J�' 

: ; ' ,  . . . . . . .  ' 
. � . " . 

• 

• .... ,.....;. .... ,...,.J�� • •  

Figure 3 .3 :  Nine plots as in Figure 3 .2  corresponding to N = 16 , 32.  64 and 
I IE I I  = 10-2 , 10-3 , 10-4 . Each plot shows eigenvalues of 640/N matrices A + E, 
i .e . ,  640 dots . The ellipse is the image of the unit circle under the symbol J (z) = 
Z- l + �z .  
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1 01 5  
/ 

I IAk l l ,  N = 64 

1 01 0  

I IAk l l , N = 32 
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1 00 I I Sk l l , N = 64 

I I Sk l l , N = 32 

0 200 400 
k 

Figure 3 .4 :  Norms of powers I I Ak l l and I I Sk l 1  for the matrices A and S of (3 . 1 )  
and (3 .3) , dimensions N = 32 and 64 . Since A and S are similar for each N, the 
curves approach zero as k --> 00 with equal asymptotic slopes determined by the 
spectral radius . For finite k ,  however, I IAk l 1  and I I S k l 1  are very different , and in 
particular , the powers I IAk l 1  are not bounded uniformly with respect to  N. Note 
the logarithmic scale . Compare Figures 19 . 1  and 20.5 .  

Just as A and S have the same eigenvalues , so the spectrum of A + E 
matches that of D (A + E)D- 1 . Thus the eigenvalues of A + E correspond 
to those of an exponentially large perturbation of a symmetric matrix. In 
this light , it might seem remarkable that the eigenvalues of A move so 
little ! 

The theme of this book is that pseudospectra may reveal more than 
spectra about certain aspects of the behavior of matrices and operators . 
As an illustration of this principle for the present example , suppose we 
want to predict the norms of the powers Ak for various values of k. The 
traditional approach to this problem is to consider eigenvalues . By (3 .4) , 
the spectral radii of A and S are equal, 

7r 
p(A) = p (S ) = cos -N ' 

+ 1  
(3 .6) 

and since this quantity is less than 1 ,  both S and A must be power-bounded: 

Vk ;:::: 0, (3 .7) 

with I I Sk l l --+ 0 and I I Ak l 1 --+ 0 as k --+ = . Figure 3 .4 ,  however, shows that 
although these statements are true, they are only a part of the truth. In 
actuality, I IAk l 1 and I I Sk l 1  bear little resemblance to one another. Whereas 
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the powers Sk decrease smoothly, so that (3 .7) holds with Cs = 1, the 
powers Ak grow exponentially for k < N and achieve huge norms. Ob­
viously, although the matrices A are power-bounded for each dimension 
N, they are not uniformly power-bounded. Even for fixed N, if I I Ak l 1 be­
comes as great as 101 5  for certain values of k , it is doubtful whether the 
power-boundedness of A has much practical meaning. 

On the other hand, Figure 3 .4 reveals that the rate of growth of I I Ak l 1 
for k < N is very close to ( 1 .25) k .  This number 1 . 25 is the largest absolute 
value of the points on the dashed ellipse in Figure 3 .2 . Evidently in this 
example the slope of the I I Ak l 1 curve for modest values of k can be accu­
rately predicted by considering a pseudospectral radius. We give details 
about such predictions in § § 14 and 16 ; in particular , see Theorem 16 .5 . 
Figure 14 .5 shows a similar example involving a more complicated Toeplitz 
matrix taken from [80] . 
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All the ideas of the last two sections can be generalized to linear operators 
acting in infinite-dimensional spaces. The mathematics of this generaliza­
tion is beautiful, but inevitably more technical than in the matrix case . In 
this section we set down the fundamentals of the theory of pseudospectra 
for linear operators in Banach space . Fortunately, the technical details do 
not matter for many applications, and in much of this book we are able to 
use a language closer to linear algebra than functional analysis . 

Any researcher in the field of nonnormal operators will be aware of 
Kato's book Perturbation Theory for Linear Operators, whose second edi­
tion was published in 1976 [448] . This magnificent treatise covers almost 
all the aspects of functional analysis and spectral theory that we need here, 
and does so in a lucid style supported by hundreds of examples . For the 
present section, where many results are stated quickly, it may be helpful 
to the reader to have references to appropriate locations in Kato 's book. 
In the next seven pages , accordingly, each page number listed in double 
square brackets is to be interpreted as a pointer to [448] , where a proof 
or additional insight may be found. Other major general references in­
clude [221 ,  323 , 395, 606, 630] . 

Let X be a complex Banach space, that is, a complete normed vector 
space over the complex field <C, with norm I I  . I I . We shall consider linear 
operators mapping X into itself. Such an operator A has a domain denoted 
by TI (A) <:;;; X, which may or may not be all of X. We denote by 13 (X) 
the set of  bounded operators on X ;  for A E 13 (X) ,  we assume without loss 
of generality TI (A) = X. We denote by e(X) the set of closed operators 
on X. (An operator A is closed provided that if {Uk } is a sequence in 
TI(A) converging to a limit U E X and if {AUk } converges to a limit 
v E X, then U E TI(A) and Au = v . ) An unbounded closed operator will 
necessarily have TI (A) =I- X [p o  166 ] ,  although many such operators are 
densely defined, meaning that the closure of TI (A) is X. Throughout this 
book we deal only with closed operators ; bounded operators and matrices 
are special cases. 

In the next section we consider an example in which A is a first deriva­
tive operator on an interval [O , d] . The Banach space is L2 [O, d] , and TI (A) 
is the set of absolutely continuous functions on [0 , d] that satisfy the bound­
ary condition u(d) = O. (An absolutely continuous function is one that is 
the indefinite integral of a function that is locally Lebesgue measurable . )  
In this case TI(A) i s  densely defined, because any function i n  L2 [O , d ]  can 
be approximated in the L2-norm by absolutely continuous functions . The 
same would be true in any space LP [O , d] with 1 ::::: p < =. In U"' [O , d] , 
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however, it is not possible to approximate a step function, say, by abso­
lutely continuous functions , and so this operator is not densely defined in 
LX [O , d] [p o 145 ] .  

For A E e(X) and E E 'B (X) , A + E is also in e(X) , with domain 
'D(A + E) = 'D(A) . A special case is the situation where E is a multiple of 
the identity. Thus perturbations of closed operators by bounded operators 
or shifts introduce no technical difficulties [p o  164 ] .  

Given A E e (X ) ,  a bounded inverse is an operator A-I E 'B (X) such 
that AA-I is the identity on X and A-IA is the identity on 'D(A) . This is 
the only kind of inverse we shall be concerned with, and when an expression 
like A-I or (z - A) - 1  appears in this book, it should always be interpreted 
as a bounded inverse , defined on all of X.  

The following theorem i s  the basis o f  all the developments o f  this section. 
It is the 'essence of the matter ' of the theory of pseudospectra. 

Invertibility and perturbation of closed operators 

Theorem 4. 1 Suppose A E e(X) has a bounded inverse A-I . Then 
for any E E 'B (X) with I I E I I  < li l i A- I I I , A + E has a bounded inverse 
(A + E) - I  satisfying 

( 4 . 1 ) 

Conversely, for any f-L > li l i A- I I I , there exists E E 'B (X) with I I E I I  < f-L 
such that (A + E)u = 0 for some nonzero u E X . 

Proof. Kato calls the first assertion the 'stability of bounded invertibility' 
[p o  196 ] . Given E E 'B (X) with I I E I I  ::; li l i A- I I I , we wish to establish the 
invertibility of A + E = (I + EA- I )A . Since I l EA- I I I  ::; I IE I I I I A- I I I  < 1 ,  
the Neumann series 2: %':0 ( _EA- I ) k converges and equals (I + EA- I ) - 1 . 

Summing the norms of the terms of the Neumann series leads to the bound 
I I (I +EA-I ) - I I I  ::; 1/ ( 1 - I I E I I I I A- I I I ) .  It follows that (A+E) - I = A- I ( l + 
EA- I ) - I ,  which implies (4 . 1 ) .  

For the converse, following the same line of reasoning as i n  the proof of 
Theorem 2 . 1 ,  we can argue as follows. By the definition of I I A- I I I , there 
exists u E X with I l u l l  = 1 such that v = Au satisfies I l v l l  < f-L. Now take 
E E 'B (X) to be an operator that maps u to -v and has norm I l v l l ; the 
existence of such an operator is ensured by the Hahn-Banach theorem. _ 

The theory of resolvents, spectra, and pseudospectra is derived by ap­
plying Theorem 4 . 1 to shifted operators z - A, where z is a complex con­
stant . Given A E e(X) and z E <C ,  the resolvent of A at z is the operator 
(z - A) - 1 E '13 (X) , if this exists. The Tesolvent set Q( A) is the set of num­
bers z E <C for which (z - A) - I exists . Theorem 4. 1 implies that Q(A) is 
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open. In fact , (Z - A) -I is an analytic function of z E g(A) [po 174] , which 
implies that I I (z - A) -l l l  i s  an unbounded continuous subharmonic function 
of z E g(A) and that it satisfies the maximum principle for z E g(A) [395 , 
Thm. 3 . 13 . 1] . 

The spectrum of A E e(X) is the complement of the resolvent set in the 
complex plane: I7(A) = CC\g(A) . Since g(A) is open, I7 (A) is closed. For 
A E 'B(X) , i7(A) is bounded and nonempty. For A E e(X ) ,  I7 (A) may be 
unbounded or empty. For example , the operator A : u f---7 1).' in L2 [O, 1 ]  has 
an empty spectrum if n (A) is the set of absolutely continuous functions on 
[0, 1 ] satisfying u ( l )  = O. Without this boundary condition, the spectrum 
is the entire complex plane [p o  1 74] . 

If Au = AU for some nonzero u E X and A E e(X) , then u and A are 
an eigenvector and eigenvalue of A. The spectrum I7(A) contains all the 
eigenvalues of A, but it may be bigger than this. For example, let A be 
the left shift operator on £2 , defined by 

A(UI , U2 , . . .  ) = (U2 , U3 , " ' ) ' 

For any z in the open unit disk, i . e . ,  with I z l  < 1 ,  the vector defined by 
Uj = zj is an eigenvector with eigenvalue z ,  and the spectrum of A is the 
closed unit disk . By contrast , the right shift operator in p2 , defined by 

A(Ul , U2 , . . .  ) = (0 , UI , U2 " " ) ' 
also has spectrum equal to the closed unit disk, but it has no eigenvalues 
[p . 1 76 ] .  

For another example , consider the operator A : U f---7 u' in L2 [0 , 1] 
with n (A) taken as the set of absolutely continuous functions on [0, 1 ] 
with u(O) = u( l )  = O .  In this case with 'too many boundary conditions ' , 
although z - A has an inverse , it is not densely defined. The reason is 
that as U ranges over n (A) , the set of vectors v = (z - A)u ranges only 
over a subset of functions in X satisfying the constraint fal e-ZXv(x) = O .  
To see this , given u and z , define W E n(A) by w (x ) = -e-ZXu(x) . Then 
w' = e- ZX (zu - u' ) = e-zxv , and the integral of this function from 0 to 1 
must be w ( l )  - w (O) = O. We conclude that although A has no eigenvalues , 
its spectrum is all of CC [p o  174] . 

Theorem 4. 1 implies that for any A E e(X) and z E g(A) , we have 
I I (z - A) - I I I :2': l/dist (z , I7(A) ) .  (Proof: z E I7(A + E) if E is the identity 
times the constant eiedist (Z , I7 (A) )I  for some e E [0 , 27r) . )  Thus I I (z ­
A) - I I I approaches 00 as z approaches the spectrum. We now introduce a 
notational convention used throughout this book: 

Convention: If z E i7 (A) , we write I I (z - A)- I I I  = 00 .  

Thus for z E I7(A) , we shall use the notation I I (z - A) - I I I even though 
(z - A)- I itself does not exist . If A is a matrix on a finite-dimensional 
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space, this usage is very natural since any z E O'(A) must be an eigenvalue, 
so (z - A) -1 is indeed ' infinite ' .  For operators , it is more artificial , since 
there may be points in the spectrum that are not eigenvalues. 

This convention gives us the ability to derive a wide range of results 
about resolvents and perturbations from a single fact : I I (z  - A) - I I I  i s  a 
continuous function from the entire complex plane to (0, 00] .  The following 
results are implied by Theorem 4 . 1  and the other observations above. 

Norm of the resolvent 

Theorem 4.2 Given A E e (X ) ,  and with I I ( z  - A) - I I I  defined a s  00 
for z E O'(A) , the norm of resolvent I I (z  - A) - I I I  is a function from 
z E CC to (0 , 00] with the following properties. It is continuous and 
unbounded and takes the value 00 precisely on O' (A) . For z tJ. O'(A) 
it is  subharmonic and satisfies the maximum principle as well as the 
bound 

1 
I I  (z - A)  -111 � 

dist (z ,  O'(A))  
. (4 .2) 

If z tJ. O'(A) , then z tJ. O'(A + E) for any E E 'B (X) that satisfies 
I IE I I  ::; l/ l l (z  - A) - I I I ;  conversely, for any J.1 > I I ( z  - A) - I I I - I , there 
exists E E 'B (X)  with l i E  I I  < J.1 such that (A + E)u = zu for some 
nonzero u E X . 

According to Theorem 4 .2 ,  every z that is not in O'(A) is also not in 
dA+E) for sufficiently small l lE I I . Thus , loosely speaking, an infinitesimal 
perturbation of A can enlarge O'(A) only infinitesimally. This principle is 
known as 'upper-semicontinuity of the spectrum' [p o  208 ] .  By contrast , the 
spectrum may be lower-semidiscontinuous in the sense that an infinitesimal 
perturbation can shrink O'(A) finitely. For example, let A be the doubly 
infinite matrix acting in £2 (;;Z) with aj ,HI = 1 for each j and other entries 
equal to zero, except that aO , I is equal to zero too. This operator is a 
kind of ' infinite Jordan block' , and its spectrum is the closed unit disk. 
Now suppose aO , I is changed to any nonzero number, however small . The 
spectrum shrinks to the unit circle [po 210] . 

In §2 we defined the E-pseudospectrum of a matrix A in three equivalent 
ways . The same three definitions apply for linear operators in Banach 
space. Statements of aspects of this equivalence in various contexts can be 
found in a number of publications, including [78 , 93, 134, 298 , 375 , 575, 
773 , 796 ,  835] . The closest to the formulation we give here appears in the 
unpublished technical report of Chaitin-Chatelin and Harrabi [134] . 

As always , we shall follow the convention that I I (z  - A) - l l l  = 00 for 
z E O'(A) . 
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Three equivalent definitions of pseudospectra 

Let A E e(X) and c > 0 be arbitrary. The c-pseudospectrum aAA) of 
A is the set of z E <C defined equivalently by any of the conditions 

(4 .3) 

z E O'(A + E) for some E E 'B (X) with I I E I I  < c, (4 .4) 

z E O'(A) or I I (z  - A)u ll < c for some u E 2J(A) with I lu ll = 1 . (4 .5 )  

If I I ( z  - A)u ll < c as in (4 .5) , then z i s  an c-pseudoeigenvalue of A 
and u is a corresponding c-pseudoeigenvector (or pseudoeigenfunction 
or pseudomode ) .  

From the material above we obtain the following collection of facts 
about pseudospectra in Banach space . Figure 4 . 1  gives a schematic view. 

Properties of pseudospectra 

Theorem 4.3 Given A E e (X) , the pseudospectra {O'c (A) }c>o have 
the following properties. They can be defined equivalently by any of 
the conditions (4 .3) -(4 .5) . Each O'c (A) is a nonempty open subset of 
<C, and any bounded connected component of O'c (A) has a nonempty 
intersection with 0' (A) . The pseudospectra are strictly nested supersets 
of the spectrum: nc>o O'c (A) = O'(A) , and conversely, for any 6 > 0, 
O'E+8 (A) :2 O'E (A) + �8 ,  where �8 is  the open disk of radius 6 . 

Proof. The equivalence of the three definitions follows from Theorem 4 .2 .  
The condition SUPZEQ(A) I I ( z - A) -1 1 1  = CXJ implies that O'E (A) i s  nonempty, 
and the maximum principle for I I ( z  - A) -I I I implies that any bounded 
component of O'E (A) intersects the spectrum. (Thus if O' (A) is empty, 
0' E (A) is unbounded for all c > 0 . )  The statement about n O'  E (A) follows 
from the upper-semicontinuity of the spectrum. _ 

We have developed the fundamental properties of pseudospectra in Ba­
nach spaces without any need to use adjoint operators . In applications , 
however, adjoints are of considerable interest , and we now record some of 
the main facts . 

Given a Banach space X ,  the adjoint space or dual space of X is the set 
X* of all bounded conjugate-linear functionals on X ,  i .e . , linear functions 
f : X --> <C with the property f (o:u) = af(u) for any u E X and 0: E C. 
Like X ,  X* i s  a Banach space [p o  134 ] .  We usually write f(u)  in the inner 
product notation (1, u) . For any u E X,  the norm of u satisfies the identity 
I lu l l = SUPfEX* , l l f l l = 1  1 (1, u) l , and there exists an f E X* for which this 
supremum is attained [p o  135] .  

For example, for 1 :::; p < CXJ and with q defined by p- I  + q - I  = 1 ,  the 
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Figure 4 . 1 :  Schematic view of the geometry of pseudospectra for an operator 
in Banach space . The black region and the thick arc indicate components of 
the spectrum that are not just points. For z in the interior of an open region 
of spectrum, though z is in the E-pseudospectrum for any E > 0, eigenvectors 
and E-pseudoeigenvectors may or may not exist . This sketch corresponds to a 
bounded operator. For an unbounded operator , though the spectrum may still 
be bounded, all the pseudospectra will be unbounded . 

adjoint space of £P is (or , more precisely, can be identified with) £q , and 
the adjoint space of LP (E) , where E is a compact subset of <C,  is Lq (E) . 
Thus , for example, any linear functional on £ 1 can be interpreted as an 
inner product with a vector in £ ex; • 

Given A E e(X) , an adjoint operator of A is an operator A* E e(x* )  
with the property that (I, Au) = (A*f, u ) for each f E 'D(A* ) ,  u E 'D(A) . 
Every A has an adjoint , and if A is densely defined, then A* is unique 
(assuming its domain is taken to be as large as possible) and closed [p o  167] . 
The spectrum of A* is the complex conjugate of the spectrum of A [p o  184] . 

For any A E 13 (X) , I I A I I  = I I A* I I  [p o  154] . It can also be shown 
that if A E e(X) has a bounded inverse A -1 , then the same is true of 
A* , with (A* ) - l = (A- 1 ) *  [p o  169 ] ;  it is usual to call this operator A-* . 
Together these facts imply that for any A E e(X) with a bounded inverse , 
I I A- 1 1 1 = I I A-* I I · 

These apparently modest results have substantial consequences for pseu­
dospectra of adjoints of closed operators . 

Pseudospectra of the adjoint 

Theorem 4.4 For any A E e(X) , z E <C, and c > 0, we have 

I I (z - A* ) - l l l  = I I ( z - A) - l l l , O' (N ) = O' (A) , and O'e (A* )  = O'E (A) . 
Moreover, suppose A has an c -pseudoeigenvector u E 'D(A) correspond­

ing to the c -pseudoeigenval71e z .  If z ¢:. O'(A) , then A* has an c -pseudo­
eigenvector f E 'D(A* )  corresponding to the c-psclldoeigenvalue z. 
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In applications involving differential operators, the definition of the ad­
joint requires attention to boundary conditions . For example, consider the 
operator A : U f-+ u" in £2 [0 , 1 ] with 1J (A) equal to the set of functions 
in £2 [0 , 1 ] with an absolutely continuous derivative [p o  148 ] .  The adjoint 
is a second derivative operator with four boundary conditions : 1J (A* ) is 
the set of functions in £2 [0, 1] with an absolutely continuous derivative and 
u(O) = u' (O) = 'u ( l )  = u' ( l )  = 0. 

We must issue a warning about pseudoeigenvectors : The assumption 
z 1. o- (A) at the end of Theorem 4.4 cannot be dispensed with. If z is 
in the c:-pseudospectrum of A but not the spectrum, then A and A* must 
have c:-pseudoeigenvectors for z and z, respectively. For z E o- (A) , however, 
this need not be so; see Theorem 1 1 .3 .  

One of  the important applications of  adjoints i s  to  the definition of  the 
numerical range of an operator A E e(X) . The largest real part of the 
numerical range, known as the numerical abscissa, determines the initial 
growth rate of an evolution process (semigroup) etA . This is a central topic 
in the study of time-dependent dynamical systems , and details are given 
in § § 14  and 17 .  

In this section we have considered operators in a Banach space, not 
the more specialized case of a Hilbert space, i .e . , a Banach space where 
the norm is derived from an inner product . The reason is that many of 
the fundamentals of pseudospectra are the same in both cases . However, 
some results are restricted to Hilbert space. One example is the Gearhart­
Pruss theorem concerning growth bounds for semigroups, discussed in § 19 .  
Another may be the fact that in  Hilbert space, I I (z - A)-I I I  can never 
take a constant finite value on an open set . This theorem, conjectured by 
Bottcher and proved by Daniluk, is reported as Proposition 6 . 1  in [79] and 
has been generalized to £P spaces ( 1  < p < (0 ) [90 , Thm. 5 . 1 ] and to 
Banach spaces of finite dimension [375] , but it is not known if it is valid in 
infinite-dimensional Banach spaces. If it is not , then it follows that there 
exist examples of operators whose pseudospectra 'jump' for particular val­
ues of E .  This concern, discussed in [86] and [ 134] ' is one of the reasons 
we chose to formulate the definitions (4 .3) · - (4.4) in terms of strict inequal­
ities . If pseudospectra can jump, the analogous definitions based on weak 
inequalities would not be equivalent . 

In §2 ,  having defined pseudospectra for general norms, we moved on 
to questions of bases, diagonalizability, condition numbers , and singular 
values . All of these matters have analogues for operators , and some of 
them are taken up in § §51  and 52 . 
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Figure 5 . 1  shows the pseudospectra of a highly nonnormal differential op­
erator, a Schrodinger operator for a harmonic potential acting in £2 (lR) . 
Unlike the usual Schrodinger operator, this one has a potential that is 
complex rather than real. The operator is defined by 

d2u . 2 Au = -
dx2 + I X U ,  X E lR, ( 5 . 1 )  

acting in  £2 (lR) with domain 1>(A) equal to  the set o f  £2 (lR) functions 
with an absolutely continuous derivative . The figure reveals that , like the 
matrix of the last section , this operator deviates strongly from normality, a 
discovery due to E. B. Davies [ 179 ,  180] . In fact , the norm of the resolvent 
grows exponentially as one moves out into the complex plane along any 
ray at angle e from the real axis with 0 < e < 7r /2 .  In § § l l  and 13 we 
shall discuss examples of this kind and their connections with fundamental 
issues of the theory of partial differential equations . 
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Figure 5 . 1 :  Spectrum and c:-pseudospectra of Davies ' complex harmonic oscilla­
tor (5 . 1 ) .  From outside in, the curves correspond to c: = 10- 1 , 10- 2 , . . .  , 10-8 . 
The resolvent norm grows exponentially as z -" 00 along rays in the complex 
plane satisfying 0 < () < 7r /2 .  Consequently, this operator's higher eigenvalues 
would be of limited physical significance in applications . (This figure is based on 
a spectral discretization resulting in a 200 x 200 matrix. )  
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Rather than pursue this relatively complicated example here, we shall 
study a simpler example , already mentioned in the last section, that we 
can explain more easily, l Consider the first derivative operator 

, du 
Au = u = ­

dx 

in the space L2 (O ,  d) , subject to the boundary condition 

u(d ) = O. 

(5 .2 )  

(5 .3) 

To be precise , A is the differentiation operator (5 .2 )  with domain equal to 
the set of absolutely continuous functions u E L2 (0 ,  d) that satisfy (5 .3 )  
(cf. Example III . 2 .7  of [448] ) .  

The spectrum of A is empty: a (A) = 0 .  Intuitively one sees this 
by noting that an eigenfunction would have to be of the form eZX for some 
z E <C, but since no such functions satisfy the boundary condition, there are 
no eigenfunctions . A proof can be obtained by showing that the resolvent 
(z - A) - l exists as a bounded operator for any z E <C; it is given by 

(5 .4) 

This formula can be derived by the method of variation of parameters 
applied to the ordinary differential equation zu - u' = v. It can also 
be interpreted as the integral of v (x) times the Green's function for the 
solution to zu - u' = c5(x) , where c5(x) denotes the Dirac delta function. 

The pseudospectra of A, however, are another matter . It follows from 
(5 .4) that although the resolvent norm I I (z - A) - l l l  i s  finite for every z ,  i t  is 
enormous when z is well inside the left half-plane, growing exponentially as 
a function of exp( -d Re z) . It can also be seen from (5 .4) that I I (z - A) - l l l  
depends only on Rez, not Imz .  (Proof: For any z E <C,  v (s) , and a E JR, 
the pairs z, v ( s) and z + ia, eiQsv ( s) lead to the same norm of the integral 
in (5 .4) . )  Therefore for each c, a", (A) is equal to the half-plane lying to the 
left of some line Rez = c'" in the complex plane. This situation is illustrated 
in Figure 5 .2 ,  where the striking thing to note is the rapid decrease of c as 
one moves into the left half-plane. 

Why does A have a huge resolvent norm in the left half-plane? One 
explanation is suggested by Figure 5 .3 .  The function 

z E <C 

does not satisfy (5 .3 ) , but for Rez « 0, it almost does . Thus u is not 
an eigenfunction of A,  nor near to any eigenfunction, but it is 'nearly an 

1 For discussions of the same example from other points of view, see [395,  p. 537] , 
[448, p. 174] , and [606, p. 44] . 
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Figure 5 . 2 :  Pseudospectra of the differentiation operator A of (5 . 2)-(5 .3)  for an 
interval of length d = 2. The solid lines are the right-hand boundaries of a'e(A) 
for c = 10- 1 , 10-2 , . . .  , 10-8 (from right to left ) .  The dashed line , the imaginary 
axis , is the right-hand boundary of the numerical range . If d were increased, the 
c levels would decrease exponentially. 

w(x) --+ ( w' ;::; zw , wed) = 0) 
I 

x = O  

(U' = zu, u(d ) ;::; 0) 
- - -

I 
x = d  

Figure 5 .3 :  For dRez « 0, the functions u(x) = eZx and w(x) = eZx _ edRez+ i x lmz 

are 'nearly eigenfunctions ' of A, though neither is near any eigenfunction. Note 
that u satisfies the eigenvalue equation u' (x) = zx, but not the boundary condi­
tion ; w satisfies the boundary condition , but not the eigenvalue equation. Here 
d = 2, z = -2 .  

eigenfunction' in  the sense that i t  i s  an eigenfunction of  a slightly perturbed 
problem. It is tempting to call it a pseudo eigenfunction, or pseudomode, 
but in keeping with the definition on page 31 , we reserve this usage for 
functions that belong to the domain of the operator in question, which u 
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does not because it violates the boundary condition. However, u(x) can 
be modified so as to become a true pseudomode by subtraction of a small 
term such as edRe z + ixlrn z ,  and by this means a lower bound for I I  (z -A) - I I I  
can be derived. 

Instead of pursuing this idea, we shall obtain sharper estimates by work­
ing with (5 .4) directly. 2 

Pseudospectra of the differentiation operator 

Theorem 5 . 1  The spectrum of the operator A is the empty set. The 
resolvent norm I I (z - A) - I I I depends on Rez but not Imz and 8atisjies 

I I (z - A) - I I I ::::; _

1
_ Rez ( 5 . 5 )  

for Rez > 0 and 

(5 .6 )  

for Rez < 0 ,  where the con8tant in the '()' i8  independent of z and d .  
The p8eud08pectra of A are half-plane8 of the form 

with 
c � { ( log E) / d 

E E 
as E -t 0 ,  
as E -t 00 .  

( 5 . 7) 

(5 .8) 

Proof. If u = (z - A)- I v is given by (5 .4) , then u(x) is the restriction to 
(0 ,  d) of the convolution v * g, where v and 9 are both regarded as functions 
in L2 ( - 00 , 00 ) and g(x) = eZX for .T E [-d, O] , 0 otherwise . Therefore by the 
Fourier transform, with 1 1 · 1 1 temporarily denoting the norm in L2 ( - 00 , 00 ) , 

I l u l l ::::; I l v * g i l  = I IV?g l l = Wagl l ::::; I l vl l sup Ig(w) 1 = I l v l l  sup I g(w) l · wE R  wER 
An elementary calculation gives g(w)  = (ed( iw- z )  - l ) / ( iw - z) , and this 
expression reaches a maximum at w = Imz: 

Thus we have 

e-dRe z - 1 
sup Ig(w) 1 = . 

wER I Rez l 

1 e-dRe z I I ( z - A) - I I I ::::; -- -­Rez (Rez > 0) , (5 .9 )  

2 It i s  also possible to  determine I I  (z - A) - i l l exactly by  calculus of  variations, though 
the result is not a closed formula. We are indebted to Satish Reddy for this observation. 
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which establishes (5 .5 ) . 
On the other hand, assuming Rez < 0, break (5 .4) into two pieces 

Then we have 

and by an argument like the one just used for (5 .9 )  

1 I IR2 1 1 ::;; - Rez 
(Rez < 0) . 

(5 . 10) 

(5 . 1 1 )  

We can evaluate the norm of Rl exactly. Since Rl v (x) = eZX fad e�ZSv (s) ds, 
the dependence of Rl v (x ) on x is independent of the choice of v . Thus if 
we find a function v (x) that maximizes I Rl v (0) 1 / I I v I I , this choice will also 
maximize I IR1 V I I / l l v l l .  By the Cauchy�Schwarz inequality, an appropriate 
choice is v(s ) = exp( -zs) or v (s) = e�zs or v(s) = e�zs , with which we 
calculate 

Combining this result with (5 . 10) and (5 . 1 1 )  establishes (5 .6) . 
A proof of ( 5 . 7) was sketched in the text . Finally, the upper half of (5 .8 )  

follows from (5 .6) , and the lower half follows from (5 .5 )  (upper bound) and 
further estimates based on ( 5 . 7) (lower bound) , which we omit . _ 

In §3 we saw that the pseudospectra of the nonnormal Toeplitz matrix 
A provided insight into the behavior of A as measured by the norms of 
powers I I Ak l l . For the present example, the analogous problem concerns the 
norms of the exponentials I l etA I I , discussed in § 15 .  If A were a bounded 
operator, then etA could be defined by the usual power series . Since A is 
unbounded , etA must be defined in a more general manner as the solution 
operator for the continuous evolution problem du/dt = Au, that is, the 
first-order partial differential equation ut = Ux on (0 ,  d) with boundary 
condition u( d )  = O. The solution to this problem is the leftward translation 

tA ( ) _ { u (x + t) if x + t < d, e u x -
0 if x + t 2 d. 

(5 . 13) 

Although A is unbounded, etA is a bounded operator on £2 (0, d) for all 
t 2 O. In the theory of semigroups, {etA } is a familiar example of a 
translation semigroup and A is known as its infinitesimal generator; see 
§§15 and 19 .  
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1 

o 
t = O  t = d  t 

Figure 5 .4 :  Norm of the evolution operator etA as a function of t. The fact that 
I l etA I l  ::; 1 for all t 2 0 (A is dissipative) can be inferred from (5 .5 ) . The fact 
that etA = 0 for t 2 d (A is nilpotent) can be inferred from (5 .6 ) . 

We consider two aspects of the behavior of A, both of which are il­
lustrated in Figure 5 .4 .  First , from (5 . 13) we see that A is dissipative in 
the sense that the associated evolution process is a contraction: I l etA l 1  :::; 1 
for t 2: O. This property can be inferred from the behavior of the c­
pseudospectra of A in the limit c ---7 00 .  Specifically, by the Hille-Yosida 
theorem of semigroup theory, any closed operator that satisfies (5 .5 )  must 
be dissipative . As discussed in § § 14  and 17 ,  (5 .5 )  is also equivalent to the 
statement that the numerical range of A is contained in the left half-plane. 

Second and perhaps more interesting, A is nilpotent in the sense that 
for t 2: d, etA = O. This property can be inferred from the behavior of the 
pseudospectra of A in the limit c ---7 O. In fact, by a Laplace transform ar­
gument analogous to the Paley-Wiener theorem, it follows that any closed 
operator with resolvent norm C9 (e-d Rez ) as Rez ---7 - 00 ,  as holds for A 
by (5 .6) , must satisfy etA = 0 for t 2 d; see Theorem 15 .6 .  

The operator A has appeared in this book already: We saw a glimpse 
of it in Figure 2 .3 ! The matrix considered in that figure is a spectral dis­
cretization of A/ 144, and this explains why the pseudospectra portrayed 
there contain nearly straight boundary segments near the origin. These 
segments represent high-accuracy approximations to the exactly straight 
lines of Figure 5 . 2 .  Indeed, the data for Figure 5 . 2  were calculated numer­
ically via matrix approximations of just this kind. For further details , see 
§§30 and 43. 

The two examples considered in this section, illustrated in Figures 5 . 1  
and 5 . 2 ,  represent two major classes of non normal differential operators 
with links to many other subjects in mathematics and the sciences . In the 
first case, the non normality is introduced by variable coefficients and the 
pseudomodes have the form of wave packets .  In the second case, with con­
stant coefficients, the nonnormality is introduced by boundary conditions 
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and the pseudomodes have the form of evanescent waves pinned at the 
boundaries . General theorems for such problems are presented with many 
more examples in § § 1 1  and 10 ,  respectively. For matrices, as opposed 
to differential operators , one finds analogous classes. Constant-coefficient 
Toeplitz matrices have pseudomodes pinned at the boundaries, treated in 
§7, such as our example with approximately elliptical pseudospectra pre­
sented in the last section . Variable coefficient ' twisted Toeplitz matrices ' 
have pseudomodes in the form of wave packets, treated in §8 .  These four 
fundamental classes of matrices and differential operators lie at the heart of 
many of the instances of nonnormality that one encounters in applications . 
Examples appear throughout this book. 
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The importance of nonnormality has been recognized by certain researchers 
for many years. In this section we attempt to survey the history of the 
narrower subject of pseudospectra. The following discussion includes all 
authors we are aware of who made use of pseudospectra of nonnormal 
matrices or operators before the year 1992-at which point the idea took 
off, and it becomes difficult to be comprehensive . Very probably there are 
others of whom we are unaware. 

In the context of Hermitian and near-Hermitian systems, mathematical 
physicists have for years spoken of quasimodes, which are the same as what 
we would call pseudomodes or pseudoeigenvectors. An early reference is 
a 1972 article, 'Modes and Quasimodes' ,  by Arnol 'd [ 1 1 ] , and an even 
earlier one by Vishik and Lyusternik dates to 1957 [8 1 1 ] . 1 The phenomena 
of interest in this literature differ from the main concerns that arise for 
nonnormal problems, however, and we shall not discuss quasimodes further . 

In the nonnormal context , the earliest definition of pseudospectra we 
have encountered is given in J .  M .  Varah's 1967 thesis at Stanford Univer­
sity, The Computation of Bounds for the Invariant Subspaces of a General 
Matrix Operator [801 ] . Varah introduced the notion of an s-pseudoeigen­
value under the name r-approximate eigenvalue, as shown in Figure 6 . l . 
Motivated by his analysis of the accuracy of eigenpairs produced by com­
puter implementations of the inverse iteration algorithm, Varah incorpo­
rated a parameter, 7]1 , in his definition to describe floating-point precision. 

DEFINITION : 

ma t r ix E 

of A + E 

. [ e igenva lue } is an r-approx lma te 
e igenve c t o r  

of A i f  there ex i s t s  a 

with I IE i l 2 = r . Tll such that [
yA}  is an exa ct [ e�genva lue } 

e lgenve ctor 

Figure 6 . 1 :  First definition of pseudospectra? From Varah's unpublished 1967 
thesis [80 1 ,  p .  47] . 

Varah returned to similar ideas in a 1979 paper , 'On the Separation 
of Two IVlatrices ' ,  whose starting point was an investigation of the condi­
tioning of the Sylvester equation AX - XB = C [802] . In this context , 
he questioned the circumstances under which the spectra of two matrices 

1 In fact , Kato considers related problems in his treatise on the perturbation of matri­
ces and operators [448] ' and even introduces the terms pseudo-eigenvalue and pseudo­
eigenvector, but in a late section devoted to the Hermitian case. 
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A and B could be said to be well separated. Varah defined the 2-norm E­
pseudospectrum in terms of the minimal singular value smin (A - )..) , giving 
it the name E-spectrum and the notation S.: (A) . He noted that there is an 
equivalent definition in terms of matrix perturbations and emphasized that 
for a nonnormal matrix, the pseudospectra may be very different from the 
spectrum. 

In 1975, between these two works of Varah, H. J. Landau of AT&T 
Bell Laboratories published a paper, 'On Szego's Eigenvalue Distribution 
Theorem and Non-Hermitian Kernels ' , that independently introduced E­
pseudoeigenvalues under the name E-approximate eigenvalues [478] ; see 
Figure 6 .2 .  Landau applied this concept to the theory of Toeplitz ma­
trices and associated integral operators . Two papers quickly followed on 
loss in unstable resonators [479] and mode selection in lasers [480] (see §60) . 
Besides appearing early in the history of pseudospectra, these papers were 
notable in that , unlike much of the numerical analysis literature on pseudo­
spectra that followed in the decade and a half afterward, they recognized 
that the limitations of eigenvalues go deeper than rounding errors on com­
puters . Landau wrote [480, p. 167] : 

When we remember that ,  for c: sufficiently small, we cannot distin­
guish operationally between true and c:-approximate, the possibility 
arises that in certain non-Hermitian contexts it is the second no­
tion that should replace the first at the center of the stage, even for 
purposes of theory. 

D e f i n i t i o n .  A is an E -approximate eigenvalue of Ar if there exists 

cp E !JI ( rQ l . with I I cp / / =  I ,  such that I I A,cp - Acp ll � E. We call cp an E ­

appro x i mate eigenfunction corresponding to A. 

Figure 6 .2 :  First published definition of pseudo spectra? From Landau, 1975 [478] . 

In Novosibirsk, S .  K .  Godunov and his colleagues conducted research 
related to pseudospectra throughout the 1980s. Those involved included 
A. G. Antonov, A. Y. Bulgakov (later Haydar Bulgak) , O. P. Kirilyuk, 
V. I .  Kostin, A. N. Malyshev, and S. I. Razzakov. Godunov, together with 
Ryabenkii and others , had made significant contributions in the 1960s to 
the study of how nonnormality affects the numerical stability of discretizcd 
differential equations . In fact , in their 1962 monograph, Godunov and 
Ryabenkii introduce the spectrum of the family of operators {Rd ,  indexed 
by a mesh parameter h [318 ,  p. 188] . A point z E ([j is in this set if, for 
every € > 0, z is an E-pseudoeigenva�ue of Rh for all sufficiently small h. 
(While less general than pseudospectra, this notion is sufficient to recon­
cile the discontinuity between the spectra of the finite and infinite banded 
Toeplitz matrices that arise in finite difference methods; see §§7 and 3 1 . )  
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Figure 6.3: First published sketch of pseudospectra? From Kostin and Razzakov, 
1985 [461 ] . 

Subsequent work in the 1980s explicitly involved pseudo spectra and was 
oriented toward achieving 'guaranteed accuracy' in numerical linear al­
gebra computations [316] . According to Malyshev and Kostin (personal 
communications , 1991 ) , this work began around 1982. The Novosibirsk 
group defined the c-spectrum by relative rather than absolute perturba­
tions : O"c (A) = {z  E <C :  I I ( z  - A) - I I I  2': (c I l A I I ) - I } . 2 In [317] and [460] , 
computed plots of pseudospectra were presented and called 'spectral por­
traits of matrices ' containing various 'patches of spectrum' , and compu­
tations based on both contour plotting and curve tracing were discussed (see §41 ) . A sketch of two pseudospectra, shown in Figure 6 .3 ,  had ap­
peared earlier in a 1985 paper by Kostin and Razzakov [461 ] . Some of the 
further work by this group appeared in a book in Russian by Godunov in 
1997, with a color picture of pseudo spectra on the cover [315] . 

One of of the last papers of the eminent numerical analyst J .  H. Wilkin­
son, ' Sensitivity of Eigenvalues II ' ( 1986) , defined the c-pseudospectrum for 
an arbitrary matrix norm I I  . I I  induced by a vector norm [830] . The set 
was denoted by D (TJ) and given no name other than 'the domain D (TJ) ' .  
Wilkinson described i n  his usual lucid fashion how D (TJ) could b e  inter-

2This definition is natural in those applications of backward error analysis where a 
numerical algorithm introduces perturbations on the scale of machine epsilon times \ lA I I ;  
see §53.  For other applications, its suitability i s  less clear, and i t  has the peculiarity 
that according to this definition, the question of whether a point z E C belongs to a 
particular c-pseudospectrum a-c (A) depends, via the norm, on the behavior of A at 
distant points in C .  
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preted equivalently in terms of matrix perturbations or the norm of the 
resolvent . He discussed various applications and examples of small dimen­
sion , and mentioned at the end the extension to generalized eigenvalue 
problems. The remarkable thing is that it took Wilkinson thirty years to 
come to the idea of pseudospectra, for, given his lifelong dual interests in 
eigenvalue problems and backward error analysis , the idea would seem to 
have been hard to avoid. We suggest four partial explanations . First , com­
puter graphics was not the effortless tool in Wilkinson's day that it later 
became. Second, the matrices he could handle were small , making nonnor­
mal effects less conspicuous . Third, perhaps Wilkinson was aware of the 
notion of pseudospectra for many years, but considered the idea a heuristic 
interpretation rather than something solid enough to be published. Fourth ,  
a glance at any of his writings reveals that Wilkinson's habits of thought 
were resolutely algebraic , not visual. In the 662 pages of his magnum opus 
The Algebraic Eigenvalue Problem [827] , there are only four figures , yet 
floating-point numbers seem to appear on every page.3 

Pseudospectra were investigated in several papers by J .  W. Demmel 
in the mid- 1980s, appearing with the labels S(A, c) in [196] and (}(c ,  A) 
in [ 198] . The former paper contains the first published computer plot that 
we know of, reproduced in Figure 6 .4 .  Demmel 's starting point was the 
problem discussed in his 1983 thesis [ 195] : to devise an analogue of the 
Jordan canonical form that is robust enough to have meaning in the pres­
ence of rounding errors and other perturbations . For example , under what 
circumstances does it make sense to view several eigenvalues of a matrix 
as belonging to a cluster , which may itself perhaps be viewed as a per­
turbation of a more highly defective set of Jordan blocks? As in Varah's 
paper [802] , the question arose here of the separation of the spectra of 
two (sub)matrices . Demmel related pseudospectra to improvements of the 
Bauer-Fike theorem and to other results in matrix perturbation theory and 
discussed applications in control theory, numerical computation of eigen­
values , and other areas ; see §49. 

Beginning in the mid- 1980s, D .  Hinrichsen and A.  J .  Pritchard wrote a 
number of papers on the stability radius of a matrix, i .e . , the distance to the 
set of unstable matrices (see §49) . In a 1992 paper [400] they introduced the 
term spectral value set and notation dA, p) to denote the real structured 
c-pseudospectrum of a nonnormal matrix. Another paper by Hinrichsen 
and Kelb in 1993 extended these ideas to complex perturbations and also to 
more general structured perturbations ( §50) [397] . These articles presented 
examples of spectral value sets of several matrices illustrated by plots of 
superpositions of eigenvalues of random perturbations . 

3In fact one of those figures , on p. 454 of [827] , can be interpreted as a pseudospec­
trum-an example of what we call a structured pseudospectrum, defined by real perturba­
tions of a real matrix; see §50.  Wilkinson introduces this as a 'domain of indeterminacy' 
in his analysis of the method of bisection, but makes little use of the idea. 
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Figure 6 .4 :  First published computer plot of pseudospectra? From Demmel [196] , 
© 1987 IEEE. For an elaboration of this example, see §49 . 

Another body of early work related to pseudospectra was developed 
by F. Chatelin, later Chaitin-Chatelin , and her colleagues in France. Be­
ginning in the 1980s, this group investigated questions of conditioning , 
stability, and floating-point arithmetic with the aid of random perturba­
tions [133, 140] . By perturbing a problem at random, they pointed out , one 
can acquire knowledge about the properties of the unperturbed problem. 
One of the many applications they considered was to matrix eigenvalue 
problems , where random perturbations may reveal , for example, if the orig­
inal matrix has a nontrivial Jordan block [142, 141 ] . Though pseudospectra 
were not explicitly defined in these writings , at least in the early years , the 
idea was implicit , and computed plots of eigenvalues of randomly perturbed 
matrices appeared in [140] . 

Trefethen's first publications that mentioned pseudospectra were [771 ] 
and [625] in 1990 (the first uses the term s -approximate eigenvalues ) .  These 
were an outgrowth of a 1987 paper by Trefethen and Trummer, who found 
eigenvalues that were extraordinarily sensitive to perturbations but failed 
fully to appreciate their significance [782] . Subsequent early papers by 
Trefethen and colleagues pertaining to pseudospectra included [569, 570, 
626, 632] . A crucial collaborator in this work was Trefethen 's student 
Satish Reddy, who began to work with pseudospectra in 1988 and made 
many contributions after that date. Reddy's early work on these topics 
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was summarized in his 1991 thesis at MIT [620] . 
In 1992 Trefethen's paper 'Pseudospectra of Matrices ' appeared, which 

presented the idea of pseudo spectra and exhibited thirteen examples [772] . 
It was after this point that the idea began to be widely known. A later com­
panion paper , 'Pseudospectra of Linear Operators ' ,  presented ten examples 
involving operators on infinite-dimensional spaces [773] . 

The papers by Demmel and Wilkinson mentioned above cite each other , 
and they both cite the paper of Varah [802] . Apart from these cases , none 
of the papers discussed here published before 1990 cite any of the others . 
These data suggest that pseudospectra have been invented at least five 
times : 

J .  M. Varah 

H. J .  Landau 
S. K. Godunov et al . 
L .  N. Trefethen 
D. Hinrichsen and A. J. Pritchard 

1967 
1979 
1975 
1982 
1990 
1992 

r-approximate eigenvalues 
c:-spectrum 
c:-approximate eigenvalues 
spectral portrait 
c:-pseudospectrum 
spectral value set 

One should not trust this table too much, however ,  as even recent history 
is notoriously hard to pin down. It is entirely possible that Godunov or 
Wilkinson thought about pseudospectra in the 1960s, and indeed, von Neu­
mann may have thought about them in the 1930s. Nor were others such 
as Dunford and Schwartz , Gohberg, Halmos, Kato, Keldysch, or Kreiss far 
away. 
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7 · Toepl itz matrices and boundary pseudomodes _ 
We now embark upon two parts of this book-seven sections--that describe 
some of the best understood families of nonnormal matrices and linear op­
erators : non-Hermitian Toeplitz matrices and non-self-adjoint differential 
operators . These two classes are closely related in that the starting point 
in each case is a translation-invariant action on a one-dimensional domain; 
the difference is in whether the domain is discrete or continuous . The non­
normality may be introduced by boundary conditions , in which case we 
will find that there are exponentially good pseudoeigenvectors in the form 
of waves localized at the boundaries (as in Figure 5 .2) , or by variable coef­
ficients, in which case there are exponentially good pseudoeigenvectors in 
the form of wave packets in the interior (as in Figure 5 . 1 ) .  

The parallel between the discrete and continuous cases i s  pervasive . In 
both situations the analysis depends on a symbol, f (B) or f (x ,  B) , for con­
stant or variable coefficients, respectively ; if z = eiii , this becomes f (z ) or 
f (x,  z ) . In both cases there are important generalizations from scalars to 
vectors (e.g. , block Toeplitz matrices) , from one to several space dimensions 
(e.g. , Kronecker products) , and from classical difference and differential op­
erators to pseudo difference and pseudo differential operators . In the interest 
of readability, however, we shall not attempt to present the two subjects in 
parallel but concentrate separately on Toeplitz and related matrices in this 
part of the book, then on differential and related operators in the next . 

An N x N Toeplitz matrix is a matrix whose entries are constant along 
diagonals : 

ao a - 1 a1 -N 
a 1 ao 

A = (7 . 1 )  

ao a - 1  
aN- 1 a1 ao 

A semi-infinite matrix of the same form is known as a Toeplitz operator, 
and a doubly infinite matrix of this kind is a Laurent operator. 1 A circulant 
matrix, which is the finite-dimensional analogue of a Laurent operator , is 
a special case of a Toeplitz matrix in which the entries wrap around peri­
odically: aj = aj-N for 1 ::; j ::; N - 1 .  The standard references on these 
subjects are the books of Bottcher and Silbermann and their collaborators 

1 Following the usual convention in this book, we make no distinction between a 
matrix (finite or infinite) and the associated operator. 
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[85 , 89, 9 1 ,  92, 93] ; see especially [89 , 93] . Valuable classical references in­
clude [2 13 , 322, 367, 821 ] ' and in particular , Widom's article [821] remains 
a very appealing introduction to this subject . 

The symbol of a Toeplitz matrix or Toeplitz operator or Laurent oper­
ator is the function 

(7 .2) 

this is a finite sum or an infinite series depending on the context . As a 
running example in this section, we shall consider the family of banded 
Toeplitz matrices which take the following form for N = 6 :  

0 2i - 1  2 
0 0 2i - 1 2 

-4 0 0 2i - 1  2 
(7 .3) A = 

-2i -4 0 0 2i - 1  
-2i -4 0 0 2i 

-2i -4 0 0 

the entries not shown are zero. With this matrix is associated the symbol 

(7 .4) 

Because the matrices are banded, 1(z) is just a finite linear combination 
of positive and negative powers of z, known (confusingly) as a Laurent 
polynomial. In such a case 1 is a rational function, so it is defined not only 
on the unit circle but throughout the complex plane, where it is analytic 
everywhere except at :::; k poles , where k is the upper bandwidth (here , 
k = 3) . 

More generally, we shall assume that the vector a = (aj )  defining our 
Toeplitz or Laurent operator is in £2 (iZ) , which ensures that the sum in (7 .2 ) 
converges to a function 1 E £2 (1r) , where 1r denotes the unit circle , 1r = 
{z  E CC :  I z I = I } .  Furthermore, we shall assume that the symbol 1 defined 
in (7 .2) is continuous on 1r, which is sufficient for many applications but 
rules out some interesting cases discussed in the Toeplitz literature ; see , 
e .g. , [93 , § 1 . 8] .  The A associated with the symbol 1 is an operator on 
£2 ; the assumption that 1 is continuous is sufficient to ensure that A is 
bounded.2 Often we shall fix 1 and consider the family of Toepli tz matrices 
{A N } of various dimensions obtained as N x N finite sections of the infinite 
matrix A associated with this fixed chQice . 

2By (2 we denote the space of infinite-dimensional vectors u for which L: IUj 1 2 is 
finite, leaving it to the context to make it clear whether the index ranges over positive 
integers (Toeplitz operators) or all integers (Laurent operators) . 
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We can analyze Laurent operators in a few words by noting that the 
Laurent operator A defined by a vector a = (aj ) is equivalent to a convo­
lution: 

Au = a *  u. 
This implies that Fourier transformation converts A to a pointwise multi­
plication: 

JGi(B) = a(B)u(B) , B E  [0 , 211'] . 

Roughly speaking, this amounts to the observation that if 

( 2 1 - 1  - 2  )T U = . . . , z , z , _ , z  , z  , . . . (7 .5 ) 

for some z = eie E 1r (the underlined entry marks the central term of the 
infinite vector) , then Au is given by 

Au = f (z )u .  (7 .6 )  

(More precisely, this calculation is valid provided the numbers aj decay 
sufficiently rapidly, but for arbitrary a E g2(::z:) , we cannot convolve with 
a vector like (7 .5) that is only in goo . ) The Laurent operator A is normal , 
and its spectrum consists of all the numbers f (z ) with I z l = 1 .  That is 
to say, a(A) = f (1r) , a closed curve in the complex plane. We shall make 
extensive use of this symbol curve, sketched in Figure 7 . 1  for (7 .4) . If A is 
Hermitian, f (1r) is real and the curve degenerates to a subset of the real 
axis, but for non-Hermitian matrices , the behavior may be complicated. 
Given a point ).. E <C\f(1r) , we define the winding number I(j, )..) to be the 
winding number of f(1r) about ).. in the usual positive (counterclockwise) 
sense . If ).. E f (1r) , I (j, ).. ) is undefined. 

The same arguments for Laurent operators also apply if A is an N­
dimensional circulant matrix, except now the Fourier analysis is fully dis­
crete rather than semidiscrete. This means that in (7 .5) , only values of z 
are appropriate for which zN = 1 ,  so that the vector is periodic. In other 
words, we now have !J(A) = f(1rN ) ,  where 1rN C 1r denotes the set of Nth 
roots of unity. 

We have proved most of parts (i) and (ii) of the following beautiful 
theorem. 

Spectra of Toeplitz and Laurent operators 

Theorem 7. 1 Let A be a circulant matrix or Laurent or Toeplitz op­
erator with continuous symbol f . 

(i) If A is a circulant matrix, then !J(A) = f (1rN ) .  
(ii) If A is a Laurent operator, then !J(A) = f (1r) . 
(iii) If A is a Toeplitz operator, then !J(A) is equal to f (1r) together 

with all the points enclosed by this curve with nonzero winding 
number. 
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Figure 7.1: Symbol curve f(1I') in the complex plane for the symbol f of (7.4). 
The numbers indicate the winding numbers associated with various regions. 

Laurent operator 

circulant matrix 
" ..... 
: . . 

. 
...<.� ..... ) 

( .. ... . . :, :" . . -.. -: 
.
. . . . i··· - --: ... 

. .... J . 

. . . . . . ... 

Toeplitz operator 

Toeplitz matrix 

\, 
\.\\ ....... ; '-........... \ . .. .. . ... . . .......... ; " 

Figure 7.2: Spectra of Laurent and Toeplitz operators and circulant and Toeplitz 
matrices (N = 150) associated with the symbol (7.4). 
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Part (ii) of this theorem is due originally to Otto Toeplitz in 191 1  (under 
stronger assumptions on the smoothness of f) [756] . Part (iii) was first 
obtained by Wintner in 1929 [834] for the case in which A is triangular, 
then for more general A essentially by Gohberg in 1952 [321 ] , and in a 
form perhaps closer to what is written here , independently around 1958 
by Krein [464] and Calderon, Spitzer , and Widom [ 125] . A proof based 
on C* -algebras was provided by Coburn in the late 1960s [155 ,  156] . For 
a complete proof of Theorem 7. 1 (iii) , a discussion of its generalization to 
discontinuous symbols , and further historical details , see [93] . 

Figure 7 .2 illustrates Theorem 7. 1 for the example (7 .4) . For the Lau­
rent operator and the circulant matrix, we see that the spectrum is confined 
to the symbol curve. The more interesting and complicated cases are the 
Toeplitz operator and the Toeplitz matrix. For Toeplitz matrices , there is 
no simple characterization of the eigenvalues , though it is known that if 
AN is banded , then as N --+ 00 ,  the eigenvalues cluster along curves in 
the complex plane, as is evident in the figure [402 , 672, 786] . Of greater 
interest for us in this book and for many applications are the spectra of 
Toeplitz operators , for as we shall see , these are approximately the same as 
the pseudospectra of the corresponding Toeplitz matrices AN for large N. 

What is going on in Theorem 7. 1 (iii) , illustrated in the upper right plot 
of Figure 7 .2 ,  is as follows. Let A be a Toeplitz operator with continuous 
symbol j, and let ,\ E <C be any number for which I (f, '\) < 0; i .e . , the 
winding number of the symbol curve is negative. Then not only is ,\ in the 
spectrum of A, but it is an eigenvalue of A, with a corresponding eigen­
vector u = (Uj )  whose amplitude decreases as j --+ 00. If j is sufficiently 
smooth (e.g. , a rational function) ,  it decreases exponentially. We call this 
a boundary eigenvector or boundary eigenmode, since it is localized near 
the boundary j = 1 .  For example , if A is the Toeplitz operator given 
by (7.4) , Figure 7.3 shows the eigenvector associated with the eigenvalue 

-1 

O
�-------

2
�
O

------�
40

------�

60 

Figure 7 .3 :  Eigenvector v (first 60 components) of the Toeplitz operator (7 .3) 
associated with eigenvalue ..\ = 5 + �i .  The left side shows l v i , - lv i ,  and Rev 
on a linear scale , and the right side shows I v l  on a log scale . This eigenvector is 
exponentially localized at the boundary. 
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A = 5+ � i ,  which is approximately the point at which the label ' - 1 ' appears 
in Figure 7. 1 .  

On  the other hand, suppose A E ee is a number for which I(J, A) > O. 
N ow A does not have a boundary eigenvector , but AT does , and this implies 
that A is again in the spectrum. (AT is also a Toeplitz operator with the 
continuous symbol J(Z- l ) , so all the winding numbers are the negatives of 
those of A. ) 

To explain where these boundary eigenmodes come from, it is helpful 
to start with the upper triangular case, for which aj = 0 when j > O. For 
example, consider the ' infinite Jordan block' shift operator 

(7 .7) 

with symbol J(z) = z- l . If we apply A to the vector 

( 1 - 1  -2 )T u =  , z  , z  , . . . (7 .8) 

for any z with 0 < I z l ::; 00 ,  the result is Au = Z- lU. If I z l > 1 ,  then 
u E £2 , and thus u is an eigenvector of A with eigenvalue A = Z- l , in 
keeping with Theorem 7. I (iii) . For a more general upper triangular matrix 
A, if 2::k l ak l < 00 (in which case one says that J is in the Wiener class ) ,  
then J (z) is an analytic function in { z  : 1 < I z I ::; oo} and continuous in 
{z : 1 ::; I z l ::; oo} .  If the winding number I(J, A) is negative for some point 
A E ee,  it follows from the principle of the argument of complex analysis 
that J takes the value A at exactly -I(J, A) points in {z : 1 < I z l  ::; oo} ,  
counted with multiplicity. I f  u i s  the vector (7 .8) constructed from any 
of these points, then it is readily verified that Au = J (z)u = AU, just as 
we saw for a Laurent operator in (7.6 ) . (Indeed, because A is triangular , 
its behavior is the same as that of the associated Laurent operator , just 
restricted to rows j :::: 1 . ) Thus u is an eigenvector of A with eigenvalue A. 

More generally, consider a Toeplitz operator A that is banded or at 
least semibanded, by which we shall mean that aj = 0 for j > k and 
2:: l aj I < 00 .  The same reasoning generalizes immediately to this situation. 
Assume without loss of generality that ak i- O. Now J is an analytic 
function in {z : 1 < I z l  < oo} ,  continuous in {z : 1 ::; I z l < oo},  with 
k poles at 00. If the winding number I(J, A) is negative for some point 
A E ee,  the principle of the argument "now implies that J takes the value A 
at exactly k - I(f, A) 2: k + 1 points in {z : 1 < I z l < oo} , counted with 
multiplicity. Let Zl , . . .  , Zk+ l be any k + 1 of these points, which we assume 
for simplicity are distinct , and consider the (k + I ) -dimensional subspace 
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of £2 of linear combinations of the vectors 

(1 - 1 -2 )T , Zj , Zj , . . .  , l ::; j ::; k + 1 . (7 .9) 

If u i=- 0 is one of these linear combinations , then because A has only 
k nonzero diagonals below the main diagonal , u satisfies the eigenvalue 
equation Au = AU in rows j ::: k + 1 .  For u to be an eigenvector of A with 
eigenvalue A, it is necessary and sufficient that in addition it satisfy the 
same equation in rows 1 ::; j ::; k. Since this is a homogeneous system of k 
equations in k + 1 unknowns, there must be a nonzero solution. Without 
much effort , this argument for banded and semi banded arguments can be 
expanded to general continuous symbols. The remainder of the proof of 
Theorem 7 . 1 (iii) , a demonstration that 1(f, A) = 0 implies A (j. a(A) , is a 
nontrivial exercise in operator theory; see [93, Thm. 1 . 1 7] .  

To gain insight into the discontinuity between the spectra of the Toeplitz 
operator A and the finite-dimensional Toeplitz matrix AN , perform a sim­
ilarity transformation of the latter with the matrix 

for any fixed r > O. The resulting matrix DN ANDjV1 is also Toeplitz with 
the same eigenvalues as AN , but now with the symbol jr (z) : =  j(rz) . 
Hence the spectrum of the associated Toeplitz operator consists of j(r1f) 
and all points this curve encloses with nonzero winding number. In short , 
this similarity transformation changes the spectrum of the Toeplitz opera­
tor while leaving the eigenvalues of AN unmoved [672] . 3 

We have reached the seventh page of this section and not mentioned 
pseudospectra! But all the work has been done. We have seen that if A 
is a banded or semibanded Toeplitz operator whose symbol curve encloses 
a point A E <C with nonzero winding number, then A or AT has an eigen­
vector exponentially localized at the boundary with eigenvalue A. What 
if AN is a Toeplitz matrix with the same symbol curve? Then it is im­
mediate that the first N components of the same eigenvector constitute 
an E-pseudoeigenvector of AN or At for the same A for a value of E that 
shrinks exponentially with N. Alternatively, instead of taking the trans­
pose in the case of positive winding number , we can construct pseudomodes 
at the right boundary (j = N) instead of the left one (j = 1 ) . In words, 

3This explains the example from §3,  in which case A was a Toeplitz matrix with 
symbol J (z ) = �z + z- l The similarity transformation DN takes this matrix to one 
with symbol Jr (Z) = �rz + (rz ) - l , and the critical curve Jr (1f') = J(r1f') is generally an 
ellipse, but when r = 2 this ellipse is degenerate, J (21f') = [- 1 , 1] ' a real interval , and 
DNANDiV l is Hermitian. 
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every ).. E <C enclosed by the symbol curve with nonzero winding number is 
an exponentially good pseudoeigenvalue of AN . Apart from a few details , 
we have proved the following theorem. 

Pseudospectra of Toeplitz matrices 

Theorem 7.2 Let {AN } be a family of banded or semibanded Toeplitz 
matrices as defined above, and let ).. be any complex number with 
J(f , )..) io 0 .  Then for some M > 1 and all sufficiently large N, 

and there exist nonzero pseudoeigenvectors v(Nl satisfying 

such that 

max lvJNl l 
J 

if J(f, ).. ) < 0 , 
if J(f, )..) > 0 , 

1 ::::; j ::::; N. 

(7 . 10) 

(7. 1 1 )  

The constant M can b e  taken t o  b e  any number for which f ( z )  io ).. 
in the annulus 1 ::::; I z l ::::; M ( if I (f, )..) < 0) or M�l ::::; I z l  ::::; 1 ( if 
I (f, )..) > 0) . 

As a corollary we note that if J(f, 0) io 0 ,  then by Theorem 2 .3  the condition 
numbers K (AN ) = I I AN I I I I ANI I I  must grow at least at the same exponential 
rates . Explicit bounds on K (AN ) are developed in [84] . Bottcher and 
Grudsky have also obtained further results on the nature of the boundary 
pseudoeigenvectors v(Nl [88] . 

Theorem 7 .2 is due to Reichel and Trefethen in [632] (for banded matri­
ces ; the extension to semibanded matrices is trivial) . Since [632] appeared , 
the theorem has been greatly generalized by Bottcher and his coauthors , 
who have obtained a detailed understanding of how the smoothness of f 
relates to the rate of growth of the resolvent . It was pointed out in [83] that 
if f is just piecewise continuous, then the growth rate (7 . 10) may fall from 
exponential to algebraic, and in [87] it was shown that the same occurs even 
for continuous symbols that are not smooth . Just as the semi banded ness 
and 1 :S I z l ::::; M conditions of Theorem 7.2 have a certain asymmetry in 
them, it was further shown in [87] that for points ).. with I(f, ).. ) = - I, the 
resolvent norm grows faster than any polynomial if and only if the analytic 
( lower triangular) part of the symbol f is Coo ; the smoothness of the co­
analytic (upper triangular) part does not matter, whereas for 1(1, ).. ) = +1 
the pattern is reversed . 
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Figure 7 .4 :  On the top left ,  c-pseudospectra of the same Toeplitz matrix as 
in Figure 7 .2 for c = 10-2 , 10-3 , . . .  , 10- 1° . On the top right , superimposed 
eigenvalues of fifty matrices A + E, where each E is a random complex dense 
matrix of norm 10-2 . The bottom left image shows the N -> 00 limit of the 
finite-dimensional spectrum4 a- (AN ) , and the bottom right plot shows computed 
eigenvalues of AIOOO as produced by MATLAB's eig command. 

Figure 7 .4 illustrates Theorem 7 .2 for our example (7 .4) . The bound­
aries of the pseudospectra line up beautifully along curves determined by 
the symbol, and in the 'plot of dots ' in the upper right , we see that dense 
random perturbations tend to trace out the pseudospectra strikingly. For 
numerically computed eigenvalues of matrices of large dimension, rounding 
errors tend to produce much the same effect , as appears in the bottom 
right plot ; see §53. 

Figures 7 .5 and 7 .6 show similar curves for six more examples . The 

4The limiting spectrum can be computed using the following characterization of 
Schmidt and Spitzer [672] . Let f be the symbol for a banded Toeplitz matrix with 
upper bandwidth k.  For any fixed ,\ E C, zk (f(z)  - ,\) is a polynomial ; sort its roots by 
increasing modulus. If roots k and k + 1 have the same modulus , then ,\ E lim a(AN) .  
For a numerical study, see Beam and Warming [37J . N _ oo  
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' limac;on matrix' , from [632 , 772] , is a triangular Toeplitz matrix with sym­
bol 

(7. 12 )  

An interesting feature of this matrix is that it  is mathematically similar to 
a Jordan block of the same dimension , but the similarity transformation 
has condition number exponentially large as a function of N; this illustrates 
how much can be hidden by the mathematical property of similarity. The 
'bull 's head matrix' , from [632] , has the symbol 

f ( )  2 ' - 1 2 7 3 J bu l l ' s  head Z = lZ + Z + lO Z ; (7 . 13) 

it was designed just to give an interesting shape. The 'Grcar matrix' (pro­
nounced ' Cur-chur' ) ,  with symbol 

(7 . 14) 

was devised by Grcar as a challenging example for matrix iterations [337] ; 
its pseudospectra were first considered in [570 , 772] . The 'triangle matrix' , 

(7 . 15 )  

comes from [632] . The 'whale matrix' , with symbol 

appears on the cover of the book [93] by Bottcher and Silbermann and is 
discussed at length in §3 .5 of that book; it originates in [79] . Finally, the 
'butterfly matrix' , with symbol 

f ( )  2 . + ' - 1 - 2  butterfly Z = Z - lZ lZ - Z , (7 . 17) 

is from Bottcher and Grudsky [84] . 
One of the fruits of analysis of pseudospectra of Toeplitz matrices is a 

theorem that is more remarkable than it may look at first glance . For fifty 
years it was recognized that non normal Toeplitz matrices have a trouble­
some property, illustrated in Figures 7 .2 and 7.4 : As N ---> 00, the spectra 
of {A N } do not converge to the spectrum of the Toeplitz operator A. The­
orem 7.3 asserts that by contrast, the E-pseudospectrum has a well-behaved 
limit for any E > O. This result was' asserted under various assumptions 
by Landau [478] and by Reichel and Trefethen [632] ; the first full proof 
appeared in a 1994 paper of Bottcher [78] . 
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Figure 7.5: Three examples of banded Toeplitz matrices (see text) . On the left, 
C'-pseudospectra for C' = 10-2,10-4, • • •  ,10-12, with the symbol curve marked by 
dashes. On the right, eigenvalues of 20 random perturbations of norm 10-3. 
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Behavior of pseudospectra as N � 00 

Theorem 7.3 Let A be a Toeplitz operator with continuous symbol f 
and let {AN } be the associated family of Toeplitz matrices. Then for 
any E > 0 , 

(7 . 18 )  

and thus 
(7 . 19 )  

The sets in Theorem 7.3 converge in the Hausdorff metric, which im­
plies, for example , 

lim SN = { z  E CD : ZN ---> z for some sequence { zN } with zN E SN } '  
N�oo 

This theorem is part of a bigger story of how finite sections of Toeplitz op­
erators behave as N ---> 00 :  The singular values converge to their infinite­
dimensional counterparts, though the eigenvalues do not . The story is 
bigger in other ways , too, for we have not mentioned Wiener-Hopf fac­
torization of symbols, LU factorization of infinite matrices , the Fredholm 
alternative and Fredholm indices , discontinuous symbols , or £P norms. For 
these subjects and more, see the works by Bottcher and Silbermann and 
their collaborators . 



8 ·  Twisted Toepl itz matrices 
and wave packet pseudomodes _______ _ 

In the last section we considered Toeplitz matrices , which are constant 
along diagonals. 1 We found that a non-Hermitian Toeplitz matrix has 
exponentially large resolvent norms in the region of the complex plane en­
closed by the symbol curve with nonzero winding number and that each 
point in this region is associated with exponentially decaying pseudoeigen­
vectors localized at the left or right boundary. Now, we extend this picture 
by considering 'twisted Toeplitz ' matrices , in which the entries are permit­
ted to vary continuously along each diagonal. The symbol f (x ,  e) is now 
a function of two variables , with x-dependence describing variation along 
each diagonal, and e-dependence, as in §7 ,  giving variation across the di­
agonals . Again we shall find exponentially good pseudoeigenvectors , but 
now in the form of wave packets localized in the interior of the domain. 
The appearance of these wave packet pseudo modes is controlled by cross­
ings of a symbol curve that depends on the position x as well as the wave 
number e .  

We begin with an example. For a positive integer N, define 

1 ::; j ::; N, (8 . 1 ) 
and consider the N x N bidiagonal matrix A defined by 

(8 .2 )  

The upper part of Figure 8 .1 shows the eigenvalues and 2-norm pseudo­
spectra of A for the case N = 60. The eigenvalues , simply the Xj values 
on the diagonal, are real numbers in (0 , 2'iTJ , and the pseudospectra expand 
in a wedge of angle 60° around this interval. The lower half of Figure 8 . 1 
shows the corresponding optimal pseudomode v for A = 5 + 2i ,  satisfying 

We see a wave packet of classic shape approximately e-C(x-x . ) 2 - iO. x for 
some C; the central position and wave number (at least in the limit N --+ 

00 ) are 

58 
x. = ---= (17)=- ::::; 4.26 ,  

10 + v 13 
_ _ 1 (J325- 8 ) � e* - - cos 

29 
� -1 .22 . 

I This section i s  adapted from [777] . Early experiments in  this direction were pre­
sented in the final section of [632] . 
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Figure 8 . 1 :  Top: Eigenvalues and E-pseudospectra of the bidiagonal matrix (8 .2)  
with N = 60 for E = 10-\ 10-2 , . . .  , 10- 12 . Here and in the following figures , 
the dashed curve bounds the region in which I I (A - AN ) - 1 1 1  grows exponentially 
as N -> 00. Bottom: Optimal pseudoeigenvector v of A corresponding to the 
pseudoeigenvalue A = 5 + 2i (marked by the cross) , with I I (AN - A)v l l / l l v i l � 

0 .0080 . The real part , absolute value, and negative of the absolute value of v are 
shown. The data in question are discrete vectors of length N, but the dots are 
connected and thus appear as curves. The horizontal coordinate is Xj ' ranging 
from 27r IN to 27r as j ranges from 1 to N. 

This wave number corresponds to approximately 27r / 1 .22 � 5 .2 points per 
wavelength. We shall see that e* , x* ' and A are related by the condition 

where f(x , e) = x + �xe- ill . 
In this section and the next we shall show that wave packet pseudo­

modes such as these appear universally with 'Toeplitz matrices ' that have 
varying coefficients. Analogous effects for variable coefficient differential 
operators are discussed in § 1 1 .  

First , a review of more or less standard definitions . A Toeplitz matrix 
is a matrix that is constant along diagonals : for some coefficients {cj } ,  

1 :S j ,  k :S N. 

A circulant matrix is a Toeplitz matrix that extends periodically around 
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the boundaries : 
ajk = C(j -k) (mod N) ,  1 � j, k � N. 

For integers m and n with -m � n, an (m, n) -banded matrix is a matrix 
whose nonzero entries all lie within a band extending m entries below the 
main diagonal and n entries above: 

ajk #- 0 only if - n � j - k � m. 

An (m, n) -periodic matrix i s  the same, except that the nonzero entries wrap 
around periodically : 

ajk #- 0 only if - n � j - k � m (modN) . 
The symbol of an (m, n)-banded Toeplitz matrix or an (m, n)-periodic cir­
culant matrix is the 27r-periodic trigonometric polynomial 

1 (8) = c_ne-ni li + . . . + cmemi li . 

Now to the less standard definitions . For these , we move from individual 
matrices to families of matrices of dimensions N ----> 00 .  Given integers m 
and n with -m � n, suppose we have m + n +  1 real or complex 27r-periodic 
coefficient functions 

Cj (X) , -n � j � m .  

We make no assumptions about continuity or smoothness of Cj except as 
stated explicitly. 

Twisted Toeplitz matrices 

Let c_n , . . .  , Cm be 27r-periodic coefficient functions . The associated 
family of twisted Toeplitz matrices is the set of (m, n)-periodic matrices 
{ AN } N2 1 with coefficients 

(8 .3 ) 

where 
Xj = 27rjjN, l � j � N. 

It might seem that such matrices should instead be called 'twisted circu­
lant ' , but as we have not imposed any assumptions on the continuity of the 
Cj functions, the periodicity in the above definition is mainly just formal . 
In contrast to the conventional circulant and Toeplitz matrices discussed 
in §7 ,  periodicity plays no role in the current setting, where essential ef­
fects are localized in the x variable . Twisted Toeplitz matrices are called 
'Berezin-Toeplitz operators' by cert�in pure mathematicians . In partic­
ular, we mention an important paper of Borthwick and Uribe [76] after 
Theorem 8 . 1  and in the second half of the next section. 
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Given N, consider the vector 

v = (e - i B e - 2 i B e - Ni B )T , , . . .  , . 

For m + 1 :::; j :::; N - n, the jth entry of the matrix-vector product ANv 
can be written as 

(ANV)j = [c_n (xj )e-ni B + . . . + cm (Xj )emi B j vj . 
In other words , we have 

m +  1 :::; j :::; N - n, (8 .4) 

where f is the x-dependent symbol defined as follows. 

Symbol of twisted Toeplitz matrices 

The symbol of the family of twisted Toeplitz matrices associated with 
C_n , . . .  , cm is the function 

(8 .5 ) 

defined for x E IR and B E (C. 

By definition, f(x ,  B) i s  27r-periodic in both x and B .  The assumption 
of bandedness implies that for each fixed x, f(x ,  B) depends smoothly on B .  
Indeed, f i s  a trigonometric polynomial and thus an entire function of B ,  
i .e . , analytic throughout the complex B-plane. As for the dependence of f 
on x ,  in Theorem 8 . 1  we shall need nothing more than differentiability at 
a single point x* ' and in Theorem 9 . 1  of the next section we shall require 
even less . 

Suppose that {AN } is a family of (m, n)-periodic twisted Toeplitz ma­
trices with symbol f(x ,  B) . Let x* and B* be real numbers , and define 
>.. := f (x* , B* ) .  If f were independent of x, then AN would be a circulant 
matrix, and provided NB* /27r was an integer , the formula (8 .4) would hold 
for all 1 :::; j :::; N. Thus the vector 

(8 .6) 

would be an eigenvector of AN with eigenvalue >.. , though V is ,  of course , 
not a wave packet but a global vector . 

If f varies with x ,  however, (8 .6) is no longer an eigenvector. As a first 
step to seeing how it must be modified to become an eigenvector, we may 
ask, How must the ' local wave number' B perturb away from B* as x is 
perturbed away from x* ? In such a perturbation, >.. must remain fixed . To 
leading order we accordingly have 

0 =  
d>" 
dx 

af at dB 
ax + aB dx ' 
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(Of/Of ) 1m 
o x  o e  > 0 

Figure 8 . 2 :  For a wave packet exponentially localized at x ::::0 x. , e ::::0 e. , the 
symbol must satisfy the twist condition (8 .7) . 

which implies 
de _ a 1/a 1  
dx - - ax a e ' 

Two possibilities may now be distinguished, as illustrated in Figure 8 .2 .  If 
Im ( a fja f ) < 0 ,  then Im e becomes positive as x increases from x. , and a x a o 
the amplitude of e-iO grows exponentially. If Im ( a fja f ) > 0, then Im e ax a o 
becomes negative as x increases and the amplitude decays exponentially. 
The latter is the condition for a localized wave packet to be possible. (This 
argument can be systematically extended to higher orders by WKBJ anal­
ysis , but this requires an assumption of smooth dependence on x that is 
not needed for the theorem we are about to state. ) 

We formalize these conditions as follows. 

Twist condition 

Let l(x,  k) be a function of x E lR and e E <C that is 27r-periodic in both 
variables , and let x* and e* be real numbers . We say that 1 satisfies 
the twist condition at x = x * ' e = e* if at this point it is differentiable 
with respect to x with a 1 / ae i= 0 and 

Im (��/�� ) > O . (8 .7) 

The function 1 satisfies the antitwist condition at x = x* , e = e* if it 
has the same properties with (8 .7) replaced by ( O f/Of ) 1m 

o x  o e  
< O. (8 .8) 

Here is the basic theorem; it will be reinterpreted in Theorem 8 .2  and 
generalized considerably in the next section. Here and throughout , the 
norm I I . I I  can be  any p-norm for 1 ::::: p ::::: 00 ,  though our numerical 
illustrations always take II . I I = II . 1 1 2 . 
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Wave packet pseudomodes of twisted Toeplitz matrices 

Theorem 8 . 1  Let {AN} be a family of (m , n) -periodic twisted Toeplitz 
matrices with symbol f (x, B) . Let x. and B. be real numbers, define 
A = f (x. , B. ) ,  and suppose that the twist condition (8 .7) is satisfied 
at x = x. , B = B. . Suppose moreover that f (x. , B) =1= A for all real 
B ;;i. B. (mod 27f) and that the extreme coefficients are nonzero in the 
following sense: if n > 0, c_n (x. ) =1= 0; if m > 0, cm (x. ) =1= 0; if m = 0 
or n = 0, co (x. ) =1= A; if n < 0 or m < 0, A =1= O .  Then there exist 
constants C1 , C2 > 0 and M > 1 such that for all sufficiently large N 
there exists a nonzero pseudomode v(Nl that is exponentially good, 

and localized, 

I vtl l 

max lvJNl l 
J 

(8 .9) 

(mod 27f) . (8 . 10) 

A proof of Theorem 8.1 is given in [777J . The idea of the proof is to 
establish that ,  in a certain precise sense , there must be a linear space of 
solutions to the eigenvalue equation ANv = AV decaying to the right from 
x = x. and another space of solutions decaying to the left , and that the di­
mensions are such that these two spaces must have a nontrivial intersection 
of wave packet solutions decaying in both directions . The arguments resem­
ble those that arise in proofs of the Stable Manifold Theorem and the Cen­
ter Manifold Theorem in dynamical systems [682J . An alternative 'WKBJ ' 
or 'microlocal' approach to such results has been pursued by Borthwick and 
Uribe [76] , leading to a theorem that requires f to be smooth with respect 
to B but does not require the condition B ;;i. B. (mod 27f) . See the second 
half of §9 for examples illustrating the significance of this difference . 

We shall now illustrate Theorem 8 . 1  with three more examples , and 
along the way, present an alternative and perhaps more memorable inter­
pretation of the twist condition in terms of winding numbers of the symbol. 
We abbreviate the twist ratio by ( 8 f/8 f ) T(x, B) = 

8x 8 8 
(x, B) (8 . 1 1 )  

and note that the twist condition (8 .7) is the condition that T(x , B )  i s  well 
defined at (x. , B. ) and has positive imaginary part . 

First , let AN be the N x N 'volcano matrix' that is zero everywhere 
except that the first superdiagonal contains the entries l /N, 2/N, . . .  , (N -
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Figure 8 .3 :  Spectrum and E-pseudospectra of the 'volcano matrix' (8 . 12)  with 
N = 100, E = 10- 2 , 10-3 , . . .  , 10- 12 (counting from outside in toward the circle 
of eigenvalues, or from the origin out toward the circle of eigenvalues) .  The lower 
curve shows the optimal E-pseudoeigenvector for A = i /2 (the cross in the top 
image) , with x. = 7l" ,  e. = 7l" /2 ,  and E � 3 .53 X 10- 10 . 

l ) /N, which wrap around periodically to aNI = 1 .  These entries are sam­
ples of the function x/27f on (0 , 27fJ ; because they occur on the first super­
diagonal, the symbol is 

xe- i O  
!volcano (x , 8 )  = �

' (8 . 12 )  

with m = -1  and n = 1 .  As x and 8 range over (0, 27l"J , ! ranges over the 
punctured unit disk. The twist ratio is 

T(x , 8) = i /x , (8 . 13 )  

and since 1m T(x, e) i s  positive for all :r > 0 ,  we conclude from Theorem 8 . 1  
that every point A i n  the punctured disk i s  an exponentially good pseudo­
eigenvalue. Figure 8 .3 confirms this prediction. To relate the wave packet 
in the lower part of that figure quantitatively to Theorem 8. 1 ,  we note that 
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from (8 . 12) , 1 (x , B) = ).. = i /2 will be achieved when x = n and B = -n/2, 
and only with these values . Accordingly, the wave packet lies at the center 
of the interval with four points per wavelength. 

Figure 8 .4 confirms that , as predicted by (8 .9) , the resolvent norm at 
this point in the punctured disk grows exponentially as N ----> 00 .  

Theorem 8 . 1  does not guarantee that an optimal pseudoeigenvector has 
the form of a wave packet , merely that there exists an exponentially good 
pseudoeigenvector in that form. Figure 8 .3 suggests , however, that in this 
case the optimal pseudoeigenvector does have the shape of a wave packet . 
We can see its shape more fully by looking at this vector on a logarithmic 
scale . The downward pointing curve of Figure 8 . 5 ,  locally a parabola, is 
just the kind of structure described by (8 . 10 ) . 

Now, what about the winding number interpretation? Recall that in 
the theory of Toeplitz matrices and operators outlined in the last section, 
a key role is played by the winding number 1 (j, ).. ) of the symbol with 
respect to a point ).. E a::; . Geometrically, this is the number of times 
that the curve 1 ( (0 ,  2nD winds around )" in the positive sense, where 1 is 
the symbol; the winding number is undefined if 1 ( (0 , 2nD passes through ).. . 
Theorem 7 .2 asserts that banded Toeplitz matrices have exponentially good 
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Figure 8 .4 : Resolvent norms for ordcr-N volcano matrices at ).. = i /2 as in 
Figure 8 .3 .  The exponential growth confirms condition (8 .9) of Theorem 8 . 1 . 

).. = i/2 

rr 3rr/2 2rr 
Figure 8 .5 :  The absolute value of the pseudo eigenvector of Figure 8 .3 ,  plotted 
again on a logarithmic scale . 
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" [(x. + �x, (0 , 271"] ) 

Figure 8 .6 :  Winding number interpretation of Theorem 8 . 1 .  If the symbol curve 
f (x, (0 , 271"] ) crosses A as x passes through x. in such a way that the winding 
number about A is decreased , then there is an exponentially good wave packet 
pseudomode centered at x. with pseudoeigenvalue A .  

pseudo modes localized at the left boundary for any A with lU,  A) < ° and 
at the right boundary for any A with lU, A) > 0 .  

Theorem 8 .1 can be interpreted in similar terms (see Figure 8 .6) . For 
a twisted Toeplitz matrix, whose symbol depends on x as well as e ,  we 
consider the winding numbers of the symbol curves corresponding to co­
efficients frozen at each value of x. Suppose a number A E <C satisfies 
A = f (x. , e. )  for some x. , e. E (0 ,  271"j . Then the curve f (x. , (0 ,  2nD passes 
through A, and thus lU, A, x) is not defined at x = x • .  Typically, however, 
it will be defined for all values of x sufficiently close to x. to the left and 
right . The twist condition, together with the other conditions stated as as­
sumptions in Theorem 8 . 1 ,  amounts to the statement that the curve crosses 
A just once and in such a way that as x increases through x. , lU, A, x) de­
creases by 1 .  This is essentially the following reformulation of Theorem 8 . 1 ;  
i n  the next section we shall generalize i t  further t o  discontinuous symbols . 

Restatement of Theorem 8 . 1  in terms of winding numbers 

Theorem 8.2 Let {AN } be a family of (m ,  n ) -periodic twisted Toeplitz 
matrices with symbol f(x ,  e) as in Theorem 8 . 1 , with x. , e. , and 
A = f (x. , e. ) defined as in that theorem. Suppose that in place of 
the condition f (x. , e. ) i= A of that theorem, we require that the winding 
number 1 U, A, x) is defined in a neighborhood of x. , except at x. itself, 
with lU, A, x:t ) = lU, A, x;:- ) - 1 . Then the conclusions of Theorem 8 . 1  
hold. 

We can reinterpret Figures 8 . 1  and 8 .3  in the light of winding numbers 
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Figure 8 .7 :  'Wilkinson matrix' (8 . 14) with N = 150,  c: = 10-2 , 10-3 , . • .  , 10-7 • 
The c:-pseudoeigenvector for )" = 1 . 2  (cross) has x. = O .4K,  8. = 0, and c: � 

0 .0073. 

as follows. In Figure 8. 1 we see a matrix whose symbol curve for each 
x E (0 , 21T'] is a positively oriented circle of radius x/2 centered at x. As x 
increases , these circles cross every point inside the ice cream cone-shaped 
region bounded by the dashes , reducing the corresponding winding numbers 
from 0 to - 1 . The configuration is shown schematically in the first panel 
of Figure 8 .8 . Similarly, for the volcano matrix of Figure 8 .3 , the symbol 
curve at x E (0 , 21T'] is the negatively oriented circle about 0 of radius x/21T' . 
As x increases , these circles expand to cross each point in  the unit disk, as 
suggested in the second panel of the figure . 

Our third example , shown in Figure 8 .7 , is a 'Wilkinson matrix' of 
dimension N = 150 , consisting of l /N, . . .  , (N - l ) /N on the main diagonal 
and 1 on the first superdiagonal and also in the (N, 1) position. (Wilkinson 
proposed a multiple of the nonperiodic version of this matrix with N = 
20 as an example of a matrix with ill-conditioned eigenvalues [827] , and 
pseudospectra were considered in [772] . ) The symbol is 

x ' 0  !Wilkinson (X, O) = 21T' + e-1 , (8 . 14) 
with m = 0 and n = I, so the symbol curves are negatively oriented circles 
of radius 1 centered at x E (0 , 21T'] . As x increases, the circles move right 
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Figure 8 .8 :  Schematic views of the four examples of this section. In each case the 
symbol curve is drawn for x = 0 , 271"/6 , 271"/3, . . .  , 271" .  If the symbol curve crosses 
a point ).. E rC as x increases in such a way that the winding number about ).. 
decreases, then ).. is an exponentially good pseudo eigenvalue with a corresponding 
wave packet pseudomode. 

and cross each point in the crescent-shaped region bounded by C, C + 1 ,  
and the lines 1m '\' = ±1 ,  where C is the right half of the unit circle (third 
panel of Figure 8 .8) . By Theorem 8 .2 ,  each such point is accordingly an 
exponentially good pseudo eigenvalue . For the selected value '\' = 1 . 2  we 
calculate B. = 0 and x. = 0.471" � 1 . 26, and this explains why the lower 
part of Figure 8 .7 has a wave packet in the left of the interval with no 
oscillations inside the envelope: The wave packet is purely real . 

Figure 8 . 7  demonstrates that the pseudospectra crescent in the half­
plane Re'\' ;::: 1/2 reflects to an identical pseudospectra crescent in the 
half-plane Re'\' :::; 1/2 .  Theorem 8 . 1  does not explain this, because the 
twist condition is not satisfied in this region, but as we shall see in the next 
section, it is enough for the antitwist condition to be satisfied instead. 

Our final example, shown in Figure 8 .9 ,  is a 150 x 150 'target matrix' ,  
consisting of - l+xj /71" on the first sub diagonal and 1 on the first superdiag­
onal , with these patterns continued periodically to aN I = 1 and a lN = Xl ' The symbol is 

ftarget (x , 8) = (- 1  + � )ei O + e- i O (8 . 15 )  
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Figure 8 .9 :  'Target matrix' (8 . 15)  with N = 150,  E = 10-2 , 10-3 , • • •  , 10-8 . The 
E-pseudoeigenvector for >. = 0 .6 + 0 .6i (cross) has x. � 2 . 1 1 ,  0. � -0.47, and 
E � 5 . 30 X 10-4 . 

As x ranges over (O , 27r] ,  the symbol curves trace all ellipses centered at 0 
with major and minor axes aligned with the real and imaginary axes and 
of lengths summing to 4 (fourth panel of Figure 8 .8 ) . Within the envelope 
of these ellipses , an astroid, the resolvent norm grows exponentially with 
N. For the choice ), = 0 .6 + 0 .6 i ,  the value of x that satisfies the twist 
condition is the one corresponding to an ellipse taller than it is wide . A 
little calculation shows that x. /7r is the root � 0 .67 of 25x4 - 100x3 + 
82x2 + 36x - 36, leading to x* � 2 . 1 1317  and e* � -0.46904 . This explains 
why the wave packet is located where it is and has about 27r I l e l  � 13 .4 
points per wavelength. 
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Theorems 8 . 1-8 .2  may capture the essence of wave packet pseudomodes 
of Toeplitz-like matrices with variable coefficients, but when it comes to 
concrete examples , it is surprising how often these theorems fail to apply 
in cases where they 'ought to' .  Fortunately, they can be extended in many 
ways. This section, like the last, is adapted from [777] , where proofs of 
Theorems 9 . 1-9 .4 can be found . 

Section 8 was built around a precise definition (8 .3) of twisted Toeplitz 
matrices . A simple example is the matrix 

c(x�_ , ) ) , 
where c is any continuous 21f-periodic function; here ajk = c(Xj ) when 
k == j + 1 (modN ) . Though BN = A}:.r must exhibit similar pseudospectral 
properties , it is not twisted Toeplitz according to (8 .3) . The function C is 
now sampled at x values indexed by the column, rather than the row: 

j == k + 1 (modN) . 
Our first generalization, related to work of Tilli [752] , describes this and 
more exotic variations . We investigate matrices that are not exactly twisted 
Toeplitz as defined by (8 .3) but close to that form locally near a point x* . 
By 'near x* ' , we mean throughout some neighborhood x. - D.x < x < 
x. + D.x (mod 21f) , where D.x is independent of N. 

Asymptotically twisted Toeplitz matrices 

Let {AN } be a family of matrices of degrees N -t 00, let x. E [0 , 21f] 
be fixed , and let m and n be integers with -m ::; n. {A N } is (m ,  n) -periodic near x. if for all sufficiently large N, the rows of 
AN corresponding to row indices j with Xj near x* are zero out­
side the periodic (m ,  n)-band as defined in §8 . The family {AN }  is 
asymptotically (m ,  n) -twisted Toeplitz near x. with symbol f (x, e) = 
cn (x)e-nill + . . , + cm (x) emill for some fixed functions cn (x) , . . .  ' Cm (x) 
defined near x* if it is (m ,  n)-periodi? near x* and if for all j with Xj 
near x. and all k ,  the coefficients of AN satisfy 

ajk = C(j-kl CmodN) (Xj ) + 0( 1 ) (9 . 1 )  
uniformly as N -t 00 .  
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Since Xj ----> Xj+ l uniformly as N ----> 00, our example B = At is asymptot­
ically twisted Toeplitz near each x E [0, 27r] . 

The following theorem from [777] shows that the exponentially strong 
effects identified in Theorems 8 . 1-8 .2  are structurally stable : They persist 
under small perturbations of the matrix entries . 

Pseudomodes of asymptotically twisted Toeplitz matrices 

Theorem 9 .1  Let {AN } be a family of matrices that are asymptoti­
cally (m , n) -twisted Toeplitz near x. E [0 , 27r] with symbol f (x, B) satis­
fying A = f (x. , B. ) and the other conditions of Theorems 8 . 1  or 8 . 2  at 
x = x • .  Then the conclusions (8 .9) and (8 . 10) of Theorem 8 . 1 hold. 

To illustrate Theorem 9 . 1 ,  let us look ahead to the 'Ehrenfest matrices ' 
discussed in §56 . Set N = n + 1 = 100, and let A be the transpose of 
the N x N matrix P of (56 .6) . (The transpose is taken in order to undo 
the Markov chain convention followed in §56, in which matrices act on row 
vectors on the left rather than column vectors on the right . )  This matrix is 
not twisted Toeplitz in the sense of (8 .3) , but it is asymptotically twisted 
Toeplitz near any x. E (0 , 27r) , and the symbol is 

(9 .2 )  

Note that the nonzero diagonal ajj = N-1 does not appear in the symbol 
at all , since it converges to zero as N ----> 00 .  

As in the example of  Figure 8 .9 ,  the set of  values attained by f (x ,  B )  
for x ,  B E lR i s  a superposition of  ellipses . We start at x = ° with the 
positively oriented unit circle . As x increases to 7r, the circle flattens to the 
interval [- 1 ,  1 ] , whereupon it begins to fatten again to ellipses , but now 
with negative orientation, reaching the unit circle once more at x = 27r. 
As a result , each point A in the unit disk corresponds to two values x. 
at which the twist condition is satisfied ·-first when the winding number 
jumps from 1 to 0, and then when it jumps from ° to - 1 .  This explains 
the appearance of two wave packets in the pseudomode of Figure 9 . 1 .  Note 
that the pseudospectra of this figure resemble those of Figure 56.4 . These 
are defined in the 2-norm and those in the I-norm, but since the effects 
on display are exponentially strong as N ----> 00, the distinction makes little 
difference . 

Another application of Theorem 9 . 1  is that it makes possible the exten­
sion of our results to the anti twist condition. 
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Figure 9 . 1 :  'Ehrenfest matrix' (9 .2 )  with N = 100, c = 10- 2 , 10-3 , . . .  , lO- lO . 
The c-pseudomode for A = 0 .5+0 .3 i  (cross) has c � 5 .81  X 10-6 . This pseudomode 
is a double wave packet because as x increases from 0 to 27f, the symbol curve 
crosses A at two different values of x.  

Pseudomodes and the antitwist condition 

Theorem 9.2 Let {AN } be a family of matrices as in Theorems 8 . 1  
o r  9. 1 but such that f (x, B )  satisfies the antitwist condition (8 .8)  at 
(x* , B* ) instead of the twist condition. Then A = f (x* , B* ) is again an 
exponentially good pseudoeigenvalue, and the estimates (8 .9) and (8 . 10)  
hold with AN replaced by A}:., .  

Proof. This is a corollary of Theorems 8 . 1  and 9 . 1 .  As we have men­
tioned , if {AN } is a twisted Toeplitz family, then {A}:., } in general is not , 
because its diagonals are indexed by columns instead of rows . However , it 
is asymptotically twisted Toeplitz near any x* , so Theorem 9 . 1  gives the 
desired conclusion. _ 

Theorem 9 .2  explains the left hal� of Figure 8 .7 ,  where it is the anti­
twist rather than the twist condition that is satisfied. Of course, for such 
a simple example , one could also devise ad hoc explanations based on the 
symmetries of the matrix . 
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So far, we have considered symbols that depend continuously on x 
at x = x * , For such problems , we have obtained wave packets of type 
exp ( -N (x-X* ) 2 ) whenever the symbol curve crosses the point A at x = x* , 
However , the behavior at x = x* need not be continuous for wave packet 
pseudomodes to appear . One also gets exponentially good pseudomodes, 
now of the stronger type exp (-N lx - x* I ) , if the symbol is discontinuous 
at x* but well-behaved on both sides , provided that the winding number 
of the symbol curve is larger on the left side x; than on the right x; . 
The following theorem from [777] makes this precise . The winding number 
notation I(j, A, x) is the same as in the last section. 

Twisted Toeplitz matrices with discontinuous symbols 

Theorem 9.3 Let {AN } be a family of matrices as in Theorems 8 . 1-
8 .2  or 9 . 1-9 .2  whose symbol f (x ,  B) is discontinuous at x* but has left­
and right-limits f(x; , B) and f(x; , B) with band widths (m- , n- ) and 
(m+ , n+ ) ,  and suppose that the value A E <C is not taken by f(x; , lR) 
or f (x; , lR) ,  so that I (j, A , x; )  and I (j, A , x;)  are defined. Suppose 
also that the extreme coefficients of f (x; , lR) and f (x; , lR) are nonzem 
in the same sense as in Theorem 8 . 1 . If I(j, A, x; ) > I (j, A, x; ) ,  then 
there exist constants C 1 , C2 > 0 and M > 1 such that for all sufficiently 
large N there exists a nonzem pseudomode v(N) with 

and 
I vf) 1 

max lvf ) I 
J 

(9 .3) 

(mod27r ) . (9 .4) 

If I (j, A , x; ) < I(j, A , x; ) ,  then the same conclusions hold with AN 
replaced by AJ:., .  
Figure 9 .2  shows an example of this theorem. Here A is a periodic 

tridiagonal matrix of dimension N = 140: the superdiagonal has constant 
value 2, and the subdiagonal is - 1  in rows 2-71 and +1 in rows 72-140 
and in the corner entry al , 140 ' Thus the symbol has a jump at x* = 7r : 

( ) 
{ - exp ( iB) + 2 exp ( -iB ) 

f x B = , 
+ exp ( iB ) + 2 exp ( -iB ) 

for x < x* , 
for x > x* ; 

(9 .5 )  

as x and B range over all real values , the symbol describes two ellipses but 
not the region interior to them. The selected value A = 1 .6 lies inside one 
ellipse but not the other , with a jump in winding number from 0 to - 1  



78 

J 
0 

3 

2 

o 

-1 

-2 

-3 

II· TOEPLITZ MATRICES 

I'�� 4]/ / / - - - �io_ - - - - - - �;- - - - - - , 
6� I I � 

• I ' .  • I I .  
� .... 1 I 

..... ..... _ I I .... 

- - - :.If. _ _____ �'a. - - -

��,I 

-3 -2 -1 0 2 

A = 1.6 

• 4· • 
rrJ2 1l 3rrJ2 

3 

J 
21l 

::�� 10-10 
o rrJ2 1l 3rrJ2 21l 

Figure 9.2: 'Two ellipses matrix' (9.5) with N = 140, t: = 10-2,10-3, . . •  ,10-10. 
The t:-pseudomode for>. = 1.6 (cross) has x. = 7r and t: = 8.84 X 10-7 (shown on 

linear and log scales) . The left and right lobes of the pseudospectra correspond to 

wave packet pseudomodes of AN, and the top and bottom lobes to wave packet 

pseudomodes of AJ:.,. 

as x passes through x*, and the figure shows the resulting localized wave 

packet. This matrix is a discontinuous analogue of the 'target matrix' of 
Figure 8.9. 

Although Theorem 9.3 covers the example just presented, it would not 

apply to a similar kind of a matrix in which the discontinuity between 

f(x;, e) and f(x;;, e) extended over several rows, corresponding, for exam­

ple, to an 'antidiagonal' rather than 'horizontal' discontinuity in the matrix. 
In seeking a generalization in this direction one might expect that detailed 

attention to the nature of the discontinuity would be needed in order to 

ensure that the exponentially good wave packet pseudomodes persist. In 
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Figure 9 .3 :  Repetition of Figures 8 .7  and 9 .2 ,  but now with four rows in the 
middle of each matrix replaced by rows of independent random numbers from the 
standard normal distribution . As established by Theorem 9.4 ,  the lobes of each 
figure corresponding to localized pseudomodes of AN are hardly affected, while 
the other lobes, corresponding to wave packet pseudomodes of A� ,  are entirely 
undone. These effects are reversed if columns rather than rows are altered . 

fact , the opposite is true : They persist under arbitrary matrix alterations 
of any kind whatsoever, provided they are confined to a finite number of 
rows near the discontinuity. The following result from [777] sets forth this 
surprising state of affairs . This conclusion is consistent with the findings 
of [37] and [82] (see , e .g . , Figure 4 of the latter) that whereas alterations of 
certain entries of large non-Hermitian banded Toeplitz matrices may move 
eigenvalues significantly, they have little effect on the overall nonnormality. 

Twisted Toeplitz matrices with altered rows 

Theorem 9.4 Let J ?: 0 be a fixed integer. Let {AN } be a family 
of matrices of any of the kinds described in Theorems 8 . 1  or 9 . 1-9 .3 ,  
except that for each N, the J rows of AN closest to x * are modified 
arbitrarily, not only inside the band but potentially in any and all posi­
tions . (In the case of Theorem 9 .2 ,  replace 'rows ' by 'columns '. ) Then 
the conclusions of Theorems 8 . 1  and 9 .3 still hold. 

Figure 9 . 3  illustrates this striking robustness of wave packet pseudo­
modes. As another application of this theorem, note that Theorem 7 .2 ,  the 
main result on pseudospectra of Toeplitz matrices first presented in [632] , 
can be derived as a corollary [777] . 

Throughout the last section and this one, up to now, we have worked 
with problems in which the symbol curve changes winding number at a 
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point x = x • .  For such problems we get wave packet pseudomodes that are 
robust with respect to perturbations . In the remainder of this section we 
shall consider a more delicate class of twisted Toeplitz problems , which we 
illustrate by one of our favorite matrices . For a positive integer N, define 

1 :::; j :::; N, (9 .6) 

with Xj = 21fj/N as usual , and consider the N x N 'Scottish flag matrix' 
that in the case N = 5 takes the form 

Sl 1 - 1  
- 1 S2 1 

A - 1 s3 1 (9 .7) 
- 1  S4 1 

1 - 1  s5 

The diagonal part of A is Hermitian, with real eigenvalues { Sj } .  The off­
diagonal part is skew-Hermitian, with imaginary eigenvalues {isj } .  How­
ever , A itself is strongly nonnormal . Figure 9 .4 shows its eigenvalues and 
2-norm pseudospectra for the case N = 101 .  Evidently the eigenvalues 
are neither real nor imaginary, lying instead on a cross at angle 1f / 4 in 
the square -2 :::; ReA , ImA :::; 2. But whereas there are only N eigen­
values , the figure reveals that every number -2 < ReA, ImA < 2 is an 
E-pseudoeigenvalue for a small value of 10. 1 

This is a twisted Toeplitz matrix, but the theorems presented so far do 
not apply to it . We can see the nature of the difficulty by examining the 
symbol , which is 

f(x , B) = 2 sin B - 2i sin B .  (9 .8 ) 

For each x ,  the symbol curve is an interval in the complex plane, enclosing 
no points at all with nonzero winding number. If the symbol curve crosses A 
at x = x. , the winding number is zero for x < x. and again zero for x >  x • .  
Thus the winding number hypothesis of our theorems is not satisfied; or 
algebraically, in Theorem 8 . 1 ,  the condition f(x. , B) ic A for all B ¢. B. 
(mod 21f) is not satisfied. 

The difficulty is not an artifact of our proofs but genuine . In general , if a 
family of twisted Toeplitz matrices has a symbol with a double crossing, by 
which we mean two or more values of B. for a single value of x. associated 
with some number A = f(x. , B. ) ,  then exponentially good wave packet 

IThe spectrum and pseudospectra of A are exactly fourfold symmetric, as one can 
prove by showing that A is unitarily similar to iA via a Discrete Fourier Transform ma­
trix: iA = FAF* with Ij k = N-l /2w(j- l ) (k � 1 ) ,  1 ::; j, k ::; N, where w = exp ( -2nijN) . 
Thus for this matrix there is a perfect duality between A and its Fourier transform. More 
generally, one might consider that elegant family of matrices which have bandwidth m 
and whose Fourier transforms also have bandwidth m .  
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Figure 9 .4 :  On the left , eigenvalues and c-pseudospectra of the 'Scottish flag 
matrix' (9 .7) for N = 101  and c = 10- 1 , 10-2 , . . .  , 10- 12 . On the right , super­
position of the eigenvalues of 100 matrices A + E, where each E is a random 
complex matrix of norm 10-4 . 

pseudomodes need not exist for this A. Figure 9 . 5  suggests this numerically 
by repeating Figures 8 .9  and 9 .4 ,  but now with each entry of each matrix 
increased or decreased by 10%, at random. We see that the pseudospectra 
of Figure 9 .4 are largely destroyed , while those of Figure 8 .9  hardly change 
at all . 

Why then does Figure 9 .4 show such beautiful pseudospectra? The 
crucial fact is that the symbol (9 .8) is smooth as a function of x. As a 

2 

2 

0 .. 0 

-1 

-2 

-2 
-2 -1 0 2 

· · 
': -

· · 

· . . 
· 

.. 
· 

· . .  

· 

� . .. 
· 

-2 

. . � . . . . ' . • <!l .  @ ® 

• 

• 

@ ® 
• <!l .  

. . . '  • � . . . 

0 2 

Figure 9 .5 :  Repetition of Figures 8 .9 and 9 .4 ,  but now with each entry of the 
matrix multiplied by 1 . 1  or 0 .9  at random. The loss of smoothness has little effect 
in the first case, but destroys the pseudospectra in the second, where there is a 
double-crossing symbol. 
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result , good wave packets can be constructed entirely from energy at wave 
numbers close to e* , avoiding other wave numbers 0* at which f (x* , e* ) 
takes the same value A. The details can be worked out by methods of 
WKBJ asymptotics or microlocal analysis , and this is the subject of the 
paper by Borthwick and Uribe [76] . These authors establish a theorem in 
a more general context than ours that has the following special case. 

Twisted Toeplitz matrices with smooth symbols 

Theorem 9.5  Under the same circumstances as in Theorem 8. 1 , in­
stead of assuming that f (x* , e) =f. A for all real e ¢. e* (mod 211") , assume 
that the dependence of f on x is GOO . Then for any M > 0, there exist 
positive constants G1 , G2 , and G3 such that for all sufficiently large N, 
there exists a nonzero pseudo mode v(N) satisfying 

and 
I vt ) 1 

max lvJN) I 
J 

(mod 211") . 

This theorem explains the pseudospectra of Figure 9 .4 .  Inside the unit 
square, it guarantees resolvent norm growth faster than any power of N, not 
actually exponential growth, though Borthwick and Uribe comment that 
similar techniques can probably be applied to prove exponential growth, 
too. 

Figure 9.6 shows two further examples of twisted Toeplitz matrices with 
double crossing symbols. The 'dumbbell matrix' is tridiagonal with 0 on 
the main diagonal , eixj /4 on the first superdiagonal, and the same entries 
reflected symmetrically to the first subdiagonal ; the symbol is 

f(x , e) = 2eix/4 cos e .  (9 .9) 

This example illustrates that a symmetric matrix can be exponentially non­
normal and have interesting pseudospectra, provided it is not Hermitian . 
The 'scimitar matrix' is more complicated . If J is the matrix with 0.07xj 
in the first superdiagonal and zero elsewhere , we set 

A = diag (eo .95 iXj ) (J + I + JT) ;  
the symbol is 

f(x ,  e) = eo .95iX ( 1  + O . 14x cos e) . (9 . 10 )  

In our discussion of twisted Toeplitz matrices in this and the last section, 
we have made a distinction between symbols that satisfy a global winding 
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Figure 9 .6 :  Spectra and E:-pseudospectra of the 'dumbbell' and 'scimitar ' matrices 
of (9 .9)  and (9 . 10) , both for N = 100 and 10 = 10-2 , 10-3 , . . .  , 10- 1 0 .  

number condition (Theorem 8 . 1 )  and those that depend smoothly on x 
(Theorem 9 . 5 ) .  These two types of problems require different methods 
of analysis , and the genuineness of the difference between them has been 
highlighted in Figure 9 .5 .  In § 1 1  we shall see that the same distinction 
arises in the analysis of wave packet pseudomodes of variable coefficient 
linear differential operators , as illustrated in Figure 1 1 .7 .  
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10 . Differentia l  operators and boundary pseudomodes 
In §7  we considered four types of matrices : 

no boundary boundary 

Laurent operator Toeplitz operator 
on { . . .  , -2 , - 1 , O , 1 , 2 ,  . . . } on { 1 , 2 , 3 ,  . . .  } 

infinite 

circulant matrix Toeplitz matrix 
finite on { 1 , 2 ,  . . .  , N} on { I ,  2 ,  . . .  , N} 

(periodic) (nonperiodic) 

The defining characteristics of these matrices are that they act on a domain 
that is one-dimensional and discrete and that the action is translation­
invariant apart from boundary conditions ( i .e . , the matrices are constant 
along diagonals) . Our analysis gave special attention to matrices that were 
banded, meaning that the operator also has a fourth property: It is local. 

In this part of the book we turn to analogous problems where the do­
main is continuous . As before, we consider operators acting in a translation­
invariant fashion in one dimension. The general term for such an object is a 
convolution operator, an integral operator defined by a kernel that depends 
on the difference x - y, i .e . , 

(Au) (x) = J K (X - y)u(y ) dy . 

When the domain is a bounded or semibounded interval these are also 
called Wiener-Hop! operators. Virtually every result concerning the spec­
tra or pseudospectra of Toeplitz and Laurent matrices and operators has 
a counterpart for convolution operators. Many of these were worked out 
originally in a 1993 paper of Reddy [621 ] , which was extended by Bottcher 
in 1994 [78] and Davies in 2000 [181 ] . 

In the continuous case that fourth property, locality, assumes extra im­
portance . At one extreme, one can consider a convolution operator for 
which K (X - y) is an arbitrary smooth function. This is analogous to a 
Toeplitz matrix or operator that is not banded. At the other extreme, cor­
responding to the banded case , one can consider a singular kernel K (X - y) 
consisting of nothing but a sum of powers of delta functions supported 
at x - y = O. That is , A is a differential operator ,  and the property of 
translation-invariance becomes the condition that the operator has constant 
coefficients. Here we shall concentrate entirely on this case of constant­
coefficient differential operators , bypassing the consideration of more gen-



88 I I I · DIFFERENTIAL OPERATORS 

eral integral operators . Thus this section is devoted to the following four 
entities : 

no boundary boundary 

constant-coefficient constant-coefficient 
infinite differential operator differential operator 

on (-00, 00) on [0, (0 ) 
constant-coefficient constant-coefficient 

finite 
differential operator differential operator 

on [O , L] on [O , L] 
(periodic) (non periodic ) 

Our principal interest is the bottom right case of differential operators 
on [0 , LJ , where we shall find resolvent norms that grow exponentially as 
L --+ 00, just as for Toeplitz matrices these norms grow exponentially 
as N --+ 00 ( §7) . 

Let ao , " "  ad (ad i- 0) be a set of real or complex numbers , and let A 
denote the degree-d differential operator 

( 10 . 1 )  

acting in  L2 on a domain and with boundary conditions to  be specified . 1 
The symbol of ( 10 . 1 )  is the function 

d 
f (k) = L aj(-ik)j, 

j=O 
k E lR. ( 10 .2 )  

As a first example in this section, we shall consider the differential operator 
A defined by 

Au ( 1 + 
d
� ) 3 U = U + 3u' + 3u" + u/// ( 10 .3 )  

with symbol 
f(k)  = ( 1 - ik) 3 = i (k  + i) 3 . ( 10 .4) 

For this , as for any constant-coefficient differential operator, f(k)  is a finite 
linear combination of powers of ik. We regard A as an operator in L2 , 
defined, as described in §4, not on all of this Hilbert space but on a dense 
subdomain of sufficiently smooth functions . 

1 By £2 we denote the space of square-integrable Lebesgue measurable functions on 
[0, £J , [0 , 00) ,  or ( - 00 , 00 ) , depending on the context . The domain 'D(A) in the operator 
sense of the term is in each case the subset of the appropriate £2 space consisting of 
functions whose (d - l )st derivative is absolutely continuous and which satisfy the given 
boundary conditions, if any. 
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- 1 0  

-20 - 1 0  o 

Figure 10 . 1 :  Symbol curve in the complex plane for the example ( 10 .3)-(10 .4) . 
The numbers indicate regions associated with various winding numbers 1(j, .\ ) .  
These are defined by completing the curve by a large circle near infinity that 
winds 3/2 times around counterclockwise, since the order of the operator is 3 .  

To analyze constant-coefficient differential operators on ( - 00 , 00 ) , we 
note that in Fourier space, the operator is just multiplication by the symbol: 

Au(k) = f (k)U(k) , k E [0, 211"] .  

Roughly speaking, subject to the same caveat mentioned on page 51  con­
cerning £00 versus £2 , this amounts to the observation that if 

u(x) = e- ikx , 

for some k E 1R, then Au is given by 

Au = f (k)u. 

( 10 . 5) 

( lO .6) 

This operator A i s normal , with spectrum consisting of all the numbers 
f(k) with k E IR: a(A) = f(IR) . This is the symbol curve, shown in 
Figure 10 . 1 for ( 10 .4) . If A is formally self-adjoint (i . e . ,  self-adjoint apart 
from the effects of boundary conditions) , f(lR) is a subset of the real axis . 

Given .\ E <C\f(lR) , we wish to define the winding number of f with 
respect to .\, but since f (lR) is not a closed curve, this requires some care . 
It is sufficient to replace IR by closed contours fR consisting of the interval 
[-R, R] closed by a semicircle of radius R in the upper half of the complex 
plane. We consider the winding number associated with this closed con­
tour traversed in the usual counterclockwise direction, and we define the 
winding number 1(j, .\)  to be the limiting winding number of f(fR ) about 
). obtained for all sufficiently large R. If .\ E f(IR) , 1 (j, .\) is undefined . 

The arguments used for operators on ( - 00 , 00) carry over to the domain 
[0 , L] with periodic boundary conditions , if Fourier transforms are replaced 
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by Fourier series . In ( 10 .5 ) , only values of k are now appropriate for which 
e- ikL = 1 ,  so that the function is periodic. Consequently we now have 
o-(A) = f(27r7L/L) , where 27r7L/L denotes the integer multiples of 27r/L. 

We have proved most of parts ( i) and (ii) of the following theorem. 
In this theorem, the statement that there are (3 homogeneous boundary 
conditions means that 

u(O) = u' (O) = . . .  = UCB- 1 ) (0) = o. 
Part ( iii) can be found, for example, in [229 , Thm. 7 .3] or [621 ,  Thm. 7 . 1 ] . 
This result is related to the so-called Lopatinsky-Shapiro or complementing 
conditions that arise in the theory of elliptic boundary value problems 
for ordinary and partial differential equations [41 1] .  For general spectral 
theory of non-self-adjoint two-point differential operators on finite intervals, 
see [512 ,  546] . 

Spectra of constant-coefficient differential operators 

Theorem 10 .1  Let A be a degree-d constant-coefficient differential op­
erator with symbol f :  on [0 , L] with periodic boundary conditions, on 
[0 , 00)  with {3 homogeneous boundary conditions at x = 0 ( 0  :::; (3 :::; d ) ,  
o r  o n  ( - 00 , 00 ) . 

(i) On [O, L] , a(A) = f (27r7L/L) . 

(ii) On ( - 00 , 00 ) , a(A) = f (lR) . 

( iii) On [0 , 00) , o-(A) is equal to f (lR) together with all the points 
enclosed by this curve with winding number that differs from d-{3.  

The theorem is  illustrated for the example ( 10 .3)- (10 .4) with (3 = 2 in 
Figure 10 .2 .  For the unbounded and the periodic domains , the spectrum is 
a subset of the symbol curve. For the domains with boundaries , the behav­
ior is not so simple . For differential operators with nonperiodic boundary 
conditions on [0, L] , there is no simple characterization of the spectrum. 
For [0, 00 ) , the spectrum is generally a two-dimensional region. 

Theorem 10 . 1 (iii) , illustrated in the upper right plot of Figure 10 .2 ,  
can be explained in this way. Let A be a constant-coefficient differential 
operator with symbol f, and let A E <C be any number for which 1(1, A) < 
d - (3. Then not only is A in the spectrum of A, but it is an eigenvalue 
of A, with a corresponding eigenfunction u whose amplitude decreases 
exponentially as x ---+ 00 . We call this a boundary eigenfunction or boundary 
eigenmode. For example , for the differential operator A given by ( 10 .4) , 
Figure 10 .3 shows the eigenfunction associated with the eigenvalue A = 0 :  
v (x) = x2 e-x . 

Now suppose A E <C is such that 1(1, A) > d - {3. In this case A has 
no boundary eigenfunction, but AT does , which implies that A is again in 
the spectrum. (By AT we mean the complex conjugate of the adjoint of 
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( - 00 , 00 ) 

. . . . . . . . . ) 

. . . . . . . .. 

[0 , 40] periodic [0, 40] nonperiodic , !3 = 2 

Figure 10 .2 :  Rightmost parts of the spectra of constant-coefficient differential 
operators of the four types associated with the symbol ( 10.4) . In the final case 
there are two boundary conditions at the left and one at the right . 

o 20 

Figure 10 .3 :  Eigenfunction v (x ) = x2e- x of the differential operator ( 10 .3)  on 
[0 , 00) with !3 = 2 associated with eigenvalue A = 0 on a linear and a logarithmic 
scale . The eigenfunction is exponentially localized at the left boundary. 

A, defined in §4 . )  It follows from (10 .2 )  that AT is the degree-d constant­
coefficient differential operator on [0, (Xl ) with symbol f (  -k) and with d - (3 
homogeneous boundary conditions at x = O. For this operator, the winding 
number is f = d - I and jj = d - ,8 , and thus f < d - jj if I > d - (3. 

We can understand the origin of these boundary eigenmodes by consid­
ering the operator 

Au = u' ( 1 0 .7) 
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on [0 , (0) with no boundary conditions , with the symbol f (z) = -ik. When 
A is applied to 

U(x) = e- ikx ( 10 .8) 

for any k E <C,  the result is Au = -iku. If Imk < 0, then u E L2 , 
and u is an eigenfunction of A with eigenvalue A = -ik .  This suggests 
that the spectrum of A is the left half-plane, and this is consistent with 
Theorem 10 . 1 (iii) , for with f (k) = -ik ,  the winding number is 0 in the left 
half-plane and 1 in the right . If we imposed a boundary condition at x = 0 
and thus took (3 = 1 ,  the spectrum would shift to the right half-plane. 

For a general constant-coefficient differential operator A, it follows from 
the principle of the argument of complex analysis that f takes the value 
A at exactly d - I(j, A) points in the lower half-plane, counted with mul­
tiplicity. If u is the function ( 10 .8) constructed from any of these points, 
then it is readily verified that Au = f (k)u  = AU, just as we saw for an op­
erator on ( -00, (0) in (10 .6 ) . The question is, Does u satisfy the boundary 
conditions? In general, it does not . However , there are d - I(j, A) linearly 
independent possible choices of u, spanning a subspace of this dimension, 
with (3 boundary conditions to be satisfied. If I (j, A) > d - (3, there must 
exist a nonzero solution to this homogeneous system of equations , and this 
solution is an eigenfunction of A with eigenvalue A on the interval [0 , (0) . 

On the interval [0, LJ , the same reasoning gives us good pseudoeigen­
functions . The following theorem, stated with slightly more general bound­
ary conditions than in Theorem 10 . 1 ,  is essentially due to Reddy [621 ] . 

Pseudospectra of constant-coefficient differential operators 

Theorem 10.2 Let {Ad be a family of degree-d constant-coefficient 
differential operators on [0 , L] with (3 homogeneous boundary conditions 
at x = 0 and 'Y homogeneous boundary conditions at x = L, and let A 
be any complex number with I(j, A) < d - (3 or 1(j, A) > 'Y .  Then for 
some M > 0 and all sufficiently large L, 

( 10 .9) 

and there exist nonzero pseudomodes v (L) satisfying I I  (AL - A)V (L) I I I 
I l v (L) I I  ::; e-LM such that for all x E [0, LJ , 

I v (L) (x) 1 < { e-MX 
sup I v (L ) (x) 1 - e-M (L-x ) 

x 

if I(j, A) < d - (3; 
if I(j, A) > 'Y.  

( 10 . 10) 

The constant M can be taken to be any number for which f (z) =I- A in 
the strip -M ::; Imz ::; 0 ( if I(j, >.) < d - (3) or 0 ::; Imz ::; M ( if 
I (j, >.) > 'Y) . 
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Figure 10 .4 :  Spectrum and E-pseudospectra of the constant-coefficient differential 
operator of Figure 10 .2  on a finite interval [0 , £] . On the left , one boundary 
condition at x = 0 and two at x = £ with £ = 16 and E = 100 , 10-1 /2 , 10-1 , . . .  , 
10- 10 . On the right , two boundary conditions at x = 0 and one at x = £ with 
£ = 50 and E = 10- 1 , 10-2 , . . .  , 10-8 . The dashed line is the symbol curve. 

Extensions of this theorem for certain operators in multiple space dimen­
sions or with variable coefficients (but still with pseudomodes localized at 
the boundary) are considered by Davies in [186] . 

We have already seen a simple example for Theorem 10 .2 :  the opera­
tor ( 10 .7) on [0 , L] with boundary condition u(L) = 0, considered in §5 .  
There d = 1 ,  (3 = 0 ,  and '"Y = 1 ,  and the theorem confirms that the resolvent 
norms must be exponentially large in the left half-plane. 

Figure 10 .4 illustrates Theorem 10 .2 for the example (10 .3 )-( 10 .4) . The 
boundaries of the pseudospectra line up beautifully along curves deter­
mined by applying the symbol to lines Imz = constant (not shown) . These 
images , like Figures 10 .7 and 10 .8 below, were computed using Chebyshev 
spectral collocation methods on grids typically of about 100 points, as de­
scribed in [775] , homogeneous boundary conditions of order higher than 1 
at either end of the interval were handled by the method described at the 
beginning of Chapter 14 of that book. Techniques of this kind are reviewed 
in §43. For less carefully computed numerical eigenvalues of operators of 
large parameter L, truncation or rounding errors often produce much the 
same curves as are seen here for the pseudospectra. 

Theorem 10 .2  parallels Theorem 7.2 for Toeplitz matrices . To empha­
size the connection between differential operators and Toeplitz matrices , 
suppose we consider finite difference discretizations of ( 10 .3 )  on [0, L] . In 
the case (3 = 1 and '"Y = 2 (one boundary condition at x = 0 and two at 
x = L) , A can be approximated by a Toeplitz matrix of dimension N with 
symbol 
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fN (Z) = (h-3 - �h- l ) Z-2 + ( - 3h-3 + 3h-2 + 3h- 1 ) z- 1 
+ (3h-3 - 6h-2 - � h- l + 1 )  + ( - h-3 + 3h-2 - h- 1 ) z , 

where h = L/(N + 1 ) ;  for f3 = 2 and "( = 1 ,  
fN (Z) = (h-3 + 3h-2 + h- 1 ) z- 1 - (3h-3 + 6h-2 - �h- l - 1 ) 

+ 3 (h-3 + h-2 _ h- 1 ) z _ (h-3 _ � h- l ) Z2 . 

1 0 

o 

- 10 ' -1 0 
� = 1 � = 2  

_2�0--L---L-��--------�0�--� -20 -10 o 

Figure 10 .5 :  Symbol curves IN ('Jf) for Toeplitz matrix approximations to the 
constant-coefficient differential operator ( 10 .3) with � boundary conditions at 
x = 0 and 'Y = d - f3 boundary conditions at x = L.  The dashed curve marks 
the symbol curve for the differential operator; the solid curves show IN ('Jf) for 
N = 25,  50, 100 (left) and N = 50, 100, 200 (right ) ,  read from the inside out . 
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Figure 10 .6 :  Repetition of Figure 10 .4 ,  but now with Toeplitz matrices of di­
mension N = 200 approximating the constant-coefficient differential operators. 
The dashed lines denote the symbol curve for the differential operator; the dot­
ted lines show the symbol curve for the finite-difference approximations. As N 
increases, the agreement with Figure 10 .4  will improve. 



1 0 · DIFFERENTIAL OPERATORS AND BOUNDARY PSEUDOMODES 95 

These discretizations were computed by constructing cubic polynomial in­
terpolants to the solution and then applying the operator ( 10 .3 ) to the 
interpolants. Figure 10 .5 shows the symbol curves iN CIf') for both cases . 
As N increases , the symbol curves for the Toeplitz matrices become better 
approximations to those of the differential operator . The pseudospectra 
of the corresponding Toeplitz matrices , shown in Figure 10 .6 , approximate 
those of the differential operator seen in Figure 10 .4 . Note, however, that 
these finite difference discretizations would require far higher dimensions 
than Chebyshev spectral methods to achieve images correct to plotting 
accuracy. 

We next turn to several other examples of constant-coefficient differen­
tial operators . Figure 10 .7 shows pseudospectra for the advection-diffusion 
operator 

Au = u' + u" , ( 10 . 1 1 )  
This operator (with (3 = '"Y = 1 ) is analyzed i n  detail i n  § 1 2 and [627] ; see 
also [ 185] . 

Figure 10 .8 shows a more complicated example due to Davies (Exam­
ple 2 .4 of [ 181 ] with c = 12 ) . Here we consider the sixth-order differential 
operator 

Au = -4u' + 6u" - 15ulll - 12u(5) - 2U(6) ( 10 . 12) 
with symbol 

( 10 . 13) 
with (3 = '"Y = 3 homogeneous boundary conditions imposed at each end­
point of [0, L] . The coefficients are such that the symbol curve wraps around 
to leave a hole in the middle of the spectrum, as illustrated in the figure. 

4 4 

2 2 

o • . • • . 0 

-2 -2 

,8 = 1  ,8 = 2  
-4 -4 

-6 -4 -2 0 2 -6 -4 -2 

Figure 10 .7 :  Spectrum and e:-pseudospectra of the advection-diffusion operator 
( 10 . 1 1 )  on [0, 24] for e: = 10-\ 10-2 , • • .  with one (left) and two (right) boundary 
conditions at x = 0. 
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-4 -2 

Figure 10 .8 :  Spectrum and E-pseudospectra of the sixth-order differential opera­
tor ( 10 . 12 )  on [0, 120] with (3 = 'Y = 3 homogeneous boundary conditions at each 
endpoint , for E = 10- 1 , 10-2 , . . .  , 10-8 . 

Here is the analogue for constant-coefficient differential operators of 
Theorem 7.3 for Toeplitz matrices . For (3 = 0 or (3 = d, this is Theorem 6 .2 
of [621 ] . For more general (3, it is due to Davies [ 181 ] (who presents explic­
itly the case (3 = d/2 with d even) . 

Behavior of pseudospectra as L ---* 00 

Theorem 10.3 Let A be a degree-d constant- coefficient differential op­
erator on [0 , 00) with symbol f and (3 homogeneous boundary conditions 
at x = 0 ( 0 :::; (3 :::; d ) ,  and let {Ad be the associated family of oper­
ators on [0 , L] with (3 homogeneous boundary conditions at x = 0 and 
'Y = d - (3 homogeneous boundary conditions at x = L. Then for any 
E > 0 , 

(10 . 14) 
and thus 

( 10 . 15 ) 

One motivation for the study of spectral and pseudospectral proper­
ties of an operator A is to gain information about the behavior of the 
associated time-dependent process (semigroup) du/dt = Au. For exam­
ple, if the spectrum of A extends infinitely far into the right half-plane, 
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then the time-dependent problem cannot be well-posed. The same is true 
of each E-pseudospectrum: If A generates a Co semigroup, then each E­
pseudospectral abscissa (}E (A) must be finite (Theorem 15 .4) . Conversely, 
if (}E (A) :s; W + E for each E > ° for some w, then A generates a Co semi­
group with I I etA I I :s; etw for all t 2:: ° (Theorem 17 .6) . Such considerations 
provide interesting motivation for the problems discussed in this section. 
For example , it is clear from Figure 10 .4 that the third-order differential 
operator ( 10 .3) may generate a well-posed evolution process du/dt = Au 
in L2 spaces on [0 , 00) or [0 , L] if f3 = 2 boundary conditions are specified 
at x = 0, but that with just f3 = 1 boundary condition, the process will 
be ill-posed . This distinction is also noted by Fokas and Pelloni [281 ] for 
the same problem except with the lower order terms deleted (and with the 
conditions involving f3 interchanged since the third-order derivative has the 
opposite sign) . 



1 1  . Variable coefficients and wave packet pseudomodes 

We now turn to the last of the four fundamental classes of matrices and 
operators whose discussion was initiated in §7 . 1 Our concern here is vari­
able coefficient non-self-adjoint linear differential operators , which under 
very general circumstances have exponentially good pseudoeigenfunctions 
in the form of localized wave packets . As we write, this material is far from 
well-known, but it seems likely that this situation may change, for this 
topic has connections with all kinds of other matters in mathematics and 
science, including hydrodynamic stability (§22) , the theory of 'exponential 
dichotomy' in ordinary differential equations (ODEs) and their numeri­
cal discretizations [13 , 46 , 597] , 'ghost solutions ' of linear and nonlinear 
ODEs [2 1 1 ] ,  Lewy's phenomenon of nonexistence of solutions to certain 
linear partial differential equations (PDEs) ( § 13) , the 'non-Hermitian quan­
tum mechanics ' of Schrodinger operators with complex potentials [47 , 48, 
179] , and just possibly, though these links have not been much investigated, 
any number of other problems involving non-Hermitian space-dependent 
systems, including atmospheric waves, wave propagation in stratified me­
dia, optical systems with an 'optical twist ' , 'quasi-modes' in variable waveg­
uides , and the dynamics of the cochlea in the human ear. We comment on 
some of these applications at the end of the section. 

The fact that variable coefficient non-self-adjoint differential operators 
have extended pseudospectra with wave packet pseudomodes was pointed 
out by Davies in 1999 [179 , 180] . Shortly thereafter, Zworski [851 ] ob­
served that Davies ' discoveries could be related to long-established re­
sults in the theory of PDEs due to Hormander, Duistermaat , Sjostrand , 
and others [2 19 , 409, 410] . Later related developments have appeared 
in [ 16 , 95 , 183, 188, 202 , 612 , 766 , 851 ] ; images in this book that corre­
spond to problems of this kind include Figures 5 . 1 and 22 .4-22 . 7. 

We can see the essence of the matter in an elementary example . The 
differential equation 

u' + xu = 0 ( 1 1 . 1 )  
has the solution 

( 1 1 .2 ) 
a Gaussian localized at x = O .  Suppose we are faced with the problem of 
solving ( 1 1 . 1 )  with one or both of the boundary conditions u ( -L) = u ( L) = 
o on the interval [-L, L] for some large L. Then ( 1 1 .2 ) is not a solution, 
but it comes very close. If we subtract the constant exp( _L2 /2) from it , 

l This section is adapted from [766] . 
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we get a function that satisfies the boundary conditions and also satisfies 
( 1 1 . 1 ) for all x up to an error no greater than L exp (-L2 /2) . This is what 
Domokos and Holmes call a ghost solution of the differential equation [2 1 1] .  
Equivalently, if we consider the linear differential operator 

Au = u' + xu ( 1 1 .3) 
acting on sufficiently smooth functions in L2 ( -L, L ) , the pseudoeigenfunc­
tion2 ( 1 1 .2) implies that 0 belongs to the E-pseudospectrum of A for a value 
of E that decreases exponentially as L --+ 00 .  

This consideration of  intervals [-L, L] with L --+ 00 follows the pattern 
of the last section, but we now switch to a different formulation that is 
more convenient for problems with variable coefficients . Instead of [-L, L] 
we shall take the fixed interval [- 1 , 1] and modify the differential operator 
so that it contains a small parameter h: 

u (-l ) = u(l ) = O .  ( 1 1 .4) 
This is known as a semiclassical formulation, and the letter h is used as an 
echo of Planck's constant [209, 449, 534] . The analogue of ( 1 1 .2) becomes 
a Gaussian of width (,) (hl/2 ) , 

( 1 1 .5 ) 
and this pseudo eigenfunction shows that 0 is an E-pseudoeigenvalue of Ah 
with E = (') (M-1/h ) as h --+ 0 for some M > 1 .  (Any value 1 < M < ye 
will do. ) Moreover , the same is true for any number A with -1 < ReA < 1 ,  
as is shown by the pseudo eigenfunction 

( 1 1 .6) 
The situation is summarized in Figure 1 1 . 1  for h = 1/50 . We see that the 
pseudospectra of Ah approximate the strip -1 < ReA < 1 ,  and for the 
particular value A = 1/2 + i, the optimal pseudo eigenfunction comes very 
close to the predicted form: a wave packet centered at x = 1/2 with wave 
number l /h = 50, i . e . , wavelength 27r/50 ;::;j 0 . 13 . 

This example can serve to illustrate the pattern of the general theory, 
which follows closely on that of the previous section. We associate the 
operator Ah of ( 1 1 .4) with the x-dependent symbol 

f(x, k) = -ik + x, x E (- l , l ) ,  ( 1 1 .7) 
2More precisely, the pseudo eigenfunction is ( 1 1 . 2)  minus the exponentially small con­

stant exp ( _L2 /2) , with the correction necessary to satisfy the boundary conditions (see 
§4) . The same qualification applies to many of the examples of this section, but for 
simplicity we shall use the term 'pseudoeigenfunction' without further comment . 
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Figure 1 1 . 1 :  Above, E-pseudospectra of the operator ( 1 1 .4) with h = 0 .02 ,  E = 
10- 1 , . . .  , 10-9 . (The spectrum is empty. ) The resolvent norm I I (A - Ah ) - l l l  
grows exponentially as h ---> 0 for any A lying in  the strip - 1  < ReA < 1 ,  marked 
by the dashed lines . Below, an optimal pseudoeigenfunction for A = 1/2 + i 
(marked with a cross in the top image) with x. = 1/2 and k. = - 1 .  (Both real 
part and envelope are shown. ) 

which maps the real k-axis onto the negatively oriented vertical line Ref = 
x in the complex plane. We define the winding number of this symbol 
curve about any point A E <C by completing it by a large semicircle tra­
versed counterclockwise in the right half-plane. Thus for each x ,  the wind­
ing number is ° if ReA < x, 1 if ReA > x, and undefined if ReA = x. As 
x increases from -1 to 1 ,  each A with -1 < Re A < 1 accordingly experi­
ences a decrease in winding number when x passes through the value ReA. 
Just like Theorems 8. 1 and 8 .2 for the case of twisted Toeplitz matrices , 
Theorem 1 1 . 2 of this section will guarantee that each such value of A is 
an c-pseudoeigenvalue of Ah for a value of c that shrinks exponentially as 
h -+ 0 . 

We now formulate these ideas in general . Let an interval [a ,  b ]  be given, 
a < b, and for a small parameter h > 0, let Dh be the scaled derivative 
operator3 

d Dh = h- .  dx 
30ften a factor i is included in the definition of Dh . 
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For an integer n 2': 0 , let continuous coefficient functions 

aj (x) , O :s;  j :s; n ,  

be defined on (a , b) , which may or may not be smooth. Following ( 10 . 1 ) ,  
we consider the family of linear operators {Ah } , h > 0 ,  defined by 

n 

(AhU) (X) = L aj (x) (D{u) (x) , a < x < b ,  
j=O 

together with arbitrary homogeneous boundary conditions at x = a and 
x = b (the details of the boundary conditions will not matter) , acting in a 
suitable dense domain in U[a, b] for some p with 1 :s; P :s; 00 .  

Given k E CC and h, the action o f  Ah on the function 

can be written as 

v (x) = e- ikx/h 

n 
(AhV) (X) = L aj (x) (  -ik)jv (x) . 

j=O 
In other words, we have 

(AhV) (X) = f(x ,  k)v (x) , 
where f is the symbol of {Ad, defined as in ( 10 .2 ) as follows . For conve­
nience of reference we also repeat here the definition of Ah . 

Differential operator, symbol , symbol curve, winding number 

Let {Ah } be a family of variable coefficient differential operators as 
described above, 

n 

(AhU) (X) = L aj (x) (D{u) (x) , a < x < b .  
j=O 

The symbol of {Ah }  is the function 

n 

f(x , k) = L aj (x) (  -ik)l , 
j=O 

( 1 1 . 8) 

( 1 1 . 9) 

defined for x E (a , b) and k E CC. The symbol curve at x E (a , b) is the 
curve f (x, lR) interpreted as the oriented image in CC of the positively 
oriented real k-axis under f(x ,  k) . For any .\ E CC\f (x , lR) , the winding 
number 1 (1, x, .\) about .\ is defined by completing the interval [-R, R] 
of the k-axis by a semicircle of radius R in the upper half k-plane and 
taking the limit R --r 00 .  If .\ E f(x , lR) , 1(1, x , .\) is undefined. 
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This definition of the winding number is the same as in § 10 , apart from 
the x-dependence; for clarification see Figure 10 . 1 .  

Now let x* E (a ,  b )  and k* E lR b e  given, and define A = f(x* , k* ) .  If 
f were independent of x, the function v (x) = e-ik• x/h would satisfy the 
eigenfunction equation for Ah with eigenvalue A , 

( 1 1 . 10) 
The central idea of this section is that if f varies with x ,  then under suit­
able conditions , there will exist solutions to ( 1 1 . 10) near x* in the form 
of wave packets ,  and if these decay exponentially as x deviates from x* ' 
they can be extended smoothly to zero so as to make exponentially good 
pseudo eigenfunctions , regardless of the boundary conditions .4 The crucial 
condition is the following, the analogue for differential operators of the 
twist condition (8 .7) for matrices . 

Twist condition 

The symbol f = f (x ,  k) satisfies the twist condition at x = x* E (a,  b) , 
k = k* E lR if at this point it is differentiable with respect to x with 
8f/8k # O and ( 8!/8! ) 1m 8x 8k > 0. ( 1 1 . 1 1 )  

Roughly speaking, if the twist condition is satisfied, then there are wave 
packet pseudomodes localized at x = x* . Various theorems to this effect 
have been proved. Just as in the case of twisted Toeplitz matrices ( §8 ) , 
they follow two lines of reasoning. 

The 'WKBJ' or 'microlocal' approach to these problems is the more 
standard one, with deep roots in the theoretical literature of partial dif­
ferential equations and microlocal analysis and links also to physics and 
applied mathematics in connection with semiclassical mechanics and wave 
propagation.5 The idea is to work with the equation ( 1 1 . 10 ) and use an 
asymptotic expansion to construct wave packet approximate solutions for 
x ;:::::: x * . This method requires f to depend smoothly on x .  If the depen­
dence is Coo , one gets resolvent norms larger than any negative power of h 

4To be precise, Theorem 1 1 .2 is based upon solutions to ( 1 1 . 10)  as just described , 
whereas Theorem 1 1 . 1  is based upon functions that satisfy ( 1 1 . 10) nearly but not exactly. 

5There is an enormous literature on semiclassical analysis of various problems in wave 
propagation and quantum mechanics that sprang up with the work of Jeffreys, Wentzel , 
Kramer, and Brillouin in the 1920s and was carried on in later years by J. Keller and 
others [449 , 450] . Most of the problems considered in this literature are self-adjoint , 
hence not exactly aligned with the phenomena discussed in this section, and yet the 
mathematical techniques involved are much the same. Even the self-adjoint case has 
relevance to the subject of this book; as mentioned in §6, an influential early publication 
was Arnol'd's 1972 article 'Modes and Quasimodes' [ 1 1 ] .  
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as h -4 00 ,  and this is the standard assumption made in PDE theory going 
back to Hormander and others [2 19 , 410 , 409] . If the dependence is ana­
lytic, the resolvent norms grow exponentially; a classic PDE reference for 
this case is a monograph-length paper of Sato, Kawai , and Kashiwara [662] . 
The process is purely local in k as well as x-this is the meaning of the 
word 'microlocal '-and thus yields a wave packet localized in wave num­
ber as well as frequency. This point of view was applied to pseudospectra 
by Davies [ 179 , 180] and greatly generalized by Dencker, Sj ostrand , and 
Zworski [202] . The following is essentially a result of the latter authors , 
though expressed in a language quite different from theirs and restricted , 
unlike their theorems, to one space dimension and to differential rather than 
pseudo differential operators . Our twist condition is a special case of the 
commutator condition in the general theory, due originally to Hormander , 
which is expressed in terms of a Poisson bracket . 

Wave packet pseudomodes ( I )  

Theorem 1 1 . 1  Let {Ah } be a family of variable coefficient differential 
operators with symbol f (x ,  k) as described above. Given x* E (a, b) and 
k* E TIl, define A = f (x* , k* ) ,  and suppose that the twist condition 
( 1 1 . 1 1 )  is satisfied with cn (x* ) =f. O. Suppose also that the dependence 
of f on x is Coo . Then for any N > 0, there exist constants C1 , C2 , 
and C3 > 0 such that for all sufficiently small h, there exists a nonzero 
pseudomode v (h) satisfying 

( 1 1 . 12) 
and 

( 1 1 . 13) 

If f depends analytically on x in a neighborhood of x* , then ( 1 1 . 12 ) can 
be improved to 

( 1 1 . 14) 
for some M > 1 .  

The other approach to these problems could b e  called the 'winding 
number' or 'stable manifold' approach and appears in the paper [766] , which 
was adapted from earlier results for twisted Toeplitz matrices [777] . Here, 
no smoothness of f with respect to x is assumed except for differentiability 
at a point . We can motivate this by noting that in the example ( 1 1 .4) , 
the existence of exponentially good localized pseudomodes certainly does 
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Figure 1 1 . 2 :  Winding number interpretation of Theorem 1 1 .2 .  If the symbol curve 
f(x,  IR) crosses A as x increases through x. in such a way that the winding number 
about A decreases, then there is an exponentially good wave packet pseudomode 
localized at x. with pseudoeigenvalue A. Compare Figure 8 .6 .  

not depend on smoothness with respect to x .  The eigenvalue equation 
Ahu = AU for that example is 

and if the factor x - A is replaced by a function ¢( x) that increases through 
o at x = A, even if ¢ is not smooth, it is clear that the solution will still 
be an exponentially decaying wave packet . 6 In place of the smoothness 
assumption, such problems can be treated by a global assumption on k ,  
which can be expressed algebraically or as a winding number condition. 
The proof now follows a very different tack involving the intersection of 
subspaces of exact solutions to ( 1 1 . 10) that decay to the right from the 
point x* and those that decay to the left [766] . The process is not local with 
respect to k, and if f is not smooth, one must expect to find wave packets 
containing a wide spectrum of wave numbers . The result is summarized 
schematically in Figure 1 1 . 2 . 

I t  i s  interesting that winding numbers of  symbol curves are used less 
often in the literature of differential operators than in that of Toeplitz 
matrices and operators ( § §7-9) , though they appear occasionally (see , e .g . , 
Lemma 3 .2 of [202] ) .  Perhaps one reason is that winding numbers are 
particularly convenient for problems in one space dimension, which is the 
usual context for Toeplitz matrices but not for differential operators . 

6Strictly speaking, the expression 'wave packet ' implies localization in k as well as 
x, but in this book we use the term more loosely to refer to any function of amplitude 
O(exp (-C(x - x. ) 2 » .  
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Wave packet pseudomodes ( I I )  

Theorem 11 . 2  Under the same circumstances as in Theorem 1 1 . 1 , 
instead of assuming f E Coo , suppose that f (x* , k) i= A for all real 
k i= k • .  Equivalently, suppose that the symbol curve f (x. , lR) passes 
just once through A and that the winding number IU, x, A) decreases 
by 1 as x increases through x. . Then there exist constants C1 , C2 > 0 
and M > 0 such that for all sufficiently small h, there exists a nonzero 
pseudomode v (h) satisfying 

( 1 1 . 15 ) 

and 

( 1 1 . 16) 

Similarly, Theorem 1 1 . 1  can be interpreted in terms of the symbol curve. 
The difference is that a global winding number is not defined; one just 
examines whether, as x increases through x. , the portion of the symbol 
curve corresponding to k � k* sweeps across A in the appropriate direction. 

We have seen one example, and it is time for more. First , let us consider 
Davies ' non-self-adjoint harmonic oscillator from [ 179 , 180j . In (5 . 1 )  and 
Figure 5 . 1 we wrote this operator without the small parameter h. Including 
that parameter gives 

( 1 1 . 1 7) 
with symbol 

( 1 1 . 18) 
For any fixed x. E lR, the symbol curve is the half-line ix; + [0 , 00) in the 
complex plane traversed from 00 to ix; and back again to 00. For each 
A along this half-line and corresponding choice of x* ' there are two values 
of k. , one of which satisfies the twist condition (the one whose sign is the 
same as that of x. ) . We can see this either by calculating the twist ratio :�/:� of ( 1 1 . 1 1 )  as ix/k or by thinking of sections of the symbol curve. 
By Theorem 1 1 . 1 we conclude that every A E <C with ReA > 0, ImA > ° is 
an E-pseudoeigenvalue of Ah for an exponentially small value of E, as shown 
in Figure 1 1 .3 . There are two values of x. for each A, which explains why 
the optimal pseudomode in the figure consists of two wave packets rather 
than one. Because of the double crossing of the symbol curve, Theorem 1 1 . 2 
does not apply t o  this example . 

It is worth commenting further on the significance of a case like Fig­
ure 1 1 .3 in which two distinct wave packets appear in a computed pseu-
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:[ h 3 + 2i R : 1 
-6 -4 -2 a 2 4 6 

Figure 1 1 .3 :  Above , eigenvalues and E-pseudospectra of the Davies example 
( 1 1 . 17) with h = 1 / 10, E = 10- 1 , . . .  , 10- 13 . By Theorem 1 1 . 1 ,  1 I (). - Ah) - l l 1 
grows exponentially as h ----> 0 for any ). lying in the first quadrant of the complex 
plane. Below, an optimal pseudoeigenfunction for )' = 3 + 2i (marked by the 
cross) , with x. = ±J2 and k* = ±v'3. 

domode. The arguments on which Theorems 1 1 . 1  and 1 1 . 2 are based con­
struct exponentially good pseudomodes in the form of single wave packets , 
not double ones . The present case is special because there are two values 
of x* that are equally good for this construction: in some sense the multi­
plicity of the pseudoeigenvalue is 2, rather than the usual value of 1 . Thus 
it would be equally valid to show a pseudomode with just one wave packet 
on the left ,  or just one on the right , except that the optimal pseudomode, 
just 0 .003% better than these , is the odd function with two bumps . (The 
second-best would be another function with two bumps, but even instead 
of odd, and little different to the eye . )  

Davies and Kuijlaars have analyzed the operator ( 1 1 . 1 7) in detail [ 188] 
(with i replaced by an arbitrary complex constant) , basing their arguments 
on the theory of polynomials orthogonal with respect to a complex weight 
function. Among other results, their Theorem 3 implies that the condition 
numbers K(An) of the eigenvalues of ( 1 1 . 17) (see §52) grow exponentially 
at the rate 

lim K(An) l /n = 1 + V2, n-->CX! 
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Figure 1 1 .4 :  Above, eigenvalues and c:-pseudospectra of Bender's complex cubic 
oscillator ( 1 1 . 20) with h = 1 / 10 ,  c: = 10- 1 , . . .  , 10- 13 . By Theorem 1 1 . 1 ,  1 1 ('\ ­Ah) - 1 1 1  grows exponentially as h ...... 0 for any ,\ lying in the right half-plane. 
Below, an optimal pseudoeigenfunction for ,\ = 2 + i (cross) , with x* = 1 and 
k* = \1"2. 

with eigenvalues indexed with increasing distance from the origin . This pre­
cise estimate goes beyond the results presented here in ( 1 1 . 14) and ( 1 1 . 1 5 ) , 
where the constant M > 1 i s  not specified. 

The examples considered by Davies were not the first of this class whose 
pseudospectra were computed numerically. That distinction belongs to the 
Airy operator and related Orr-Sommerfeld operators considered by Reddy, 
Schmid, and Henningson in 1993 [624] . The Airy example is 

( 1 1 . 19) 
with boundary conditions u( -1) = u(l) = 0 and symbol f (x ,  k) = _k2 + 
ix .  We shall not present a plot here, as an appropriate image appears 
as Figure 22.7 corresponding to the value h = 1/50 . As mentioned in 
§22, the Airy operator has also been investigated by Stoller , Happer, and 
Dyson [731 ] ' Shkalikov [676 , 677] , and Redparth [628] . 

Our next example is closely related to that of Davies , the only difference 
being that the coefficient ix2 is replaced by ix3 . This 'complex cubic oscil­
lator' is a representative of a class of operators that have been discussed by 
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Bender and others, starting from unpublished work of D. Bessis in 1995, for 
applications in non-Hermitian quantum mechanics [47, 48, 194, 2 12 ,  370 ,  
551 ] . The equation is 

( 1 1 .20) 

with symbol f (x, k) = k2 + ix3 . Mathematically, this is much the same 
as the Davies example, but the pseudospectra fill the right half-plane in­
stead of the first quadrant since x3 ranges over all of IR rather than just 
[0, 00) (Figure 1 1 .4) . Most of this literature is concerned with establishing 
properties of the eigenvalues of ( 1 1 .20) and related operators and does not 
question their physical significance. Again, Theorem 1 1 . 1  applies to this 
operator but Theorem 1 1 . 2  does not . 

As a final example of this type, we mention the operator 

( 1 1 .2 1 )  

The pseudospectra of this operator , with parameter values a = 3 + 3 i  and 
'Y = 1/16 ,  are studied at length in the computational survey [774] . 

We now give two more examples with simply crossing symbol curves 
(the first was ( 1 1 .4) ) ,  for which Theorem 1 1 .2 is applicable as well as 
Theorem 1 1 . 1 .  Consider first the variable coefficient advection-diffusion 
equation 

Ahu = h2u" + h( l  + � sin x) u' , x E [-7r, 7r] ,  
with periodic boundary conditions . The symbol is 

f (x ,  k) = _k2 - i ( l  + � sin x)k ,  

( 1 1 .22) 

( 1 1 . 23) 

and for each x ,  the symbol curve is a parabola in the left half-plane tra­
versed from the upper left to the origin and then down to the lower left .  
As x increases from -7r /2 to 7r /2, the parabola widens from -k2 - � ik to 
-k2 - � ik ,  causing a decrease in winding number from 1 to 0 for every point 
.x between these extremes . By Theorem 1 1 . 2 ,  therefore, the region between 
the parabolas is one of exponentially large resolvent norm, as shown in Fig­
ure 1 1 . 5 .  We calculate that the pseudomode plotted has x. = sin- 1 (3/4) ;:::; 
0 .848 and k. = -2 , i .e . , wavelength 27rh/ l k. 1 = 7r/20 ;:::; 0 . 157 .  The phys­
ical significance of the pseudospectra of ( 1 1 . 22) and related problems is 
discussed in § 12 .  

Here i s  a higher order example . Consider the fourth-order differential 
operator 

( 1 1 . 24) 

with periodic boundary conditions and symbol f(x, k) = k4 + i sin(x) k .  
For x = - 7r  /2 ,  the symbol curve is  the quartic k4 - ik, enclosing each 
point .x inside with winding number 3 (once by the quartic itself, twice 
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Figure 11.5: Above, eigenvalues and E-pseudospectra of the advection-diffusion 

operator (11.22) with h = 1/20, E = 10-\ ... ,10-5. By Theorems 11.1 or 11.2, 
11(>' - Ah)-lll grows exponentially as h -+ ° for any A lying between the two 

dashed parabolas. Below, an optimal pseudoeigenfunction of the same operator 

for A = -4 + 3i (cross), with x* = sin-l (3/4) and k* = -2. 

more by the fourth power of a large semicircle at (Xl) . As x increases, for 

any). in this region, the winding number diminishes to 2 when the curve 

crosses once and then to 1 as it crosses a second time. Thus for each such 
). we expect exponentially good pseudo modes consisting of a pair of wave 

packets (Figure 11.6). In the special case 1m). = 0, both crossings occur 

at the same value of x*. (Theorem 11.2 as written does not apply in this 

case, but that is just an accident of wording, for in fact its proof is valid in 

such cases of multiple crossings so long as there is a net decrease in winding 

number.) In this special case there will be pseudomodes consisting of two 

wave packets superimposed at the same x* and with opposite values of k*. 
This explains the lack of a smooth envelope in the figure. 

We have discussed six examples, three governed by both Theorems 11.1 
and 11.2 and three governed by Theorem 11.1 alone. The theorems lead 

us to expect that there should be a genuine difference between these cases: 
The first three examples should be robust with respect to nonsmooth per­

turbations of the coefficients, while the others should be fragile. We found 
confirming this prediction numerically to be challenging, for the compu-
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Figure 1 1 .6 :  Above , eigenvalues and c:-pseudospectra of the fourth-order operator 
( 1 1 . 24) with h = 2/5,  c: = 10-2 , . . .  , 10- 10 . By Theorems 1 1 . 1  or 1 1 . 2 ,  1 1 (>' ­Ah) - 1 1 1  grows exponentially as h --> 0 for any >. lying in the quartic region 
marked by the dashed line (see text ) .  Below, an optimal pseudomode for >. = 1 
(cross) ,  with x* = 0 and k* taking both values 1 and - 1 .  

tations underlying Figures 1 1 . 1--1 1 . 6  are based on spectral methods (see 
§43) , a technology that relies on smooth functions for its power, whereas 
if one reverts to simpler finite differences or finite elements, based on 
weaker smoothness assumptions, the accuracy may be too low to resolve 
E-pseudospectra for small values of E .7 The compromise we eventually 
reached was to continue to use spectral methods but to choose perturba­
tions that are somewhat smooth. We perturbed each ODE coefficient by 
multiplying it by a function having five but not six continuous derivatives, 
with amplitude varying between 0.9 and 1 . 1 .  The results appear in Fig­
ure 1 1 .7 .  As predicted, three of the cases shown are robust and three are 

7Indeed , an interesting subtlety arises here. Suppose one discretizes a smooth differ­
ential equation by a finite difference approximation on a uniform grid . The result is a 
twisted Toeplitz matrix of the kind considered in §§8 and 9. However, if the symbol curve 
for the differential equation has no crossings f(x* , k) = f(x* , k* ) for k =1= k* , so that The­
orem 1 1 .2 is applicable, this does not imply the same property for the twisted Toeplitz 
matrix approximation. Thus even when a differential equation has pseudospectra that 
are robust with respect to perturbations , those of its finite difference approximations 
will typically be fragile. 
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Figure 1 1 .7 :  A repetition of six examples with each ODE coefficient modified by 
a C5 multiplicative perturbation . The examples on the left have simply cross­
ing symbol curves, and the perturbation has little effect on the pseudospectra 
(Theorem 1 1 .2) . For those on the right it changes them completely. Compare 
Figure 9 .5  for twisted Toeplitz matrices. 
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fragile , with pseudospectra distorted almost beyond recognition by this C5 
perturbation. Theorem 1 1 .2 ensures that the robust cases would in fact 
stand up to far rougher perturbations ; it is just difficult to verify such 
cases numerically. 

In our treatment of twisted Toeplitz matrices , Theorem 9 .2  pointed 
out that exponentially good pseudoeigenvectors must exist not only if a 
problem satisfies the twist condition, but also if it satisfies the 'antitwist 
condition ' . This conclusion is derived by considering transposed matrices, 
i .e . , complex conjugates of the adjoints. The pseudoeigenvectors are con­
centrated not at the point where the antitwist condition is satisfied but 
at other internal or boundary points. A similar result , but with a crucial 
qualification, is true for differential operators . 

Pseudomodes and the antitwist condition 

Theorem 11 .3  Let {Ad be a family of differential operators satis­
fying the conditions of Theorem 1 1 . 1  or 1 1 .2 ,  but with an antitwist 
condition instead of the twist condition ( reversed inequality in ( 1 1 . 1 1 ) )  
or an increase in winding number instead of a decrease . Then pro­
vided A tf. a(Ah) , there exist exponentially good c: -pseudomodes satisfy­
ing ( 1 1 . 12 )  and ( 1 1 . 14) or ( 1 1 . 15) . 

The proof of this theorem consists of combining Theorem 4.4 with The­
orem 1 1 . 1  or 1 1 .2 applied to the family of transposed operators AI = Ah , 
together with some further estimates [766] . The importance of the condi­
tion A tf. a (Ah)  was made clear to us by Karel Pravda-Starov and can be 
motivated as follows. In a typical example satisfying the twist condition, 
the proof of Theorem 1 1 . 2  constructs a wave packet solution that is expo­
nentially small at the boundaries and thus nearly satisfies the boundary 
conditions , making it an exponentially good pseudomode. The transposed 
operator will then have an equally good pseudomode concentrated (typi­
cally) at the boundaries . However, suppose the original problem has no 
boundary conditions , so that the wave packet solution is not just a pseu­
domode but an eigenmode. Then the transpose is an operator with 'too 
many boundary conditions ' ,  and may be unable to support modes pinned 
at the boundaries . 

At the beginning of this section we mentioned some applications of 
the theory of wave packet pseudomodes of variable coefficient differential 
equations . Here at the end we briefly return to this list and make a few 
comments . 

Lewy's phenomenon of nonexistence of solutions to certain linear PDEs 
is a fascinating story at the heart of the mathematical theory of PDEs , 
whose connection with pseudospectra was first pointed out by Zworski . 
This subject is discussed in § 13 . In brief, solutions to certain PDEs may lose 
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uniqueness because of the possibility of E-pseudosolutions for arbitrarily 
small E, and this nonuniqueness for one problem carries over to nonexistence 
for the adjoint .  

Hydrodynamic stability i s  the subject o f  several sections of  this book. 
In §22 we shall see that the linear operators arising in the study of shear 
flows are non-self-adjoint with variable coefficients and have pseudomodes 
in the form of wave packets .  The true eigenmodes also have this form, 
but often are of no greater physical significance than the pseudomodes . 
An extensive WKBJ analysis of modes and pseudomodes for some of these 
problems has been carried out by Chapman [138] . 

The phenomenon of 'ghost solutions ' of certain differential equations is 
the subject of a recent article by Domokos and Holmes [2 1 1 ] .  These are 
functions that one might say are 'nearly solutions , but not near solutions ' 
to ODEs. Domokos and Holmes are concerned with nonlinear examples , 
their prototype being the looping of a long flexible rod, and they observe 
that although a ghost may be nowhere near a solution of the problem as 
posed, it may nevertheless be significant physically because it is a solution 
of a slightly perturbed problem. These are familiar themes for readers of 
this book. As this section has shown, the ghost phenomenon does not 
depend on nonlinearity. 

Closely related to ghost solutions is the theory of dichotomy, a funda­
mental topic in the study of ODEs and their numerical approximations. 
In the mathematical literature this subject has roots going back to Per­
ron and Lyapunov [46 , 597] , and its application to numerical computation 
was launched with the 1988 publication of the first edition of the leading 
textbook in this field, by Ascher , Mattheij , and Russell [ 13] . Ascher et 
al . showed that an ODE boundary-value problem is well-posed in a cer­
tain sense , rendering it solvable in practice , if and only if it exhibits an 
appropriate dichotomy between solutions decreasing from left to right and 
those decreasing from right to left . The ill-posed problems are those for 
which a solution may switch from increase to decrease at a midpoint , i . e . ,  
exactly our problems with wave packet pseudomodes . In fact , the first ex­
ample that Ascher et al . give of a troublesome ODE, their Example 3 . 12 ,  
is precisely our equation ( 1 1 . 1 ) .  

We have not said much of the physical implications of the extended 
pseudospectra of variable coefficient non-self-adjoint differential operators , 
but these are considerable. For example , a non-self-adjoint system of this 
kind may exhibit resonant response to vibrations at pseudoeigenvalue input 
frequencies that is as strong in practice as if they were true eigenvalues . U n­
like familiar eigenvalue phenomena, these responses involve continuous dis­
tributions of pseudoeigenvalues or pseudomodes , even for problems posed 
in bounded domains where the spectrum is in principle discrete. 

We must emphasize that the theory and examples presented in this 
section involve one dimension, but the phenomena of wave packet pseudo-
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modes extend readily to multiple dimensions , i .e . , PDEs instead of ODEs, 
with the twist condition becoming an inequality involving a Poisson bracket . 
The generalization of Theorem 1 1 . 1  presented by Dencker , Sjostrand, and 
Zworski is multidimensional from the start and holds for pseudodifferen­
tial , not just partial differential ,  operators [202] . Whether analogues of 
Theorem 1 1 . 2  exist in the multidimensional or pseudodifferential cases is 
not known. 



1 2 . Advection-diffusion operators -------­

A common source of non normality in applications is the blending of the 
phenomena of diffusion and advection, which occurs in fluid mechanics , 
financial mathematics , and many other fields . Mathematically this mix 
corresponds to the combination of a second derivative such as Uxx or t:.u 
and a first derivative such as Ux or a ·  \lu. On an unbounded domain 
with constant coefficients, the result is a normal operator , but as soon as 
boundaries or variable coefficients are introduced, the operators become 
nonnormal , providing illustrations of the effects described in the last two 
sections . If the diffusion is weak relative to the advection, the singularly 
perturbed case, then the nonnormality is typically of magnitude (') ( C1/'I) )  
for some C > 1 as a function o f  the diffusion parameter TJ,  whose inverse is 
known as the Peclet number. 

Advection-diffusion equations are also called convection-diffusion, drift­
diffusion, Fokker-Planck, and Ginzburg-Landau equations . The examples 
we shall consider are linear , though there are important nonlinear gen­
eralizations , notably the Navier-Stokes equations of fluid mechanics . Our 
focus will be on problems in one space dimension, which suffice to illustrate 
effects of nonnormality. 

We begin with the time-dependent constant-coefficient partial differen­
tial equation 

X E (O , l ) ,  ( 1 2 . 1 )  

where TJ > ° i s  a constant , with boundary and initial data 

u(O) = u( l ) = 0, u(x, O) = uo (x) . ( 12 .2 )  

Equivalently, we write U t  = Lu, where L i s  the operator 

Lu = TJ Uxx + Ux ( 12 .3 )  

acting on twice-differentiable functions satisfying the boundary conditions 
in a suitable function space . This problem is well-posed in L2 (0 , 1 )  and 
L1 (0 , 1 ) ,  both of which may be of interest in applications . If Uo is nonneg­
ative and not identically zero, then for each t > 0, u(x, t) is an analytic 
function of x with u(x, t) > ° for all x E (0, 1 ) .  Applying integration by 
parts to (u, u) , where ( " . ) denotes the usual inner product on (0, 1 ) ,  gives 
a decay estimate in L2 , 

( 1 2 .4) 
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and under the above assumptions on uo, a similar consideration of (u, 1) 
gives decay in L1, 

(12.5) 

The differences between (12.4) and (12.5) reflect fundamental physics. The 
first estimate reminds us that diffusion causes attenuation of mean-square 
energy throughout the interior of the domain. The second contains no 
interior term, since diffusion just redistributes the total volume of substance 
such as heat or a chemical; in this case attenuation occurs only at the 
boundary. From here on we shall take II ·11 = 11·112, but the phenomena we 
focus on are essentially the same in both norms. 

The behavior of (12.1)-(12.2) for small 7) is simple and easily under­
stood. A signal well-separated from the boundary propagates leftward at 
speed 1, experiencing little alteration in shape except in the small wave­
lengths (of order (') (7)1/2)). When it hits the boundary, the physics changes. 
The signal stops moving and shrinks to a boundary layer of thickness (') (7)), 
which proceeds to decay exponentially on a time scale of order 7). Fig­
ure 12.1 shows this two-phase process for a problem with 7) = 0.015. Note 
how the initial Gaussian translates to the left, begins to change shape as it 
encounters the boundary, and then settles into its fixed asymptotic form. 
Figure 12.2 plots the operator norms for this and two other values of 7). 

:1 :� �20 t l l 

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 

:� t(00016: t�3/2 1 

o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 

:E;; t�1/2 1 t(�O OOOOO21 : t�2 1 
o 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 

Figure 12.1: Behavior of (12.1)-(12.2) with diffusion constant 'f) = 0.015: first 

advection unrelated to eigenmodes, then absorption at the boundary controlled 

by the dominant eigenmode and eigenvalue A R:! -16.8. Note that the first three 

images, on the left, are plotted on a fixed scale, but the vertical scale varies in 

the next three images. 
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Figure 12 .2 :  Operator 2-norms for ( 12 . 3 ) .  In the limit TJ = 0 the curve steepens 
to a cliff at t = 1 (compare Figure 5 .4) . 

Again we see the two phases, first with slow decay, then much more rapid. 1 
The eigenvalues and eigenfunctions of L play a part in this story: They 

describe the second phase, the behavior for t » 1 .  In the images on the 
right in Figure 12 . 1 ,  one can see that the curve is beginning to settle down 
to an asymptotically fixed shape, that of the dominant eigenfunction , with 
exponentially diminishing amplitude. The eigenvalues and eigenfunctions 
are 

( 12 .6 )  

for n = 1 , 2 , 3 , . . .  ; see Figure 12 .3 .  The factor e-x/2"l defines the boundary 
layer that appears as t -+ 00. Notice that as TJ decreases toward 0, the 
eigenvalues move further from the origin, but they also get closer together . 
Davies has emphasized that , as a consequence, although the solution looks 
approximately like the dominant eigenmode for t » 1, the components 
in the second and higher eigenmodes remain relatively significant until 
t »  1!TJ,  at which point the signal has largely died away [185] . 

The behavior of ( 1 2 . 1 )- ( 12 .2 )  for t « 1 ,  on the other hand, has noth­
ing to do with the eigenvalues and eigenfunctions . Mathematically, one 
could certainly describe the behavior in these terms. The eigenfunctions 
form a complete set in L2 (0, 1) with a bounded condition number , a Riesz 
basis (see p. 472) , 2 and therefore any initial function uo (x) is equivalent 

I The initial part of the the I l etL II curve of Figure 12 .2  is only algebraically fiat :  its 
slope is -rpr2, the numerical abscissa of L. The corresponding curve for L l (O,  1 ) ,  by 
contrast , would be exponentially fiat ,  with initial slope zero, since a narrow initial pulse 
experiences exponentially little attenuation for small times. Elsewhere in this book we 
shall see analogous weak initial decay for upwind Gauss-Seidel iterations (Figure 25.4) , 
card shuffiing (Figure 57.2) , and laser cavities (Figures 60.4 and 60.8 ) .  

2This observation can be found, for example, in Example III .6 . 1 1  of  the book by 
Kato [448] . Other information about advection-diffusion operators appears in that book 
in §III .2 .3  and in Examples III .5 .32 ,  I II .6 .20 ,  and VIII. 1. 19 .  
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{\ A l = - 16 .8 {\ A2 = - 17.3 {\ A3 = - 18 .0 {\ A4 = - 19 .0  
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� A 1 3  = -41 . 7  � A14 = -45 .5 � A 1 5  = -50 .0 � A 16 = -54 .6 

Figure 12.3 :  First sixteen eigenfunctions Un for ( 12 .3 )  with TJ = 0.015, normalized 
so that I l un l l oo = constant . The eigenvalues An = _ �TJ- l  - TJn27r2 are rounded 
to three digits. 

to a superposition of them.3 However , ( 12 .6 )  shows that this is a highly 
unnatural basis in which to expand a general function f, as is confirmed 
in Figure 12 .3 .  All the eigenfunctions have the same e-x/217 concentration 
near x = o. It follows that if f is a function of amplitude of order 1 local­
ized at the end of the interval near x = 1 ,  then its representation in this 
basis will involve a sum of terms with huge coefficients, of order e1/217 ,  that 
cancel almost perfectly. As time elapses and the eigencomponents decrease 
at their various rates , the cancellation will continue to be almost perfect , 
but the details will change in such a way as to generate leftward advection. 
We know this has to be so, but one would never figure it out by examining 
the eigenmodes . 

If eigenvalues fail to explain the initial phase of an advection-diffusion 
process, can pseudospectra do better? The answer is half yes , for they 
explain the operator norms , and half no, for they do not reveal the left­
ward advection. Concerning the latter observation we note that despite 
the discussion above, the failure of eigenvalue analysis to capture the ad­
vection is not really caused by the nonnormality. The same failure occurs 
for a problem involving a normal operator, such as the dispersive wave 
equation Ut = iuxx on a domain [-L, L] with periodic boundary condi­
tions . The eigenfunctions of this problem are global complex exponentials 
e i kx , which give no indication that a smooth wave packet will propagate 
steadily at the group velocity (see §54) . That wave packet propagation 
is again an epiphenomenon of shifting patterns of interference among su-

3 In fact , L is symmetrizable by a diagonal similarity transformation, which physicists 
call a gauge transformation. To see this we may define u(x) = e-x/27Jv(x) , which 
implies u' = e-x/27J ( -v/2ry + Vi ) , u" = e-x/27J (v/4ry2 - Vi /ry + v" ) ,  and therefore Lu = 
e-x/27J (ryv" - v/4ry ) .  Thus if operators K and M are defined by Kv = ryv" - v/4ry and 
Mv = e-x/27Jv, then we have L = MKM- 1 .  As claimed , K is self-adjoint . However, 
since the norm of a multiplication operator is the supremum of its multiplier function, 
M has an exponentially large condition number: I IM I I I IM- 1 1 1 = e 1 /27J . Thus, although 
the similarity transformation is trouble-free in a theoretical sense , it distorts the physics 
of the advection-diffusion problem beyond recognition if ry is small. 
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perposed eigenfunctions , though now without the huge coefficients. What 
distinguishes the advection phase of an advection-diffusion problem from 
simpler wave propagation phenomena, from the point of view of eigenvalue 
analysis, is a human factor : The former has a 'dominant ' eigenmode, and 
this is distracting! Many have been misled into assuming that this eigen­
mode must have some significance for all t .  

The pseudospectra of L, however, do explain the initial flatness of the 
curve of I letL I I  against t. Figure 12 .4 shows that whereas the eigenvalues 
lie deep inside the left half-plane, the pseudospectra crowd up toward the 
imaginary axis , filling the region of the A-plane bounded by the parabola 
ReA = -7](lmA) 2

. This can be explained as an application of the general 
theory presented in § 1O . To fit the framework of that section we note that 
if t = 7]7 and x = 7]8 , then ( 1 2 . 1 )-( 12 .2 ) can be rewritten as u.,. = Uss + Us 
for x E (0 , 7]- 1 ) with boundary conditions u(O) = u(7]- l ) = 0 and initial 
condition U(8 , 0) = UO (7]8) . This differential operator in the variable s has 
symbol f (k) = -k2 - ik ,  given earlier in ( 10 . 1 1 ) ,  which maps the real 
k-axis onto the parabola ReA = - (lmA? It follows from Theorem 10 .2 

, 
, 

-40 �--�������--------L-----� 
-60 -40 -20 o 20 

Figure 12 .4 : Eigenvalues and s-pseudospectra of ( 12 .3) for 7] = 0 .015 ,  s = 
10° , 10- 1 , . . .  , 10-1 2 ; the condition numbers of the eigenvalues are all bounded 
by the condition number e 1 /21) � 3 .4 x 1014 of the system of eigenfunctions . The 
dashed line is the symbol curve ReA = -7] (ImA) 2 , and the vertical line is the 
imaginary axis . As the diffusion constant 7] is decreased, the eigenvalues move 
out of the frame to the left and the pseudospectra straighten up toward half­
planes as in Figure 5 .2 ,  widening further the gap between initial and asymptotic 
behavior. 
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o 0 .5 x 
Figure 12 .5 :  Explanation of the parabola Rez = -1)(Imz)2 of Figure 12 .4 ,  inside 
of which the resolvent norms are exponentially large. For any A in the interior of 
the parabola, the function </I of ( 12 .7) satisfies the eigenvalue equation L</I = A</I 
and the boundary condition </1(0) = 0 ,  and it satisfies the boundary condition 
</1( 1 )  = 0 up to an error that decreases exponentially as 1) ---> O. Here 1) = 0 .05 
and A = -3. Compare Figure 5 .3 .  

that the norm of the associated resolvent is exponentially large inside this 
parabola, as shown in Figure 10 .7 ,  and this implies a similar assertion for 
the parabola Re).. = -1] (Im).. ) 2 in the x , t variables, as seen in Figure 12 .4 .  

For an example of a quantitative link from pseudospectra to the I l etL I I 
curve, we may note in Figure 12 .4 that the spectral abscissa is a(L) � 
-16 .8 ,  which implies I l eo . 1 L I I > 0 . 186, far below the true value of about 
0 .984. By contrast , the E-pseudospectral abscissae for E = 1 and 10 are 
a,, (L) � -1 .046 and 9.45, and if these are inserted in condition ( 15 . 12) of 
Theorem 15 .4 with the value M = 1 in that theorem, we get the better 
estimates I l eo . 1L I I  > 0 .804 and 0 .908. (See Figure 15 . 2 . )  

We can explain these pseudospectra without appealing to  the general 
theory as follows (Figure 12 .5 ) . For any ).. E <C, the function 

eOi+x/ri _ eOi- x/T] 
¢(x) = 

( 
) / ' a± = - �  ± � V1 + 41]).. a+ - a_ 1) 

( 1 2 . 7) 

satisfies the eigenvalue equation L¢ = )..¢ and the boundary condition 
¢(O) = O. If ).. is inside the parabola Re).. = -1)(Im)..) 2 , then a+ and a_ 
have negative real parts, so ¢ decays exponentially with x . Thus although 
¢ does not in general satisfy the right boundary condition exactly, it does 
so approximately within an error of exponentially small order elL/T] , where 

( 12 .8) 

Plots of the pseudospectra of advection-diffusion operators were first 
published in 1994 by Reddy and Trefethen [627] , who established the pseu­
dospectral estimates in the following theorem. Harrabi has also studied 
the computation of these pseudospectra under various discretizations [374] . 
The assertion below about the numerical range comes from a letter of Kato 
to Trefethen in March 1995, and further information about this example 
can be found in [185] . 
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Advection-diffusion operator 

Theorem 12 .1  The operator L of ( 1 2 .3 ) has eigenvalues and eigen­
functions given by ( 12 .6) , and the condition number of the set of 
eigenfunctions normalized as in ( 12 .6) is e1/2'f/ . The numerical range 
is the closed set of all points to the left of the parabola defined by 
Rez = -'I}(Imz)2 -'I}7r2 .  Let ry be a fixed non-real number in the interior 
of the parabola Rez = - (Imz)2 , so that A = ry/'I} is a non-real number 
in the interior of the parabola Rez = -'I}(Imz)2 , and let a± and <jJ be 
defined by ( 1 2 .7) , with a+ - ( L  = VI + 4ry = (J" + iT .  Then 

2 -I-'/'f/ ( 2 + 2 ) 1/2 I I (A - L) - l l l  '" 
e (J" T 
( 1 - (J"2 ) ( 1  + T2 ) 

as rJ � 0, where JL = max{Rea+ , Rea_ } < 0 as in ( 12 .8) . 

( 12 .9) 

A proof of this theorem is carried out in [627] by means of Green's 
functions , the same technique used in Theorem 5 . 1  for a simpler operator 
without diffusion. Such a proof requires the estimation of the norm of 
the resolvent of L, which is the solution operator for the inhomogeneous 
problem (A - L)u = f with boundary conditions u(O) = u( l )  = O. For 
each fixed A and y ,  the Green's function G(x, y) for this problem is the 
solution u(x) corresponding to the choice f(x) = O'(x - y) , where 0' is the 
Dirac delta function; in matrix language we may think of G ( - , y) as being 
'the yth column of the resolvent ' . We can write G(x, y) explicitly as 

G(x, y) = a<jJ(x) + <jJ ( [x - y] + ) ,  ( 12 . 10) 

where a is a constant , with <jJ still defined by ( 12 . 7) ;  the notation [x - y] + 
denotes 0 for x - y :::; 0 and x - y for x - y 2': O . The term <jJ( [x - y]+ ) 
would be a solution to (A - L)u = f if there were no right-hand boundary 
condition; the term a<jJ(x) is a correction added to enforce that boundary 
condition. Figure 12 .6  sketches G(x, y) for 'I} = 0.05 , y = 0 .5 ,  and three 
values of A, revealing that for A = -4, this correction term is exponentially 
large in 0 < x < y. It is by quantifying such effects that Theorem 12 . 1  can 
be proved. 

We have concentrated on the time-dependent process generated by an 
advection-diffusion operator L,  but of course , there are other aspects of 
such an operator , and pseudospectra are significant for a number of these . 
For example , whereas the eigenvalues of L imply that the inhomogeneous 
equation (A - L)u = f lacks a unique solution when A is equal to cer­
tain negative real numbers , the pseudospectra show that the equation may 
be unsolvable in practice or have a solution of limited significance for ap­
plications , when A is any number in a wide region of the complex plane. 
Physically one can interpret this as an effect of 'pseudoresonance' [780] . 
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A = -4 

L-� A = 4 

o 0.5 
x 

Figure 12 .6 :  Green's functions G(x,  y) for ( 12 . 1 )-( 12 .2 )  for three values of A 
(rJ = 0.05 ,  y = 1/2) , normalized by G(y, y) = 1 .  The value A = -4 lies in the 
interior of the parabola Rez = -rJ(Imz? , and this explains the exponentially 
large lobe of G(x, y) in the first plot , giving a graphic view of the large pseudo­
resonant response of the advection-diffusion system to certain stimuli . 

The pseudospectra of these operators also have implications for numerical 
methods . One of these is that matrix iterations for such problems converge 
more slowly than the eigenvalues alone would suggest (§25) . Another is 
that numerical time-stepping procedures have tighter time step restrictions 
than the eigenvalues would suggest , as pointed out by Morton in 1980 [564] 
( § §31 and 32) . For these and other reasons, advection-diffusion equations 
have provided a challenge of lasting interest in numerical analysis , with 
three books on the subject published in 1996 alone [552, 565, 643] ; see 
also [269 , 813] . Davies has proposed the use of pseudo eigenfunctions for 
the numerical treatment of such equations [ 185] . Many other methods have 
also been put forward, including graded meshes , upwinding, exponential 
fitting, streamline diffusion, and Petrov-Galerkin finite elements. 

Up to this point we have considered a constant-coefficient advection­
diffusion operator with boundary pseudomodes , as in § 1O .  Now let us look 
at some variable coefficient problems with interior wave packet pseudo­
modes , as in § 1 1 .  Following § 1 1 ,  we employ a semiclassical formulation 
with a small parameter h .  

One example of this kind was presented in equation ( 1 1 .22) and Fig­
ure 1 1 . 5 .  The operator was Lhu = h2uxx + h( 1  + � sin x)ux ' with periodic 
boundary conditions on [- n ,  n] and symbol f(x ,  k) = -k2 - i ( 1  + � sin x )k .  
For each x ,  the symbol curve i s  a parabola in the left half-plane, and 
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Figure 1 1 .5 showed that the pseudospectra fill a region bounded by the 
two parabolas corresponding to the extremes sin x = ± 1. Pseudospec­
tra bounded by parabolas are typical for all kinds of variable-coefficient 
advection-diffusion processes . Physically, one expects that any advection­
diffusion system with variable coefficients is likely to respond to inputs at 
a continuum of frequencies, with a typical response taking the shape of a 
localized wave packet . 

A simpler example of a variable coefficient advection-diffusion operator, 
examined in a paper of Cossu and Chomaz [164] , is 

( 12 . 1 1 )  

acting on  the whole real line .4 Like Davies ' example ( 1 1 . 17) , this is a 
nonnormal variation on the theme of a Schrodinger operator for a harmonic 
oscillator . The eigenvalues and eigenfunctions are 

( 12 . 12) 

for n = 1 , 2 , 3 ,  . . .  , where Hn is the nth Hermite polynomial [ 150] . Pseudo­
spectra for the case h = 0 .02 are shown in Figure 12 .7 .  Applying the theory 
of the last section, we note that the symbol is 

( 12 . 13) 

and the symbol curves are parabolas adjusted by the variable horizontal 
offset 1 /4 - x2 . The winding number about a value A decreases from 1 to 0 
as this curve crosses A from left to right , which occurs for a negative value 
of x, and this explains why the pseudoeigenfunction in the figure sits in the 
left half of the domain. 

This is a very interesting example, for it illustrates fundamental behav­
ior of wide physical importance and is simple enough for an elementary 
explanation. We have here a standard advection-diffusion process coupled 
with a factor that causes exponential amplification for Ix l < 1/2 and expo­
nential attenuation for Ix l > 1/2 .  The associated time-dependent process 
Ut = Lu must be susceptible to transient growth of order () (e 1/ h ) on a time 
scale () (h- 1 ) for some e > 1 ,  for a pulse will grow exponentially during 
the time of order () (h- 1 ) that it spends passing through the amplification 
region. Cossu and Chomaz relate this behavior to the notion of local con­
vective instability used in plasma physics and fluid mechanics [421 ] , which is 
relevant to a number of flows in unbounded domains, including wakes, jets, 
and boundary layers . The effect has nothing to do with eigenmodes, and 
indeed, if we set the diffusion to zero , the transient amplification and the 

4COSSU and Chomaz consider more general coefficients, including a complex coef­
ficient for the Uxx term, making the equation dispersive as well as diffusive and the 
pseudospectra asymmetric with respect to the real axis. 
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Figure 12 .7 :  Eigenvalues and E-pseudospectra of the operator ( 12 . 14) of Cossu 
and Chomaz [164] with h = 0.02 ,  E = 10-2 , . . .  , 10-15 . Below, an optimal pseu­
doeigenfunction for A = 0.05 (marked by a cross in the top image) with central 
position and wave number x. = -1/)5 :::0 -0.45 and k. = o .  

pseudoeigenfunctions persist but the eigenvalues and eigenmodes vanish, 
since every signal attenuates at an accelerating rate as it travels toward 
x = - 00 .  Diffusion creates eigenvalues by recycling a little energy back 
upstream, enabling a pulse to settle into a fixed form that attenuates at a 
fixed rate. In Figure 12 . 7  the eigenvalues are in the left half-plane, but by 
changing the constant 1 /4 to 1/2 ,  say, we could shift some of them into the 
right half-plane , in which case the amplification would exceed the diffusion 
on balance and there would be exponential growth. In fluid mechanics , this 
is a global instability. 

A more exotic variable coefficient advection-diffusion operator has been 
investigated by Benilov, O 'Brien, and Sazonov [49 , 50] . These authors 
consider the instability of a thin viscous liquid film on the inner surface of 
a rotating cylinder in an approximation in which gravitational effects are 
included but inertial and capillary effects are ignored. They reduce their 
problem to the operator5 

( 12 . 14) 

5 More precisely, Benilov et al. consider Lhu = h sin(x)uxx + ( 1  + h cos(x) )ux . The 
behavior is essentially the same as that of ( 1 2 . 14) . 
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again with periodic boundary conditions on [-7r, 7r] , with symbol 

f (x , k ) = - sin (x ) k2 - ik .  ( 12 . 15 )  

An unusual feature here is that for two values of x ,  the coefficient of 
- sin ( x) passes through zero. For each x , the symbol curve is the parabola 
Rez = - sin (x ) (Imz) 2 described in the direction of decreasing imaginary 
part . Completing this curve by a semicircle at infinity, we see that its wind­
ing number is 1 about points to its right and a about points to its left .  For 
any A in the domain bounded by the two parabolas Rez = ± (Imz) 2 ,  the 
winding number accordingly decreases by 1 at some value of x in the inter­
val (-7r ,  -7r /2) or (7r /2 ,  7r) , giving an exponentially good wave packet pseu­
do eigenfunction. Figure 12 .8 confirms this geometry for the case h = 1/10 .  

From a dynamical point of view, a distinctive feature of ( 1 2 . 14) i s  that 
although the pseudospectra fill large expanses of the right half-plane, all the 
eigenvalues lie on the neutrally stable imaginary axis. Many operators with 
this property can be extracted from the examples in this book, including 
that of Figure 12 .7 ,  if multiplied by the factor i, but it is unusual to find 
such behavior arising in a fluid dynamics problem. Benilov et al . speak of 
a phenomenon of 'explosive instability' . 

-1t o 1t 

Figure 12 .8 :  Above, eigenvalues and c:-pseudospectra of the operator ( 12 . 14) of 
Benilov et al . [49, 50] with h = 1/10  and c: = 10- 1 , . . .  , 10-7 . The resolvent norm 
II (A - L) - 1 1 1  grows exponentially as h -t 0 for any A lying in the hourglass shape 
bounded by the two dashed parabolas .  Below, an optimal pseudoeigenfunction 
for A = 1 + l . 5 i  (marked by a cross in the top image) with central position and 
wave number x . = sin-1 (4/9) - 7r "'" -2 .68 and k. = - 1 .5 .  
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One might expect that any linear partial differential equation with smooth 
coefficients should have some solutions , at least locally near a point and in 
the absence of boundary conditions . Many mathematicians were startled 
in 1957 when Hans Lewy published a four-page article that presented a 
counterexample [500] . From here, in the hands of Hormander and others , 
sprang an extensive theory of existence and nonexistence of solutions to 
linear PDEs with smooth coefficients [36 , 409, 412 ,  413 ,  497, 579, 580 , 
783] . 1 In 200 1 ,  Zworski pointed out that Hormander 's construction could 
be interpreted in terms of pseudospectra [202 ,  850, 851 ] , and the aim of 
this brief section is to explain this connection. 

Lewy's example involved three independent variables x, y ,  and t, but 
for nonsolvability at a single point , only two are needed. Consider the 
'Mizohata equation' Ux + ixuy = f (x ,  y) , posed in a neighborhood of 
(x ,  y) = (0 , 0) [553] . This is a linear first-order PDE with analytic co­
efficients. If the right-hand side f is also analytic, then the Cauchy­
Kowalewski theorem ensures that there is a solution in a neighborhood 
of (0 , 0) . 2 If the assumption of analyticity of f is weakened, however , ev­
erything changes. 

Example of lewy nonexistence 

Theorem 13 .1  There exists a Coo function f (x ,  y) such that the par­
tial differential equation 

Lu = Ux + ixuy = f (x ,  y) ( 1 3 . 1  ) 

has no solution in any neighborhood of (0 ,  0) . 

By a 'solution' we mean a C1 complex function of x and y, i .e . , continu­
ously differentiable , that satisfies the equation. More generally it can be 
shown that there are no solutions in the sense of distribution theory. The 
example ( 1 3 . 1 )  is analyzed in [300 , 553, 578 ,  783] , and [412 ,  Section 26 .3] . 

1 Hormander won the Fields Medal in 1962 for this and related work. Also among 
the authors of papers in this list , Charles Fefferman won the Fields Medal in 1978 and 
Louis Nirenberg won the Crafoord Prize in 1982 and the U.S .  National Medal of Science 
in 1995. 

2The Cauchy-Kowalewski theorem is formulated for a boundary value problem with 
boundary data on a noncharacteristic surface. Here a suitable surface is the line x = 0, 
and any analytic boundary condition can be specified there, such as u(O, y) = O. The 
solution takes the form of a convergent Taylor series. 
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The key idea is that a Fourier transform in y reduces the adjoint of this 
equation to a family of equations 

Ux + kxu = f 
parametrized by the dual variable k .  This is exactly the equation ( 1 1 .4) 
that we examined as the simplest example of a variable coefficient problem 
with wave packet pseudomodes ; the small parameter is h = k- 1 . 

Proof. Before looking at neighborhoods of (0 , 0) , let us consider the simpler 
problem of exhibiting a function f for which ( 1 3 . 1 )  has no bounded y­
periodic solution in the strip -7f :::; y :::; 7f around the x-axis . Consider the 
adjoint L* of L, defined by 

( 13 .2 ) 
and the particular function 

Vk (X ,  y) = ek ( iy-x2/2) , ( 13 .3 )  

for any integer k > O . This function is  27f / k-periodic (hence also 27f­
periodic) with respect to y, and it satisfies L*Vk = O. Define an inner 
product by 

(u, V) = 1:1: u(x , y) v (x , y) dy dx; 

for our purposes it is enough to assume that u and v are C1 functions 
in the strip that are 27f-periodic with respect to y and that u is bounded 
and v is integrable over the strip . Now fix k and suppose u is a bounded 
C1 function, 27f-periodic in y, that satisfies the equation Lu = Vk . Then 
using familiar manipulations of adjoints based on integration by parts, we 
calculate 

0 =  (U , L*Vk ) = (LU, Vk )  = (Vk , Vk ) -=I- O. ( 13 .4) 

This contradiction implies that no such u can exist . Notice that ( 13 .4) 
amounts to the Fredholm alternative : Lack of uniqueness for the problem 
L*v = 9 implies lack of existence for the problem Lu = f. 

To extend the argument to neighborhoods of (0 , 0) we consider , What 
goes wrong with the contradiction ( 13 .4) if Lu = Vk holds only in such 
a neighborhood? It is the third equality that fails, (Lu, Vk ) = (Vk ' Vk ) . 
However, the function Vk is localized with respect to x in a region of size 
(,) (k-1/2 ) around (0 , 0) , and by superposing a collection of such functions 
for various parameters k, we can construct a solution to L*v = 0 that is 
localized around y = 0 too. Here is one way to do it . First , we drop the 
assumption of periodicity and redefine the inner product to extend over 
the whole x-y plane, 

(u, v) = 1:1: u(x , y) v (x , y) dy dx ,  
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assuming now that u and v are C1 and square-integrable over the plane. 
Next we redefine Vk so that instead of containing a single wave number k , 
i t  i s  a superposition of functions with wave numbers in a range about k 
(Figure 13 . 1 ) :  

( 13 .5 )  

where ¢ i s  a fixed nonzero Coo function with support in [- 1 , 1] and Ck is 
chosen so that (Vk ' Vk ) = 1 .  This integral is a convolution in the K variable 
with a function of support in [_k1 /2 , k1 /2 ] ,  and according to familiar prop­
erties of Fourier transforms , this is equivalent to a multiplication in the y 
variable by ¢( yk1/2 ) ,  where ¢ is an analytic function with ¢(s) = (') ( I s l -N )  
as l s i  -+ 00 for any N .  Thus Vk is a wave packet localized with respect to 
both x and y ncar (0 , 0 ) , and as before , it satisfies L*Vk = O . 

Now define f (x , y) to be a superposition of the functions Vk for square­
integer values k -+ 00 :  

f(x, y) L Ctj Vj (x , y) . 
j =4 , 9 , 1 6 ,  . . .  

I f  we choose coefficients with Ctj = (')(j-N )  as j -+ 00 for all N,  then 
f (x , y) is Coo . The quadratic spacing of the indices j has the effect that 
the functions Vk in the sum are orthonormal , which implies 

( j, Vk ) = Ctk , k = 4, 9 , 16 ,  . . . .  ( 13 .6 ) 

Figure 13 . 1 :  An example of  the kind of multidimensional wave packet eigenfunc­
tion or pseudoeigenfunction that explains the phenomenon of Lewy-Hormander 
nonexistence as in Theorem 13 . 1 .  The plot shows the real part of a typical 
function ( 13 . 5) for k = 40 on the square [-0 .7 ,  0 . 7] 2 . Because the adjoint equa­
tion L* v = 0 has solutions or approximate solutions like this, the primal equa­
tion ( 1 3 . 1 )  cannot be solved for all f .  
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Now suppose u is a bounded C1 function that satisfies Lu = f in a neigh­
borhood of (0 , 0) . Then in view of the decay of Vk away from (0 , 0) we 
have 

( 13 . 7) 

with (3k = O (k-N ) for all N as k ----> 00 .  Together , ( 13 .6 )  and ( 13 . 7) imply 
OOk = -(3k for all k. How�ver, the decay rate of the numbers (3k as k ----> 00 

is determined by that of ¢(s) as l s i ----> 00 ,  whereas we are free to choose the 
coefficients OOk to decay more slowly. Thus we have a contradiction, and 
there can be no such function u. • 

The sign of the imaginary coefficient in ( 1 3 . 1 )  does not matter . If the 
coefficient were negated, we would consider k ----> -00 instead of k ----> 00 to 
obtain wave packet eigenfunctions . 

Note that the above proof uses eigenfunctions rather than pseudoeigen­
functions . This is possible because solutions (13 .3 )  to the adjoint equation 
happen to be available that are valid throughout the x-y plane. For a PDE 
with less simple coefficients, perhaps just Coo instead of analytic, this would 
no longer be the case. One would still make use of wave packets , but now 
they would satisfy L*v = 0 only approximately in a neighborhood of (0, 0) . 

In the theoretical PDE literature, the study of local solvability of lin­
ear equations has advanced far. First , unlike our example , this litera­
ture treats problems in an arbitrary number of space dimensions , where 
the wave packet pseudomode becomes higher dimensional . Hormander's 
original condition that determines whether such pseudomodes may exist 
is known as the commutator condition, expressed in terms of a Poisson 
bracket . Hormander showed that this condition is necessary for local exis­
tence, but did not settle the question of sufficiency. The theory was soon 
generalized to pseudodifferential operators , which means operators defined 
by a symbol that need not be a polynomial , and the commutator condition 
was generalized to the so-called \jI condition , conjectured by Nirenberg and 
Treves in 1970 to be equivalent to local solvability for both partial dif­
ferential and pseudo differential operators of principal type [579 , 580] . In 
1973 Beals and Fefferman confirmed the Nirenberg-Treves conjecture for 
the special case of partial differential operators [36] , and for pseudo differ­
ential operators , after much work by many people , the conjecture has been 
proved recently by Dencker [201 ] . Surveys of developments in this field over 
half a century can be found in [413] and [497] . 

We shall not attempt to give any details of this extensive and rather 
technical subject , but instead offer an observation about how the wave 
packet argument presented here fits into the larger pattern of the theory 
of pseudospectra. Throughout the last eighty pages , we have emphasized 
that localized pseudomodes may appear in the interior of domains when 
there are variable coefficients, or at boundaries when the coefficients are 
constant . Theorem 13 . 1  is based on the former case , variable coefficients 
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and wave packets .  One might ask, does it have an analogue for a constant­
coefficient problem with boundary pseudomodes? Here is an answer. This 
theorem is probably not new, but we do not know where it has appeared 
before. 

Nonexistence near a boundary 

Theorem 13.2 There exists a c= function f(x ,  y) such that the PDE 

Ux + iuy = f (x ,  y) , ( 13 .8 )  

together with the boundary condition 

u(O, y) = 0 ,  ( 13 .9) 

has no solution in any one-sided neighborhood of (0 ,  0) . 

Notice that the coefficients in ( 13 .8) are now constant . By a one-sided 
neighborhood, we mean the intersection of the half-plane x 2: ° with a 
neighborhood of (0 , 0) , and by a solution we mean a function that is C1 in 
this set , including up to the boundary x = 0, and satisfies the equation. 
To prove this theorem we can follow the same pattern of argument as for 
Theorem 13 . 1 ,  but instead of interior pseudomodes of the form e-kx2/2 ,  
we now use boundary pseudomodes o f  the form e-kx (Figure 13 .2 ) . The 
adjoint operator now has no boundary condition at all and is essentially 
the first-derivative operator considered in §5 .  

In fact , Theorem 13 .2  is  more elementary than this , and ( 13 .8 )  i s  well­
known as the inhomogeneous Cauchy-Riemann or {j equation. Harold Boas 

Figure 13 .2 :  Similarly, boundary eigenmodes or pseudoeigenmodes can explain 
lack of solvability for boundary value problems like that of Theorem 13 .2 .  
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has pointed out to us that the theorem can be proved as follows. Let G 

be a real-valued Coo function defined in a neighborhood of O .  Define a 

function g in a one-sided neighborhood of (0 , 0) by g(x, y) = G (y) , and 
define f(x, y) = iG' (y) . Then g satisfies 

gx + igy = f. 

Now suppose that u is a solution to ( 13 .8)-( 13 .9 )  in a one-sided neighbor­
hood n of (0 , 0) . Then the difference w = u - g satisfies the homogeneous 
Cauchy-Riemann equation Wx + iwy = 0 in n, and thus w is an analytic 
function in n satisfying w(O ,  y) = G(y) . By the Schwarz reflection princi­
ple , it can be reflected to an analytic function in a neighborhood of (0 , 0) . 
But this implies that G is an analytic function of y and thus that f(O ,  y) is 
an analytic function of y, not just Coo . Thus ( 13 .8)-( 13 .9 )  is not solvable 
for arbitrary Coo data f. 

The use of analytic function theory to prove nonsolvability of certain 
differential equations is not new; it was the route followed by Lewy in his 
original paper [500] and by Garabedian for the Mizohata equation ( 1 3 . 1 )  in 
[300] . Ideas related to the nonsolvability of boundary-value problems like 
( 13 .8)-(13 .9 )  actually go back much further , at least as far as Hadamard's 
analysis of ill-posedness of the Cauchy problem for the Laplace equation in 
the early twentieth century [363] . To derive solvability theorems for general 
partial differential or pseudodifferential operators , however , methods of 
analytic functions are not enough. 
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a n d  Non normal  Dyna m ics 





14 . Overview of transients and pseudospectra --­

The quiz at the front of this book set the tone. Nonnormal matrices and 
operators have many aspects , but there is one that grabs our interest first 
and keeps appearing in applications : transient effects in time-dependent 
dynamical systems. We two authors know this from years of experience in 
lecturing and talking with colleagues . Everyone has seen a time-dependent 
problem where eigenvalues are misleading, and such effects are always in­
triguing. l 

Sometimes when transient effects are conspicuous , the essence of the 
matter may be nonlinearity or time-varying coefficients. A schema is pre­
sented in Figure 33.3 that explains in a general way the relationship of 
nonlinearity, variable coefficients, and nonnormality for a time-dependent 
dynamical system. For this part of the book, however, we take it for 
granted that the problem at hand has been reduced to a linear dynamical 
system governed by a fixed matrix or operator. We are interested in cases 
in which the transient behavior of this system differs from the behavior at 
large times, for reasons of nonnormality.2 

If eigenvalues fail to capture the transients, can pseudospectra do bet­
ter? The answer is certainly yes : Though pseudospectra rarely give an 
exact answer, they detect and quantify transients that eigenvalues miss . 
But this subject is complex, for there are many ways in which such ques­
tions can be framed and many estimates that may be obtained; there are 
technicalities that arise for operators but not matrices ; and most of the 
estimates appear once for continuous time and again for discrete time sys­
tems. Thus this part of the book, which is devoted to presenting some of 
these results, is inevitably somewhat complicated. This opening section 
gives an overview. Most of our estimates make use of the quantities 

a(A) ,  a,, (A) , w(A) : spectral , c-pseudospectral, and 
numerical abscissa of A, 

p(A) ,  p,, (A) , fL(A) : spectral , c-pseudospectral , and 
numerical radius of A, 

1 For the sake of balance, perhaps it is worth recalling some aspects of nonnormality 
that are not just matters of transients. These include the pseudoresonant response of 
systems to external stimuli [780] , the behavior of polynomial , rational, and other func­
tions of matrices and operators (§ §26 and 29) , the effect of perturbations on eigenvalues 
( §52) , conditioning and distortions introduced by eigenvector bases ( §5 1 ) ,  and backward 
error analysis of numerical algorithms (§53) . 

2 As discussed in §2 ,  strictly speaking we should not just refer to 'nonnormality' ,  for 
this term is only correct in Hilbert space. More generally one is concerned with the 
conditioning of the set of eigenvectors in the norm of interest. 
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defined in each case as the supremum of the real part or absolute value 
of the spectrum, c:-pseudospectrum, or numerical range of A. All six of 
these numbers are actually determined by the pseudospectra of A: the 
spectrum by the limit c: ---> 0 (at least for bounded operators) ,  and the 
numerical range, as discussed in § 17 ,  by the limit c ---> 00. For a matrix 
with II . I I = I I . 1 1 2 , one can compute them (except the numerical radius) 
with the EigTool system. 

To emphasize the variety of applications in which linear nonnormal tran­
sient effects arise , we provide a list of examples that appear in this book. 

Continuous time 
§5 .  'Disappearing solutions ' in a leftward drift 

§ 1O .  Well- or ill-posedness of time-dependent PDEs on intervals 
§ 12 .  The advection phase of an advection-diffusion process 
§ 12 .  Local convective instability and the Cossu-Chomaz operator 
§ 12 .  Explosive instability and the operator of Benilov et al . 
§ 19 .  Misleading eigenvalues as t ---> 00 for unbounded operators 
§20. How small vortices generate large streaks in shear flows 
§2 1 .  Basins of attraction and transition to turbulence 
§22 . Orr-Sommerfeld eigenvalues , 2D transients, 3D transients 
§23. Linear transient effects throughout fluid dynamics 
§58. Food webs stable in theory, unstable in practice 

Discrete time 
§3 .  Is a tridiagonal Toeplitz matrix power-bounded? 

§24. Convergence of Gauss-Seidel iterations 
§25 . Why don't upwind SOR sweeps work as well as downwind? 
§27. Hybrid iterations cannot be based on eigenvalues alone 
§28 . Convergence of the power method 
§31 .  Nonmodal instabilities of numerical discretizations 
§32. Convergence as the mesh is refined , if transients are bounded 
§33. ODEs may be stiff even when the eigenvalues are harmless 
§34. Boundary instabilities caused by linear 'algebraic' terms 
§56 . The cutoff phenomenon for Markov chains 
§57. How many shuffles to randomize a deck of cards? 
§60. Bouncing photon packets and Petermann excess noise 

We shall discuss continuous time first , our goal being to review the 
main questions of interest and point to sections of this book where rele­
vant theorems may be found . Then we turn to the case of discrete time, 
always analogous yet never so close that one can dispense with a separate 
discussion. Our goal is to survey a broad range of results ,  most of which 
are proved in the following sections . 

Figure 14 . 1 sets the framework. We imagine a matrix or linear operator 
A and are concerned with the growth and decay of solutions u(t) to the 
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transient approximately determined by u" (A) : 
pseudospectral abscissae Ct" (A) 

slope determined by W(A) : 
numerical abscissa w(A) 

slope determined by u(A) : 
spectral abscissa Ct(A) 
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Figure 14 . 1 :  Initial ,  transient , and asymptotic behavior of I l e tA I ! for a nonnormal 
matrix or operator A. 

time-dependent equation du/dt = Au, that is ,  u(t ) = etAu(0) . 3 Specif­
ically, we want to know something about the size of I l e tA l 1  as a function 
of t . 4 

One familiar limit is t ---+ 00 .  Here one ordinarily expects the eigenval­
ues, or more generally the spectrum, to be decisive, with the asymptotic 
growth rate of I l e tA l 1 being determined by the spectral abscissa of A (called 
the spectral bound in semigroup theory) . In fact , the equation 

lim C1 log I l e tA l 1  = a(A) (14 . 1 )  
t-+oo 

holds for any matrix or bounded operator A in a Banach space . Difficul­
ties can arise for unbounded operators , where the left-hand side of ( 14 . 1 ) ,  
known as the growth bound, may b e  greater than the right-hand side . In 
such cases , in Hilbert space , it is enough to replace a(A) by lim,,-+o ae: (A) , 
where ae: (A) is the E-pseudospectral abscissa of A; this is the Gearhart­
Pruss theorem, discussed in § 19 .  (In the special case erA = 0 for some 
finite T, we take the limit on the left of ( 14 . 1 )  to be - 00 . ) 

The other interesting limit is t ---+ O. Provided A is a matrix or linear 
operator that generates a Co semigroup in a Banach space, there is an 
equally sharp and simple result , discussed in § 17 .  The initial growth rate 
of I l e tA l 1  (we assume here a one-sided derivative based on t 1 0) is 

d
d 

I l e tA l 1 I = lim C1 log I l e tA I l = w(A) , ( 14 .2 )  
t 

t=o t ! o 

3We use the matrix notation e tA throughout , though this is nonstandard if A is an 
unbounded operator (and hence not a matrix) . In this case we assume that A is closed 
and densely defined (see §4) and generates a Co semigroup (see § 1 5 ) .  

4The norm l I e tA I l  i s  defined via the supremum o f  l I e tAu l l / l i u l i  over nonzero vectors 
u .  By reversing time, all of our results can be transformed to results for the infimum of 
the same ratio, known as the lower bound of e tA . 
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where w(A) is the numerical abscissa; in semi group theory this is the circle 
of ideas related to the Hille-Yosida and Lumer-Phillips theorems [606] . 
In the Hilbert space case, the numerical abscissa is given by the explicit 
formula 

w (A) = sup (J( � (A + A* ) ) .  

(In the literature of numerical solutions of ordinary differential equations , 
an alternative terminology has arisen: one says that ( 14 .2) holds with w 
replaced by the logarithmic norm of A,  defined by lim 10- 1 ( 1 1 1  + cA I I - 1 ) ;  
see [555] and [575 , p .  43] and references therein . )  .0--->0 

Our main interest is not t ----+ 00 or t ----+ 0 but intermediate values of t .  
Here there are a variety of estimates that can be derived . Eigenvalues alone 
give a lower bound, 

Vt � 0, ( 14 .3) 

valid in any norm for a matrix or linear operator. (In the case of a linear 
operator, a(A) is defined by the spectrum, not just the eigenvalues . )  The 
companion upper bound comes from the numerical abscissa, 

Vt � O . ( 14.4) 

Eigenvalues, together with a finite condition number of a matrix of eigen­
vectors V (in the operator case , the 'columns of V' are a complete set of 
eigenvectors of A that form a Riesz basis; see §51 ) ,  give the alternative 
upper bound 

Vt � O. ( 14 .5 )  

This bound provides an interesting reference point , but in most applications 
with K(V) » 1 ,  it is too loose to be very helpful. And of course if A is not 
diagonalizable , it is no bound at all . 

For sharper information we turn to resolvent norms, i .e . , pseudospectra. 
An extremely useful lower bound in practice is the simple inequality 

sup I l e tA l 1 � a.o (A) /c 
t�O 

Vc > O. ( 14 .6) 

This estimate shows that if the pseudospectra of a matrix with a(A) :::; 0 
protrude significantly into the right half-plane in the sense that a.o (A) > 10 
for some 10 ,  there must always be transient growth. If A has I I (z - A) - I I I  = 
105 for some z with Rez = 0.01 , for example , then a.o (A) � 0 .01 for 
10 = 10-5 , and thus there must be transient growth of magnitude at least 
103 . This estimate is sometimes known as the 'easy half of the Kreiss 
matrix theorem' . If we define the Kreiss constant of A with respect to the 
left half-plane by 

X(A) == sup a.o (A)/c = sup (Rez) l l (z - A) - I II , .0>0 Re z >O 
( 14 .7) 
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then ( 14 .6)  implies 
sup I l etA I l 2: X(A) . 
t2° 

( 14 .8)  

To derive converses of such results, upper bounds on I letA I I , the natural 
tool is the definition of etA as a Cauchy integral of the resolvent . As 
the same technique will be useful for bounding norms of other functions 
of operators in later sections ( § § 16 ,  26, and 28) , we shall begin with a 
general function f that is analytic in a neighborhood of the spectrum, 
cr (A) . Suppose A is a matrix or bounded operator, and let r denote 
a closed contour or union of closed contours enclosing cr (A) once in the 
positive sense and contained in the region of analyticity of f. Then f(A) 
can be defined by the operator analogue of the Cauchy integral formula, 
sometimes called a Dunford-Taylor integral : 

f (A) = � { (z - A) - 1 f (z) dz ;  
2m Jr ( 14 .9) 

see, e.g. , [ 139 , 161 , 221 , 415 , 448 , 641] . This equation yields the same result 
that one gets by defining f(A) by an eigenvalue decomposition (if A is a 
diagonalizable matrix) or the Jordan canonical form ( if A is an arbitrary 
matrix) or direct calculation (if A is bounded and f is a polynomial) or a 
power series (if A is bounded and f is analytic in a sufficiently large disk) . 

To estimate I l f (A) I I , one can simply bound the norm of the Cauchy 
integral by the integral of I f (z) l l l (z - A) - I I I . When r encloses crE (A) , the 
resolvent norm is bounded by c- 1 , and hence 

L 
I l f (A) 1 1  :::; - max l f (z) l , 27rc zE r ( 14 . 10) 

where L denotes the arc length of r.  
To bound I letA I I , i t  would be natural to integrate along the contour 

Rez = constant , but as this is infinitely long, no upper bound can come 
from a finite pseudospectral abscissa ctE (A) in the absence of further infor­
mation. On the other hand, if crE (A) has a boundary with finite arc length 
LE ,  we have 

Vc > 0, Vt 2: 0,  ( 14 . 1 1 )  

a bound that can readily b e  strengthened in most particular cases . 
The Kreiss Matrix Theorem (for continuous time) , also derived from a 

contour integral ( § 18 ) , is a less elementary upper bound: if A is a matrix 
of dimension N, then 

Vi 2: o . ( 14 . 12 )  

This inequality implies that for a matrix or family of  matrices of  fixed 
dimension, any transient growth must be reflected in the pseudospectra, 
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up to a constant factor eN. This factor cannot be dispensed with and 
is in certain senses sharp. In particular , there exist infinite-dimensional 
operators for which I l etA l 1 can exceed X(A) by an arbitrary factor . 5 

Missing from ( 14 .6) - ( 14 . 12 )  is an indication of the time scale on which 
transient growth must occur . Our experience with eigenvalues is a good 
guide here . We know that if a matrix or operator has an eigenvalue z in 
the right half-plane, there must be exponential amplification on the time 
scale l /Rez. The same is true, transiently, if z is an c-pseudoeigenvalue 
for a sufficiently small value of c. Thus for the example mentioned above 
with Rez = 0 .01 ,  the transient growth of order 103 will unfold on a time 
scale of approximately 102 , whereas if A has I I  ( z  - A) - 1 1 1  = 10- 1 for some 
z with Rez = 100, there will be transient growth of the same order on 
the time scale approximately 10-2 . The following estimate making these 
ideas precise was derived by Trefethen in 2002 (unpublished) and reported 
in Wright 's D .Phil. thesis [837] and is also implemented in the EigTool 
system [838] . Given z with Rez = a > 0, suppose I I (z - A)- I I I  = K/a for 
some K > 1 .  Then for any T > 0 ,  

( 14 . 13) 

This inequality may look complicated, but its implications become clear if 
one notes that the expression in parentheses is close to 1 when T is small 
enough that eaT « K. Thus ( 14 . 13) asserts that for any such T > 0, there 
exists some t in the interval [0 , T] for which I l e tA I l is approximately as big as 
eaT , or bigger . In other words, on this time scale, z behaves approximately 
like an eigenvalue. As T increases toward 00, the right-hand side increases 
monotonically, and in the limit T = 00 we get ( 14 .6) . This behavior is 
depicted graphically in Figure 15 . 1 .  

A similar bound has also been derived by Davies [187] . Let N(t) 
denote the upper log-concave envelope of I l e tA I I , i .e . , the smallest func­
tion such that 10g N(t) is concave and greater than or equal to log I l e tA I l 
for all t 2: O . Assume also that the growth bound of A is zero, i .e . , 
limt�oo C1 log I l e tA I I  = 0, which for a matrix or Hilbert space operator is 
equivalent to the condition a(A) = O. Then 

'VT 2: O .  ( 14 . 14) 

On the whole ( 14 . 13) and ( 14 . 14) are rather similar , the former being per­
haps easier to interpret and the latter perhaps more elegant and slightly 
sharper. Some remarks comparing the two can be found in [187] . 

5This statement refers to general values of X(A) . The special value X(A) = 1 implies 
that the numerical range W(A) is contained in the closed left half-plane, in which case 
w(A) ::; 0 and the semigroup is a contraction: I le tA I l  ::; 1 for all t 2: 0, regardless of N. 
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The bounds ( 14 . 13 )  and ( 14. 14) have the unfortunate feature that they 
apply not to a particular time t but to a supremum over a time interval [0, T] 
(explicitly in the first case , implicitly in the second) . By incorporating an 
upper bound in the derivation, we can get a pointwise bound. If I I  etA I I  ::::: M 
for all t 2: 0, for example , following the same notation as above, but now 
with KIM ::::: I, we find for all t 2: 0 

I I tA i l > at _ eat - 1 
= _ (eat - 1 ) ( 1  - KIM) 

e _ e 
KIM 

1 
KIM . 

( 14 . 15 )  

Suppose , for example, that M = 1 (and hence etA i s  a contraction) and 
that K = 0.99 for some z with a = Rez > O. Then (14 . 15)  implies that 
I l etA I l  cannot fall below 0 .99 for any t < 0 .688Ia . For a fuller picture, see 
Figure 15 .2 .  

Finally we note a theorem concerning a special class of operators . A 
matrix or operator that drives a nilpotent time-dependent process can be 
recognized from the pseudospectra: 

( 14 . 16) 

with the limit implicit in the ' 0 '  being Rez ---* - 00 .  This result is given 
by Driscoll and Trefethen [216] and as Theorem 3 of [773] . It implies that 
eTA = 0 is possible only if A is an unbounded operator , since no bounded 
operator can have an empty spectrum. 

We illustrate these results by an example , the 2 x 2 matrix ( 0 1 2 ) 
A = -0.01 0 3 . 

o 0 0 
(14 . 17) 

The left half of Figure 14 .2 shows the pseudospectra of A,  and the right 
half shows the 2-norms I l e tA I I . Now for a 3 x 3 matrix like this it would be 
possible to analyze the behavior exactly, but let us imagine that we knew 
only spectral and pseudospectral information and wished to draw inferences 
about I l e tA I I . The eigenvalues are 0 and ± i/lO ,  so equations (14 . 1 )  and 
( 14 .3) tell us that I l e tA I I  is everywhere bigger than I ,  approaching this 
value in a logarithmic sense as t � 00. Equations ( 14 .2 )  and ( 14.4) tell 
us that I l e tA II is everywhere smaller than about e2 .054t , approaching this 
value as t ---* O. Equation ( 14 .5 )  tells us that I l e tA l 1  is less than about 635 .8 ,  
which for this example i s  an impressively sharp estimate, since the actual 
maximum is about 600.7  at t � 30.7 . In applying equation ( 14 .6) , we have 
a choice of a value of c. The choice c = 10-4 is a good one, since the 
boundary of the 1O-4-pseudospectrum extends a distance close to 0 .03 into 
the right half-plane . The actual distance is about 0 .0283 1 ,  so ( 14 .6) implies 
that I l etA l 1 2: 283 for some t ; this is about a factor of 2 . 14  below the actual 
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Figure 14 .2 :  On the left, E-pseudospectra of the matrix ( 14 . 17) for E = 10-2 , 
10-3 , 10-4 . On the right ,  norms of etA for the same matrix. 

maximum value . Optimizing over E gives the Kreiss constant X(A) :::::: 300 .3 
(achieved with € :::::: . 00332) , so from ( 14 .8)  we get the slightly better lower 
bound of 300 .3 ,  and ( 14 . 12 )  gives the upper bound 2449. Finally, we can 
get information about time scales from ( 14 . 13) or ( 14 . 14) . For example, 
with € = 10-4 and D!c (A) :::::: 0 .02831 as before, ( 14 . 13) gives the lower 
bound 16 .0 for the supremum of I l etA I l in [0 , 100] and the lower bound 267 
in [0 , 300] . 

A more complicated and interesting example of norms of matrix expo­
nentials is presented in § 15 ,  involving matrices derived from a model related 
to the Boeing 767 aircraft . The Orr-Sommerfeld differential operator also 
exhibits similar behavior ; see Figure 22 .3 .  Such examples highlight the 
fact that the pseudospectra of A may contain components lying at very 
different distances from the imaginary axis, corresponding to behavior of 
I l e tA I l on very different time scales . 

Now we turn to discrete time, that is, the behavior of norms of powers 
Ak of a matrix A. We present lower and upper bounds for I IAk I I  following 
the same sequence as in ( 14 . 1 )-(14 . 16) , with a few inevitable differences .  
Figure 14 .3 summarizes the situation. 

For the limit k -7 00 ,  the spectrum is again decisive . The asymptotic 
growth rate of I IAk I I  is determined by p(A) , the spectral radius of A. The 
equation 

lim I IAk l l l /k = p(A) k-+oo 
( 14 . 18) 

holds for any matrix or bounded operator A in a Banach space; see § 16 .  
(In the special case AI< = 0 for some K" we take the left-hand side to  be 
0 . )  The other limit k -7 0 is vacuous : there is nothing more to say than 
I IN I I = I IA I I · 

Again our main interest is intermediate values of k .  Eigenvalues (more 
generally, the spectrum) give the lower bound based on the spectral radius 

'Vk 2: 0 ,  ( 14 . 19) 
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Figure 14 .3 :  Analogue of Figure 14 . 1 for discrete time. 

valid in any norm for a matrix or linear operator . One upper bound anal­
ogous to ( 14 .4) is 

Vk :2: 0 ,  ( 14 .20) 

and another one, related to the numerical range, is 

Vk :2: O .  ( 14 .21  ) 

(In Hilbert space, the constant e can be improved to 2 . )  Eigenvalues, 
together with a finite condition number of a matrix of eigenvectors (or its 
infinite-dimensional generalization) , give the upper bound 

Vk :2: O .  ( 14 .22)  

For sharper information we again turn to pseudospectra. In analogy to 
(14 .6)  we have the simple but very useful bound 

sup I IAk l l  :2: ( p,, (A) - 1 ) /E k�O VE > 0 ,  

which can be improved to the slightly stronger but less memorable 

VE > O .  

( 14 .23) 

( 14 .24) 

These estimates show that if the pseudospectra protrude significantly out­
side the unit disk in the sense that p,, (A) > 1 + E for some E, there must 
be transient growth. For a matrix with I I  (z - A) - 1 1 1  = 105 for some z with 
Iz l = 1 .0 1 ,  for example, there must be growth of magnitude at least 103 . If 
we define the Kreiss constant of A with respect to the unit disk by 

X(A) == sup ( p,, (A) - l ) /E = sup ( I z l - l ) l l (z - A) - I I I , 
,,>0 I z l > l 
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then ( 14 .23) implies 
sup I I Ak l 1 ;::: X(A) . 
k�O 

( 14 .25) 

The simplest converse of these results comes from a contour integral 
around a circle of radius pc: (A) : 

\/s > 0, \/k ;::: O. ( 14 . 26) 

The particular choice of radius 1 + n - 1 leads to 

I IAk l 1  ::; e(k + l ) X(A) \/k ;::: 0, ( 14 .27) 

and by a further integration by parts and other estimates described in § 18 ,  
one can derive the Kreiss Matrix Theorem for discrete time: 

\/k ;::: 0 ,  ( 14. 28) 

if A is a matrix of dimension N. 
Again, the next step is to consider the time scale on which transient 

growth must occur . If a matrix or operator has an eigenvalue z outside 
the unit circle , there must be exponential amplification on a time scale 
l / ( l z l - 1 ) .  The same is true, transiently, if z is an s-pseudoeigenvalue for 
a sufficiently small value of s .  The following estimate, like ( 14 . 13) , was 
derived by Trefethen in 2002 , reported in Wright 's D .Phil. thesis [837] , and 
incorporated in EigTool [838] . Suppose that for some z with I z l = r > 1 ,  
I I (z - A) - I I I = K/(r - 1 ) .  Then for any v > 0 ,  

max I IAk l 1 ;::: r"'/ ( l + 
r'" - 1 )

. O<k5c'" r K - r + 1 ( 14 . 29) 

The expression in parentheses is close to 1 when K, is small enough that 
r'" « r R. Thus the inequality asserts that for any K" there exists some 
k E {O ,  1 ,  . . .  , K,} for which I IAk l 1 is approximately as big as r"' , or bigger. 
In other words , z behaves approximately like an eigenvalue on this time 
scale . In the limit K, = 00 we get ( 14 .24) . For more details, see Figure 16 . l .  

An analogue for discrete time o f  the Davies estimate ( 14 . 14) does not 
appear to have been derived . An analogue of the pointwise bound ( 14 . 15 )  
is 

I IAk l 1 > rk _ rk - 1 = _ (rk - 1 ) ( l - K/M) . 
- K/M 1 K/M ' 

see Figure 16 . 2 .  Another weaker bound is given as ( 1 6 .25) . 

( 14 .30) 

As before, we note a theorem concerning nilpotency, which can occur in 
this context for matrices as well as operators . If A is a matrix or bounded 
linear operator one can show 

( 14 .31  ) 



14 · OVERVIEW OF TRANSIENTS AND PSElJDOSPECTRA 145 

-2 
L_2�--�_1�--�--�-

250� 
200r . . • . ..•...... 

I IAk l 1 . 
1 50 

1 00 

50 

1 0  1 5  20 
k 

Figure 14 .4 :  On the left ,  E-pseudospectra of a 20 x 20 strictly upper random 
triangular matrix for E = 10- 1 , 10-1 . 5 , 10-2 , . . .  , 10-4 . On the right , norms of 
powers of A. See §38. 

as I z l  ---> O . In the matrix case , the estimate on the resolvent norm follows 
from the perturbation theory described in §52 .  

For a numerical example , let us take A to be a 20 x 20 strictly upper 
triangular matrix whose nonzero entries are independent samples from the 
standard N(O, 1) normal distribution (see §38) . Since A is strictly triangu­
lar, it is nilpotent , with all eigenvalues equal to zero, but the pseudospec­
tra protrude significantly outside the unit disk, and there will be transient 
effects in the matrix powers . The left half of Figure 14 .4 shows the pseudo­
spectra of A, and the right half shows the norms I IAk l l . 

Again let us imagine that we know only the pseudospectra of A and wish 
to draw inferences about I I Ak l l . Equations ( 14 . 18 )  and ( 14 . 19) tell us that 
I I Ak I I  approaches zero. Equation ( 14 .20) tells us it is everywhere smaller 
than about (7 . 13) k ,  and the sharpened form of equation ( 14 . 2 1 )  tells us it 
is smaller than about 2( 4 .30) k .  Equation ( 14 .22) tells us nothing since A 
is not diagonalizable . For ( 14 .23) we have a choice of E . The value E = 0 .01 
gives Pc; (A) � 1 . 269, so ( 14 .23) implies that I IAk l 1 is at least as great as 
26.9 for some k ;  this is nearly a factor of 10 below the actual maximum 
value. Optimizing over E gives the Kreiss constant X(A) � 31 . 3  (achieved 
with E � 0 .0041 ) , so from ( 14 .25) we get the slightly better lower bound 
of 31 .3 ,  and ( 14 .28) gives the upper bound 1702 . To get some information 
about time scales from ( 14 .29) , we have a choice of K . For example, with 
E = 0 .01  and Pc; (A) � 1 . 269 as before, ( 14 . 29) gives the lower bound 8.39 
for the supremum of I IAk l 1 for 0 :::; k :::; 10 and the lower bound 26 .5 for 
0 :::; k :::; 20. 

Bottcher has pointed out that interesting results can be obtained by 
combining the estimates of this section with the theorems of §7 about 
Toeplitz matrices [80] . One of the examples he considers is the family of 
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k 
1 000 

Figure 14 .5 :  On the left , E-pseudospectra of the 100 x 100 Toeplitz matrix of 
the form ( 14.32) for E = 10- 1 , 10-2 , 10-4 , 10-8 ; the dashed curve is the unit 
circle. On the right , norms of powers of A. The apparent thickening of the curve 
is caused by oscillations of up to about 1 .4% over every three successive data 
points. 

Toeplitz matrices A defined for each dimension N by 

aj+ l ,j = 10/ 19, aj,j+2 = 10/19 , ( 14 .32) 

with all other entries equal to zero. The spectral radius of such a matrix 
is less than 1 ,  approaching 15 \Y2/19 � 0 .9947 as N ---+ 00. However, the 
symbol curve of the matrix, the image of the unit circle under the map 
i8 (z + z-2 ) ,  has three petal-like components that extend outside the unit 
circle with a maximal radius 20/ 19 .  According to Theorem 7 .2 ,  I I (z- A) - l l l  
will grow exponentially as N ---+ 00 for any point enclosed by this curve . 
It follows from ( 14 .29) that for large dimensions N, the curve of I IAk l 1 
against k must have an exponential initial transient growing approximately 
at the rate (20/ 19) k ,  reaching values exponentially large with respect to N 
before eventually decaying to zero. This effect is confirmed in Figure 14 .5 .  
Analogous exponentially strong transients can be observed with continuous 
time and for any of the families of matrices and operators considered in 
sections § §7-12 .  

We have presented 26 bounds , most of which will be discussed at greater 
length in one of the next several sections : 

§ 1 5 : ( 14 . 1 ) ,  ( 14 .3) , ( 14 .6)-(14 . 1 1 ) ,  ( 14 . 13) , ( 14 . 1 5)-(14 . 16) 
§ 16 :  ( 14 . 18)-(14 .20) , ( 14 .23)-( 14 .27) , ( 14 .29) --( 14 . 3 1 )  
§ 17 : ( 14 .2 ) , ( 14.4) , ( 14 . 2 1 )  
§ 18 :  ( 14 . 12 ) , ( 14 .28) 

It remains to make some observations about generalizations , implications , 
and related matters . 
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One important generalization concerns left-right shifts (for continuous 
time) and rescalings of A (for discrete time) . A bound on I l e tA I l  such as 
( 14.6) , for example, essentially compares I l e tA I I  to a constant . What if we 
wish to compare it instead to an exponential ewt for some w E lR? We can 
do this by shifting A by a multiple of the identity ;  in fact, we have 

sup I l e-wtetA I I  � (ac (A) + W) /E 
t?:O ( 14 .33) 

for any w E  lR. Similarly, in discrete time, we may compare I I Ak l 1 to "/ for 
some ,,( > 0 by noting that ( 14 .23) generalizes to 

't:/E > O .  ( 14 .34) 

Among the bounds we have given for continuous time, ( 14 .6) , ( 14 .8) , and 
( 14. 12)-( 14 . 15 )  can be generalized in this fashion, whereas ( 14 . 1 )-(14 .5 ) , 
( 14 . 1 1 ) ,  and ( 14 . 16 )  are already in a form that incorporates such trans­
lations . For discrete time, ( 14 .23)-( 14 .25) , ( 14 . 27)-( 14 .30) , ( 14 .33) , and 
( 14 .34) can be generalized, whereas ( 14 . 18)-(14 .22) , ( 14 .26) , and ( 14 .31 )  
already incorporate rescaling. In § 15 ,  simple versions of  lower bounds are 
given in Theorem 15 .4  and generalized versions in Theorem 15 . 5 ;  similarly, 
in § 16 ,  we have Theorems 16 .4 and 16 .5 .  

We have concentrated on estimates related to resolvent norms or pseudo­
spectra, but this is not the only approach that can be taken to estimating 
I l etA l 1  or I IAk l l . Another major approach to evolution problems, hardly 
touched upon in this book, is by means of Lyapunov equations and related 
algebraic techniques . For example , a matrix A has a(A) < 0 if and only if 
the equation 

AX + XA* + 1  = 0 ( 14 .35 )  

has a unique self-adjoint positive definite solution. The calculation of such 
a matrix X is related to the derivation of an alternative norm in which 
{e tA } is a contraction; if such an X exists, we have [3 17] 

( 14 .36) 

with K(X) = I IX I I I IX- 1 1 1 . The generalization of such bounds to semigroups 
has been investigated by Veselic [806 , 807, 808] . For alternative bounds 
for I l e tA I l  and I I Ak l 1 based on scalar metrics for nonnormality and other 
algebraic quantities , see [203, 309, 380] . 
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This section and the next three spell out the details of most of the results 
summarized in § 14 .  In particular , here we provide proofs, or pointers 
to proofs , for the inequalities ( 14 . 1 ) ,  ( 14 .3) , ( 14 .6) - -( 14 . 1 1 ) ,  ( 14 . 1 3) ,  and 
( 14 . 15 ) -- ( 14 . 16) concerning I l e tA I I ,  where A is a matrix or a closed linear 
operator acting in a Banach space X with norm I I  . I I .  Some further results 
that apply only in Hilbert space are presented in § 19 .  

The first thing we must do i s  specify the meaning of  etA . I f  A i s  a 
matrix or bounded operator , this is straightforward :  etA can be defined by 
a convergent power series , an idea going back to Peano in 1887. For an 
unbounded operator A E e(X) with domain 1>(A) (these notations were in­
troduced in §4) , the meaning of etA comes from the mathematical theory of 
semigroups. General references on this subject include [ 177 ,  248 , 395, 606] ; 
the following discussion most closely follows Pazy [606] . A Co semigroup is 
a family of bounded operators {T(t ) }o::;t<oo with the properties that T(O) 
i s the identity, T(t  + s) = T(t )T(s)  for s ,  t 2': 0, and T(t )u i s a continuous 
function of t for each u E X. The infinitesimal generator of the semigroup 
is the operator A defined by the condition 

Au = lim 
T(t )u - u

. 
t-O t . 

with the domain 1> (A) taken to be the set of all vectors u E X for which 
this limit exists .  A is a densely defined closed operator , and it determines 
the semigroup uniquely. Throughout this book, whenever the notation etA 
appears and A is an unbounded operator ,  this is shorthand for the Co 
semigroup generated by A. 

I t  i s  known that if a densely defined operator A E e(X) generates 
a Co semigroup, then there are constants w E lR and M 2': 1 such that 
I l e tA l 1  :::; Mewt for all t 2': O .  In the special case M = 1 ,  the semigroup is 
ewt times a contraction, and this situation can be characterized by means 
of the numerical range or the pseudospectra of A; the details are given 
in § 17 .  If A is a matrix, one can always follow this route by taking w large 
enough, though for processes with transient effects in the norm of applied 
interest , it would generally be more useful to take M > 1 and a smaller 
value of w. For some semigroups generated by unbounded operators , M 
cannot be taken to be 1 no matter how large w is. For example , in L2 (lR) , 
we might consider the semigroup of leftward translations defined by the 
condition (e tAu) (x) = u(x + t ) ;  obviously I l e tA l 1 = 1 for all t. On the 
other hand, again in L2 (lR) , suppose we consider the semigroup defined 
by leftward translation except that a function doubles as it passes through 
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x = 0 [248 ,  § 1 . 5 .7] :  

(e tAu) (x) = 
{ 2u(x + t )  

u(x + t )  
i f  x E [-t ,  0] ; 
otherwise . 
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Now I I  e tA I I  = 2 for all t .  What are the generators for these examples? In 
the first case A is the differentiation operator u 1---7 u' with 'D (A) equal 
to the set of absolutely continuous functions in L2 (lR) . For the second, A 
is again defined by u 1---7 u' , but now with a different domain: the set of 
absolutely continuous functions u with u(O) = 0 and such that u' has left 
and right limits at x = 0 satisfying u' (O- ) = 2u' (0+ ) .  

The following theorem concerning Laplace transforms sets out the fun­
damentals from which our bounds are derived. For proofs, see , e .g . , [606] . 

Relationships between etA and (z - A) -l  

Theorem 15 .1  Let A be a matrix o r  a closed linear operator generat­
ing a Co semigroup. There exist w E lR and M 2': 1 such that 

'<It 2': O. ( 1 5 . 1 )  

Any z E CC with Rez > w is in  the resolvent s e t  of A, with 

( 15 .2 )  

If A i s  a matrix or bounded operator, then1 

( 15 .3)  

where r is  any closed contour enclosing O"(A) in its interior. 

Our first bound follows immediately from ( 15 .3) ; we do not give the 
calculations. The remark about the convex hull takes advantage of the fact 
that on the boundary of the convex hull of 0" e: (A) , I I  (z - A) - 1 1 1  2': c 1 , and 
by replacing O"e: (A) by its convex hull, one may reduce the constant Le: . If 
O"e: (A) has several components, one can take the convex hull of each. 

l The identity ( 1 5 .3)  holds more generally if A is sectorial, which means that its spec­
trum is contained in a sector of angle <7r in the left half-plane with resolvent norms de­
creasing outside the sector inverse-linearly with distance from the apex. Equation ( 15 .6 )  
below also holds for sectorial operators , as  does a suitably modified form of  ( 15 .4) . The 
semigroup generated by a sectorial operator is analytic, meaning that the family {etA } 
depends analytically on t .  
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Upper bound on I I etA I I 

Theorem 15 .2  If A is a matrix or bounded linear operator and LE; is 
the arc length of the boundary of aE; (A) or of its convex hull for some 
c > 0, then 

L taE (A) 
I l etA l 1 :::; _

E; e 
__ 2mo Vt ;::: 0 . ( 1 5 .4) 

Next come perhaps the most familiar of all results involving I I  etA I I . As 
usual, a(A) denotes the spectral abscissa. 

I l etA I I  and the spectrum 

Theorem 15 .3  Let A be a matrix or a closed linear operator generat­
ing a Co semigroup. Then 

Vt ;::: 0 ,  ( 15 .5 )  

and if A is  a matrix or bounded operator, 

lim C1 log I l etA I l  = a(A) . 
t-->oo 

( 1 5 .6) 

Proof. To establish ( 15 .5 ) , suppose to the contrary that for some 7 > 0 ,  
I l eTA I l  = 1/ < ea(A) , and assume w :::; ° in ( 1 5 . 1 )  for simplicity ; the case 
w > ° is similar . From ( 1 5 . 1 ) ,  we find that I l e tA I l  is bounded by M for 
o :::; t < 7, by M 1/ for 7 :::; t < 27, by M 1/2 for 27 :::; t < 37, and so on. 
Thus for all t ;::: 0, I l etA I l  is bounded by a function Metw with w < a(A) , 
contradicting the assertion of Theorem 1 5 . 1  concerning the resolvent set . 

To prove ( 15 .6 ) , note that lim inft-->oo C1 log I l etA I l  ;::: a(A) by ( 15 .5 ) , 
and thus our task is to prove lim suPt-->oo C1 log I l e tA I l  :::; a(A) . For each 
c > 0 ,  ( 15 .4) implies that this ' lim sup ' is :::; aE; (A) , and taking c ---; 0 
completes the proof. _ 

We now present an important theorem containing many parts. It could 
be argued that Theorem 15 .4  is the centerpiece of the theory of pseudo­
spectra as applied to problems in continuous time. When dealing with 
nonnormal matrices and operators , we always face the questions, What do 
the pseudospectra tell us about dynamics? Are there significant transient 
effects? These bounds provide some answers. 

The first few inequalities in this theorem have been known for years and 
represent the most straightforward lower bounds on I I  etA I I  that one gets 
if the resolvent norm is 'surprisingly large' at one or more points in the 
right half-plane, that is, larger than the inverse of the distance to the left 
half-plane, which implies that the semi group cannot be a contraction. The 
final three inequalities , though also elementary, are not well-known. The 
inequality ( 15 . 1 1 )  was derived by Trefethen in 2002 (see (14 . 14) for a similar 
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bound due to Davies [ 187] ) ;  the inequality ( 1 5 . 12) i s  new. For applications , 
these latter bounds have the valuable property that they identify a time 
scale on which transient effects must occur . 

Lower bounds on I I e tA I I 
Theorem 15.4 Let A be a matrix or closed linear operator generating 
a Co semigroup. If I I (z - A) - I I I  = KIRez for some z with Rez > ° 
and K > 1 ,  then 

sup I I  etA I I  ::::: K. 
t2:0 

( 15 .7) 

The e-pseudospectral abscissa O!c: (A) is finite for each e > 0 . Taking 
the rightmost value of z in the complex plane with the same value of 
I I (z - A) - I I I  gives 

sup I l e tA l 1 ::::: O!c: (A) /e 
t2:0  

and maximizing over e gives 

'\Ie > 0, 

sup I l e tA l 1 ::::: X(A) , 
t2:0  

where the Kreiss constant i s  defined by 

X(A) == sup O!c: (A)/e = sup (Rez) l l (z  - A) - I I I . 
c:>0 Re z>O 

If a = Rez, then for any T > 0,  
sup I l e tA l 1 ::::: eaT/ ( 1 + 

eaT - 1 ) , 
O<t::;T K 

( 15 .8) 

( 1 5 .9) 

( 15 . 10) 

( 1 5 . 1 1 ) 

and if I l etA l 1 ::::: M for all t ::::: 0, then for any T ::::: 0, with K defined as 
before but now with a < ° permitted and -00 < KIM ::::: 1 ,  

I I  TA i l > aT _ 
eaT - 1 

= _ 
(eaT - 1 ) ( 1 - KIM) 

e _ e KIM 1 KIM . ( 15 . 1 2) 

In the particular case a = K = 0, ( 15 . 12) reduces by l 'Hopital 's rule to 

( 15 . 13) 

Proof· If SUPt2:0 I l e tA l 1 = M, then by ( 15 . 2) , for any z with Rez > 0 ,  

K 100 M 
-R = I I (z - A) - I I I ::::: M le- zt l dt = - . ez  0 Rez 

This implies ( 1 5 . 7) ,  from which ( 1 5 .8 )  and ( 15 .9 )  follow. 
To prove ( 1 5 . 1 1 ) ,  we define MT = sUPO<t:ST I l etA I I , which gives I l e tA I l ::::: 
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MT for 0 < t :::; 7 , I l e tA l 1  :::; M; for 7 < t :::; 27, and so on. By ( 15 .2 )  this 
implies 

00 l (j+ l ) T (T 00 

I I (z - A) - I I I :::; L .  e-atM�+l dt = In e-at dt L e-ajT M�+I . 
j=o J T 0 j=o 

If MT 2' eaT , ( 1 5 . 1 1 )  certainly holds , so assume MT < eaT . Then we may 
sum the series to get 

Inverting this formula gives 

that is, 

a a (eaT/MT - 1 )  - = I I (z - A)- 1 1 1 - 1 > 
K eaT - l  

aT 1 aT/M - 1 e -
e T :::; 

K ' 

which implies ( 15 . 1 1 ) .  The assertion that c¥c (A) is finite for all c > 0 follows 
as a corollary, for suppose to the contrary that some value of I I  (z - A) - 1 1 1  = 
c- 1 is achieved or exceeded for points z with arbitrarily large values of 
a = Rez .  Taking 7 = c/a in ( 1 5 . 1 1 )  for some c > 0 gives 

eC 
sup I l e tA l 1 > , 

O":5,t":5, c/a 
- 1 + (ec - 1 ) / (a/c) 

and taking a � 00 shows that I l e tA l 1  must be arbitrarily large for arbitrarily 
small t ,  contradicting the semigroup property ( 1 5 . 1 ) . 

Finally, to prove ( 15 . 1 2) , we no longer assume a > 0 ;  the bound may 
be interesting for a :::; O. Set I l eTA I l  = P. By ( 15 . 1 )  we have, for 0 :::; t :::; 7 , 

I l e tA I I :::; M, I l e(TH)A I I :::; PM, I l e(2TH)A I I :::; P2M, 

and so on. If P 2' 
from ( 15 .2 )  we get 

or 

and hence ( 15 . 12) . • 

( 15 . 12) is trivial , so assume P < eTa . Then 

1 - e-Ta 
K/M < 1 - Pe-Ta 

1 - e-aT 
Pe-Ta > 1 -

K/M ' 

The bounds ( 15 . 1 1 )-( 1 5 . 13) are important , but their significance may 
be hard to judge directly from the formulas. Figures 15 . 1  and 15 .2  give an 
idea of what is going on and may also serve as references for quantitative 
application to particular problems. The context of ( 15 . 1 1 )  and Figure 1 5 . 1  
is a matrix or operator A for which the resolvent norm i s  'surprisingly 
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Figure 15.1: Illustration of the bound (15.11) with resolvent norm II (z - A) -111 = 
Kia for a single value z with a = Rez > 0, for various values of K. The horizontal 
axis at reflects the fact that the time scale implied by the bound is inversely 
proportional to a. Each point on a curve indicates that somewhere for a value 
of at less than this value, etA must be at least this large. The larger K is, the 
longer z must behave like an eigenvalue. 
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Figure 15.2: Illustration of the pointwise bound (15.12). Again the time scale is 
inversely proportional to a. Each point on a curve indicates that at this value of 
t, II etA II must be at least this large. For a > 0 and K > 0, the closer KIM is 
to 1, the longer etA must remain close to 1 or greater. For a < 0 and K < 0, the 
larger I Kll\"f I is, the longer etA must remain close to eta or greater. 

large' at some point z with a = Rez > 0 as measured by a parameter 
K »1. For large K, I l etA l 1  must evolve at first at a rate close to eat, 
and the larger K is, the longer this behavior must continue. In F igure 15.2 

we assume I l etA l 1  :::; M for all t ;:::: O. The context is now a situation in 
which the resolvent norm is 'surprisingly close to Mia' at a point z, as 
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before . In such a situation I I  e tA I I  must stay nearly as great as 1 or  greater 
for all early values of t, falling below 1 only on a time scale proportional to 
a- 1 I log ( 1  - KIM) I · 

Having presented one theorem with many parts , we shall now do it 
again. The next theorem is the same as Theorem 15 .4 ,  except generalized 
to account for left-right translations of A in the complex plane, as discussed 
on page 147. Mathematically, there is no new content here , but these results 
are so important in practice that it seems worthwhile to present them both 
in the simple form of Theorem 15 .4, then again in this fuller generality. 

Translated lower bounds on I I e tA I I 
Theorem 15 .5  Let A be a matrix or closed linear operator generating 
a Co semig7'Oup, and let w E lR denote a fixed shift parameter. If 
I I (z - A) - l l l  = KI(Rez - w) for some z with Rez > w and K > 1 ,  then 

and 

and 

sup I l e-wt e tA I I  � K ( 1 5 . 14) 
t� O  

sup I l e-wt e tA I I  � (ooo: (A) - w)/e 
t�O 

\ie > 0 

sup I l e-wt etA I I  � X(A) , 
t �O 

( 1 5 . 15) 

( 1 5 . 16) 

where the Kreiss constant with respect to the half-plane Rez ::; w is 
defined by 

X(A) == sup (000: (A) - w)/e = sup (Rez  - w) l l (z - A) - l i l . ( 1 5 . 1 7) 
0:>0 Rez>w 

If a = Rez ,  then for any T > 0, 

sup I l e-wt e tA I I  � e (a-W )T 1 + , 
/ (  e (a-W )T - 1 ) 

O<t�T K 
( 1 5 . 18) 

and if l le tA l 1 ::; Mewt for all t � 0 as in ( 1 5 . 1 ) ,  then for any T � 0 ,  with 
K defined as before but now with a < w permitted and - 00 < KIM ::; 1 ,  

In particular, taking w to be the numerical abscissa, w(A) = 
maxzEW(A) Rez,  so that I I e tA I I  ::; ewt for all t � 0 and thus M = 1 
in ( 1 5 . 19)  ( cf. § 1 7) ,  

Q.T W (A)T (eQ.T _ ew(A)T ) ( 1  - K) 
I l eTA l 1  � eaT -

e -; = eW (A)T - K 
. 

( 1 5 . 20) 
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Finally we present a theorem to the effect that nilpotent operators can 
be recognized from their pseudospectra; see Theorem 6 . 1 1  of [695] , Exam­
ple 4 on page 123 of [248] , and [2 16] . 

Nilpotent operators 

Theorem 15 .6 Let A be a closed linear operator generating a Co semi­
group. For any T > 0, 

erA = 0 � cr(A) = 0 and I I (z  - A) - l l l  = c:l (e-rRez ) , ( 1 5 . 2 1 )  

with the ' c:l '  referring to  the limit Rez ---> - 00 .  

Proof. With M and w as in  ( 1 5 . 1 ) ,  choose any u E X and v E X* with 
I l u l l  = I l v l l  = 1 (see §4) . Taking z = 'Y + i� in ( 15 . 2 )  with 'Y > w gives 

(v, (b + i�)  - A) - lU) = 100 
e- it� (v , e-tietAu) dt = 100 

e-it� f (t ) d t  

with f (t )  = (v ,  e-tietAu) . The notation (v ,  u)  i n  this formula represents 
an inner product in Hilbert space and more generally, in Banach space, the 
action of the semilinear functional v E X* on u E X;  see §4. The rapid 
decay of the term e-hetA justifies the rearrangement of terms and implies 
that f is in L2 . This calculation shows that F(�) = (v, (b + i�) - A) - lU) 
is the Fourier transform of f ,  and the Paley-Wiener theorem asserts that 
f (t )  = 0 for all t > T if and only if F is entire and I F(�) I ::; Ce l � l r  
for all complex � [222] . By one of  the Phragmen--Lindelof theorems, this 
latter bound is equivalent to I F (�) I ::; Cerlm� for Im� > 0,  which in turn is 
equivalent to I (v ,  (z - A) - lU) 1 ::; Ce-r(ReZ-i) for Rez < 'Y- The conclusion 
f (t) = 0 for t > T can be extended to t = T by the continuity property 
of Co semigroups. Since u and v are arbitrary unit elements, the proof is 
complete . _ 

This book is filled with examples of matrices A and their associated 
dynamical systems {e tA} and pseudospectra {cr c; (A) }, and in a number 
of cases , we draw connections between the two via some of the bounds 
( 15 .4)- ( 15 . 21 ) .  Here in this section we shall give just one example involving 
two matrices . It is an exceptionally interesting example because of its 
complexity and behavior unfolding on many time scales . 

The example comes from a 2003 paper in the field of control theory by 
Burke, Lewis , and Overton [ 1 16] ,  and it is also implemented as the 'Boeing' 
demonstration in EigTool. The problem originates in the analysis of a 
model of a Boeing 767 aircraft at a flutter condition; see [190 ,  Problem 90-
06] and [698] . The problem addressed in [ 1 16] leads to a family of real 
sparse matrices of dimension 55 of the form Au + BKC, where B and C 
are fixed matrices of dimensions 55 x 2 and 2 x 55,  respectively, and K is a 
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Figure 15 .3 :  At the top, l I e tA l 1 against t for the unstable and stable Boeing 767 
flutter matrices Au and As, shown on log-log axes to highlight behavior on mul­
tiple time scales . The dashed lines show the eigenvalue lower bound ( 15 .5 ) , and 
the circles represent lower bounds ( 1 5 . 1 1 )  based on pseudospectra with T = 10/a, 
as discussed in the text . Below, E-pseudospcctra of each matrix with close ups as 
indicated by the boxes; the levels are E = 10-2 , 10-2 . 5 , . . . in the first pair of plots 
and E = 10-3 , 10-3 . 5 , . . . in the closeups. Although the second matrix is stable 
in theory, the huge transients would likely make it unstable in practice. 



1 5 · EXPONENTIALS OF MATRICES AND OPERATORS 157 

2 x 2 matrix containing four adjustable parameters . Each nonzero choice 
of parameters corresponds to a different feedback control on the physical 
system, and one may ask about the dynamical properties of the associated 
matrix. In particular , one may attempt to choose parameters so that the 
evolution process {etA } is as well-behaved as possible . 

The uncontrolled matrix Au from this class is unstable , with a pair of 
eigenvalues in the right half-plane and spectral abscissa a(Au) � 0 . 1015 .  
By applying techniques of  nonsmooth optimization, Burke et  al . found 
a set of control parameters so that As = Au + BKe is stable , with 
a(As) � -0.0788 . Classically, one would conclude that in a physical sys­
tem governed by this model , { etA,, } will diverge to infinity whereas { e tAs } 
will behave well. 

The actual operator norms tell a different story. The top row of Fig­
ure 15 .3  shows II e tA" I I and II etA, I I  against t on a log-log scale . We see that 
for t » 10 ,  I l e tA" 1 I  diverges as expected; this time scale is  consistent with 
the spectral abscissa of approximately 0 . 1 .  For t < 10 ,  however, I l e tA" 1 I  is 
four orders of magnitude larger than the eigenvalues can explain. As for 
I l e tAs l l , for t » 10 it decays as expected, on a time scale consistent with the 
spectral abscissa of approximately -0 . 1 .  Again there is transient behavior ,  
however, and this time it is even stronger, reaching a magnitude greater 
than 96,000 at t � 12 . 5 .  For t � 1 ,  I l e tAs l 1  is about six times larger than 
l I etA" I I . In a physical system governed by these matrices, there is every 
possibility that As would behave as dangerously as Au. 

These transient effects can be inferred from the pseudospectra, shown in 
the figure . The unstable eigenvalue for Au has imaginary part about 19 .8 ,  
corresponding to  oscillatory behavior ,  but the closeup box shows that the 
resolvent norm is not especially large in this vicinity. Along the real axis, by 
contrast , the pseudospectra of As protrude into the right half-plane much 
more than those of Au. For example, the 1O-2-pseudospectral abscissa 
of As is about 54 . 1 5 ,  implying that I l e tAs l l must exceed 5 ,000 on a time 
scale not much bigger than 0 .02 .  (We compute ac: (A) in EigTool using 
an algorithm described in §42,  also due to Burke,  Lewis , and Overton. )  
Similarly, the 1O-4-pseudospectral abscissa is about 2 . 1 1 ,  implying that 
I I  etAs I I  must exceed 20,000 on a time scale not much bigger than 0 .5 .  To 
display such estimates graphically we considered the inequality ( 1 5 . 1 1 ) ,  
which provides lower bounds of the supremum over an interval [0, T] , for z = 

108 , 107 ,  . . . , 10- 1 (except with z = 10- 1 replaced by z = 0. 1016 + 19 . 77i 
for Au) . In each case we took T = lOa = 10Re z , so that ear � 22 ,000 
in ( 15 . 1 1 )  and thus the bound is close to its large-T asymptote . The results 
are plotted as circles in Figure 15 .3 .  Each circle can be interpreted a..'i 
follows: Somewhere for t smaller than this , the value of I l etA I l  must be at 
least this high. The pseudospectral bounds track the transient convincingly. 
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This section, the analogue of the last one for powers instead of exponentials , 
provides proofs of the results ( 14 . 18)-( 14 .20) , ( 14 .23)-( 14 .27) and ( 14 .29)­
( 14 .31 ) ,  a s  well as a pair of figures that summarize some of the most im­
portant lower bounds . Our concern now is I I Ak I I ,  where A is a matrix or a 
bounded linear operator on a Banach space X with norm I I  . I I .  For expo­
nentials , we faced a technical challenge if A was unbounded. Here , since 
A is bounded , there are no technical difficulties . 

The following standard results can be found, for example, in Sections 4 .8 
and 5 .2  of Hille and Phillips [395] . 

Relationships between Ak and (z - A) -l  

Theorem 16 .1  Let A b e  a matrix or  a bounded linear operator. There 
exist "( > 0 and M � 1 such that 

'ik � O .  ( 1 6 . 1 )  

Any Z E <C with I z l > "( i s  in  the resolvent s e t  of A,  and the resolvent 
for such z is given by the convergent series 

( 16 .2 )  

Conversely, for any k � 0,  

( 16 .3 )  

where r is  any closed contour enclosing a-(A) in its interior. 

For our first set of bounds we take Pc (A) to be the c-pseudospectral 
abscissa of A, as usual, and we define the Kreiss constant of A (with 
respect to the unit disk) by 

X(A) == sup P
c (A) - 1 

= sup ( l z l - 1 ) I I (z  _ A) - l i l . 
c>o c I z l > l 

( 16 .4) 

In dealing with powers of matrices we are coming to the original context 
of the Kreiss Matrix Theorem itself, and thus what we are now calling 
the Kreiss constant is the same quantity that Kreiss was concerned with 
in 1962 [465] ;  see § 18 .  
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Upper bounds on II Ak I I  

159 

Theorem 16.2 If A is a matrix or bounded linear operator and k 2: ° 
is arbitrary, then 

and, for any c > 0, 

I I Ak l 1 ::::; 
(Pc (A) ) k+1  

c 

( 16 .5 )  

( 16 .6)  

If Lc is  the arc length of the boundary of O"c (A) or of its convex hull 
for some c > 0,  then 

and with X(A) defined by ( 16 .4) , 

I I Ak l 1 < e ( k  + l ) X(A) . 

( 16 . 7) 

( 16 .8 )  

Proof. The first estimate i s  trivial , and the next two follow from ( 16 .3 )  by 
taking r to be the boundary of O"c (A) , its convex hull , or the circle about 
the origin of radius Pc (A) . Taking Pc (A) = l + k� l in ( 16 .6) and using the 
identity ( 1  + k� l ) k < e gives ( 16 .8 ) . • 

From here we can derive familiar results relating I I  Ak I I  to  the spectral 
radius p(A) . 

I I Ak I I and the spectrum 

Theorem 16 .3  If A is a matrix or bounded linear operator, then 

( 16 .9)  

and 
lim I I Ak I 1 1 /k = p(A) . 

k--->oo ( 16 . 10)  

Proof. To establish ( 16 . 9) ,  suppose to the contrary that for some ", > 0 ,  
I I AK I I  = v < p(A) K , and assume "( ::::; 1 in  ( 1 6 . 1 )  for simplicity ; the case 
"( > 1 is similar . From ( 16 . 1 ) ,  we find that I I Ak l 1 is bounded by M for 
° ::::; k < "' , by Mv for ", ::::; k < 2"" by Mv2 for 2", ::::; k < 3"" and so on. 
Thus for all k 2: 0 ,  I I Ak l 1 is bounded by a function M�k with � < p(A) , 
contradicting the assertion of Theorem 16 . 1 concerning the resolvent set . 
To prove ( 16 . 10) , we note that lim inf k---> 00 I I Ak l l 1 /k 2: p(A) by ( 16. 9) , and 
thus our task is to prove lim suPk--->oo I I Ak l l 1 /k ::::; p(A) . This follows by 
taking c -+ 0 in ( 1 6 . 7) .  • 
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We now present the lengthy analogue for powers of Theorem 15 .4  for 
exponentials . The first few inequalities represent the easiest lower bounds 
on I I  Ak I I  that one gets i f  the resolvent norm i s  large at one or  more points 
outside the unit disk . The bound ( 16 . 15 )  is implemented computationally 
among the 'Transients' features in EigTool [838] , and its application was 
illustrated in the discussion of the examples of Figures 14 .4 and 14 .5 .  

Lower bounds on I I Ak I I  

Theorem 16 .4  Let A b e  a matrix or  bounded operator. If I I (z - A) - I I I  
= KI( l z l - 1 )  for some z with I z l = r > 1 and K > 1 ,  then 

sup I I Ak l 1 ::::: rK - r + 1 > K. 
k�O 

( 16 . 1 1 )  

Taking the largest-modulus value of z in the complex plane with the 
same value of I I ( z  - A) - I I I  gives 

for all E > 0, and maximizing over E gives 

sup I I Ak l 1  ::::: X(A) , 
k�O 

where the Kreiss constant is defined by 

X(A) == sup (Po (A ) - 1 ) IE = sup ( l z l - l ) l l (z  - A) - I I I . 
0>0  I z l > I 

For any K > 0, 

sup I I Ak l 1 ::::: rK/ ( 1 + 
rK - 1  )

, 
O< k',SK 

rK - r + l 

( 1 6 . 1 2 )  

( 16 . 13)  

( 16 . 14) 

( 1 6 . 1 5 )  

and if I I Ak II :s; M for all k ::::: 0, then for any K ::::: 0, with K defined as 
before but now with r < 1 permitted and -00 < KIM :s; 1 ,  

I I AK I I > rK _ 
rK - 1 

= 1 
_ (rK - 1 ) ( 1 - KIM)

. - KIM KIM 

When r = 1 and K = 0, ( 16 . 16) reduces by l 'Hopital '8 rule to 

( 16 . 16 )  

( 16 . 1 7) 
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Proof. If sup l l Ak l 1 = M, then by ( 16 .2 ) , for any z with I z l = r > 1 ,  
k?O 

K oc M 
_
r
_ = r l l (z - A) - l l l  :::; l + M " r-k = 1 + -- , 

r - 1  � r - 1  
k= 1 

161  

which implies the middle bound of ( 16 . 1 1 ) ;  this middle bound is in turn 
greater than K since rK - r + 1 = K + (r - l ) (K - 1 ) .  Equations ( 16 . 12 )  
and (16 . 13) follow from this weaker bound involving K.  

To prove ( 16 . 15 )  we define M", = sUPO< k<K I I Ak l l , which gives I I Ak l 1 :::; 
MK for 0 < k :::; K" I I  Ak I I  :::; M� for K, < k :::; 2�, and so on. This implies 

OC { j+ l ) K K 00 

r l l (z - A) - I I I  :::; 1 + L L r-k M�+1 = 1 + L r-k L r-jk M�+l . 
j=O k=jK+l k=l  j=O 

If M", :::: rK , ( 16 . 1 5) holds , so assume M", < r"' .  Then we may sum these 
series to get 

Subtracting 1 from both sides of the inequality yields (r K - r + 1 )  I (r - 1 )  
on  the left ,  so inverting gives 

1 r"'IM", - 1  > 
rK - r + 1 rK - 1 

which implies 

r"'IMK - 1 
rK - 1  < 

rK - r + 1 
and hence ( 16 . 15 ) . 

To prove ( 16 . 16) , we no longer assume r > 1 ;  the bound is also inter­
esting for r < 1 .  Set I I A"' I I  = P. By ( 16 . 1 )  we have for 0 :::; k < K" 

I I Ak l 1  :::; M, I I AK+k I I :::; PM, I I  A2K+k I I  :::; P2M, 

and so on. If P :::: rK , ( 16 . 16)  is trivial , so assume P < rK . Then from ( 16 .2 )  
we get 

KIM < 
or 

Pr-K > 

which implies ( 1 6 . 1 6) .  • 

1 -K - r  
1 - Pr-'" 

1 -
1 -K - r  
KIM 

, 

Figures 1 6 . 1  and 16 .2  illustrate the bounds ( 16 . 15)  and ( 16 . 16 ) , follow­
ing the pattern of Figures 1 5 . 1  and 15 . 2  in the last section. This time, the 



162 IV · TRANSIENT EFFECTS AND NONNORMAL DYNAMICS 

2 3 4 5 6 7 8 9 10 1 1  12 13 14 1 5  
k 

Figure 16. 1 :  Illustration of the bound ( 16 . 15)  with resolvent norm I I ( z - A) - l l l  = 
KI(r - 1 )  for a single value z with r = I z l > I ,  for various values of K and r .  
Each point on a curve indicates that somewhere for a value of k less than or equal 
to this value, II Ak II must be at least this large. The larger K is, the longer z 
must behave like an eigenvalue. 

Figure 16 .2 :  Illustration of the pointwise bound ( 16 . 16) . Each point on a curve 
indicates that at this value of rk , I I Ak I I  must be at least this large . For r > 1 
and K > 0, the closer KIM is to 1 ,  the longer I I Ak l l must remain close to 1 or 
greater. For r < 1 and K < 0, the larger IKIM I is, the longer I I Ak l l must remain 
close to rk or greater . 

bounds are slightly more complicated because there is a scale-dependence 
introduced by the discreteness of the time (i .e . , k) axis . Though these 
figures are complex, the bounds they depict are of great importance in 
applications . It will be interesting to see whether alternative bounds are 
derived in the years ahead that reduce some of this complexity. 

Like Theorem 15 .4  in the last section, Theorem 16 .4  has a built-in 
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scaling: to the unit disk. As discussed at the end of § 14, each of these 
results can be generalized by an arbitrary dilation so as to be scaled to the 
disk of radius f.  The next theorem records the details . 

Dilated lower bounds on I I  Ak I I  
Theorem 16 .5  Let A be a matrix o r  bounded operator, and let "( > 0 
be a fixed dilation parameter. If I I  (z - A) - I I I  = K 1 ( l z l  - "() for some z 
with I z i = r > "( and K > 1 ,  then 

and 

and 

sup Ih-kAk l l  2:: rKh - rh + 1 > K 
k?O 

sup Ih-kAk l l  2:: X(A) , 
k?O 

'VE > 0 

( 1 6 . 18)  

( 16 . 19 )  

( 16 . 20) 

where the Kreiss constant with respect to the disk of radius "( is defined 
by 

X(A) == sup (pE (A) - "() IE = sup ( I z l - "() I I (z - A) - I I I · 
E>O I z l >'Y 

For any K, > 0, 

( 16 . 2 1  ) 

( 16 .22 )  

and if I I Ak I I  :s: M"(k for all k 2:: 0 as in ( 16 . 1 ) ,  then for any K, 2:: 0, with 
K defined as before but now with r < "( permitted and - 00 < KIM :s: 1 ,  

I I AK I I  > K _ 
rK - "(K 

= K 
_ (rK - "(K ) ( 1 - KIM) 

- r 
KIM 

"( 
KIM 

. 

In particular, taking M = 1 and "( = I I A I I  gives 

( 16 . 23) 

( 16 . 24) 

Another bound of the same flavor as ( 16 . 24) , circulated by Trefethen in 
unpublished notes in the 1990s, is 

I I A I I " 2:: ( pE (A) ) K  - [ ( I I  A l l  + E) K - I I A I I K ] ( 16 . 25) 

for any K, 2:: 0 and E > 0 , which can be derived by noting that there must be 
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a matrix or operator B with l i B  - A l l :::; E whose spectral radius is Pc (A ) . 
It can be shown that ( 16 . 24) is a stronger estimate, implying ( 16 . 25)  as a 
corollary. 

Our final theorem is quite obvious if A is a matrix, thanks to the Jordan 
canonical form. The theorem reveals that no new behavior can arise with 
bounded operators . 

Nilpotent matrices and operators 

Theorem 16.6 Let A be a matrix or bounded linear operator. For any 
Ko > 0,  

( 1 6 .26) 

with the ' (') ' referring to the limit z ----. O . 
Proof. If I I (z - A) - I I I  = (') ( I z l - K ) ,  then AK = 0 follows from ( 16 .2 ) . Con­
versely, suppose AK = 0 for some Ko. Define M = sUPk>O I I Ak l l , and for 
any z i- 0 ,  define r = I z l  and 1 = r/2 .  Then in the estimate ( 1 6 . 1 8 ) ,  we 
have K = (r/2) I I ( z  - A) - I I I , and, provided I z l  < 2 ,  that bound implies 
K < M(r/2) I -K . Hence as z ----. 0, I I (z  - A ) - I I I  = (') ( I z l -K ) .  • 

Illustrations of the results of this section appear throughout this book. 
Here we give just two examples , shown in Figure 16 .3 ,  based on the 8 x 8 
Jordan matrix 

0 2 
0 2 

0 2 

A =  0 2 
0 2 

( 1 6 . 27) 

0 2 
0 2 

0 

and the 5 x 5 Toeplitz matrix 

A � ( lO�-' 102 

l�,) 0 102 

0 0 102 
10-4 0 0 

10-4 0 

( 16 . 28) 

The upper and lower shaded regions in each image correspond to the pseu­
dospectral bounds ( 16 .6) and ( 16 . 24) . These bounds depend on parameters 
E > 0 in the first case and r > I I A I I in the second. For each choice of pa­
rameters , one gets an upper bound in the form of a straight line on this log 
scale and a lower bound of a more complicated shape. The shaded region 
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10 15 20 k k 
Figure 16 .3 :  Norms of powers of the matrices ( 16 .27) and ( 16 .28) , together with 
upper and lower bounds ( 16 .6)  and ( 16 . 24) based on pseudospectra, as discussed 
in the text . The dashed line is the eigenvalue lower bound ( 16 .9) . 

has been obtained by taking the lower and upper envelopes of these curves, 
respectively, where E and r range over all possible values . Similar figures 
for other matrices are presented in §§25 and 26.  

Note that for the Jordan block ( 16 . 27) , on the left of Figure 16 .3 ,  the 
upper bound has captured exactly the fact that I I  Ak I I  = 0 for k 2 8. This 
good fortune corresponds to the limits z ---7 0 in ( 16 .2 )  or E ---7 0 in ( 1 6 .6) , 
and matches Theorem 16 .6 .  

Our discussion has concerned exact mathematics , not the results that 
might be obtained on a computer. However, as pointed out in [632] and 
examined more fully in [391 ,  392] and [728] , rounding errors may have 
pronounced effects on the powers of nonnormal matrices . With rounding 
errors , a nilpotent matrix may cease to be nilpotent and a power-bounded 
matrix may have powers that grow exponentially. For example, the spec­
tral differentiation matrix D N of §30 is nilpotent , but on a computer, its 
powers grow exponentially for dimensions as low as N = 10 .  In many 
cases I I  Ak I I  grows in floating-point arithmetic approximately at the rate 
(PE (A) ) k , where E is on the order of machine epsilon; see §53 .  
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The numerical range is most familiar for matrices or linear operators in 
Hilbert space, but the definition and the key properties ( 14 .2 )  and ( 14.4) 
generalize also to Banach space. Here, for simplicity, we first develop the 
subject and the main theorems for a matrix in Hilbert space, i . e . ,  with 
I I . I I = I I . 1 1 2 ' In the final four pages of the section we indicate how these 
ideas can be generalized. 

The (2-norm) numerical range or field of values of a matrix A E <eNxN 
i s  the set of  all of  its Rayleigh quotients: 

W(A) = {x*Ax : x E CCN , I l x l l = I } , ( 1 7 . 1 )  

where I I . I I = I I  1 1 2 ' This is a closed, convex subset of CC that contains 
the convex hull of the spectrum O'(A) ; if A is normal, the containment 
is an identity. l The main aims of this section are , first , to discuss the 
significance of the numerical range, which is narrower than is sometimes 
supposed, and second, to show that just as the spectrum is determined by 
the behavior of the pseudospectra O'c (A) in the limit c --+ 0 ,  the numerical 
range is determined by the behavior of O'c (A) in the limit c --+ 00. If you 
know the pseudospectra of a matrix, you know its numerical range. 2 

The principal application of the numerical range is to estimating the 
behavior of I l etA l 1  as a function of t. We know that I l e tA l 1  may have quite 
different behaviors in the initial , transient , and asymptotic phases t --+ 0, t 
finite ,  and t --+ 00.  According to ( 14 . 1 )  and ( 14 .3)  or Theorem 15 .3 ,  the be­
havior as t --+ 00 is determined by the spectral abscissa a(A) . Analogously, 
it was indicated in ( 14 .2 )  that the behavior as t --+ ° is determined by the 
numerical abscissa w(A) . This connection was illustrated schematically in 
Figure 14 . 1 ,  and later in this section, we shall examine the numerical range 
of the matrix we used to generate that 'schematic' figure. 

1 Excellent sources of detailed information about the numerical range are [72, 73 ,  354, 
367, 415] .  The convexity property, due to Hausdorff in 1919 ,  is not trivial : it can be 
proved by projecting A to a two-dimensional subspace spanned by any two vectors x 
and y, where the numerical range must be the closed set bounded by an ellipse or a line 
segment . The symbol W originates in the German Wertevorrat, the term introduced by 
Toeplitz and Hausdorff. 

2Here is a fanciful way to describe a different relationship between the pseudospectra 
and the numerical range: the c-pseudospectrum is the spectrum as measured by a blunt 
instrument, of precision c, and the numerical range is the spectrum as measured by a 
one-dimensional instrument . The meaning of the latter statement is that W(A) is the 
union of all the spectra obtained by projecting A onto one-dimensional subspaces in the 
same sense as in §40. (Equivalently, W(A) is the set of all Ritz values that might be 
obtained after one step of Arnoldi iteration ( §28) . )  The extension of this idea to higher 
dimensional subspaces is immediate. 
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I I etA I I  and the numerical range 

167 

Theorem 17 .1  For any A E QjN x N with numerical abscissa w(A) and 

1 1 · 1 1  = 1 1 · 1 1 2 , 

and 

Vt 2: 0 ( 1 7.2 )  

I l e tA I I = e twCAJ + o(t) as t ----. O .  ( 1 7.3 )  

In particular, I I  etA I I :::; 1 for all t 2: 0 ( i. e . , A is contractive) if and 
only if w (A) :::; O .  

Proof. I f  T = kt for some positive integer k ,  then I l e TA l 1 :::; I l etA l l k .  By 
taking the limit t ----. 0 we see that ( 1 7.3) implies ( 1 7.2 )  and the final 
assertion of the theorem. The proof of ( 1 7.3)  is given after Theorem 17 .4 ,  
below. _ 

Equation ( 1 7.3) shows that the numerical range answers a certain ques­
tion about matrix behavior exactly. So far as we know, this is the only 
question about matrix behavior that it answers exactly. In other appli­
cations one finds that either the problem is equivalent to ( 1 7.3 )  or the 
information obtained from the numerical range is approximate. For ex­
ample, the numerical range does not answer the question of whether there 
exists a constant C such that I l etA l 1 :::; C for all t 2: 0 (Le. , A is stable ; see 
§49) . A sufficient condition for this is w (A) :::; 0, but one can see that there 
is no such necessary and sufficient condition by noting that the matrices 

A =  
(-1 

o 

have the same numerical ranges, namely the closed disk about -1  of ra­
dius 2 ,  but A is stable whereas B is unstable . 

Ideas related to the numerical range have been applied extensively in 
several fields since the days of Lyapunov, and the notion of contractivity 
(local) as a sufficient condition for stability (global) is usually at the root 
of these applications . The hypothesis of contractivity is so strong that it 
rarely leads to stability conditions that are necessary as well as sufficient , 
but by the same token, the conditions it does lead to are robust enough to 
extend to nonlinear problems (cf. Figure 33.3) . One highly developed field 
of applications is the analysis of discrete numerical methods for ordinary 
differential equations , especially Runge-Kutta methods [ 193 ,  365, 796] . 
Another is fluid mechanics , where the theory of 'nonlinear stability' is 
again really a theory of contractivity [214 , 436 , 622] . A third is semi­
group theory in mathematics , where contractive semigroups are character­
ized by the Hille-Yosida and Lumer-Phillips theorems, as we shall discuss 
in § 19 .  The numerical range is also a familiar tool in numerical linear alge-
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bra [232 , 249, 528, 719] . Terms related to contractivity and the numerical 
range that appear in various fields include dissipativity, accretiveness, semi­
boundedness, the one-sided Lipschitz constant, and the logarithmic norm. 
The logarithmic norm, a real number that may be positive or zero or neg­
ative, is defined by [364, 575] 

f3(A) = lim I I I + cA l i - 1
. 

010  c 
( 1 7 .4) 

Another application of the numerical range is to the problem of con­
tractivity for the powers I I Ak l l . If I I Ak l 1  :s:; 1 for all k 2:: 0, then W(A) 
is contained in the closed unit disk (proof: take k = 1 and consider the 
definition ( 1 7. 1 ) ) ,  but if W(A) is contained in the closed unit disk, the best 
one can conclude is I I Ak I I  :s:; 2. In general, the numerical radius of A is 
defined by 

f1(A) = sup I z l , 
zEW(A) 

and the analogue of ( 1 7.2 )  is 

( 1 7.5 )  

( 1 7.6)  

a result due to Berger [54 , 367 ,  607] . Thus the numerical range does not 
give a complete answer to questions of norms of powers , but it gives partial 
information . 

Now we turn to an example , the matrix that was used to generate the 
schematic illustration shown in Figure 14. 1 :  ( -5 4 4 ) 

A = 0 -2 - 2i 4 . 

o 0 - .3 + i 

( 1 7. 7) 

Figure 17 . 1 displays the spectrum, pseudospectra, and numerical range of 
this matrix . The spectral abscissa is negative,  equal to -0.3 ,  and this is 
the slope of the dashed line at the right in Figure 14. 1 .  The numerical 
abscissa is positive, approximately 2 . 1 1 ,  and this is the slope of the dashed 
line at the left .  If A were a normal matrix with the same eigenvalues , such 
as ( 1 7. 7) with the off-diagonal elements set to zero, the numerical range 
would be just a triangular region (the convex hull of the spectrum ) and the 
spectral and numerical abscissas would both be equal to -0 .3 ,  as shown on 
the right side of Figure 17. 1 .  

We come now t o  the relationship between the numerical range of a 
matrix and its pseudospectra. It is a corollary of Theorem 17 .3 ,  below,  
that the resolvent norm of any matrix satisfies 

1 
I I  (z - A) � l l l  ::; 

dist (z ,  W(A) ) 
'iz ¢:. W(A) , ( 17 .8) 
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Figure 17 . 1 :  Spectrum, c:-pseudospectra (c: 3 .0 , 2 . 5 ,  . . .  , 0 . 5 ) ,  and numerical 
range (shaded) of the 3 x 3 matrix ( 1 7. 7) used to generate Figure 14. 1 (left ) , and 
of the same matrix with the off-diagonal entries set to zero (right) . The dashed 
line is the imaginary axis. 

where dist denotes the usual distance from a point to a set (compare (4 .2) ) .  
This resolvent bound, which has been known for years [732, Thm. 4.20] , 
implies that pseudospectra cannot be much larger than the numerical range: 

oAA) � W(A) + �c , ( 1 7.9 )  

where �c i s  the open disk of  radius E. about the origin [624] . Conversely, 
the following theorem establishes that W(A) is determined by ( 1 7 .8) . 

The numerical range and the pseudospectra 

Theorem 17.2 For any A E I[jN X N, with 1 1 · 1 1 = 1 1 · lb  W(A) is equal 
to the intersection of all the closed half-planes H � I[j satisfying 

< 
dist (z ,  H) 

1 
'v'z � H, ( 17 . 10) 

or equivalently, 

dist (A ,  H) < E. 'v'E. > 0 , 'v'A E oAA ) ( 1 7 . 1 1 )  

or 
'v'E. > 0. ( 17 . 12 )  

Proof· The equivalence of ( 17. 10)-( 17 . 12 )  follows from the definition of 
O"c (A) . The connection of these formulas with W(A) is proved after The­
orem 17 .4, below. _ 
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The essential feature of ( 17 . 10) is that the numerator on the right-hand 
side is 1 ,  not an arbitrary Kreiss constant X 2: 1 as in §§14 ,  15 ,  and 18 .  
Equivalently, i t  i s  E rather than XE that appears on the right in  ( 1 7 . 1 1 )  and 
( 17. 12 ) . These are further reflections of the association of the numerical 
range with contractivity, not stability. 

Theorems 17 . 1 and 17 .2  relate the numerical range to the exponentials 
I l etA I I  and the resolvent norms I I ( z  - A) - I I I ,  or equivalently, the pseudo­
spectra O"c (A) . We have deferred the proofs of these results because it 
is easiest to treat them together . For simplicity, the following theorem is 
formulated for the particular value w(A) = 0, and nonzero values w(A) are 
then treated as a corollary in Theorem 17 .4 .  As always in this book, O!c (A) 
denotes the E-pseudospectral abscissa of A, O!c (A) = sUPzEO"e (A) Rez .  

Equivalent conditions for w(A) = 0 

Theorem 17.3 Given A E CN x N with I I  . I I = I I  . 1 1 2 , let z ,  E, and t be 
positive real numbers. The following statements are equivalent: 

( i )  w (A) = 0, ( 17 . 13 )  

(ii) I I (z - A) - l l l - l = Z + 0 ( 1 )  as z --7 00, ( 1 7 . 14) 

(iii) O!c (A) = E + 0 ( 1 )  as E --7 00,  ( 1 7 . 1 5 )  

(iv) (3(A) = 0 ,  ( 1 7. 16) 

(v) ( <ft l l etA I I ) t=o = 0 .  ( 17. 1 7) 

Here w ,  o!c ' and (3 denote the numerical abscissa, E -pseudospectml ab­
scissa, and logarithmic norm, respectively. The derivative in ( 17 . 17) is 
defined by the one-sided limit t 1 0 .  

In  semigroup theory, approximately speaking, the equivalence o f  (i) and 
(v) is the Lumer-Phillips theorem, and the equivalence of (ii) and (v) is 
the Hille-Yosida theorem. 

Proof. Throughout the proof we use the convention z = r l and omit 
the qualifiers ' as t --7 0 ' and 'as z --7 00' . First , the following sequence 
establishes (iv) {==} (ii) : 

(3(A) = ° {==} I I I + tA i l = 1 + oCt) 

{==} I I I + tA + t2A2 + · · · 1 1 = 1 + 0(t) 

{==} 1 1 (1 - tA) - l l l  = 1 + oCt) 

{==} I l z (z  - A) - I I I  = 1 + o(z- l )  

{==} I I ( z - A) - l l i - l = z + o( l ) . 
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For (iv) ¢=} (i) we argue as follows: 

{3(A) = 0 ¢=} I I I  + tA i l  = 1 + o(t )  

{==} sup I I x + tAx l 1 = 1 + o(t )  
I l x l l = l 

¢=} sup x*x + tx* (A + A* )x = 1 + o(t )  
I l x l l = l 

{==} sup x* (A + A* )x = O 
I l x l l =l 

¢=} sup Re (x*Ax) = 0 
I l x l l = I 

¢=} w(A) = O .  

171  

To prove (iv) ¢=} (v) it  is enough to note that I l etA l 1 and I I I + tA i l  have 
equal one-sided derivatives with respect to t at t = O .  Finally, since I l e tA l 1 = 

I l e t (A+is ) 1 I  for any real s ,  the equivalence of (v) and (ii) implies that (ii) 
can be strengthened to I I (z + is - A) - I I I  = z + 0 ( 1 )  for any real s , and by 
the definition of a,, (A) , this is equivalent to (iii ) . • 

By a translation in the complex plane, whose details we omit , the five 
equivalent conditions of Theorem 17 .3 generalize to five equal expressions 
for w(A) , whether zero or nonzero. 

Characterizations of the numerical abscissa 

Theorem 17.4 For any A E (]JN X N, with 1 1 · 1 1 = II . 1 1 2 ' 

w(A) 

where w,  a" , and {3 denote the logarithmic norm, pseudospectral ab­
scissa, and numerical abscissa, respectively, and the derivative d/ dt is 
again defined by a one-side limit. 

Completion of the proofs of Theorems 17. 1  and 17 .2 . We can now complete 
the proofs of the first two theorems of this section. Equation ( 17 .3) of 
Theorem 17 . 1 is equivalent to the equality of w(A) and ( it  I l e tA I I ) t=o above. 
As for Theorem 17 .2 ,  the equality of w (A) and lim,,->oo [a,, (A) - c J , which 
in turn is equal to sUPe>o [a,, (A) - c ] since a,, (A) - c is a nondecreasing 
function of c, shows that the rightmost point of W(A) in (]J just touches the 
boundary of the intersection of all half-planes H = { z :  Re z :s; constant} 
that satisfy ( 1 7. 1 1) .  The proof is completed by rotating this result , A ----7 
eioA . • 
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The equality 
w(A) = a( � (A + A* ) )  ( 1 7 . 18)  

i s  implicit in our proof of Theorem 17 .3  and forms the basis of  the standard 
algorithm for computing the numerical range of a matrix [389 , 433] . By 
computing the largest and smallest eigenvalues and associated eigenvectors 
of � (A+A* )  one finds the vectors that achieve the maximum and minimum 
real part of W(A) ;3 rotating this calculation by various angles A ---+ eieA 
traces out the boundary of W(A) . Plots of computed numerical ranges 
can be found, for example , in [354, 389] , and are also available in EigTool . 

The results presented so far have indicated that in two respects , the 
spectrum and the numerical range lie at complementary extremes. Schemat­
ically : 

I I (z - A) - l l l ---+ oo <-------7 
I I (z - A) - l l l ---+ O <-------7 

O'(A) <-------7 I l e tA I ! as t ---+ 00, 

W(A) <-------7 I l e tA I ! as t ---+ O .  
A third respect in which the spectrum and the numerical range are opposite 
is that whereas O'(A) may be arbitrarily sensitive to perturbations , W(A) 
is as robust as one could desire , for from ( 1 7. 1 )  we have 

W(A + E) <:;;; W(A) + � I I E I I ' 

where � I IE I I  is the closed disk about 0 of radius I I E I I .  Perhaps one can sum­
marize these complementary roles of O'(A) and W(A) with the thought 
that for the question, Where in <C does a matrix A ' live' ? ,  the smallest 
reasonable answer is O'(A) and the largest reasonable answer is W(A) . 
Other answers, including the E-pseudospectra for the values of E of great­
est interest , and also the estimates of O'(A) that are obtained by various 
approximate techniques such as Arnoldi iteration ( § §27, 28) , typically lie 
in between. See the discussion in §47. 

Our discussion up to now has concerned finite-dimensional matrices and 
the norm I I  . I I  = I I  . 1 1 2 ' We now turn to  the generalization o f  these ideas 
to other norms and to linear operators . We follow the formulations of §§4 
and IS ,  assuming that A i s  a closed operator with dense domain n(A) in 
a complex Banach space X. 

Generalizations to Banach space were carried out independently by 
Lumer in 1961 and Bauer (for matrices) in 1962 [3 1 ,  522] ; the definition we 
follow here , now reasonably standard , is Bauer 's .4  Recall from §4 that if 
u E X has I l u l l  = I ,  then there exists at least one dual vector I E X* with 
I I I I I  = 1 such that ( I, u) = 1. (The expression (I, u) denotes the number 
that results when I is applied to u. ) The n1tmerical range of A is defined 

3 It follows that it is simple to compute w(A) . The task of computing the numerical 
radius ,  /-L(A) = sUPzE W (A) I z l , presents a greater challenge; see [545] for an algorithm. 

4W(A) as defined by ( 17 . 19) is also sometimes called the Bauer field of values, the 
spatial numerical range, or the total spatial numerical range. 
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as follows : 

W(A) = { ( f, Au) : u E 1J(A) , 1 E x* , I l u l l  = 1 1 1 1 1  = I ,  (1, u) = I } .  
( 17 . 19)  

This definition is  a natural generalization of ( 1 7. 1 ) ,  but in at least one 
respect it is genuinely more complicated, for whereas in Hilbert space each 
vector u has a unique dual vector 1 satisfying the required conditions , in 
Banach space 1 may be nonunique . 

For matrices with 1 1 · 1 1  = 1 1 · lb we know that W(A) is convex and closed 
and contains the spectrum. The convexity is a Hilbert space property and 
is lost in general for norms other than I I . 1 1 2 , even for matrices . The con­
ditions of being closed and containing the spectrum are finite-dimensional 
properties and are lost in general for linear operators, even in Hilbert space . 
If A is bounded, however , it is known that W (A) is connected [71] and that 
o-(A) <:;; W(A) [832] . With the numerical radius defined by ( 17.5 )  as be­
fore, it is known that for a bounded operator A ( 17.6)  only holds in Hilbert 
spaces ; in Banach spaces, it must be replaced by 

( 17 .20) 

The constant e = 2.718 . . .  is best possible , even for 2 x 2 matrices [67, 3 14] . 
For an example to illustrate nonconvexity [581 ] , consider the matrix 

( 17 . 2 1 )  

Since A i s  skew-Hermitian with eigenvalues ±V2i ,  in  the 2-norm we have 
W (A) = [-V2i , V2i] and w (A) = O. In the 1- or oo-norms, however , 
W (A) is the hourglass-shaped figure shown on the left in Figure 17 .2 ,  
with w (A) = l . 5  To be definite let us  take II . I I  = I I . 1 1 00 '  The value 
z = i + ie i e  E W(A) for any real e is attained with the choices u = (eW ,  l )T  
and 1 = (0 ,  l )T  in ( 1 7. 19) : 

( 0  1 )  ( -11" 11" ) ( e
1
i e ) 

= i + ie i e . 

Another choice of u and 1 gives z = 1
/
2 : if 8 = (2 + V2 )

/
4, then 

( 8 i 1 /2 ( 1 - 8) )  ( -i i ) ( 1 ) _ / 
. .  ' - 1 /2 - 1 2 .  1 1 1 

5The hourglass consists of the two closed disks of radius 1 about ± i ,  plus some 
further territory near the origin. These are in fact Gerschgorin disks for this matrix, 
and in general, for any finite-dimensional matrix A in 1 1 . 1 1 1 or 1 1 · 1 1 00 '  the convex hull of 
W(A) is equal to the convex hull of the union of appropriate Gerschgorin disks [581] . 
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-2 

Figure 17 .2 :  On the left ,  spectrum, e:-pseudospectra (e: = 1 . 5 , 1 . 25 ,  . . .  , 0 .25) , 
and numerical range (shaded) of ( 17 .21 )  in the 1 1 · 1 1 00 or (equivalently for this 
matrix) II . I i I  norm. Note that in a Banach space the numerical range need not 
be convex. The numerical abscissa w(A) = 1 is still equal to the initial slope of 
I l e tA I I , however, as shown in the plot on the right of I l e tA l l oo or I l etA l i I  against t .  
The dashed line has slope 1 .  

For a first example to illustrate the possibility of  'missing points' in  the 
numerical range, it is enough to take A to be the shift operator on £2 (Z) , 
i .e . , the doubly infinite matrix with ones on the first subdiagonal and zeros 
everywhere else. The spectrum is the unit circle (Theorem 7. 1 ) ,  but W(A) 
is the open unit disk, i .e . , O' (A) and W (A) are disjoint . 

These ideas bring us to the following very satisfactory situation. We 
have argued that the main application of the numerical range is to de­
termining the initial slope of I I etA I I  via the numerical abscissa, which is 
defined for an operator A in the usual fashion by 

w(A) = sup Rez .  ( 17 . 22) 
zEW(A) 

If A is a linear operator in Banach space, then W(A) may not be closed or 
convex, but this introduces no difficulties in the definition of w(A) , which 
is determined only by the closure of the convex hull of W (A) . One might 
accordingly hope that the results of Theorems 17. 1 -17 .4 would carry over 
to this more general situation, and if A is a bounded operator, this is 
exactly right . The following facts can essentially be found in the original 
papers of Lumer [522 , Lem. 12] and Bauer [31 ,  Thm. 4 .3] . For an extended 
discussion see [72] . 

Numerical range and bounded operators 

Theorem 17.5  Let A be a bounded linear operator on a Banach space 
X .  Then all the assertions of Theorems 17 . 1 -17.4 are valid as writ­
ten, with one modification: In Theorem 17 .2 ,  W(A) is replaced by the 
closure of the convex hull of W(A) . 
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It remains to record what happens if A is unbounded, a subject re­
viewed in the book by Pazy [606] . Suppose A is a densely defined closed 
operator in X that generates a Co semigroup {e tA } .  From the general 
theory summarized in § 1 5  we know that there exist real constants M and 
w such that I I  etA I I  :::; M ewt for all t � O .  Our concern in this section is 
the situation where M can be taken to be 1, so that A - w is the gen­
erator of a contraction. The central results that characterize semi groups 
with this property are the Hille-Yosida theorem [395 ,  606, 845] , which re­
lates contractivity to the norm of the resolvent , and the Lumer-Phillips 
theorem [523 , 606] , which relates it to the numerical range. 

The first thing we note about the case in which A is unbounded is that 
our conditions involving the logarithmic norm j3(A) can no longer apply, 
since the numerator of ( 17.4) is not finite. Dropping this condition, one 
may hope that the remaining observations concerning the resolvent norm, 
the norm of the semigroup, and the numerical range may still hold. This is 
indeed the case, apart from one complication. It may happen that W(A) is 
'missing' much more of the complex plane than just some boundary points 
as in the example above of the shift operator. For example, suppose A 
is the derivative operator in L2 [0 , 00 ) with domain :D (A) equal to the set 
of absolutely continuous functions u E L2 [0 ,  00 ) with u(O) = O. Then the 
spectrum of A is the entire closed right half-plane (see § 1O) ,  but by inte­
gration by parts one can see that the numerical range is just the imaginary 
axis . Thus, although the numerical abscissa is zero, this operator does not 
generate a semigroup at all , let alone a contraction semigroup . 

Fortunately, large missing patches of the numerical range like this can 
only occur in a certain special fashion. If W (A) is the closure of the nu­
merical range of A, let n be a connected component of ([; \ W(A) . Then 
n may be disjoint from the spectrum 0-( A) , or it may be entirely con­
tained in O'(A) . No intermediate configuration is possible [606 , Thm. 3 . 9] . 
As a consequence of such results we obtain the following almost perfect 
generalization of the results of this section to operators in Banach space . 

Numerical range and unbounded operators 

Theorem 17.6 Let A be a densely defined closed linear operator in a 
Banach space X .  If w (A) = 00, then either A does not generate a Co 
semigroup or it generates a Co semigroup that does not satisfy I I  etA I I  :::; 
e tw for any w .  On the other hand, suppose w(A) and a(A) are both 
finite. Then A generates a Co semigroup with I I etA II :::; etwCA) , and all 
the assertions of Theorems 17 . 1 -17.4 are valid, with two modifications. 
First, the conditions involving j3(A) in Theorems 17 .3  and 17.4 are 
dropped. Second, in Theorem 17 .2 ,  W(A) is replaced by the closure of 
the convex hull of W(A) , and the additional assumption is made that 
O'(A) contains no unbounded components that are disjoint from W(A) . 



1 8  . The K reiss Matrix Theorem ________ _ 

The Kreiss Matrix Theorem, originally published by Heinz-Otto Kreiss in 
1962 [465] , concerns the characterization of matrices and families of ma­
trices that are power-bounded. I Thanks in part to its dissemination in the 
classic monograph by Richtmyer and Morton [639] , this theorem quickly 
came to be regarded as one of the fundamental results of theoretical numer­
ical analysis. The result was given already as ( 14 .28) , and its continuous 
analogue for matrix exponentials as ( 14 . 1 2 ) . 

Let A be an N x N matrix, let 1 1 · 1 1  denote a vector norm and the matrix 
norm it induces , and define 

p(A) = sup I IN< I I . k?O 

We say that A i s  power-bounded if p(A) < 00. As is  well-known, power­
boundedness is equivalent to the condition that all the eigenvalues of A 
lie in the closed unit disk and that any eigenvalues on the unit circle are 
nondefective .  This eigenvalue condition, however, is not quantitative . It 
gives no information about how large p(A) may be for a particular choice 
of A, and consequently, it does not determine whether a family of matrices 
{Av} satisfies a uniform power bound, independently of v .  Such a uniform 
power bound is needed for the important application to the stability of 
finite difference discretizations of partial differential equations ( §32 ) . The 
matrices {AN } considered in §3 are an example of a family that is not 
uniformly power-bounded, as illustrated in Figure 3 .4 .  

Kreiss 's idea was to relate the power bound for A to what we now call 
its Kreiss constant with respect to the open unit disk, � .  As in § 14 ,  X(A) 
is defined as the smallest C for which 

I I ( z  - A) - I I I  :s; _I I
C 

z - 1  \;fz, I z l > 1 .  ( 18 . 1 )  

Equivalently, 
X(A) = sup ( I z l - l )  I I (z  - A) - I I I · 

I z l > 1  

X(A) is a measure of how fast the resolvent norm blows up as z approaches 
�, or equivalently, how far the pseudospectra protrude outside � .  

Here i s  the theorem. The analogous result for matrix exponentials is 
given at the end of this section. 

I This section is adapted from [816J . 
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Kreiss Matrix Theorem 

Theorem 1B .1  For any N x N matrix A, 

X(A) :::; p(A) :::; eNX(A) . ( 18 .2 ) 
These bounds are sharp in the sense specified in the proof, below. 

In words , though the sequence of norms I I Ak l 1  may exhibit an arbitrarily 
large 'hump'  separating its transient from its asymptotic behavior ,  the 
height of this hump can be quantified: it is equal to X(A) , up to a factor 
no greater than eN. 

Theorem 18 . 1 is a long way from the original statement of the Kreiss 
Matrix Theorem of 1962. At that time, instead of describing the factor eN 
explicitly, the theorem made the following assertion: A family of N x N 
matrices satisfies a uniform power bound if and only if it has a uniform 
Kreiss constant . Two additional equivalent conditions were also stated , 
which we shall not discuss , and the equivalence of all four conditions was 
proved by a cycle of four steps . If one looks at what quantity is implicitly 
established by this proof in place of the factor eN, one finds a number that 
is exponentially large as a function of N. In the following years, various au­
thors then made a succession of improvements that reduced this constant . 
According to Tadmor's remarks in [737] for the earlier developments, the 
history of progress toward the constant eN involved no fewer than nine 
steps: 

Kreiss '62 :  
Morton '64: 

Miller & Strang '66 :  

Miller '67 :  

Laptev ' 75 / Strang ' 78 :  

Tadmor ' 8 1 :  

LeVeque & Trefethen '84: 

Smith '85 : 

Spijker ' 9 1 :  

'" 6N (N + 4) 5N 

'" NN 

'" e9N2 

32eN2/7r 
32eN/7r 
2eN 
( l + � ) e N  
e N  

For details , see [499 ,  639 , 715 ,  737, 816] and the references therein.  
Most of the remainder of this section is devoted to the proof of Theo­

rem 18 . 1 .  This proof is by no means obvious , but it is nonetheless quite 
simple , depending on a curious mix of a resolvent integral , integration by 
parts, and some ideas of integral geometry that go back to the famous 
'Buffon needle problem' of 1777. This proof can be attributed to the cu­
mulative efforts of Laptev ,  Strang, Tadmor, LeVeque, Trefethen, Spijker , 
and Wegert . 
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Proof of Theorem 18 . 1 .  The left-hand inequality of ( 18 .2) asserts that if 
I I Ak l 1  2:: C for all k ::::: 0, then I I (z  - A)- I I I  2:: C/ ( I z l - 1 ) for all I z l  > 1 .  
This inequality follows easily by taking the norm of the power series 

which is guaranteed to converge for all l z i > 1 if A is power-bounded, since 
the spectrum of A then necessarily lies in � (Theorem 16 . 1 ) . We therefore 
turn to the more difficult right-hand inequality of ( 18 .2 ) . 

We begin with the resolvent integral . Following Theorem 16 . 1 ,  we have 

where G is any contour enclosing the eigenvalues of A, which themselves 
must lie in � if X(A) < 00. In the remainder of this discussion, we assume 
II . I I  = I I  . 1 1 2 and use inner product notation for simplicity, but the same 
arguments can be generalized to other norms as in § §4 ,  16 ,  and 17 .  Let u 
and v be arbitrary N-vectors with I l u l l  = I l v l l  = 1 .  Then 

v*Aku = � r zkr (z) dz, 
27r1 lc 

where r(z )  is the function v* (z - A) - l U, which can be shown to be a 
rational function of order N, that is , a quotient of two polynomials each of 
degree 2:: N. 

The next step is to integrate by parts, which gives 

v*Aku = . 
- 1 r zk+lr' (z) dz. 27rI (k + 1 ) lc 

Let the contour of integration be taken as G = {z  E <C :  I z l  = l + (k+l ) - I } . 
On this contour we have I zk+l l 2:: e, giving the bound 

I v*Aku l 2:: 
(

e ) r I r' (z) l l dz l .  
27r k + 1 lc 

This integral can be interpreted as the arc length of the image of the circle 
G under the rational function r. By Theorem 18 .2  below, this arc length 
satisfies r I r' (z) l l dz l  2:: 27rN sup I r (z ) l . lc zEC 
By the definition of  X(A) , this supremum is  at most (k + l )X(A) . All 
together , then, we have 
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Since I IAk l 1 is the supremum of I v*Aku l  over all vectors u and v with 
I I u l 1 2 = I I v l 1 2 = 1, this establishes the right-hand inequality of ( 18 . 2) . 

The theorem concludes with an assertion of sharpness of these bounds . 
We now explain exactly in what sense they are known to be sharp . First , 
the inequality X (A) � p(A ) is sharp in the sense that for any N,  there 
are N x N matrices for which X (A ) = p (A) exactly. In fact we need look 
no further than the identity matrix, for which we have X (A ) = p (A) = l .  
As for the inequality p (A ) � eNX (A) , it is sharp in a weaker sense . In 
general , given N, there do not necessarily exist matrices for which equality 
is attained. However, the linear behavior with respect to N and the factor e 
are both best possible in the sense that if p (A) � CNaX (A ) for all A for 
some constants C and a ,  then a can be no smaller than 1 and, if a = 1 ,  C 
can be no smaller than e. To prove this , consider the N x N Jordan block 

o 'Y 
o 'Y 

A =  

o 'Y 
o 

for some 'Y = 'Y (N) > O. For this matrix one has p (A) = 'YN- 1 and, as 
shown in [499] , 

N- 1 
X (A ) � 

'Y
eN 

( 1 + O (N- 1 ) ) ,  
assuming N � 3 and 'Y � N. In the N -> 00 limit , the ratio of these quan­
tities is asymptotic to eN. We thus have p (A) jX (A ) � eN ( 1 + O (N- 1 ) ) , 
and taking the limit N -> 00 finishes the proof. _ 

The proof of the Kreiss Matrix Theorem is complete, except that it 
made use of Theorem 18 .2 ,  'Spijker's lemma' .  This is where the Buffon 
needle problem comes into the story. 

Let r be a rational function of order N. Let 'JI' denote the unit circle 
{z E (jJ :  I z l = I } ,  and let I I · 1 1 1 ' I I · Ib and 1 1 · 1 1 00 denote the 1- ,  2- , and 
oo-norms on 'JI', 

I I f l 1 1 = h I f (z) l l dz l , I l f l l � = h I f (z) 1 2 I dz l , I l f l l oc = sup I f (z) l . 
zE1r 

Then the arc length of the curve r ('JI') in the complex plane , which we 
denote by Ldr('JI') ) , can be represented compactly by the formula 

Ldr('JI') )  = I l r' 1 I 1 . 
If r is multiplied by a constant a, Ldr('JI') ) changes by the factor l a l . 
However, this scale-dependence can be eliminated by considering the ratio 

( 18 .3) 
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In 1984, building upon the earlier work by Laptev, Strang, and Tadmor, 
LeVeque and Trefethen observed that a bound on ( 18 . 3) could be used in 
the proof of the Kreiss Matrix Theorem [499] . They therefore posed the 
question, What is the maximum possible value of ( 18 .3 )?  

I t  i s  easy to see that the value 27r N can be attained: Just take r (z) 
to be zN or z-N . If r is restricted to be a polynomial , it follows from 
Bernstein's inequality that 27r N is the maximum possible . It is also easy 
to see that 27r N is the maximum value for rational functions in the special 
case N = 1 ,  where r is just a Mobius transformation. Based on these facts 
and on computer experiments, it was conjectured in [499] that 27r N is the 
maximum value ( 18 . 3) for all rational functions r and all N. However, only 
the bound 47r N was proved, and the task of eliminating this gap of a factor 
of 2 was presented as an Advanced Problem in the American Mathematical 
Monthly [498] . 

Just one response to the Monthly problem was received, from James C .  
Smith, of  the University of  South Alabama, who improved the bound to 
2 (2  + 7r)N [702] . 

Five years later, Marc Spijker of the University of Leiden finally settled 
the conjecture in the affirmative [715] . 

Spijker's lemma in the complex plane 

Theorem 18 .2  Ldr(1r) )  / 1 1 7" 1 1 00  ::; 27rN . 

The proof of Theorem 18 .2  below is close to Spijker 's ,  but with more em­
phasis on geometry. We shall show that Theorem 18 . 2 is a corollary of a 
slightly different arc length theorem. 

The simplicity of Theorem 18 . 2  is marred by the need for the nor­
malization by I l r l l oo .  In looking for a cleaner formulation one may ask , 
What is the analogous result for the Riemann sphere? Let $ denote the 
Riemann sphere {x E IR3 : I I x l 1 2 = I } ,  with the north and south poles 
corresponding to the points 00 and 0 in <C,  respectively, according to the 
usual stereographic projection, and the equator corresponding to the unit 
circle 1r. This identification of <C and $ is discussed in many books on 
complex analysis [ 1 ] , and it is readily shown that a unit of arc length I dz l 
at a position z E <C is expanded by the factor 2/ ( 1  + I z 1 2 ) upon projection 
onto $. It follows that if r (1r) is considered as a closed curve on $, with 
L5> (1' (1r) )  denoting its arc length on $, then we have 

( 1 8 .4) 

Now the scale-dependence has been eliminated from the problem. It makes 
sense simply to ask, What is the maximum possible value of L5> (1'(1r) ) ?  

Our second arc length theorem answers this question. 
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Spijker's lemma on the Riemann sphere 

Theorem 18.3 

Note that like Theorem 18 .2 ,  Theorem 18 .3  i s  obviously sharp , with 
equality attained for any r that maps 'JI' with winding number N onto a 
great circle of $ .  For example, r (z)  = zN maps 'JI' with winding number N 
onto the equator , and r (z)  = iN (z - 1 )N / (z  + 1 )N maps 'JI' with winding 
number N onto the Greenwich meridian. Note also that for any r with 
I l r l l oc :::; 1 ,  we have Ldr('JI') )  :::; L5) (r('JI') ) .  This follows from ( 18 .4) , since 
2/ ( 1  + I r 1 2 ) 2 1 when I r l :::; 1 .  Consequently, Theorem 18 .3  implies The­
orem 18 .2  as a corollary. Thus Spijker 's lemma on the Riemann sphere is 
both simpler and stronger than Spijker 's lemma in the complex plane and 
may be considered the more fundamental result [499] . 

We now give the proof of Theorem 18 .3 .  
The reader has undoubtedly encountered the Buffon needle problem, 

published by the Comte de Buffon in 1 777. Suppose a needle of length 1 is 
thrown at random on a plane ruled by parallel lines at a distance 1 apart . 
What is the probability that the needle will land in a position that crosses 
a line? Easy calculus shows that the answer is: 

Probability of intersection = 2/7r.  

Buffon, incidentally, was the leading French naturalist of the eighteenth 
century and also a translator of Newton . He worked on his 'probleme de 
l 'aiguille ' long before publishing it as an appendix on 'moral arithmetic' in 
his forty-four-volume treatise on natural history [ 1 13] .  

The needle problem became well-known, especially among the French, 
and was generalized. Laplace, without referencing Buffon, solved the analo­
gous problem for a square grid (Theorie Analytique des Probabilitf.s, 1812 ) . 
A more important generalization was to consider the slightly modified ques­
tion: If the needle has length L, possibly greater than 1 ,  what is the expected 
number of intersections? The answer is easily seen to be: 

Expected number of intersections = 2L/7r. ( 18 . 5) 

And from here it is a small step mathematically, but a big one conceptually, 
to note that the same formula ( 18 .5 )  is valid also for a paper clip . Various 
steps in this direction were taken by Cauchy, Lame, and Barbier , among 
others [26 , 131 ] . In fact , if any rectifiable curve r of arc length L is thrown 
at random on the parallel grid , the expected number of intersections is 
( 18 .5 ) . (A curve is rectifiable if its real and imaginary parts are functions of 
bounded variation [ 1 ] . )  The idea behind this result is that r can be thought 
of as a concatenation of infinitesimal straight segments, each satisfying 
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( 18 .5 )  for an appropriate infinitesimal value of L. Now it may seem at first 
that the expected number of intersections for r should be more complicated 
than the sum of the expected numbers for the segments r is composed of, 
since after all , the segments do not fall on the grid independently. However, 
it is a basic fact of statistics that the expectation of a sum of random 
variables is equal to the sum of the expectations , regardless of whether 
they are independent . This observation seems elementary to us now, but 
its application to the needle problem was evidently not obvious in the 
nineteenth century. 

Bending the paper clip into a circle of radius 1/2 gives an easy way 
to remember Buffon's result and its generalization ( 18 .5 ) . For this choice 
of r, L is 7r and the number of intersections is exactly 2, no matter how 
the paper clip falls . 

We now want to move from the plane to the sphere , a step taken as 
early as 1860 by Barbier [26] . Consider a 'spherical paper clip '-that is, a 
curve r embeddable in the Riemann sphere . Suppose r is placed at random 
on $. What is the expected number of intersections with the equator? The 
answer is again essentially a matter of combining calculus with elementary 
statistics : 

Expected number of intersections on the sphere = L / 7r. ( 18 .6 )  

Or one can skip the calculus and remember this result by thinking of the 
case in which r is itself a great circle. In this case L = 27r and the number 
of intersections is again exactly 2 unless r happens to land exactly on the 
equator ,  an event of probability zero. 

A final development completes this brief history. After Barbier , other 
mathematicians generalized these results further , including Poincare, who 
referenced neither Buffon nor Barbier (Calcul des Probabilites, 1896) . By 
this time it was clear that although the needle problem and its generaliza­
tions had conventionally been formulated as problems of probability, that 
interpretation could be dispensed with. Instead of orienting r at random 
on $ and asking for the expected number of intersections with a fixed equa­
tor , one can consider r to be fixed on $ and compute its arc length L5; (r) 
as an integral of the number of intersections with all great circles . To be 
precise , for any rectifiable curve r � $ and any x = (X l , X2 , X3 ) E $, let 
v(r,  x) denote the number of points of intersection of r with the great 
circle on $ consisting of points equidistant from the antipodes ±x. (When 
this number is infinite, the definition of v(r,  x) does not matter , for the set 
of such points has measure zero . ) One obtains the following elegant result , 
known as Poincare 's formula : 

L5; (r) = � r v(r, x) dx. 
4 J5; 

The integral is taken with respect to area measure on $ .  

( 18 . 7) 
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Poincare's formula can be expressed in words as follows . To find the 
arc length of a curve on the Riemann sphere, integrate its numbers of 
intersections over all great circles , then divide by 4. Or, equivalently, since 
the sphere has surface area 47r, take the average number of intersections 
and multiply by 7r. This latter paraphrase makes plain the equivalence 
of ( 18 .6)  and ( 18 . 7) . 

Poincare's formula has far-reaching generalizations described in the 
book by Santa16 [658] . It forms a centerpiece of the field known earlier 
as 'geometric probability' but now as ' integral geometry' . 

Is it obvious now how to prove Theorem 18 .37 All we need is the 
following lemma, whose proof can be found in [816] but is an easy exer­
cise. Again, v(r ('1r) , x) denotes the number of intersection points of the 
curve r ('1r) with the great circle on the Riemann sphere $ defined by the 
points ±x. 

Lemma 18.4 If r is a rational function of order N, then v(r ('1r) , x) :::; 
2N for all x E $ with the possible exception of a single pair x = ±Xo , 
Xo E $ .  

Since the surface area of $ is 47r and since i . 2 N  . 47r = 2 7r  N, Theorem 18 .3  
i s  an immediate consequence of this lemma and ( 18 . 7) .  As described above , 
Theorem 18 .3  implies Theorem 18 . 2 ,  and this completes the proof of the 
Kreiss Matrix Theorem. 

Though the Kreiss Matrix Theorem is most familiar in connection with 
matrix powers , it has been known since the beginning that essentially the 
same bound applies to exponentials , too. For this we redefine the Kreiss 
constant X(A) with respect to the left half-plane instead of the unit disk, 
as described on page 138.  Further generalizations to other regions and 
other functions of A are given in [763] . 

Kreiss Matrix Theorem for etA 

Theorem 18.5 For any N x N matrix A, 

X(A) :::; sup I l e tA I l  :::; eNX(A) , 
t�O 

( 18 .8)  

where X(A) is the Kreiss constant of A with respect to the left half­
plane. 

Proof. The proof is essentially as before ; we give just a sketch. For any 
unit vectors u and v we have 
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for a rational function T of order N, where G is a contour enclosing O' (A) . 
Integration by parts gives 

and taking G = C 1 + ilR leads to 

where the integral can again be interpreted as the arc length of the image 
of G under T. By Theorem 18 .2  and the definition of X(A) , this arc length 
is at most 21rNtX(A) , from which ( 18 .8 )  follows . • 

The question of the sharpness of Theorem 18 .5  is addressed in [499] . 
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If A is a matrix or bounded operator, we have seen in § 1 5  that the spectrum 
O" (A) is non empty and determines the growth rate of I l e tA I l as t --7 00 :  
limt---+oo r l log I l etA I l = o:(A) , where 0: is the spectral abscissa. If A is 
unbounded, however, these properties may fail .  The spectrum may be 
empty, and even if it is not , the norms I l etA I l  may be larger than the 
spectrum would suggest . 

Specifically, let A be a closed operator , densely defined in a Banach 
space X ,  that generates a Co semigroup {etA} as discussed in § 15 .  The 
exponential type or growth bound of A is defined by the formula 

wo (A) = lim C 1 log I l etA I I , ( 1 9 . 1 )  
t---+oo 

and it is known that this limit always exists (either finite or - (0 ) . Though 
wo (A) = o:(A) for bounded operators , the most we can say for unbounded 
operators without further assumptions is that 

( 19 . 2 )  

In  the case O"(A) = 0 ,  o:(A) i s  defined to  be  - 00 .  
The first example of  an operator with strict inequality in  ( 19 .2 )  was 

published by Hille and Phillips in their monograph of 1948 and 1957 [395] , 
and we shall turn to it in a moment . First , however, we mention a sim­
pler example published by Zabczyk in 1975 [847] , whose essential idea was 
implicit in Figure 3 .4 .  vVe know that a non normal matrix A may exhibit 
transient behavior in the sense that I l etA I l  grows faster than e ta(A) (or 
decays more slowly) for small t. In particular , for the N x N Jordan block 

I l et JN I I  behaves like et for t « N but is smaller than ed as t --7 00 for 
any E > 0 ,  since its spectral abscissa is o:(J N ) = O .  Zabczyk proposed 
an infinite matrix A in block diagonal form composed of Jordan blocks of 
increasing dimensions : 

. . . ) ( 19 .3 )  
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F igure 19.1: Zabczyk example (19.3) of an infinite matrix A with spectral ab­

scissa a(A) = 0 and growth bound wo(A) = 1. The image on the left shows 

c-pseudospectra for c = 10-1,10-2, ... ,10-8. Further increasingly far-from­

normal components of o'e{A) lie in an infinite sequence off-scale on the positive 

imaginary axis. The plot on the right shows I l etA Il and some curves lIetAk II 
against t, where AN is the Nth diagonal block of A, of dimension N. 

Here IN is the identity of dimension N and we regard A as an operator on 
C2(JN). The left part of Figure 19.1 confirms what is rather obvious, that 
for each € > 0, the €-pseudospectrum of this infinite matrix is the union 
of open balls of various radii about the points i, 2i, 3i, ... , with the radii 
increasing to 1 + € as one goes up the imaginary axis. The right part of 
the figure shows norms II etAk II for a few of the diagonal blocks Ak of A, 
and it also shows the dashed line corresponding to the envelope of all the 
blocks, II etA II. Obviously the growth bound is 1 even though the spectral 
abscissa is O. 

Such examples are also interesting in connection with the spectral map­

ping theorem [22 1, 248] . If A is a matrix or bounded operator and J is 
analytic in a neighborhood of O'(A), this theorem asserts that J(<7(A)) = 

O'(f(A)). If A is unbounded, however, then under suitable assumptions 
the inclusion J(O'(A)) � <7(J(A)) still holds, but it may now be strict. In 
particular this is the case for J(z) = etz, with etA and A defined as a Co 
semigroup and its generator. If A is the Zabczyk operator, then etcr(A) is 
a subset of the unit circle, whereas for any value of t that is not a rational 
multiple of Jr, 

O'(etA) is the annulus e-1 � Izl � e. 
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For the Zabczyk example, though the spectral abscissa is only 0 ,  it 
seems clear why the growth bound has turned out to be larger: Since 
I I (A - A) - I I I  becomes arbitrarily large as A approaches the line ReA = 1 
from the right , it is 'as if' the spectral abscissa were 1 .  Indeed, if we define 
the E-pseudospectral abscissa of A, as always in this book, by ac (A) = 

SUPZE(h (A) Rez ,  then we note that although a(A) = 0 for this operator, 
the limit of ac (A) as E l O is 1. One might imagine that it should be this 
limit rather than a(A) that determines wo (A) . In fact , we can easily prove 
half of this conjecture, 

( 19 .4) 

To see this, note that for any w > wo (A) , the semi group satisfies I l e tA I l  :s; 
Mewt for all t 2': 0, for some M. By ( 15 . 14) , this implies I I (z - A) - I I I  :s; 
M/(Rez - w) for any z with Rez > w ,  and by taking w 1 wo (A) , we 
get ( 19 .4) . 

In Hilbert space, but not in Banach space, the inequality in ( 19 .4) can 
be replaced by an equality. This result stems from work in the late 1970s 
and early 1980s, largely independent , by Gearhart [305] , Huang [420] , and 
Pruss [6 15] , with related contributions also by Herbst [382] , Howland [417] , 
and Greiner [348] . In various sources this theorem is given the names of 
Gearhart 's Theorem, the Gearhart-Pruss Theorem, and Huang's Theorem. 

Growth bound theorem 

Theorem 19. 1 Let A be a densely defined closed operator in a Ba­
nach space X that generates a Co semigroup, and let ac (A) and wo (A) 
denote the E-pseudospectral abscissa and the growth bound of A, re­
spectively. The quantity ac (A) - E is a monotonically non decreasing 
function of E, with 

wo (A) 2': lim ac (A) . 
dO 

If X is a Hilbert space, then 

( 19 .5 )  

( 19 .6) 

Proof. The monotonicity result is a consequence of the basic properties of 
pseudospectra; see in particular the final assertion of Theorem 4 .3 .  The 
inequality ( 19 .5 )  was established in the text above. For a proof of ( 19 .6 ) , 
see [248 , Thm. V. 1 . 1 1] .  • 

In the Zabczyk example , the spectrum of A is nonempty and thus 
a(A) is finite. Zabczyk pointed out that by adjusting the constants in the 
example, one can construct an infinite matrix with arbitrary finite a(A) 
and wo (A) with a(A) < wo (A) . Another possibility, however, would be 
to go further and construct an example with wo (A) finite but O"(A) = (/), 
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hence a(A) = -00. The Hille-Phillips example, which appeared in [395, 
§23. 16] (and also in Hille 's 1948 first edition of that book) , is of this kind . 

The context for this example is fractional integrals and fractional deriva­
tives ; more generally, one could construct examples from a variety of Vol­
terra integral operators . For a function u(x) defined on x E (0 , 1 ) ,  consider 
the function L(v)u on (0 , 1 )  defined by the Riemann-Liouville integral 

L(v) u(x) = - (x - st- 1u(s) ds, 
1 lx 

f (v ) 0 
( 19 . 7) 

where f is the gamma function. If v is a positive integer , ( 19 .7) gives 
the vth indefinite integral of u, and it is natural to take the same formula 
as a definition of a fractional integration operator for arbitrary v > 0 .  
By differentiating one or more times, one can extend the definition also to 
fractional differentiation operators. These definitions can also be related to 
Fourier or Laplace transforms , and of course, one can make precise choices 
about the domains of these operators and their corresponding properties ; 
see [122 ,  §2 .6] and the references therein. 

For example , taking v = 1/2 gives the half-integral operator on [0 , 1 ] : 

L1/2U(X) = - (x - s) - 1/2u(s) ds. 1 lx fi o  ( 19 .8 )  

Consideration of the half-integral of u' (x) gives us the corresponding half­
derivative operator: 

1 (X L - 1/2U(x) = fi Jo (x - s )- 1 /2U' (S)  ds , ( 19 .9) 

for sufficiently smooth functions u satisfying u(o) = 0 .  For such functions 
u, L 1/2 and L - 1/2 are inverses of one another . 

The pseudospectra of L - 1/2 , interpreted as an operator in L2 (0, 1 ) ,  are 
shown in Figure 19 .2 ,  which is based on a numerical computation by a spec­
tral collocation method as in §43. These images are related to the example 
presented in §5 .  There , we considered the operator L defined by Lu = u' 
on an interval [0, d] . The spectrum of L was empty, but its resolvent norm 
I I (z  - L) - l l l grew exponentially as z ---> -00,  and Figure 5 .2  displayed its 
pseudospectra, half-planes bounded on the right by lines Rez = constant . 
Now, the boundary condition is at the left rather than the right , so the 
pseudospectra of the derivative operator would be right half-planes rather 
than left half-planes . Because of the square root , we instead get pseudo­
spectra filling most of a quadrant in the right half-plane . 

Like the derivative operator with a boundary condition, this half-deriv­
ative operator with a boundary condition has empty spectrum. Its pseu­
dospectral abscissae are all + 00 ,  so it does not generate a Co semigroup, 
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Figure 19 . 2 :  E-pseudospectra o f  the half-derivative operator ( 1 9 . 9 )  for E = 10-2 , 
10-3 , . . .  , 10- 1 2 , from left to right . The spectrum is empty, but the resolvent 
norms are exponentially large in a quadrant of the complex plane. Multiplying 
by e±31ri/4 gives an operator A with a(A) = - 00 ,  wo (A) = 0, and I l etA l 1 = 1 for 
all t ::::: 0 . 

but we could rotate the picture in the complex plane by defining 

Now we have ac (A) = c for all c > 0, and thus by Theorem 19 . 1 ,  this is 
an example of an operator with a(A) = -00 and Wo = 0. Although the 
spectrum of A is empty, the spectrum of etA for any t > ° is the closed 
left half-plane. 

The original Hille -Phillips example is closely related . Instead of con­
sidering the square root of the derivative, Hille and Phillips considered the 
' logarithm' of ( 19 . 7) .  That is, they interpreted the family L(v) as a semi­
group with evolution variable v and took as their example the infinitesimal 
generator A of this semigroup . Figure 19 .3 shows pseudospectra of this 
operator. The resolvent norms are very large : note the doubly exponential 
values of c. (This figure was also computed in part by a spectral colloca­
tion method; a more careful calculation is described by Baggett in [ 18] . )  
MUltiplying this example by ± i  gives an example of an operator A with 
growth bound 7r /2 and spectral abscissa -00 . The spectrum is empty, 
but at a point at only a distance 10 from 0, the resolvent norm is ap­
proximately 1010000 . 1  For any t > 0, the spectrum of etA is the annulus 
e-rr/2 ::;  I z l  ::; e/2 .  

1 This is the second-largest resolvent norm mentioned in this book. See Figure 36.6 .  
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Figure 19 .3 :  E-pseudospectra of the logarithm A of the integration operator, i .e . , 
the infinitesimal generator of the fractional integration semigroup {L<v l } ,  for 
E = 10- 2 ,  10-4 , 10-8 ,  . • •  , 10-256 . The dashed lines mark the half-strip Rez < 0 ,  
I Imz l < Jr /2 .  By multiplying this example by ±i ,  we obtain the Hille-Phillips 
example of an operator A with a(A) = -00 and wo (A) = O .  

The three examples with wo (A) > a(A) exhibited in this section have 
a special property: I l etA I l  = etwo (A) for all t > O .  Their pseudospectral 
abscissae also have a special property: ac (A) = wo (A) + E for all E > O.  
For operators in Hilbert space, as pointed out by Baggett [ 18] , these two 
conditions are equivalent . 

Exactly exponential growth or decay 

Theorem 19.2 Let A be a densely defined closed operator in a 
Hilbert space X that generates a Co semigroup, and let wo (A) , w (A) , 
and ac (A) denote the growth bound, numerical abscissa, and E­
pseudospectral abscissa of A, respectively. The following conditions are 
equivalent: 

wo (A) w (A) , ( 1 9 . 10) 

I l e tA I l  e two (A) , 'Vt > 0 ,  ( 19 . 1 1 )  

ac (A) wo (A) + E ,  'VE > 0 ,  ( 19 . 12 )  

sup I I ( A - A) - l l l 
1 

'V p, > wo (A) . ( 19 . 13) 
ReA=/L P, - wo (A) , 

In a Banach space, ( 19 . 10) {=} ( 19 . 1 1 )  {= ( 19 . 12 )  {=} ( 19 . 13 ) . 
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Proof. The equivalence of ( 19 . 12)  and ( 19 . 13)  i s  a matter of definitions . 
To establish the equivalence of ( 19 . 10) and ( 19 . 1 1 ) ,  we note that by The­
orem 17 .2 ,  w (A) = limc->oo Qc (A) - E. By the definition ( 1 9 . 1 )  of wo (A) 
together with the bound I l e tA l 1  :::; e tw (A) of Theorem 1 7. 1 ,  it follows that 
w(A) and wo (A) are equal if and only if ( 19 . 1 1 )  holds . It also follows 
that ( 19 . 12)  implies ( 19 . 10) . Finally, in Hilbert space , by Theorem 19 . 1 ,  
wo (A) = limc->o Qc (A) - E .  I f  ( 19 . 10) holds , then Qc (A) - E i s  a monoton­
ically nondecreasing function of E with equal limits wo (A) as c ---4 0 and 
c ---4 00 ,  implying ( 19 . 12 ) . • 

For examples showing that the conclusions of Theorems 19 . 1 and 19 .2  
may not hold in Banach space, see [248] . 





V.  Flu id M echa n ics 





20 . Stabi l ity of flu id flows ----------

Together with quantum mechanics and the analysis of acoustic and struc­
tural vibrations , the third great area of application of eigenvalues has been 
the stability of fluid flows . Since the fluids in question are usually either 
liquids or gases moving slowly enough for compressibility effects to be in­
significant , this field goes by the name of hydrodynamic stability. The 
roots of the subject date to Helmholtz ,  Kelvin, Rayleigh, and Reynolds in 
the nineteenth century; classic twentieth century books include those of 
Lin [508] , Chandrasekhar [ 135] , Joseph [436] , and Drazin and Reid [214] . 
An important recent book is that of Schmid and Henningson [669] . 

The basic question of hydrodynamic stability is, Given a fluid at rest 
or in steady ( ' laminar' ) motion , will small perturbations of the flow tend 
to grow or to decay? Innumerable applications have been investigated 
over the years, which we may roughly divide into two classes . In one set 
of problems , the aim is to explain the appearance of regular structures 
in a fluid (Figure 20. 1 ) .  Why does a jet of water break into regularly 
spaced drops , why do clouds form regular rolls or cells , why do ocean 
waves undulate periodically? The usual mechanism in such problems is that 
small perturbations of the steady flow grow unstably, and some particular 
wavelength grows most unstably of all , whereupon nonlinear effects take 
hold that dampen further growth, leaving a pattern of finite amplitude. For 
example , Lord Rayleigh analyzed the instability and breakup into droplets 
of a smooth jet of water [6 19] . He showed that if such a jet is perturbed 
sinusoidally in radius at a certain wavelength, then surface tension may 
amplify the perturbations , with the maximum amplification rate occurring 
at a wavelength of about 4 .51  diameters . In the other set of problems, we 
are concerned with predicting whether a steady flow will remain steady 
or break down to an irregular or turbulent flow (Figure 20 .2) . Here, the 
notional breakdown mechanism is that small perturbations of the regular 
flow grow unstably, whereupon nonlinear effects grab hold and lift the flow 
into some more complicated regime. We see this effect , say, when turbulent 
eddies form behind a stick in a fast-moving stream. 

For both of these classes of hydrodynamic stability problems , the basic 
mathematical procedure is the same (see Figure 33.3) . The equations of 
fluid mechanics are nonlinear, but by the consideration of infinitesimal per­
turbations about a steady flow, they are linearized. The linear equations 
are then examined for eigenvalues in the right half of the complex plane. 1 
If such an eigenvalue exists, there is an instability, and the eigenmode asso-

1 More generally, we consider points of the spectrum, but for simplicity we shall speak 
here of eigenvalues without mentioning this technicality further. 
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Figure 20. 1 :  When regular patterns appear in fluid flows, the explanation usually 
involves eigenvalues. In such cases there is a smooth, pattern-free flow that is 
theoretically possible, but it is unstable to infinitesimal disturbances, and distur­
bances at some wavelengths are amplified more than others . These illustrations 
show capillary instability in a milk-drop coronet (© Harold and Esther Edger­
ton Foundation, 2005 , courtesy of Palm Press , Inc . ) , the von Karman vortex 
street in the wake of a cylinder (from an experiment by Maarten A. Rutgers. 
Xiao-lun Wu, and Walter Goldburg; other photographs from the same series can 
be found in [647] ) ,  and the Kelvin-Helmholtz instability at the interface between 
two moving fluids (photograph by F. A. Roberts ,  P. E. Dimotakis, and A. Roshko 
from [797] ) .  

ciated with the rightmost unstable eigenvalue can b e  expected to dominate 
the form of the instability. If all the eigenvalues are in the left half-plane , 
one expects stability. 

Dozens of books and thousands of papers have followed this pattern of 
analysis over the course of more than a century. There have been many 
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Figure 20 .2 :  Eigenvalues are also often called upon in an attempt to explain insta­
bilities , typically at higher Reynolds numbers, that end in an irregular or turbu­
lent flow instead of a regular pattern. This image, courtesy of the USGS / Cascades 
Volcano Observatory, shows the eruption of Mt. St . Helens on 18 May 1980. Be­
cause of the large space scale, the Reynolds number for flow out of a smokestack 
or volcano is invariably very high, and these flows are never laminar . 

successes, especially for low-speed flows, but there have also been many 
failures , especially for high-speed ones . Indeed , many studies have been 
published in which predictions based on eigenvalues fail entirely to match 
observations . Widely varying explanations of these discrepancies have been 
advanced, but in the 1990s a consensus formed that the main cause is 
nonnormali ty. 

In this section we describe the three cleanest hydrodynamic stability 
problems for which eigenvalue analysis fails : plane Couette flow, plane 
Poiseuille flow, and pipe flow. All three go back a century or more and 
show a discrepancy between stability predicted by eigenvalue analysis and 
instability observed in the laboratory. In each case we consider the ideal­
ized problem involving a viscous incompressible fluid in an infinitely long 
straight-sided channel or pipe. The mathematical details are complicated, 
involving the nonlinear Navier-Stokes equations coupled with an incom­
pressibility condition and no-slip boundary conditions along the walls . We 
omit most of these details , which can be found, for example, in [2 14] 
and [669] , and simply present certain computational results. In each prob­
lem the key parameter is the Reynolds number R, a nondimensional mea­
sure of the ratio of inertial to viscous effects. A 'high-speed flow' is more 
properly characterized as one with high Reynolds number-which might 
be achieved by low speed but even lower viscosity. 
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Plane Couette flow. In the 1880s, Maurice Couette investigated an 
apparatus for determining the viscosity of a liquid by filling the gap between 
two concentric cylinders with the liquid and measuring the resistance of this 
system to relative rotation of the cylinders [ 166] . At low speeds , the flow 
is laminar. As the speed is increased, however, ring-shaped vortices with 
a regular spacing may appear . These Taylor vortices were explained in 
celebrated work by C. 1. Taylor in the 1920s [744, 745] . Taylor showed 
that at a certain speed, the laminar flow becomes unstable to infinitesimal 
perturbations, and there is a wavelength of maximum unstable growth rate. 
This is a beautiful example of successful eigenvalue analysis . At still higher 
speeds, on the other hand, further instabilities cause the Taylor vortices 
first to become wavy and then to break down to turbulence . Predicting 
the behavior of these higher speed Taylor-Couette flows is an example of 
a problem for which eigenvalue analysis is not so successful [738] . 

We are going to consider not Taylor-Couette flow, but plane Couette 
flow. This is the simplified limit of Taylor-Couette flow in which the radius 
has been taken to infinity, so there is no curvature present . The geometry 
is sketched in Figure 20 .3 .  We imagine two infinite solid walls moving in 
the +x and -x directions . For any Reynolds number, there is a solution to 
the N avier-Stokes equations in this geometry consisting of a steady parallel 
flow with velocity depending linearly on the height y (Figure 20.3) . 

Here is what is seen in the laboratory [ 175 ,  753] . For Reynolds number 
R less than about 350 according to the standard definition (channel half­
width times maximum velocity divided by kinematic viscosity) , the laminar 
flow solution is observed. For R > 350, irregular perturbations tend to 
appear instead. For R » 1000, they almost always appear, and the flow is 
turbulent . Thus plane Couette flows change from laminar to turbulent as 
the Reynolds number increases , but there is no sharp transition value. 

Attempts at eigenvalue analysis of this problem go back to Orr and Som­
merfeld around 1907 [587,  707] . One linearizes the Navier-Stokes equations 
about the laminar flow and checks for unstable eigenmodes . An important 
part of this analysis is encapsulated by Squire 's theorem of 1933 [717] , 
which asserts that if there is an unstable eigenmode that depends upon the 

z 
Figure 20.3 :  Schematic view of plane Couette flow. The flow domain is the 
infinite three-dimensional region between two parallel plates moving in opposite 
directions along the x axis. The steady flow is parallel, with a linear velocity 
profile as a function of y.  
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cross-steam coordinate z at a Reynolds number R1 , then there is an unsta­
ble eigenmode at another Reynolds number R2 < Rl that is independent 
of z. Thus for eigenvalue analysis , it is enough to look at two-dimensional 
(x-y) perturbations of the laminar flow. The Orr-Sommerfeld equation 
is a fourth-order ordinary differential eigenvalue equation whose solutions 
describe the y dependence of these two-dimensional eigenmodes (see §22 ) ;  
the x dependence i s  sinusoidal . 

Such analysis of plane Couette flow shows that no matter how large R 
is, there are no unstable eigenvalues. This fact was suspected for many 
years, and in 1973 it was proved by Romanov [642] . 

Why then is plane Couette flow unstable in practice? A part of the 
answer can be seen in Figure 20 .4 (from [780] ) which shows spectra and 
pseudospectra for the linearized plane Couette flow operator for R = 350 
and 3500. In each image, the spectrum is a two-dimensional subset of 
the open left half-plane. It comes close to the imaginary axis, a distance 
of about 2 .47/ R as R ---+ 00, but does not touch it or cross it. The c­
pseudospectra, however , tell a different story. For small values of c, they 
protrude a distance much greater than c into the right half-plane. This 
implies that in various senses , these linear operators will not behave so 
stably. For example, the second figure shows that for R = 3500 , the 

R =  350 
0 .8 

0.4 

-0.4 

-0.8 

-0.04 o 0.04 0 . 08 -0.04 o 0 . 04 0.08 

Figure 20 .4 :  Spectra (shaded) and pseudospectra for plane Couette flow at two 
Reynolds numbers, from [780] . The dotted line is the imaginary axis. Boundaries 
of c-pseudospectra are shown, from right to left , for c = 10-2 , 10- 2 . 5 , 10-3 , and 
10-3 . 5 . This flow is eigenvalue stable for all R, with spectrum contained strictly 
inside the left half-plane, but it is unstable in practice for R » 1000. 
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, 
'R = 00 , 

R = 4000 

R = 3500 

R = 2000 
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Figure 20 .5 :  Transient growth of infinitesimal perturbations for linearized plane 
Couette flow, from [780j . Perturbations may be amplified by a factor (J (R) 
over a time scale (J (R) before viscosity eventually makes them decay. Compare 
Figure 3.4 .  

1O-3 . 5-pseudospectrum reaches to about z = 0.012 along the real axis. 
Theorem 15 .4 thus implies that certain perturbations of plane Couette flow 
with R = 3500 will grow transiently, by purely linear mechanisms, by a fac­
tor of at least 0 .012 x 103 . 5 � 38. Figure 20 . 5  confirms this prediction. The 
actual maximum growth factor is about 120, or for general R as R -+ 00 ,  

I l etL l 1 � R/29 . 1  at t � R/8.52 .  Here L is the Navier-Stokes evolution op­
erator linearized about the laminar flow, and II . I I  i s  the root-mean-square 
speed of the perturbation. 

A potential growth in amplitude by a factor of 120 is of obvious physical 
significance. In fact , many researchers consider that the proper measure 
of a flow perturbation is not the amplitude but its square, which has the 
dimensions of energy. In this measure the amplification factor for plane 
Couette flow at R = 3500 is 14 ,400. 

There is no mystery about the physics underlying this behavior . The lin­
earized Navier-Stokes operator amplifies various perturbations transiently 
to various degrees , and there is a class of perturbations that it amplifies 
particularly strongly: streamwise vortices, by which we mean velocity fields 
that approximate vortices oriented in the x direction. Suppose a perturba­
tion of this kind is superimposed on the laminar flow. As t increases , the 
vorticity will move particles of fluid up and down in the y direction. A high­
speed particle moved to a slow region will appear as an anomaly of locally 
large speed in the ±x direction, and a low-speed particle moved to a fast 
region will appear as an anomaly of low speed. We say that a streamwise 
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Figure 20.6 :  Schematic view of a flow perturbation, a pair of streamwise vortices , 
that achieves transient growth close to the maximum of Figure 20 .5 .  

vortex generates streamwise streaks of potentially much greater amplitude 
(Figure 20.6) . This effect goes by various names , including vortex tilting 
and lift-up, and it has been recognized for many years; the dashed line 
marked R = 00 in Figure 20.5 could be derived as a corollary to a 1975 
paper by Ellingsen and Palm [238] . For any finite R, the streak will even­
tually decay due to viscosity, but the higher R is, the longer it will take for 
this to happen and the more transient growth may occur in the meantime. 

This vortex-to-streak mechanism is a consequence of nonnormality. A 
normal amplification process would be described by an eigenvector input 
that generated the same eigenvector output at higher amplitude , but here , 
the output of the amplifier takes a different form from the input . Indeed, 
the irrelevance of eigenvalues to this process is apparent in the fact that 
Squires 's theorem tells us to look at structures dependent on x and y ,  
whereas streamwise vortices and streaks are orthogonal to this plane, de­
pending on y and z .  One could see this by considering a singular value 
decomposition et L  = U�V* at some time t (we use matrix notation for 
simplicity) ; the dominant right singular vector v would be approximately 
a streamwise vortex and the corresponding left singular vector u approxi­
mately a streamwise streak. Alternatively we may obtain a streak of much 
the same form from an c-pseudomode of L for small c. By contrast , the 
true eigenvectors of this flow problem give no hint of the importance of 
streamwise structures . 

The history of the growing appreciation of nonnormal effects in fluid 
mechanics has been complex. For decades , it has been clear from lab­
oratory experiments and computer simulations that high-speed flows are 
dominated by streamwise structures such as vortices , streaks , and 'hair­
pins' . What took a long time to develop was a bridge from these observa­
tions to the mathematical theory of hydrodynamic stability, which seemed 
to conclude that two-dimensional structures should be dominant instead. 
Many researchers assumed that nonlinearity must play an essential part in 
these effects ,  since it appeared that linear analysis failed to explain them. 
However, it was a mistake to confuse linear analysis with eigenvalue anal-
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ysis . 2  In fact , the essentials of perturbation amplification and generation 
of streamwise streaks are linear , and the nonlinearities only become impor­
tant as one tries to track the further evolution of such structures, including 
possible transition to turbulence . These facts began to become clearer in 
the fluid mechanics literature around 1990 with landmark papers of Boberg 
and Brosa [65] , Butler and Farrell [ 121 ] , and Reddy and Henningson [622] . 
Crucial related work in the preceding years was due to Benney, Landahl , 
and Gustavsson [360] . 

If there were nothing more to the dynamics of linearized flows than 
streamwise vortices and streaks, it might be unnecessary to speak of non­
normality in general; we could focus instead on a 2 x 2 linear skeleton con­
sisting of just vortex plus streak . Such mechanisms of 'direct resonance' 
were the subject of some of the work just mentioned by Benney and others 
during the 1970s and 1980s. However, the reality of linearized flows is more 
complicated than a single input and a single output . Even for a situation 
as clean as plane Couette flow, the maximal transient growth is achieved 
by structures that are not exactly aligned with the x axis, and as soon 
as one wishes to look at nonmaximal perturbations or more complicated 
geometries , one needs more general tools . In this respect fluid mechanics is 
like other fields where non normal matrices and operators arise: the study 
of a 2 x 2 Jordan matrix or a pair of nearly parallel eigenvectors may cap­
ture the essence of the matter in certain situations , but it is insufficiently 
general to apply to all problems. 

We have spoken of transient growth, but other physical implications too 
can be deduced from the pseudospectra for plane Couette flow shown in 
Figure 20.4 [780] . One is that although the linearized operator is eigenvalue 
stable , it takes only a very small perturbation (of norm about 65.9/ R2 ) to 
make it eigenvalue unstable . This suggests that in a laboratory realization 
of plane Couette flow, with the inevitable imperfections of construction, 
there is a possibility of eigenvalue instability at higher Reynolds numbers. 
Another is that a stable flow of this kind may experience great receptivity to 
outside disturbances , acting potentially as an amplifier of distant vibrations 
of certain forms and frequencies via a process of 'pseudoresonance' [660] . 
A standard measure of receptivity in fluid mechanics is essentially the max­
imal norm of the resolvent along the imaginary axis. For plane Couette 
flow, that quantity is tJ (R2 ) as R ---; 00 .  

Plane Poiseuille flow. Having discussed plane Couette flow at length, 
we shall now consider plane Poiseuille and pipe flows much more briefly, 
for although the details are different , the main features are the same. Fig-

2 In the fluid mechanics literature, the standard term for eigenvalue analysis is ' lin­
ear stability analysis ' .  The justification for this usage is that , apart from borderline 
cases involving the imaginary axis ,  the linearized equations are stable as t � 00 if and 
only if there are no eigenvalues in the right half-plane. Nevertheless, it is a misleading 
expression, since it leaves no room for nonnormal linear effects; in this book we avoid it . 
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Figure 20.7: Schematic view of plane Poiseuille flow. Again , the flow domain 
is the infinite 3D region between two parallel plates , but now the plates are 
stationary and the flow is driven by a pressure gradient . The laminar solution 
has a parabolic velocity profile . 

ure 20 .7  shows the geometry of the plane Poiseuille flow problem. As before, 
there are two infinite plates , but now both plates are fixed and there is a 
flow between them driven by a pressure gradient . Again there is a laminar 
solution of the Navier-Stokes equations valid for all R, which is now de­
scribed by a parabolic velocity profile. Again the laboratory experiments 
show an indistinct transition from laminar to turbulent flows, with the 
laminar flow observed always for values of R below about 1000, whereas 
irregular flows and turbulence may be observed for larger values of R and 
are almost always observed, say, for R > 10 ,000. 

Plane Poiseuille flow has an idiosyncrasy, however, that has muddied 
the history of this subject : For large enough R, it is eigenvalue unstable. 
There is a critical Reynolds number at which the instability first appears , 
which was first calculated accurately by Orszag in 1971 [588] , and since this 
is perhaps the most famous of all numbers arising from eigenvalue analysis ,  
it is worth displaying: 

Refit >:::; 5772 .22 .  

As R increases, this is the value at which the linearized plane Poiseuille flow 
spectrum first crosses into the right half-plane. Long before Orszag, it was 
known that this eigenvalue instability was a feature of plane Poiseuille flow, 
and much attention was given to the physics of the associated eigenmodes , 
which are two-dimensional (x-y) structures known as Tollmien-Schlichting 
(TS) waves. In experiments, such waves were rarely seen, with turbulence 
sometimes being observed for R < Refit and laminar flow sometimes be­
ing observed for R > Refit .  Nevertheless it was widely assumed that the 
TS waves must play an important role somehow in these flows, even if in 
some hidden fashion. In more recent years, such views have faded. It now 
appears that although TS waves can be seen in the laboratory if they are ex­
cited, for example, by a vibrating ribbon, they are not important in most 
cases in plane Poiseuille flow. The eigenvalue instability that promotes 
them is weak, associated with long time constants; in the laboratory, the 
slowly growing perturbation would often be flushed out the downstream end 
before becoming large enough to be observed. Meanwhile the larger non-
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Figure 20 .8 :  Like Figure 20.4 but for plane Poiseuille flow, again from [780] . The 
solid lines show the boundaries of the c:-pseudospectra for c: = 10-2 , 10-2 . 5 , 10-3 , 
and 10-3 . 5 . For R > 5772 .22 ,  two Tollmien-Schlichting bumps in the spectrum 
protrude into the right half-plane, but in most experiments it is still the 3D effects 
associated with the pseudospectra that are dominant . 

normal three-dimensional effects, though transient in theory, are dominant 
in practice , and we see streamwise vortices and streaks much as for plane 
Couette flow. This is the conclusion one would expect from Figure 20 .8 ,  
which, aside from the small TS bumps, is much like Figure 20.4 . These 
matters are discussed at greater length in §22; see especially Figure 22 .3 .  

Pipe flow. Our third classical flow is the simplest of all conceptually: 
flow through an infinite circular pipe, sometimes also known as Poiseuille 
flow or Hagen-Poisel1ille flow. The geometry is suggested by Figure 20 .9 .  
We have an infinite circular pipe with flow driven by a pressure gradient . 
Again there is a laminar solution for all R with a parabolic velocity pro-

() 
Figure 20.9 :  Schematic view of circular pipe flow. The flow domain is bounded 
by a circular pipe of infinite length, and the flow is driven by a pressure gradient . 
The laminar solution has a parabolic velocity profile. 
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Figure 20. 10 :  Like Figures 20.4 and 20 .8 but for pipe flow, from [765] . The light 
curves represent spectra, which are now curves rather than regions since the pipe 
has only one unbounded dimension. The heavy curves are the boundaries of the 
e:-pseudospectra for e: = 10-2 , 10-2 . 5 , 10-3 , and 10-3 . 5 . Like plane Couette flow, 
this flow is eigenvalue stable for all R. (The small kinks in the pseudospectral 
boundaries are artifacts of the numerical computation. ) 

file. Physically and mathematically, the behavior is much the same as for 
plane Couette flow. The flow is eigenvalue stable for all R (this has not 
been proved , but the evidence from numerical computations is compelling 
and there is little disputation of this point) , and in practice it is stable 
for Reynolds numbers less than about 2000 (with R now defined as radius 
times centerline velocity divided by kinematic viscosity) . Reynolds himself 
observed transition to turbulence at various values of R on the order of 
10 ,000 [636] , whereas more recent exceptionally careful experiments have 
managed to retain laminar flow to values of R as high as 100 ,000. For 
large enough R, however, turbulence always appears . The pseudospectra 
of Figure 20 . 10 suggest that this is to be expected, since they look much 
like those of Figures 20.4 and 20 .8 .  The spectra are quite different-curves 
rather than regions , which is a consequence of there being just one un­
bounded dimension in the problem rather than two-but it is not clear 
that this mathematical fact has much physical significance. 

In this section we have concentrated on three idealized flows, only one of 
which, pipe flow, is close to a geometry found in applications . The variety 
of more complicated flow problems that have been investigated by engi­
neers and mathematicians over the years is enormous . As outlined in §23, 
there are whole literatures on curved pipes and walls , ribbed walls , bound­
ary layers , swirling flows, transonic flows, non-Newtonian fluids , flows over 
obstacles , jets, temperature-dependent effects , magnetohydrodynamic ef­
fects, and more. Perhaps it is fair to say that in most of these problems, if 
eigenvalue analysis is possible at all ,  it reveals unstable eigenmodes in cer­
tain parameter ranges that are mixed with other , nonmodal effects, which 
become more prominent as the flow speed increases . 
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Readers who compare our plots with those in the papers and books cited 
will see that most of the latter display individual eigenvalues as dots rather 
than spectra as curves or regions . Such plots are obtained after restricting 
attention to a fixed pair of x and z Fourier parameters in the case of plane 
Couette or Poiseuille flows, or a fixed pair of x and e parameters in the 
case of pipe flow. Our plots combine all these modes into one picture . 

What about turbulence? Of course this is not a purely linear phe­
nomenon; it depends on an interaction of linear and nonlinear effects . A 
model of the nonlinear process of transition to turbulence is described in 
the next section, but this book does not discuss turbulence itself. 



2 1  . A model of transition to turbulence ------

It seems probable, almost certain indeed, that . . .  the steady motion 

is stable for any viscosity, however small; and that the practical 

unsteadiness pointed out by Stokes forty-four years ago, and so ad­

mirably investigated experimentally five or six years ago by Osborne 

Reynolds, is to be explained by limits of stability becoming narrower 

and narrower the smaller is the viscosity. 

- Lord Kelvin, 1887 [451] 

High-speed shear flows , as we have discussed in §20, are usually unstable in 
practice even though they may be stable in theory. For example , the flow 
of water through a pipe at high Reynolds number R is usually turbulent , 
even though in principle the smooth laminar flow solution should be stable 
to infinitesimal perturbations for any R. In this section we present a sim­
ple two-variable model , first published in [780] and studied further in [270] , 
that sheds some light on how such apparently paradoxical behavior is possi­
ble . The model blends a nonnormal linear term with an energy-conserving 
nonlinear term and features a fixed point which, though stable, lies in a 
basin of attraction whose width shrinks as R increases . The general pattern 
of thinking that led to this model has roots going back a century to Kelvin 
and Orr and was first brought into sharp focus in an important paper by 
Boberg and Brosa in 1988 [65] . 

Since matters of fluid mechanics tend to be controversial , let us be 
clear what we do and do not claim for this simple model. We do claim 
that it illustrates how nonnormality and energy-conserving nonlinearity 
can combine to render a mathematically stable fixed point unstable to 
small finite perturbations . We also claim that in certain high speed fluid 
flows, under some circumstances , practical instability arises from a non­
normal/nonlinear interplay of this general nature . On the other hand we 
do not claim that the details of any fluids problem, which will be infinite­
dimensional , match those of this two-dimensional model , or that the basin 
of attraction for a fluids problem will shrink as R -+ 00 as fast as for this 
model. Nor do we claim that the model sheds any light on the nature of 
turbulence, merely on the early stages of transition. Finally, we do not 
claim that a mechanism of this kind is the only route to practical insta­
bility of high-speed flows . On the contrary, it seems clear that practical 
instability can also come about in other ways. For example , suppose a 
laboratory apparatus is built that realizes a system that in theory should 
have no unstable eigenvalues. If the eigenvalues are sensitive to perturba­
tions , then slight imperfections in construction may result in the apparatus 
corresponding to equations that have unstable eigenvalues after all .  
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Our model consists of two coupled nonlinear ordinary differential equa­
tions . Let R be a parameter, a caricature of the Reynolds number, which 
will be taken to be moderately large . Here is the system: 

� ( u ) = ( _R- 1 1_ ) ( U ) + .  lu2 + v2 ( 0 - 1 ) ( u ) . 
dt v 0 -2R 1 v V 1 0 v 

(2 1 . 1 ) 
To make our discussion as simple as possible we shall consider the various 
terms of (21 . 1 ) in three pieces : 

:t ( � ) = ( _�- 1 _2RO_ l ) ( � ) + ( � � ) ( � ) 
+ vu2 + v2 ( � -� ) ( � ) . 

(21 . 2 ) 
(21 . 3) 
(21 .4) 

Consider first ( 2 1 . 2) . This term is linear and diagonal , hence normal . 
The diagonal entries are negative and small, corresponding to the small 
amount of diffusion present in a flow at high Reynolds number. The first 
part of Figure 2 1 . 1  shows the effect of this term in the (u, v) phase plane: 
it makes an initial state tend exponentially to the origin. The behavior of 
our model would be much the same if we made the diagonal entries equal, 
but this would render the first matrix of (2 1 . 1 ) nondiagonalizable , which 
some find distracting. We keep the eigenvalues separate to emphasize that 
the behavior of interest does not depend on nondiagonalizability. 

Next consider ( 2 1 .3 ) . This 'shear term' is nonnormal: it adds energy to 
u without correspondingly reducing v , as shown in the second part of Fig­
ure 2 1 . 1 . In a fluid mechanics application, u and v are sometimes thought 
of as the amplitudes of a streamwise streak and a streamwise vortex, re­
spectively, but this interpretation is oversimplified . Instead, it is better 
to think of v as a caricature of all kinds of structures in a flow, including 
streamwise vortices , that may sustain other structures without being di­
minished themselves (Boberg and Brosa call them 'mothers ' [65] ) ,  and of 
u as a caricature of all kinds of structures , including streamwise streaks , 
that may be sustained in this fashion ( 'daughters ' ) . 

Finally there is (2 1 .4) .  This term is nonlinear , but it is very simple. 
Because the matrix is skew-symmetric, it acts orthogonally to the flow. 
transferring energy from u to v while conserving the total energy. The fac­
tor vu2 + v2 makes the term nonlinear ; it 'shuts off' at the origin, growing 
linearly as u and v increase, as shown in the third part of Figure 2 1 . 1 . The 
presence of a square root means that the term is not analytic at u = v = 0 ,  
unlike the equations of fluid mechanics , but this feature can readily be 
changed without affecting the main behavior of interest [20] . 
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Figure 2 1 . 1 :  Three components that combine in the model (21 . 1 ) .  Each plot 
shows several trajectories in the (u ,  v ) phase space . 

How do the three terms ( 21 .2 ) - ( 21 .4) act in combination? This is cer­
tainly not obvious from a glance at Figure 2 1 . 1 .  First , let us combine the 
two linear terms , setting ( _R- 1 A = o -2�- 1 ) . 
Figure 2 1 . 2  shows that the resulting flow is a typical one of the kind ana­
lyzed often in this book, with a transient effect unrelated to the eigenvalues . 
As R ........ 00 for this model, both max I letA I l and the time at which this max­
imum is achieved scale in proportion to R. 

Now let us put together the full nonlinear system. Here it becomes 
necessary to show the axis scales . In the top half of Figure 21 . 3 ,  ten 
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Figure 2 1 . 2 :  Behavior of the linear part of (21 . 1 ) ,  that is, the two terms ( 2 1 . 2) 
and (21 .3) in combination, for R = 12 .  The upper plot shows trajectories for 
o :::; t :::; 30 in the the (u, v ) phase space , as in Figure 2 1 . 1 .  The lower plot shows 
transient growth of this nonnormal linear operator over the same time interval. 

trajectories are plotted, five in the upper half-plane and five in the lower 
half-plane. Three of the trajectories in each half-plane start very close to 
the origin and then decrease to the origin; these are not visible , appearing 
just as a small dot . Evidently the origin is a stable fixed point (a sink) 
of the nonlinear system, as it must be since the linear part of the model 
has negative eigenvalues . The other two trajectories start a little larger 
and end up spiraling out to two other stable fixed points located near 
(u, v ) = (±2/ R, ±1 ) .  

This is not a book on dynamical systems, and we shall not go into 
detail about the geometrical aspects of this flow. Suffice it to say that if 
there are three sinks in the phase plane , then there must be boundaries 
separating the regions attracted to each, and along these boundaries must 
lie saddle points. This is indeed the case ; the saddles lie approximately 
at (±2 / R2 , ±2 / R3 ) .  The full picture appears in Figure 2 1 .4 ,  which is the 
centerpiece of this section. For R = 3 and R = 4, the figure shows a spiral 
region of width about 7/ R3 in the (u, v ) plane that is the basin of attraction 
of the sink at the origin. The wider spiral regions in between are the basins 
of attraction of the other two sinks . The sinks and the saddles are visible in 
the plot , though it is clear that for larger values of R the sink at the origin 
and the two saddles would quickly become indistinguishable. For further 
examples of the interplay of nonlinearity and nonnormality in determining 
basins of attraction of stable states, see [386, 469] . 
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Figure 2 1 .3 :  Like Figure 2 1 . 2  but for the full nonlinear model , again with R = 12 .  
Because the equations are nonlinear, the scales now matter . Five trajectories are 
shown beginning on the v-axis with initial values v = 3 X 10- 1 , 3  X 10-2 , . . .  , 3  X 
10-5 , and the corresponding five trajectories in the lower half of the phase plane . 
The label 'turbulence ' is just suggestive; this system in no way models a turbulent 
flow. 
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Figure 2 1 .4 : Basins of attraction for (21 . 1 ) ;  the basin of attraction of the ' laminar' 
state at the origin is the narrow spiral region bounded by the stable manifolds 
of the saddle points, colored gray. The five fixed points are shown, lying in 
the order sink-saddle-sink-saddle-sink along the curve formed by the unstable 
manifolds of the saddle points. As R -> 00, the width of the basin of attraction 
shrinks in proportion to R-3 . Analogous behavior occurs with plane Poiseuille , 
plane Couette, and pipe flows, though with vastly more complicated geometry 
and with exponent closer to - 1  than to -3 . This suggests how such flows can 
be stable in theory yet unstable in practice. 
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Here i s  our explanation of how certain fluid flows that are stable in 
theory may be unstable in practice . Consider the basin of attraction of 
Figure 21 .4 ,  but imagine that R is, say, 40 rather than 4. The figure will 
then look much the same, but the basin will be 1000 times narrower. Now 
in principle, the fixed point at the origin of such a system is stable , but a 
trajectory that starts anywhere but the slightest distance from the origin 
will almost certainly be drawn outward. For some high-speed fluid flows , 
the geometry will be analogous , though of course far more complicated 
and infinite-dimensional . For example , in a long circular pipe, the laminar 
flow may be stable at high Reynolds numbers , but an initial condition that 
deviates in any but the slightest degree from laminar will almost certainly 
spiral up to turbulence . 

Figure 2 1 .4 contains a curious feature: Some initial conditions very far 
from the origin lie in the basin of attraction and thus eventually must con­
verge to the origin. This property holds for fluid flows, too. For example, 
in a pipe or channel flow, any perturbation of the laminar flow that is inde­
pendent of the streamwise direction, no matter how large the perturbation 
and no matter how large the Reynolds number, must in principle eventu­
ally relaminarize ; see §20. Of course one would not expect to be able to 
observe this in practice at high Reynolds numbers . 

Since (21 . 1 )  originally appeared in [780] , other ODE models of transition 
to turbulence have also been put forward by various authors. Comparisons 
of half a dozen of these models are made in [20] , and an example of a 
much more complex system based on the proper orthogonal decomposition 
appears in [704] . The alternative models that have been proposed usu­
ally have more variables , in an attempt to bring them closer to the fluid 
mechanics; when there are three variables or more, there is the possibility 
that the state analogous to 'turbulence' can be a chaotic attractor rather 
than a fixed point [ 19 ,  306] . All these models feature basins of attraction 
of the laminar state that shrink at some rate R'Y as R --+ 00; the exponent 
'"Y ranges between -3 and - 1 .  

It is interesting t o  compare the values for the exponent '"Y suggested by 
low-dimensional models with the evidence available for actual fluid flows , 
which comes from three sources : laboratory experiments, numerical simu­
lations of the Navier- Stokes equations , and the landmark theoretical work 
of Chapman [ 138 ,  669] . (Chapman's published paper treats plane Cou­
ette and plane Poiseuille flow; his results for pipe flow are unpublished as 
yet . ) In 1993, Trefethen , Trefethen, Reddy and Driscoll raised the ques­
tion of what the threshold exponent is for these three canonical flows [780] , 
conjecturing that the answer would be strictly less than - 1 .  Chapman's 
work provides a solution: Assuming his model is correct , the actual expo­
nents are - 1  for plane Couette and pipe flow and -5/4 for plane Poiseuille 
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flow. 1 This appears to be a tidy resolution, but in fact , the situation is 
more complicated: Numerical experiments consistently suggest exponents 
substantially below - 1  for these flows . Chapman explains this discrepancy 
by demonstrating that his analysis predicts convergence with the limiting 
exponents only for Reynolds numbers on the order of 106 or greater , far 
beyond the usual laboratory or computational range. He argues that mea­
surements based on Reynolds numbers in the realistic range 103-104 should 
suggest exponents smaller than - 1 ,  just as they do in practice. Thus again 
we seem to have a tidy resolution of all outstanding problems , though more 
nuanced than before. Yet there is a further complication, introduced by 
the most precise laboratory results to date concerning threshold exponents . 
In an exceptionally careful sequence of experiments involving flow in a long 
pipe, Hof, Juel , and Mullin [406] have found a very clean R-1 relationship 
in the range where numerical simulations and Chapman's theory both pre­
dict an exponent closer to -5/4 or -3/2.  Thus a gap in our understanding 
remains . Perhaps the explanation is that the flow disturbances used to 
trigger transition in the experiments of [406] are not sufficiently close to 
'optimal' in form. If so, this would raise the possibility that perturbations 
that are optimal in principle may not always be significant in practice. 

We can summarize the above complex situation as follows. For the 
three canonical shear flows introduced in the last section, the width of the 
basin of attraction of the laminar state shrinks as R � 00 .  At laboratory 
Reynolds numbers , it shrinks faster than R- 1 for reasons analogous to 
those at work in the simple model of this section-a mechanism called 
'bootstrapping' in [780] . In the limit R � 00, the bootstrapping effect 
persists for plane Poiseuille flow but shuts off for plane Couette and pipe 
flow. The interesting physical mechanisms involved in this behavior are 
discussed in [ 138, 623] . 

Not all researchers agree that the model described in this section has 
anything to do with transition to turbulence. For a dissident view, see [8 14] .  

1 For plane Poiseuille flow one ignores the Tollmien-Schlichting eigenvalue instability 
that sets in for R > 5772 on a time scale too slow to have much importance in practice, 
as discussed in §22. 



22 . Orr-Sommerfeld a nd Airy operators ----­

The most famous of all non-Hermitian eigenvalue problems is the Orr­
Sommerfeld equation of hydrodynamic stability. The Orr-Sommerfeld op­
erator was also one of the first differential operators for which pseudospectra 
were computed numerically, in a pioneering 1993 paper by Reddy, Schmid, 
and Henningson [624] . 

The Orr-Sommerfeld problem arises in the analysis of parallel fluid 
flow in an idealized infinitely long domain [214 ,  669] . Let us concentrate 
on the simplest case , plane Poiseuille flow, which was introduced in §20. 
Figure 22. 1 shows the configuration, a viscous incompressible flow between 
infinite parallel flat plates in three dimensions . In Orr-Sommerfeld analysis 
we begin by restricting attention to flows that are invariant with respect to 
the unbounded dimension perpendicular to the flow. This restriction yields 
a two-dimensional problem in variables we shall denote by s (streamwise) 
and x (spanwise) . The governing equations are the incompressible Navier­
Stokes equations (not written here) together with zero-velocity ( 'no slip ' ) 
boundary conditions . The equations depend on the crucial parameter R, 
the Reynolds number, a nondimensional ratio of inertial to viscous force 
scales . 

Figure 22 . 1 :  Schematic view of plane Poiseuille flow (repeated from Figure 20. 7) . 
The parabola represents the laminar flow solution whose stability is at issue. 

For any value of R there is a solution to the Navier-Stokes equations , the 
laminar solution, consisting of flow in the s direction with a parabolic veloc­
ity flow profile , as suggested in the figure. It is conventional to nondimen­
sionalize the problem by taking the channel to be defined by - 1 ::::: x ::::: 1 
and the laminar velocity profile to be 

( 22 . 1 )  

The classic question about this flow is , I s  it stable with respect t o  infinites­
imal perturbations? If not , this might seem to offer an explanation of why 
high-speed channel flows become turbulent in practice . To find the answer, 
taking advantage of the Fourier transform in the streamwise direction, we 
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imagine an infinitesimal perturbation that is sinusoidal in s but has an 
arbitrary shape in x defined by the stream function 

ll1 (s , x , t ) = u(x , t )eias , (22 .2 )  

where a i s  a real wave number, with u subject to the boundary conditions 
u(±l )  = (au/ax) (±l )  = O. Upon inserting this ansatz into the Navier­
Stokes equations and defining D = a/ax and Ut = au/at, we obtain the 
following equation governing the evolution of u(x,  t ) : 

Equation (22 .3 )  defines a linear autonomous dynamical process that 
evolves in t-a semigroup ( § 15 ) . We see that spatial derivatives appear up 
to the fourth order. In view of the factor (D2 

- (2 ) at the front , however, 
this dynamical system is not governed simply by a differential operator but 
is of the generalized form BUt = Au, where B is a second-order differential 
operator and A is a fourth-order differential operator (see §45) . The Orr ­
Sommerfeld operator, i . e . ,  the generator of the semigroup, is L = B-1 A: 

In a rigorous theoretical treatment one would have to be careful to define 
exactly what function space this expression applies in [677] . In a numer­
ical computation one usually leaves the problem in the generalized form. 
For computation of pseudospectra and other norm-dependent quantities, 
one must take care to work in the appropriate energy norm (see §45 and 
Appendix A of [624] ) .  

We thus find ourselves with a nonnormal operator L = LR,a that de­
pends on two parameters : the Reynolds number R and the streamwise 
wave number a .  In the literature, however, the Orr-Sommerfeld problem 
is almost never presented in this operator form. Instead most authors go di­
rectly to the eigenvalue problem Lu = AU by assuming a time dependence 
eAt for some A E <C. Now (22 .4) becomes the famous Orr-Sommerfeld 
equation, 

a fourth-order differential equation containing the eigenvalue A as an un­
known. (It is also common to set A = - iac so that the left-hand side 
simplifies to - cu.) 

Since Orr and Sommerfeld a century ago [587, 707] , dozens and in­
deed probably hundreds of papers have been written about (22 .5) , treating 
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Figure 22 .2 :  The rightmost part of the spectrum of the Orr-Sommerfeld operator 
for a == a crit >:::: 1 .02 and three values of R. The crosses mark nearly-degenerate 
pairs (two eigenvalues closer than 0 .01 ) .  In the last frame the rightmost eigen­
value is in the interior of the right half-plane , but its real part is only 0 .0037. 

discreteness of the spectrum, completeness of the eigenmodes [2 10] , numer­
ical range and resolvent , dependence on the flow profile U(x) , asymptotic 
estimates, numerical computation, experimental verification, and numer­
ous other topics [481 ,  679 , 680] . Of course the central question has been, 
Are there eigenvalues in the right half of the complex plane? It was soon 
recognized that for large enough R, the answer is yes . A memorable devel­
opment was the first high-accuracy computation by Orszag in 1971 [588] 
of the critical parameters for this instability: 

Rerit >:::: 5772 .22 ,  Cterit >:::: 1 . 02055. 

For R < Rerit and any Ct, the Orr-Sommerfeld problem is eigenvalue stable , 
but with Ct == Cterit , an eigenvalue crosses the imaginary axis at R = Rerit . 
The corresponding eigenmode, with vorticity strongly concentrated near 
the boundaries x = ± 1 ,  is known as a Tollmien-Schlichting wave. Orszag's 
result is illustrated in Figure 22 .2 . 1 

And here we reach the point where Orr-Sommerfeld eigenvalue analysis 
fails , although for most of the twentieth century, this fact was not widely 
appreciated. 

A clue that something is wrong is the exceedingly small real part of 
the rightmost eigenvalue in the third panel of Figure 22 .2 :  just 0 .0037, 
eVen though the Reynolds number is far above Rerit . The determination 
that this flow is 'unstable ' is nothing more than the discovery that it is 
susceptible to disturbances that grow at the extraordinarily low rate 

I l u (t ) 1 1 � eO .0037t . (22 .6 )  

1 Al l  the numerical results o f  this section were obtained by  means of a set o f  MATLAB 
spectral collocation programs written by Reddy and Henningson in the early 1990s. A 
version of the these codes appears in Appendix A of [669] . 
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A perturbation growing at this rate would have to travel hundreds of chan­
nel widths downstream before it was amplified by even a factor of 10 .  
Probably no laboratory channel has ever been constructed that is so long; 
yet in actual channels , one regularly sees transition to turbulence at this 
Reynolds number. Clearly (22 .6)  is not enough to explain this behavior of 
real flows. 

Figure 22 .3  gives some insight into what is overlooked by the eigen­
value analysis . The curves in this figure embody some remarkable physics 
and are worth studying carefully. First , note that both axes are logarith­
mic, enabling one to see behavior on multiple time and amplitude scales 
(cf. Figure 15 .3 ) . The time scale of greatest relevance to actual flows would 
perhaps be 101 :=:; t :=:; 102 . Looking at the lowest curve in this part of the 
plot , we see that the growth experienced by the unstable eigenmode up 
to time t = 100 is not even as great as a factor of 1 . 5 .  The middle curve 
shows the actual norm II exp ( tL) I I , which corresponds to maximal growth 
of arbitrary initial perturbations; such calculations were first reported by 
Farrell [258] . It is a good deal higher , a factor of about 8. Thus it is evident 
that eigenvalue analysis of the Orr-Sommerfeld operator misses its domi­
nant behavior , which is transient rather than asymptotic. In a moment we 
shall look at pseudospectra. 

Figure 22 .3 :  Energy growth for plane Poiseuille flow at R = 10 ,000. The lower 
two curves correspond to the Orr-Sommerfeld problem with ex � 1 . 02. The 
top curve corresponds to a three-dimensional flow perturbation with ex = 0 and 
spanwise wave number j3 = 2 .04. This last growth is entirely transient , having 
nothing to do with eigenvalues, but it is the dominant effect physically. 
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The third curve in Figure 22 .3 tells an even more important story, dis­
cussed in §20 .  This curve shows the values of II exp (tL ) I I  we would have 
obtained had we not made the initial assumption that the flow perturba­
tion is two-dimensional . (The mathematics here generalizes from the Orr­
Sommerfeld equations to a coupled system of Orr-Sommerfeld and so-called 
Squire equations [214,  669] . )  The amplification in the range 101 :::; t :::; 102 

increases by another order of magnitude, up to a maximum of about 50. 
If three-dimensional perturbations are so much more important than 

two-dimensional perturbations , why does Orr-Sommerfeld analysis limit 
attention to the latter? There is a clear answer to this question, the 1933 
result known as Squire 's theorem, already mentioned in §20 [717] . Squire 
began by positing a perturbation with streamwise wave number a and 
spanwise wave number (3 =I O. He then showed that the eigenvalue problem 
associated with these parameters is equivalent to an Orr-Sommerfeld eigen­
value problem with parameters (3' = 0, a' = Ja2 + (32 , and R' = ROo/a' , 
which is smaller than R. It follows that if we are only concerned about 
the critical Reynolds number as defined by unstable eigenmodes, there is 
no need to look at three-dimensional perturbations . This mathematically 
correct but highly misleading observation confused the fluid dynamics lit­
erature for many years. 

The subject of this section is the Orr-Sommerfeld operator , not fluid 
mechanics, so we shall now drop the subject of three-dimensional perturba­
tions and return to the matter of the difference between the lower two curves 
in Figure 22 .3 .  In this book we seek insight into such transient effects by 
looking at pseudospectra. The pseudospectra of Orr-Sommerfeld operators 
were considered at length by Reddy, Schmid, and Henningson [624] . Fig­
ure 22.4 ,  in the style of their paper , shows pseudospectra of L for a = 1 . 02 
and R = 10 ,000. 

Perhaps two nonnormal aspects of the Orr-Sommerfeld operator are 
most apparent in Figure 22 .4 .  One is the rather mild nonnormality in the 
right part of the spectrum. Physically, this is the important feature, since 
it is associated with the transient growth that makes the lower two curves 
of Figure 22 .3 differ. The 'hump' scales with amplitude (') (R1/3 ) and time 
scale (,) (R1/3 ) as R ---> 00. The other is the more striking nonnormality near 
the intersection point of the 'Y' . Here the eigenvalue problem is exceedingly 
ill-conditioned; the figure shows values of E down to 10-8 .  The condition 
number of the infinite-dimensional eigenvector matrix associated with this 
operator is in fact about 2 .03 x 108 , a figure that grows approximately in 
proportion to e.JIi/5 as R ---> 00 .  As a consequence, these eigenvalues are 
hard to compute numerically, a fact noted by Orszag and others. They are 
so deep inside the spectrum that there is little physical significance to this 
ill-conditioning, but there is some analytical significance, for it implies that 
attempting to expand solutions to an Orr-Sommerfeld flow problem as lin­
ear combinations of Orr- Sommerfeld eigenmodes would be a very bad idea. 
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Figure 22.4: Spectrum and E-pseudospectra of the Orr-Sommerfeld operator 
(22 .4) for a = 1 .02, R = 10 ,000, and E = 10- 1 , . . .  , 10-8 . Eigenmodes and 
pseudomodes corresponding to the markers ft, rJ and A, B, C, D are shown in Fig­
ure 22 .6 .  
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Figure 22 .5 :  Repetition of Figure 22.4, for the approximation (22.8) . According 
to the theory of § 1 1 ,  the pseudospectra fill a half-strip as R ---> 00 .  
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The expansion coefficients would be orders of magnitude larger than the 
functions being expanded, and virtually all the physics would be encoded 
in the evolving patterns of cancellation among the various nonorthogonal 
eigenmode components. 2 

It is clear from Figure 22 .4 that the Orr-Sommerfeld spectra and pseudo­
spectra are complicated, and one might attempt to learn more by analyzing 
simpler operators with some of the same properties . For example, if we sim­
plify (22 .4) by deleting the constant 2 and cancelling the common factor 
(D2 - 0;2 ) , we obtain the second-order differential operator 

(22 .7) 

If we delete the constant 0;2 and set 0; = 1 in front of the 1 - x2 factor , this 
becomes 

(22 .8)  

The spectra and pseudospectra of this operator, shown in Figure 22 .5 ,  have 
much in common with those of the Orr-Sommerfeld operator . This is easily 
explained, for (22 .8)  is a variable coefficient differential operator of the kind 
analyzed in § 1 1 .  The symbol is 

f (x, k) = - (k/VR)2 - i ( 1  - x2 ) , 

and the theorems of § 1 1  imply that as .JR ----> 00 ,  the resolvent norm will 
grow exponentially throughout the half-strip Rez < 0, - 1  < Imz < 0, with 
associated pseudomodes in the form of symmetrically positioned pairs of 
double wave packets ; the doubling comes because the two-to-one function 
1 - x2 has the effect that if (x, k) satisfies the twist condition of § 1 1 ,  so 
does (-x,  -k) .  This prediction matches the figure nicely and explains 
why the eigenfunctions for the Orr-Sommerfeld problem have condition 
numbers scaling exponentially with .JR . Further explorations , summarized 
in Figure 22 .6 ,  show that the optimal pseudomodes of (22 .8)  indeed have 
the form of wave packets, as do the eigenmodes themselves . For the Orr­
Sommerfeld operator itself, also shown in the figure, the behavior is similar 
except for values of z in the upper right corner of the half-strip (marks f..l 
and A) . 

The operator (22 .8 )  is not the simplest variable coefficient operator with 
this general kind of behavior. Reddy, Schmid, and Henningson [624] went 
further and considered 

(22 .9 )  

which in view of the similarity to the Airy equation we call the (complex) 
Airy operator (see p. 107) . The same operator has also been investigated 

2Similar spectral instability about a 'Y' branch is observed in magnetohydrodynamics 
models . In this case the unstable modes and pseudomodes are of particular interest , 
related to Alfven waves [74 , 795] . See Figure 23. 1 .  
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Figure 22 .6 :  Eigenmodes (top two rows) and pseudomodes (bottom four rows) 
of the Orr�Sommerfeld operator (left) and its approximation (22 .5)  (right) with 
R = 10 ,000. The Roman markers correspond to A = -0.4i ,  B = -0. 1 - 0 .8 i ,  
C = -0.4 - 0 .9 i ,  D = -0.4 - O.4i .  In each case the domain is -1 ::; x ::; 1 and the 
plot shows the absolute value, the negative absolute value, and the real part of 
the mode . According to (22 . 2 ) , these curves represent the stream function; the 
velocity is associated with the derivative. 

by Stoller , Happer, and Dyson [731 ] , Shkalikov [678] , and Redparth [628] .  
(Instead of a further simplification for plane Poiseuille flow, (22 .9)  can be 
obtained more directly as an approximation for plane Couette flow. ) Again 
the results of § 1 1  make analysis of pseudospectra easy; the symbol is 

f(x,  k) = - (k/VR)2 + ix ,  

and thus we expect the pseudospectra to approximate the half-strip Rez < 
0, - 1 < Imz < 1 .  Figure 22 .7  confirms this expectation . Reddy et al . 
showed that the numerical range of this operator is contained in the half­
strip . 

In summary, the Orr�Sommerfeld operator is a beautiful mathematical 
object , a fascinating example of a nonnormal linear operator. The restric­
tion to two dimensions , however, limits its significance for fluid mechanics . 
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Figure 22.7 :  Eigenvalues and E-pseudospectra of the Airy operator (22 .9) with 
R = 2500 for € = 10- 1 , . . .  , 10- 10 . Again, the theory of § l l  explains why the 
pseudospectra fill a half-strip in the R -> 00 limit . 
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Every issue of Physics of Fluids or the Journal of Fluid Mechanics con­
tains articles on instability and transition to turbulence . For shearing 
flows at medium or high speeds , a common theme appears again and 
again: The dominant structures are three-dimensional vortices and streaks 
roughly aligned with the flow. Experiments show such structures repeat­
edly. Mathematical theory reveals them too, so long as the analysis ad­
mits three-dimensional disturbances and is not confined to eigenvalues and 
eigenmodes. Sometimes the streaks appear as unstable eigenmodes, but 
often the linearized operators are highly nonnormal and the streaks are 
nonmodal . 

Sections 20-22 concentrated on the prototypical cases of plane Poi­
seuille, plane Couette, and pipe flow. In this section we mention a few of the 
many other problems of fluid mechanics in which linear nonnormal effects 
have been investigated. Such studies are relatively new, having mostly 
appeared since the mid- 1990s, but there were important earlier theoretical 
works by Ellingsen and Palm [238] and Landahl [477] and others, as well as 
a great deal of older experimental evidence. Sometimes old experiments get 
revisited in the light of new theory, as in the case of Mayer and Reshotko's 
1997 paper with the intriguing title, 'Evidence for Transient Disturbance 
Growth in a 1961 Pipe-Flow Experiment ' [539] . 

Boundary layers and receptivity. A viscous fluid flowing past a solid sur­
face, such as a turbine blade or an aircraft wing, forms a boundary layer in 
which complicated structures and turbulence may arise [661 ] . Such flows 
have much in common with pipe and channel flows , but there are impor­
tant differences . One difference is that there is often a leading edge that 
may be roughly independent of the cross-stream dimension; this may be 
one reason why predictions based on two-dimensional analysis sometimes 
fare better in boundary layers than in pipes and channels . Another dif­
ference is that the domain is infinite in extent , so that the spectrum of 
the associated operator must be partially or wholly continuous. Also as a 
result of the unbounded geometry, there can be no laminar solution that is 
independent of the streamwise direction, so that approximations such as a 
parallel flow assumption must often be made, and it is common to inves­
tigate evolution with respect to space (distance downstream) rather than 
time. The lack of a second wall further eliminates the length scale provided 
by the diameter of a pipe or a channel ,  making the physics more variable 
and the analysis more challenging. Despite all these facts , boundary layer 
flows have much in common with confined flows , and in particular , one reg-
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ularly sees streamwise vortices and streaks (and their folded-over variants 
known as 'hairpins ' )  as precursors to turbulence . A fascinating aspect of 
these structures is that they are often excited by vibrations in the free­
stream part of the flow, and since the operators are nonnormal , one finds 
that to analyze the response in the boundary layer, one must make use 
of the adjoint of the linearized operator. 1 This process of receptivity has 
been extensively studied [660] . A considerable experimental and numerical 
literature has accumulated on transient growth and receptivity and their 
role in transition in boundary layers since the notable early works by Hult­
gren and Gustavsson [423] and Butler and Farrell [ 121 ] ; references include 
[9 , 163, 427, 519 ,  537, 667, 668 , 784 , 818] . The expression 'bypass transi­
tion' (i .e . ,  nonmodal or sub critical transition) was coined in the context of 
boundary layers by Morkovin in the late 1960s [633] ; Reshotko provides an 
updated view [634] . 

Taylor-Couette flow. Taylor-Couette flow occurs between two concen­
tric cylinders , the inner one rotating and the outer one, in the simplest case, 
stationary. If one ignores end effects, then at all rotation rates there is a 
laminar solution in which the fluid travels in circular orbits. In landmark 
work of the early 1920s, Taylor showed that at a certain rotation speed, a 
centrifugal instability develops and the motion evolves into a more compli­
cated pattern known as 'Taylor rolls ' [2 14, 744, 745] . This is a problem in 
which eigenvalue analysis has been highly successful. Certain variations , 
however, lead to eigendifficulties . If the outer cylinder is counter-rotating, 
then one has a configuration that blends the features of the original Taylor 
problem with those of plane Couette flow. Here nonnormal effects be­
come pronounced, and in some parameter regimes, streamwise streaks may 
form through transient linear processes and trigger transition to turbulence. 
Nonnormality and transient effects in Taylor-Couette flow have been in­
vestigated in [419] and [547] , the former with the aid of pseudospectra. 

Curved pipes, walls, and channels .  Other flows involving curved walls 
are also subject to centrifugal instabilities . Dean flow involves a curved 
channel, and Cartler flow the boundary layer near a curved wall [192 , 
214, 280, 329, 736] . In these and other similar configurations, streamwise 
vortices and streaks usually appear . Sometimes their appearance can be 
predicted by eigenvalue analysis, and this has led to an interesting pat­
tern of thinking among fluid dynamicists: If curved flows have unstable 
eigenmodes but straight ones do not , then perhaps straight walls should 
be regarded as curved walls in the limit of zero curvature? Some fasci­
nating results of this perspective have been developed by Nagata [571] . 
We believe, however, that some of the appeal of this view is a result of 
mathematical confusion, for if one goes beyond eigenmodes , the dynamics 
of a straight pipe or channel can be understood in their own terms, not 

I The same phenomenon of 'adjoint coupling' is of interest to laser engineers (see §60) . 
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as a limit of something else. Indeed , since the associated operators have 
pseudospectra protruding into the right half-plane , it is hardly surprising 
that perturbation of the geometry, such as the curving of a boundary wall , 
frequently produces flows with modal instabilities . In any case , whether 
or not there are unstable eigenvalues, these flows are often subject to lin­
ear nonmodal transient effects, which have received increasing attention in 
recent years [77, 165, 509] . 

Compressible and supersonic flow. An ' incompressible ' flow is one for 
which effects of compressibility can be neglected. This includes liquids un­
der most circumstances and also gases in situations where the flow speed is 
much less than the speed of sound, i .e . , M « 1 ,  where M is the Mach num­
ber. Some important flows , however, are strongly compressible , including 
those involving aircraft or gas turbines . Nonmodal and transient effects 
for compressible boundary layer flows have been considered in [371 ,  670] , 
with results in general agreement with those for the incompressible case . 
Again there is large transient growth, unrelated to eigenmodes, that scales 
in amplitude in proportion to the Reynolds number R as R ---> 00. As with 
incompressible boundary layers , a crucial aspect of the physics is receptiv­
ity to disturbances in the free stream. Even in the supersonic case M » 1 ,  
such effects appear t o  be  involved i n  transition t o  turbulence [136, 302, 657] . 
Reshotko and Tumin have argued that the 'blunt-body paradox' of super­
sonic flow may have a linear , nonmodal resolution [634, 635] . 

Non-Newtonian fluids. A non-Newtonian fluid is one whose shear forces 
are not described by the usual viscosity constant that appears in the 
Navier-Stokes equations . Important examples are shear-thinning fluids, in 
which the viscosity diminishes as the fluid is sheared (e.g. , paint) , viscoplas­
tic fluids, in which there may be no yield at all at low stress (toothpaste) ,  
and viscoelastic fluids, which can support tension (egg white) . This is a 
subject of industrial importance, both because some liquids are intrinsically 
non-Newtonian and also because the flow characteristics of Newtonian liq­
uids may be improved by non-Newtonian additives such as polymers (to 
inhibit turbulence and reduce drag) . All the familiar questions of insta­
bility and transition have non-Newtonian counterparts, and just as in the 
Newtonian case, it appears that nonnormal effects are frequently important 
at higher speeds . Such effects are studied for viscoelastic fluids in [735] , 
with particular reference to plane Couette flow. An (eigenvalue-based) 
discussion of the shear-thinning case appears in [293] . 

Atmospheric flows. The study of atmospheric flows is a huge field, two 
of whose facets are climate modelling and weather prediction, with their 
urgent implications for agriculture , hurricane warnings , dispersal of pollU­
tants, global warming, and more. Mathematically, these problems combine 
the complexities of ' 2 � -dimensional ' spherical geometry, Coriolis forces , 
periodic thermal forcing, topography, precipitation, interactions with land 
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and ocean, reflection from clouds, and chemistry. Great financial and com­

putational resources are devoted to these problems, and as in other areas of 
fluid mechanics ,  increasing attention has been paid in the past two decades 
to nonnormal and transient phenomena. This has taken several forms . 
One is a redirection of attention from atmospheric structures described by 
eigenmodes (associated with the names Charney and Eady) toward non­
modal structures; the pioneer in this area since the 1980s has been Brian 
Farrell [256, 257, 259, 260] . Another is a growing emphasis in computa­
tional weather prediction on finite time horizons and associated dynamical 
notions such as finite-time Lyapunov exponents [843] and finite-time 'opti­
mals' [1 14, 257, 259] . In atmospheric flow problems the doubling time for 
a perturbation may be on the order of two days , and a factor of 10 may be 
the difference between a breeze and a hurricane. Clearly the limit t ---7 00 

is not the only physically important regime under such circumstances ; cur­
rent works give as much attention to singular vectors as to eigenvectors . 
It was Lorenz who drew attention to finite-horizon issues with analysis of 
an order-28 generalization of his famous chaotic set of three differential 
equations [517 ,  598] . A third new theme has been an emphasis on the 
stochastic nature of predictions and the use of the technique of 'ensemble 
forecasting ' ,  in which a simulation is run numerous times with various ini­
tial data so that not just a single prediction but a cloud of predictions is 
obtained [28, 266 , 283, 444, 515 ,  556] . 

Oceanic flows. Oceanic flows are also studied extensively, often as 
part of coupled ocean-atmosphere models. In recent years linear, non­
modal explanations have been put forward for phenomena involving EI 
Nino [557, 749] , large-scale ocean circulation [513 ,  514 ,  559] , and flows 
near coasts and past islands and headlands [3 ,  4] , as well as more general 
discussions of fundamental issues such as numerical modelling, adaptive 
observations, predictability, oceanic turbulence, transient growth, adjoints, 
optimal disturbances , and sensitivity to perturbations [137, 267, 558, 599] . 

Flow control. Advances in electronics , materials , nanotechnology, and 
fundamental understanding of fluid mechanics have given new prominence 
in recent years to an old idea: active flow control, for example to suppress 
turbulence by use of mechanical actuators or blowing and suction in a 
bounding wall. Some of the recent work in this area builds upon nonmodal 
analysis of transient growth of disturbances [61 ,  162, 264, 407, 484, 507] . 

Magnetohydrodynamics, plasma physics. In an extraordinarily diverse 
and important set of applications , fluid flows are complicated by the addi­
tional feature of electric currents, the magnetic fields they generate, and the 
forces induced by these magnetic fields . Questions of stability are central 
to many of these applications . For example, what instabilities are associ­
ated with the dynamos that generate the magnetic fields of the earth and 
the sun [146 , 265, 5 1 1 ] 7 Can a tokamak reactor contain a plasma stably so 
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Figure 23. 1 :  A suggestive plot of eigenvalues in the complex plane from 
Kerner [452] . 

as to enable controlled fusion [452] 7 What causes the fluctuations in the 
ionosphere that disturb satellites and radio waves [278] 7 How do liquid met­
als behave [336] 7 For decades the prevailing technique for addressing such 
problems has been eigenvalue analysis , despite persistent difficulties of com­
putation and physical interpretation. We cannot resist reproducing in Fig­
ure 23 . 1  an image from a review paper of Kerner [452] that points to some 
of these difficulties . Readers of this book will suspect that the figure comes 
from a problem with highly sensitive eigenvalues near an intersection of 
three branches , like the Orr-Sommerfeld spectrum of Figure 22 .4 , and this 
is indeed the case . References pertaining to methods that go beyond eigen­
values in magnetohydrodynamics include [74 , 132, 170 , 319 , 453, 5 1 1 , 833] . 
In particular , Borba et al . argue in [74] that pseudospectra provide a reso­
lution of the 'resistive Alfven paradox' . 

Other problems. We have mentioned a number of flow problems , but 
there are many more. For example , one could consider wakes and jets [27, 
164, 191 ] ' mixing layers , trailing line vortices [10, 670] , thermally driven 
flows , inclined planes and water tables [59, 585] , microscopic flows [675] , 
galactic dynamics [6 1 1 ] ,  compliant or porous walls , rough walls [8 19] , fully 
developed turbulence [262] ' aerodynamic flutter [102] , two-phase flow, gran­
ular flow [671] , or combustion [445] . In all of these areas linear nonmodal 
mechanisms have a place , and there is ongoing activity to elucidate the 
details of their interplay with nonlinear effects to generate the great com­
plexity of real flows. 
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24 . Gauss-Seidel and S O R iterations ------

At the time of this writing, the two areas in which pseudospectra have been 
applied most widely are fluid dynamics and numerical linear algebra. Hav­
ing considered a variety of fluids applications , we now turn our attention 
in this part of the book to the convergence behavior of iterative methods 
for solving linear algebraic equations and matrix eigenvalue problems. Al­
gorithms for both tasks rely on functions of matrices , mostly powers or 
polynomials, and results from §16  readily lead to convergence bounds that 
can be descriptive for nonnormal matrices . 

First we consider the solution of linear systems Ax = b, where A E 
ccnx n is a nonsingular matrix, b E CCn is given, and x E CCn is unknown. 
We suppose that A is large and sparse, in which case variants of Gaussian 
elimination often prove intractable and iterative methods provide an ap­
pealing alternative . Though nonnormality has little direct impact on the 
performance of Gaussian elimination, it manifests itself in important ways 
in the behavior of iterative algorithms. 

In this section and the next , we study classical stationary iterative meth­
ods, which include the Jacobi, Gauss-Seidel, and successive over-relaxation 
(SOR) algorithms. These methods solve the linear system by first splitting 
A into two matrices , A = M - N, where M is nonsingular . Then, given 
some initial guess Xo , they iterate 

(24 . 1  ) 

Since each iteration requires the solution of a linear system with the co­
efficient matrix M, it is essential that it be easy to solve equations of the 
form Mw = y for w; for this reason M is often diagonal or triangular . 

If the kth error is denoted by ek = Xk - x, one can show that the 
iteration (24 . 1 )  gives ek = (M- 1N) keo . 
This error is bounded by powers of the iteration matrix M- 1 N, 

(24 .2) 

Recall that I I  (M- 1 N)k I I  --t 0 as k --t CX) if and only if p(M- 1 N) < 1 ,  where 
p is the spectral radius. Furthermore, the spectral radius determines the 
asymptotic convergence rate [234 , 804] : 

1· [ ( l l ek l l ) l /k] - 1 Im sup sup 
-I I -I I  = p(M N) . k--->oo eo #O eo 
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These formulas indicate that convergence is related to the growth and de­
cay of matrix powers . As we have observed throughout this book and 
investigated especially in §16 ,  eigenvalues alone are sometimes insufficient 
to understand this subject , as nonnormality can cause significant transient 
effects in I I (M-1N)k l l . For iterative methods, this means a delay in the 
onset of convergence at the asymptotic rate. In this section and the next , 
we show that pseudospectra provide a convenient tool for identifying sit­
uations where interesting transient convergence behavior can occur. The 
possibility of transient effects was recognized to some degree years ago; 
see , e .g. , [326, 368 , 804] . For example, in his influential 1962 text Matrix 
Iterative Analysis, Varga presents the matrices 

with 0 « a < f3 < 1, and emphasizes that I I  S� I I  > I I  S� I I  for small values 
of k , yet for sufficiently large k , I I S� I I < I I S� I I [804, §3 .2] . Hammarling and 
Wilkinson note, ' It is not generally appreciated that this concentration on 
the asymptotic rate of convergence may be extremely misleading as far as 
the practical behaviour is concerned' [368, p. 2] . 

Writing A as the sum of its diagonal , strictly lower, and strictly upper 
triangular parts, A = D + L + U, we note the following well-known choices 
for the iteration matrix: 

Jacobi : M- 1N = _D- l (L + U) , 
Gauss-Seidel : M-1 N = - (D + L)- lU, 

SOR: M-1 N = (w- 1 D + L) - 1 ( (w- 1 - l )D - U) , 

where w E [0 , 2] is a parameter chosen to optimize the convergence behavior . 
(SOR reduces to Gauss-Seidel when w = 1 . )  

The Gauss-Seidel and SOR iterations typically give rise t o  nonnormal 
iteration matrices even when A is Hermitian . For example, suppose A is 
derived from the standard three-point finite difference discretization of the 
one-dimensional boundary value problem 

-ul/ (x )  = f(x)  x E [0 , 1 ] ' u(O) = a, u(l )  = b . (24 .3) 

If the interval [0, 1 ]  is discretized with N + 2 uniformly spaced grid points , 
then the coefficient matrix is the N x N tridiagonal Toeplitz matrix 

A = tridiag ( - 1 , 2 ,  -1). 
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The corresponding Gauss-Seidel iteration matrix takes the form 

0 1 2" 
0 1 1 "4 2" 

M-1N = E CN x N. (24 .4) 
0 2-N- 1 1 1 "4 2" 
0 2-N 1 "4 

All the eigenvalues of this matrix are real . When N is even, zero is an eigen­
value of algebraic multiplicity N /2 ,  though it has just a one-dimensional 
eigenspace . The remaining eigenvalues are , for k = 1 ,  . . . , N  /2 ,  

with corresponding eigenvectors given entrywise by 

_ j/2 . ( kj7r ) [Vk] j - Ak sm 
N + 1 

. (24 .5 )  

The matrix (24.4) i s  a Toeplitz matrix, aside from the zeros in the first 
column. We shall analyze it using the techniques and terminology of §7 .  
The matrices M and N are also Toeplitz, with symbols iM (Z) = 2 - Z and 
iN (z ) = z- l . Observe, then, that M- l N is a modification of the Toeplitz 
matrix determined by the symbol 

0.5 

o 

-0.5 

, , 

I 
I 

-0.5 0 0.5 1 

Figure 24. 1 :  Spectrum and c:-pseudospectra (c: = 10-\ . . . , 10- 1 1 ) of the Gauss­
Seidel iteration matrix (24.4) for N = 64. The gray region shows the spectrum 
of M-1N in the infinite-dimensional limit , and the dashed line is the unit circle . 
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Using arguments similar to those found in § §7-9 ,  one can show that the 
resolvent norm of M-1 N will grow at least exponentially as N --> 00 at all 
points z enclosed by the curve fM- 1N (1r) , where 1r denotes the unit circle . 
This teardrop-shaped region is shaded gray in Figure 24. 1 .  

One might be tempted to blame the dramatic nonnormality of this 
example on the fact that M-1N has a Jordan block of dimension N/2 
associated with the eigenvalue A = O. While this certainly contributes to 
the nonnormality, the distinct nonzero eigenvalues also play a role. As 
can be deduced from (24.5 ) , the eigenvectors associated with the nonzero 
eigenvalues are far from orthogonal . This is also evident from Figure 24 .2 ,  
which shows the pseudospectra of U*M-1 NU, the orthogonal compression 
of M-1 N onto the invariant subspace associated with its nonzero eigenval­
ues, where the columns of U E I[jN X Nj2 form an orthogonal basis for this 
subspace . Figure 24.3 shows the condition numbers of the nonzero eigen­
values , which are consistent with the nonnormality seen in Figure 24. 2 .  

What influence does such extreme non normality have on Gauss-Seidel 
convergence for this well-known example? Essentially none! Though the 
boundary of the lO-l l -pseudospectrum contains points far from the small­
est magnitude eigenvalues in Figure 24. 1 ,  it does not extend beyond the 
unit disk. This fact is highlighted in Figure 24.4, which shows that the 
pseudospectral radius p" (M-l N) differs negligibly from the spectral ra­
dius . As a result , I I  (M- 1 N) k I I  does not suffer from transient effects , and 
thus the bound (24.2) ensures that the error converges as predicted by 
eigenvalue analysis . This is an instance where a geometric understanding 

0.5 

o 

-0.5 

-0.5 o 0 .5  

, 
, 

Figure 24 .2 :  Spectrum and pseudospectra of the matrix (24.4) from Figure 24. 1 ,  
but restricted t o  the invariant subspace associated with the nonzero eigenvalues. 
Evidently there is much more to the nonnormality of (24.4) than the defective 
zero eigenvalue. 
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Figure 24.3: Condition numbers ""(Aj ) of the nonzero eigenvalues of the Gauss­
Seidel iteration matrix (24.4) for N = 64. 
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Figure 24.4: Behavior of the pseudospectral radius for the Gauss-Seidel iteration 
matrix (24.4) . Though the problem exhibits strong nonnormality, this does not 
significantly affect P€ (M- 1 N) . From Theorem 52 .3 we can deduce that this 
curve must approach ""(Amax ) = 1 . 00267 . . .  as E -> 0; on the other hand, it must 
approach 1 as E -> 00 . 

of the nonnormality is essential ,  and the scalar measures of nonnormality 
addressed in §48 would be wholly insufficient . (For example, the eigen­
vector matrix for M- l N has infinite condition number, since the iteration 
matrix is nondiagonalizable . )  

Though this example i s  rather elementary because of  the small band­
width of A, similar phenomena arise , for example , when (24.3) is general-
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Figure 24.5 :  Spectrum and c--pseudospectra (c- = 10- 1 , . . .  , 10� 1 1 ) of the Gauss� 
Seidel iteration matrix corresponding to the three-dimensional problem (24.7) on 
a grid of 10 x 10 x 10 unknowns. 

ized to a multidimensional problem such as 

-�u = f on [0, 1 ] x [0 , 1 ] x [0 , 1 ] (24. 7) 

with Dirichlet boundary conditions. Figure 24.5 shows the pseudospectra 
for this example . 

The pseudospectra of the Gauss-Seidel matrix (24.4) were first investi­
gated by Trefethen in 1992 [772] . Had nonnormality played an important 
role in the behavior of this classic matrix, research into nonnormal phe­
nomena in numerical linear algebra might have begun in earnest in the 
1950s, when Frankel and Young were studying these iterations [289, 846] . 
There are other important problems, however, where nonnormality does 
affect the convergence of stationary iterative methods . Such an example is 
the subject of the next section. 
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This section continues the discussion of classical iterative methods begun in 
the last section . There we studied an example where the Gauss-Seidel it­
eration matrix exhibited considerable nonnormality that was geometrically 
concentrated around the origin, having little influence on the pseudospec­
tral radii . Here, we investigate a different one-dimensional boundary value 
problem where the differential operator , as well as the iteration matrix, is 
non-self-adjoint . 

Consider the advection-diffusion problem 

-vul/ (x) + ,u' (x) = f(x) , x E [0 , 1] , u (O) = (x, u(l )  = (3 (25 . 1  ) 
for constant 'viscosity ' v > 0 and 'wind speed' , > O. Spectral and pseu­
dospectral properties of advection-diffusion operators were examined in 
§12 .  Our present concern is the numerical approximation of solutions to 
this equation. To begin, we discretize the interval [0 , 1 ] with N +2 uniformly 
spaced grid points . The standard centered finite difference approximation 
gives rise to an N x N coefficient matrix, and the structure of this matrix 
depends on how the grid points (and thus the unknowns) are ordered. Two 
natural choices are to label points from left to right , or from right to left . 

----> , > 0 ----> 

DOWNWIND • • • 
Xj- l Xj Xj+l 

UPWIND • • • 
Xj+l Xj Xj - l 

The terms 'downwind' and 'upwind' arise from the fact that the first or­
dering follows the direction of the wind " while the second is against it . 
The coefficient matrices induced by these orderings are both tridiagonal 
and Toeplitz , 

A tridiag ( -v - -.l 2v, -v + -.l) : 
2N ' 2N ' 

DOWNWIND 

UPWIND A = tridiag ( -v + -.l ,  2v, -v - 2;' ) . 2N 
Note that these matrices are transposes of one another . 

How does the choice of ordering affect the performance of the iterative 
method? As described in §24, the asymptotic convergence rate is deter-
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mined by the spectral radius of the iteration matrix. For convenience, we 
abbreviate our matrix 

A = tridiag (a ,  b, c) . 

The fact that our discretization is a consistent approximation to the differ­
ential equation implies that a + b + c = 0 ,  and since l/ > 0 ,  we have b > 0. 
As in §24, A can be decomposed into its diagonal , strictly lower triangular , 
and strictly upper triangular parts, A = D + L + U. 

The Jacobi iteration matrix SJ = _D- l (L + U) is tridiagonal and 
Toeplitz, but unlike the matrix of the example in §24, where a = c, this 
matrix SJ is nonnormal. Following the theory for Toeplitz matrices pre­
sented in §7 ,  we note that its symbol, 

is.J (z )  = -ab- 1 z - cb- 1 z- 1 , 

maps the unit circle 'Jr to an ellipse. The eigenvalues {ILj } of SJ  fall between 
the foci of this ellipse and can be computed directly from the formula 

2vac ( j7r ) ILj = -b-
cos N + 1 ' j = 1 ,  . . .  , N; (25 .2) 

see , e .g . , [70 1 ,  p. 154ffJ .  As seen in § §3  and 7, the resolvent norm of SJ 
grows exponentially inside the ellipse, so even when n and E: are small, 
the pseudospectra contain points far from {ILj } and convergence at the 
expected asymptotic rate is delayed by transient effects . Interchanging a 
and c effectively transposes SJ , altering neither the eigenvalues nor the 
map of the symbol, iSJ ('Jr) . We conclude that the nonnormality of the 
Jacobi iteration matrix is independent of the downwind or upwind ordering. 
Figure 25 . 1  shows the pseudospectra for either ordering for l/ = 1 ,  "y = 
3N/2, N = 32 . 

Now consider the Gauss-Seidel iteration matrix SGS = - (D + L) - lU. 
When N is even, SGS has an eigenvalue at zero with algebraic multiplicity 
N /2 ,  and remaining eigenvalues 

2 4ac 2 ( j7r ) Aj = ILj = l}2 cos N + 1 ' j = 1 ,  . . .  , N/2 ,  

the squares of  those of  the Jacobi iteration matrix. These eigenvalues do 
not change if a and c are interchanged, and so the spectral radius SGS 
remains the same for both the upwind and downwind orderings . In fact , 
if a and c are nonzero, the upwind and downwind iteration matrices are 
similar . Thus from the asymptotic perspective of eigenvalue analysis ,  there 
is nothing to choose between these two ordering schemes. 

Various authors have observed over the years, however, that the down­
wind discretization is actually much better than the upwind one [147, 239, 
268 , 369 ,  604] . Unlike the Jacobi case , these two orderings lead to Gauss­
Seidel iteration matrices with different nonnormal properties . We begin 
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-1  -0.5 0.5 

Figure 25. 1 :  Spectrum and c-pseudospectra (c = 10- 1 , . . .  , 10- 1 1 )  of the Jacobi 
iteration matrix SJ for the upwind or downwind ordering with 1/ = 1 ,  I = 
3N/2, N = 32 .  The gray region shows the spectrum of M - 1 N  in the infinite­
dimensional limit . 
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Figure 25 .2 :  Repetition of Figure 25 . 1 ,  but for the Gauss-Seidel iteration matrices 
SGS with the downwind (left ) and upwind (right ) orderings . 

with a simple , extreme example. If A is lower triangular (c = 0 and 
a = -b) , then V = 0 and SGS = (L + D) - I V  = O. Thus the Gauss-Seidel 
method must converge in a single iteration. On the other hand, if A is 
upper triangular (a = 0 and c = -b) ,  then SGS = tridiag(O ,  0 ,  1 ) ,  a Jordan 
block. Again, the spectrum consists only of the eigenvalue A = 0, and 
hence SGS is nilpotent and I I S(js l l = O .  For the upwind ordering, however, 
I I Sf;'; 1 1 1  = 1 , while for the downwind ordering, I I  S�s I I = 0 for all k ;:::: 1 .  

When c is small but nonzero, the iteration matrix will exhibit similar 
nonnormality. One can develop some understanding of this nonnormality 
by analyzing the symbol of the Toeplitz matrices associated with the iter­
ation matrices . Since fM (Z) = b + az and fN (Z) = -cz- 1 ,  the symbol for 
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the infinite-dimensional iteration matrix is 
c 

iSGS (z) = 
az2 + bz ' 

We call the maximum modulus of USGS (z) : z E T} the symbol radius, in 
this case given by 

I c l 
�lf lisGs (z) 1 = 

I i a l - I b i l ' 

Recalling that a + b + c  = 0, one can see that when l a l is small, l isJ (z) 1 � 1 ,  
while when I c l i s  small, l isJ (z) I « 1 for z E T. This is confirmed in  Fig­
ure 25 .2 for a = -7/4, b = 2, c = -1/4 (i .e . , v = 1 and 'Y = 3N/2) , 
where we plot the spectrum of SGS in the infinite-dimensional limit in 
gray, superimposing the spectrum and pseudospectra for N = 32. Though 
these downwind and upwind orderings share the same eigenvalues , the cor­
responding symbols and pseudospectra are very different . In particular, 
the eigenvalue of largest modulus is much more ill-conditioned in the up­
wind case , as illustrated in Figure 25 .3 .  Compare this plot to Figure 24.4 , 
the analogous image for a = c = -1 and b = 2 with N = 64. In that 
case , the pseudospectral radii exceed the spectral radius only modestly. In 
the present example , both orderings depart significantly from normality, 
though Figure 25.3 makes it clear that this deviation is much more acute 
for the upwind ordering. 

What is the effect of these orderings in practice? Figure 25.4 illustrates 
I I S�s I I  for the example described in the last paragraph, along with the 
convergence curve for the Gauss--Seidel method applied to Ax = b where 
b = ( 1 , 1 ,  . . .  , l )T  and Xo = o .  

I "' 

upwind 

1 05 �----------------------� 
downwind 

1 0° u_-20--------L--------L--------�-------=--� 
1 0  1 0-' 5  1 0-1 0  1 0.5 

Figure 25 .3 :  Pseudospectral radii for the Gauss-Seidel iteration matrix for the 
advection-diffusion problem with upwind and downwind ordering (N = 32) . Both 
matrices are nonnormal , but the nonnormality is far more pronounced in the 
upwind case . 
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k 
Figure 25 .4 :  Convergence of the Gauss-Seidel iteration for the downwind and 
upwind example, N = 32.  The dotted curves denote I I S�s l l , while the solid lines 
just below them show the actual Gauss-Seidel error l I ek l l / l l eo l l for a particular b 
and Xo . The gray regions represent the upper and lower bounds ( 16 .6) and ( 16 .24) 
for I I S�s I I based on the pseudospectral radius . 

Further nonnormal effects appear when we examine the SOR iteration, 
based on the iteration matrix 

The parameter w is selected to yield the most rapid asymptotic convergence 
factor, i .e . , to minimize the spectral radius of Sw . For the simple advection­
diffusion example, we can explicitly determine the spectrum of Sw for any w.  
Again using the Jacobi eigenvalues {lLj } given by (25 . 2 ) ,  we find that the 
eigenvalues of the SOR iteration matrix are 

(25 .3) 

for j = 1 ,  . . .  , N . The optimal choice of w can be written explicitly for the 
present example [804 , 846] , 

2 
Wopt = -----;=====c=� 

1 + VI - maxj I /Lj 1 2  
Since Mw and Nw are both Toeplitz, we can generalize the Gauss-Seidel 
symbol analysis . The symbols for Mw and Nw take the form 

From these we can get some idea of the behavior of Sw in the infinite­
dimensional limit , 

fsw (z) = 
( 1  - w)bz - we . 

(25 .4) (awz + b) z 
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Figure 25 .5 :  The spectral radius and the symbol radius as a function of the SOR 
parameter w for a tridiagonal Toeplitz matrix arising from an upwind discretiza­
tion. 

It is interesting to examine how the spectral radius and the symbol radius 
behave as functions of w. It can be shown that both are minimized for the 
same value of w [604] . For other values of w, however, the symbol radius 
tells us more. For example , take 1/ = 1 and '"Y = 3N /2 ,  but now with 
N = 64. In Figure 25 .5 ,  we see that for the upwind ordering (a = -1/4, 
b = 2 ,  c = -7/8 ) ,  the symbol radius warns of significant transient growth 
if w is taken larger than the optimal value. This expectation is confirmed 
in Figure 25 .6 ,  which shows norms of powers of the iteration matrix Sw for 
three values of w .  In addition to the optimal value Wopt = 1 . 14241291 . . . 

1 0' °  

I I S� I I  
1 05 

1 0° 

1 0-5 

1 0-10  

1 0-' 5  
0 25 50 

w = 1 .436 . . .  

k 1 25 1 50 

Figure 25 .6 :  Norms of powers of the SOR iteration matrix Sw for three different 
values of w. The asymptotic convergence rates for w = 1 and w = 1 .436 . . . are 
the same, but the transient behaviors differ. The chatter in the upper curve is 
genuine, not a numerical artifact . 
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Suggested by the above analysis , we take w = 1 (Gauss-Seidel iteration) 
and w = 1 .436478795 . . . , a value chosen to yield the same asymptotic con­
vergence rate as w = 1 .  This latter value of w leads to transient growth of 
more than ten orders of magnitude before the asymptotic convergence rate 
is realized . As pointed out by Bottcher [80] , one can prove that exponential 
transient growth must take place by combining theorems of §§7 and 16 .  

We have concentrated on exhibiting upwind and downwind effects in a 
one-dimensional model problem so simplified that it could hardly pose any 
difficulties in practice . The same ordering effects, however, arise in more 
complicated problems in multiple space dimensions , and coping with them 
effectively can be a challenge; see, e .g . , [369] . 



26 . K rylov subspace iterations _________ _ 

Since the mid-1980s, powerful new iterative methods for solving large, 
sparse systems of equations Ax = b have become popular for many sci­
entific computing applications . These non-Hermitian descendants of the 
conjugate gradient algorithm, such as GMRES , bi-conjugate gradients , 
QMR, and Bi-CGSTAB, are collectively known as Krylov subspace iter­
ations [17 , 338 , 654, 791] . These methods often converge quickly, but they 
are hard to analyze; their behavior depends on eigenvalues but also on fur­
ther properties of a matrix associated with nonnormality. In this section, 
we describe some of the key convergence phenomena, focusing on GMRES 
as the iteration of this kind with the cleanest mathematical properties . 

Krylov iterations construct approximate solutions of the form Xk = 
Xo + qk , where Xo is an initial guess and qk is drawn from the Krylov 
subspace 

(26. 1 ) 
Here ro denotes the initial residual, ro = b - Axo . The design and analysis 
of such methods is closely linked to the polynomial structure of the Krylov 
subspaces . Any vector in Xk (A, ro )  can be written as a polynomial in A 
times ro ,  and so qk = qk (A)ro for some qk E Pk- 1 , where Pk- 1 denotes the 
set of polynomials of degree k - 1 or less. We shall measure convergence 
through the residual 

b - AXk = ro - Aqk (A)ro 
Pk (A)ro ,  (26.2) 

where the residual polynomial Pk (Z) = 1 - zqk (Z) has degree :::; k and 
satisfies the normalization Pk (O) = 1 .  Krylov subspace algorithms differ in 
their choices for Pk , balancing the need for effective polynomials against 
the expense of computing them. 

The GMRES algorithm of Saad and Schultz [655] determines optimal 
iterates, in the sense that they minimize the 2-norm of the residual : 

I l rk l l  = min I IPk (A)ro l l · Pk EPk 
Pk (O)=l 

(26 .3) 

GMRES must terminate exactly in no more than N steps for A E q:,N x N, 
since once k reaches the degree of the minimal polynomial of A, there exists 
some Pk E Pk , Pk (O) = 1 ,  that annihilates A. For GMRES to be effective , 
it must produce small residual norms for k « N. 

The core of the GMRES iteration is the Arnoldi process, a mechanism 
for building an orthonormal basis for the Krylov subspace . The first vector 
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in this basis is Ul = ro/ l l ro l l , and at the kth iteration the Arnoldi process 
determines a vector Uk+ 1 so that 

This new basis vector is formed by applying a step of the Gram-Schmidt 
algorithm to orthogonalize AUk E Xk+l (A, ro ) against the basis vectors 
for XdA, ro ) : k 

Uk+l  = AUk - 'l)Auk , Uj ) Uj .  (26.4) 
j= l 

This procedure becomes increasingly costly as k grows, which explains the 
need for more efficient suboptimal methods. The convergence of such al­
gorithms is incompletely understood; for a discussion of some peculiarities 
that arise, see [245 , 569] . 

To analyze the Arnoldi process , it is convenient to organize the orthogo­
nalization steps into matrix form. Let the coefficients of the Gram-Schmidt 
process (26.4) form the entries of the upper Hessenberg matrix Hk E cck X k

, 
i .e . , hjk = (AUk , Uj ) for j > k + 1 ,  and let Hk E CC(k+l ) x k denote its ex­
tension by one row. If the basis vectors U1 , . . .  , Uk are arranged into the 
columns of Uk , the first k steps of (26 .4) take the form 

UkHk + hk+l ,kuk+ lek 

Uk+ l Hk · 

(26 .5 )  

Since the columns of Uk are orthonormal , premultiplying by Uk gives 

(26.6) 

The matrix Hk is the restriction of A to the degree-k Krylov subspace, 
and its eigenvalues {B}J=l ' called Ritz values, approximate those of A and 
are an important element of iterative eigenvalue computations , as discussed 
further in §28 .  

We can use this description of the Arnoldi process to derive the form 
of the optimal polynomial Pk that satisfies (26 .3) . Let {Vj }J= l denote the 
roots of Pk , and factor out the £th root : Pk (Z) = ( 1  - z/ve )q(z) , where 
q E 3\_ 1 . Thus q(A)ro E Xk (A, ro ) , and so there exists Y E CCk such 
that q(A)ro = U kY o  The least-squares optimality property (26 .3 )  implies 
that the residual rk must be orthogonal to the approximating subspace 
AXk (A, ro ) , and hence 

0 =  (AUk ) * rk = UkA* (I - vi I A)Uky . 

Substituting the identity AUk = Uk+ 1Hk twice into the above equation 
gives 
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and hence Vi solves the generalized eigenvalue problem 

H;;'Hky = Vi H;;'y. 

Equivalently, by (26 .5 ) , Vi is an eigenvalue of a rank- 1 update of Hk , 

(Hk + hk+ l ,kHk"*eke;;' )y  = vi y. 

Like the Ritz values {OJ } ,  the roots of Pk are eigenvalue estimates for A, 
known as harmonic Ritz values [38 , 128 ,  292 ,  526 ,  595] . These roots are 
reciprocals of eigenvalue estimates for A- 1 obtained by restricting A- 1 to 
the subspace AXk (A,  ro ) . When Hk is singular , one of these roots Vk must 
be infinite, implying that deg (Pk ) < k. Consequently, GMRES makes no 
progress at the kth step: I l rk l l = I l rk- l l l . At the other extreme, when 
hk+ 1,k = 0, the harmonic Ritz values and the Ritz values coincide and are 
equal to eigenvalues of A. This case is known as ' lucky breakdown' , for it 
also implies that the iteration terminates with the exact solution, rk = O .  

The easiest way to quantify the accuracy of  Ritz and harmonic Ritz 
values is to show that they are pseudoeigenvalues , as described in the fol­
lowing theorem. The first result is well-known [694] , [494 , §4 .6] ; the second 
is due to Simoncini and Gallopoulos [693] . 

Theorem 26. 1 The Ritz and harmonic Ritz values are pseudoeigen­
values of A: 

{OJ }]= l C oAA) 

{Vj }]=l C O"€ (A) 

\/E: > I hk+l ,k l ; 

\/E: > Ihk+l ,k l + I hk+ l ,k l /smin (Hk) , 

where Smin ( . ) denotes the minimal singular value. 

Proof. Both results are proved by constructing specific perturbation ma­
trices E such that O"(A + E) contains the desired pseudoeigenvalues . For 
the Ritz values , set E = -hk+l ,kuk+ l u;;' , for which I I E I I = I hk+ 1 ,k l .  Then 
using (26 . 5 ) ,  

so  the columns of  Uk span an invariant subspace of  A + E, and thus 
{OJ }]= l = O"(Hk ) c;;;: D"(A + E) . The result for harmonic Ritz values follows 
similarly, using the perturbation 
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Figure 26. 1 :  Roots of the GMRES polynomials Pk for the 100 x 100 Grcar matrix 
(top) and a normal matrix with the same spectrum (bottom) . Each plot shows 
the rectangle -2 � Rez � 4, -4 � Imz � 4 of the complex plane . Compare 
Figure 7 .5 .  

The bounds given in this theorem can be rather slack. For one thing, 
they are based on constructing perturbation matrices E that make all the 
roots {Bj } or {vj } eigenvalues of A + E simultaneously, whereas smaller 
perturbations may make an individual Bj or Vj an eigenvalue. Still , in 
many cases the Ritz and harmonic Ritz values reflect the pseudospectra of 
A, as suggested in Figure 26 . 1 ,  which illustrates GMRES behavior for the 
Grcar matrix (7 . 14) of dimension N = 100. The top row of plots shows 
the roots {Vj } of the optimal GMRES polynomial Pk for various degrees 
k, which roughly follow the boundaries of c:-pseudospectra for decreasing 
values of c:, as can be seen by comparison with Figure 7.5 .  We repeat this 
experiment in the second row of plots , but now for a normal matrix with 
the same spectrum as the Grcar matrix. In this case , the roots of Pk closely 
approximate the eigenvalues even at early iterations . 

Can we be more precise about how the non normality of A affects the 
convergence behavior of GMRES? This has been a significant research 
question for more than a decade. The initial residual ro complicates the 
analysis , but often has little effect on the convergence behavior , so it is 
typically removed from the optimization via the bound 1 

lThere are some nonnormal matrices for which no ro attains equality in (26 .7) [252, 
758] , but such examples are thought to be rare in practice [757] .  For an example of 
GMRES analysis that incorporates ro , see [503] . 
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I l rk l l = min I l pk (A)ro l l :::; 
Pk EJ'k 

Pk (O)= l 
(26 .7) 

Throughout the rest of this section we study the Ideal GMRES prob­
lem [344] , 

min I l pk (A) I I , 
Pk E'J'k 
pdO)= l 

(26 .8) 

which is closely related to the Chebyshev polynomials of a matrix discussed 
in §29 .  Since the minimal polynomial of A annihilates A, one might expect 
the roots of pdA) to approximate the eigenvalues of A ( i . e . ,  the roots of 
the minimal polynomial) . When A is normal , A = UAU* for unitary U, 
this is essentially true: 

min I l pk (A) 1 1 = min I IUpk (A)U* 1 1  = min max I Pk ().) I . (26 .9) 
Pk E'J'k Pk E'J'k Pk E'J'k AEo- (A) 

Pk (O )=l pdO)= l  pdO)= l 

The quantity on the right of (26 .9) is a lower bound on the convergence 
of Ideal GMRES for nonnormal A: For any P E J\,  the spectral mapping 
theorem gives p(O'(A) ) = O'(p(A) ) ,  and so 

(26. 10) 

where p( . ) denotes the spectral radius [422, 575] . 
Several different approaches can be used to develop upper bounds on (26.8) . 

When A is diagonalizable , A = VA V- I , 

min I l pk (A) 1 1  
PkE'J'k 

Pk (0)=1  

< 

min I l pk (VAV-1 ) 1 1  
Pk E'J'k 

Pk (O )= l 

K(V) min max I Pk ().) I , 
Pk E'J'k AEO' (A) 

Pk (0)= 1 

(26 . 1 1 ) 

where K(V) = I IV I I I IV- 1 1 1  is the 2-norm condition number of V [236, 655] . 
Like (26 . 1 0) ,  this analysis reduces the GMRES convergence question to 
a discrete approximation problem in the complex plane . For nonnonnal 
problems where K(V) is large , Ideal GrvIRES will typically fall between 
the extremes of these eigenvalue-based upper and lower bounds , depending 
upon the nature of the nonnormality. Pseudospectra provide an alternative 
approach that can be more descriptive when K(V) is large or infinite. Using 
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a Dunford�Taylor integral (see §14) , 

< 

Taking r = rc to be a contour or union of contours enclosing IJ c (A) and 
coarsely approximating the integral yields the following bound from [771] . 
Very roughly speaking, this bound indicates that for highly nonnormal 
problems , convergence of GMRES depends on approximation by polyno­
mials not on the spectrum, but on the pseudospectra. 

Pseudospectral bound for G M R ES 

Theorem 26.2 Let rc be a union of contours enclosing IJc (A) . Then 

(26 . 12)  

where Lc is  the arc length of rc ' 

As with the pseudospectral bounds presented in § § 15  and 16 ,  the pa­
rameter E is an essential part of Theorem 26. 2 .  Large values of E yield 
small constants Lc/27rE, but with approximation problems over large do­
mains (potentially including the normalization point z = 0) , while small 
values lead to larger constants but approximation problems over reduced 
domains. In one respect this is a drawback of the pseudospectral approach, 
but at the same time the E-dependence provides a mechanism for describ­
ing different phases of GMRES convergence: for nonnormal problems one 
often observes stagnation at early iterations (where bounds with large E are 
descriptive) followed by more rapid convergence later (described by small 
c:) . Figuratively speaking, this corresponds to GMRES starting out with 
only a hazy impression of the spectral properties of A that comes into focus 
with Successive iterations . 

In the large E limit, (26 . 12) becomes the trivial upper bound I l rk II ::::; 
I l ro l l , and in the small E limit , the asymptotic characterization of the resol­
vent norm described in §52 implies that (26 . 12)  captures the exact termina­
tion that must occur when k reaches the degree of the minimal polynomial 
of A. Of course the important matter is the performance of Theorem 26 .2 
between these large-E and small-E extremes of stagnation and termination. 
We investigate several computational examples . First , let A be the scaled 



250 VI · MATRIX ITERATIONS 

Jordan block 

(26 . 13) 

Theorem 26.2 works out very cleanly in this example , as the pseudospectra 
are disks (see §5 1 )  whose radii depend upon the magnitude of (3 and the 
matrix dimension. For a fixed (3, denote this radius by r,;, so that 

(/o (A) = 1 + �re ' 

where �re is the open disk about 0 of radius ro . Theorem 26 . 2  reduces to 

min I lpk (A) 1 1  ::; 
( 27fTo ) max 1 1 - z l k = 

T;+l
, 

Pk EPk 2m:: zE l+il.re E 
pdO)= l 

(26. 14) 

where we have used the fact that ( 1 - z) k is the minimizing polynomial for 
the disk 1 + �re ' Figure 26 .2 illustrates this bound for all E > O. 

GMRES appears to converge in a nearly linear fashion for the ma­
trix (26 . 13) . The bound (26 . 1 2) captures this behavior, reflecting the fact 
that in the large-N limit , the pseudospectra of this matrix are disks of 
radius (3 + E (see §7) . The next example, an ' integration matrix' [2 15 ,  632] , 

A =  

1 I 
1 h 

1 1 
N-I l 

1 

(26. 15) 

Figure 26 .2 :  Convergence of Ideal GMRES for the Jordan block (26 . 13) with 
f3 = 1/3 for N = 16 (left) and N = 1 28 (right ) .  The gray regions illustrate 
the envelope of pseudospectral convergence bounds taken over all values of E .  
The Ideal GMRES curves were computed using the SDPT3 package [759] ;  due 
to numerical constraints, we only show values up to k = 18  for N = 128 .  
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iteration, k 

Figure 26.3 :  Spectra and E-pseudospectra (left ) and convergence of Ideal GMRES 
(right) for (26 . 15 ) with , =  4 for dimension N = 128 . The pseudospectral bound­
aries are for E = 10- 12 , 10- 1 1 , . . .  , 10- 1 ; the cross marks the origin, where the 
optimizing polynomials are normalized . The gray regions on the right illustrate 
the envelope of pseudospectral convergence bounds taken over all E > O .  

i s  more interesting. Again the pseudospectra are circular disks , as can be 
shown in the same way as for (26. 13) . Thus the formula (26 . 14) still holds , 
though the radii rE; differ markedly from the Jordan block case: They are no 
longer large discs in the large-N limit . As a result , Ideal GMRES initially 
stagnates for this problem and then converges at a much improved rate. 
Pseudospectra capture this transition very well, as seen in Figure 26 .3 .  

For our final example , we turn to a finite-element discretization of a 
two-dimensional advection-diffusion problem that has become a popular 
model problem for GMRES ; see [276 , 244, 249, 504] and also Figure 5 1 . 2 .  
Here, we study a particular example o f  dimension N = 169. As with the 
integration matrix, Ideal GMRES initially stagnates due to nonnormality, 
then converges more rapidly. Pseudospectra for this matrix are shown in 
Figure 26.4 along with convergence bounds from Theorem 26 . 2  for a range 
of values of E. Not only do the pseudo spectra of A give an indication 
about the convergence of GMRES ; quantities derived from the GMRES 
iteration shed light on the pseudospectra of A. The bottom left plot in 
J:!lis figure shows pseudospectra of the rectangular upper Hessenberg matrix 
H24 , which approximate O'E (A) , at least for large values of E; see §40 for 
d�tails . The final plot shows the harmonic Ritz values {Vj } at step k = 24, 
WIth level curves of the residual polynomial , P24 (Z) . Indeed, this residual 
polynomial is small not just over the eigenvalues of A, but also over the 
c-pseudospectra for moderate values of E. 
. The predictions of Theorem 26.2 are not always as accurate as shown 
In the examples here, and several factors are to blame. First , this theorem 
does not use the fact that the spectrum is a discrete point set , a property 
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Figure 26.4 :  Pseudospectra and GMRES convergence data for an advection­
diffusion model problem of dimension N = 169. The top left plot shows a(A) and 
ac (A) for c = 10-2 , 10-3 ,  . . .  , 10-6 .  These pseudospectra are well approximated 
by the corresponding pseudospectra of H24 , shown in the bottom left plot . The 
top right plot illustrates I l rk l l / l l ro l l for a particular right hand side (solid line) , 
the convergence of Ideal GMRES (dotted line) , and bounds from Theorem 26.2 
for c = 00, 10-3 , 10-4 , . . .  , 10-7 •  The bottom right plot shows the harmonic Ritz 
values at step k = 24 and level curves I p24 (Z) 1  = 100 , 10- 2 , . . .  , 10- 6 ,  read from 
the outside in. 

exploited by the GMRES iteration when A has a small number of isolated 
eigenvalues [792] . Moreover, if A is highly nonnormal only because several 
eigenvalues are ill-conditioned, GMRES will initially concentrate on those 
eigenvalues , effectively eliminating them from consideration at future iter­
ations . Theorem 26.2 lacks the flexibility to capture such behavior , and as 
a result one must take E to be very small to get a tractable approximation 
problem, which in turn gives an unacceptably large constant . As a remedy, 
one can use different values of E on different disjoint pseudospectral com­
ponents. One can also use eigenvalue and eigenvector information more 
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carefully than in (26. 1 1 ) ;  see [244, 339] . 
Problems from applications are rarely as clean as those shown here, and 

often the convergence of Krylov subspace iterations in their pure forms is 
unacceptably slow. The performance is usually improved by precondition­
ing the equations, replacing Ax = b by one or the other of the formulas 

(AB- 1 ) (Bx) = b,  

where B i s  some easily invertible matrix and B- 1 A or AB- 1 has more 
favorable properties than A itself. From the perspective of eigenvalues , 
it makes no difference if one preconditions by multiplying A with B-1 
on the left or right , as B-1 A and B- 1 A are similar. Yet we saw in the 
last section that because of nonnormality, two matrices that are similar 
may have very different iterative properties . Manteuffel and Parter inves­
tigated the great differences between left and right preconditioning for a 
given matrix A derived from discretization of an elliptic partial differential 
equation and related this to boundary conditions and adjoints [527] , and 
Lee conducted an interesting computational study of an example arising 
from the discretization of a differential algebraic equation from general rel­
ativity [490] . A general strategy for preconditioning matrices by similarity 
transformations has been suggested by Gutknecht and Loher-an idea that 
would make no sense from the point of view of eigenvalues alone [362] . 



2 7  . Hybrid iterations ____________ _ 

The GMRES algorithm discussed in the last section is an optimal iterative 
method for Ax = b: It computes the approximate solution Xk that mini­
mizes the norm of the residual rk = b - AXk over all vectors in the Krylov 
subspace: l 

I I rk l l  = min I Ip (A)b l l · pE 'J'k 
p(O)= l  

To compute this optimal iterate, GMRES builds and stores an orthonor­
mal basis for the Krylov subspace-an amount of work per step that grows 
linearly with the step number k. This cost becomes prohibitive for prob­
lems that require many steps , and one must turn to alternative algorithms 
that compute suboptimal iterates , at a cheaper cost per iteration. There 
are a number of options : One can restart GMRES every m steps, or ap­
ply algorithms derived from the non-Hermitian Lanczos process such as 
BiCGSTAB and QMR; see , e .g . , [338 , 654, 791 ] . Another alternative is to 
use hybrid iterative methods, which consist of three components: 

Step 1 . Estimate the spectrum a(A) , 

Step 2. Find a sequence of polynomials {Pk (Z) } with Pk (O) = 1 
that are small in magnitude on the estimated spectrum, 

Step 3 . Perform a polynomial iteration with {Pk (Z) } . 

Readers of this book will suspect this sequence to be of dubious merit when 
A is nonnormal . Before turning to this aspect of the problem, however, let 
us survey the literature on these hybrid iterative algorithms. 

First , we must consider why hybrid algorithms are potentially advanta­
geous . Alternatives to the full GMRES method attempt to make each iter­
ation cheaper without increasing their total number too much. Restarted 
GMRES and methods based on the non-Hermitian Lanczos process are 
popular, though their convergence properties are not fully understood. At 
each iteration these methods compute multiple inner products, which re­
quire 'all-to-all ' communication on distributed memory parallel computers . 
Hybrid algorithms largely avoid these operations, which explains the at­
tention these methods attracted as new computer architectures became 
popular during the late 1980s and early 1990s. Hybrid methods are par­
ticularly appealing in situations where matrix-vector multiplications do 
not dominate the total cost of computation, e .g . , when A has sparsity or 
other exploitable structure, inner products are expensive, or when full or 
restarted GMRES requires many operations to construct an orthonormal 

I This section is adapted from [570j . 
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basis for the Krylov subspace . 2 Ideas related to hybrid iterations also arise 
in polynomial preconditioning [2 1 ,  120, 654, 652] and augmented Krylov 
subspace methods [233, 560] . Similar methods apply to the iterative com­
putation of matrix eigenvalues [126, 383, 403, 650] . 

Most of the hybrid algorithms published in the past twenty-five years are 
summarized in Table 27. 1 .  The starting point of this literature is Manteuf­
fel 's algorithm of the late 1970s.3 In this method a number of the extreme 
eigenvalues of A are estimated by a modified power iteration, these eigen­
value estimates are surrounded by an ellipse not enclosing the origin, and 
a Chebyshev iteration is then carried out with parameters corresponding 
to that ellipse. In brief, 

Step 1 :  Modified power iteration, 
Steps 2 and 3: Chebyshev iteration based on ellipse enclosing the 

eigenvalue estimates . 

Manteuffel's algorithm has had considerable influence over the years, and 
it was implemented by Ashby in a Fortran package called ChebyCode [15] . 

Subsequent hybrid algorithms have modified all of the steps of Manteuf­
fel 's algorithm. First , beginning with Smolarski and Saylor around 1981 ,  
Step 3 was generalized to  a Richardson or  Horner iteration correspond­
ing to an arbitrary polynomial Pk (Z)  rather than just a scaled and shifted 
Chebyshev polynomial . This eliminates the restriction to a spectrum con­
tained in an ellipse, and Step 2 thus changes too. Algorithms in this class 
typically approximate o-(A) by estimating some outlying eigenvalues and 
then forming the polygon that is the convex hull of these eigenvalue es­
timates, or sometimes, for matrices with real entries, the union of the 
convex hulls of the eigenvalue estimates in the upper and lower half-planes . 
A polynomial approximation problem is then solved on that polygon via 
some combination of methods that may include linear programming [241 ] , 
least-squares fitting [651 ,  664] , numerical conformal mapping [501 ,  720] , 
Faber or Faber-- CF approximation [231 ,  255, 361 ] , and interpolation in 
Fejer points [277, 742] , among other techniques [235, 333, 586] . 

Beginning with Elman, Saad, and Saylor around 1986, Step 1 of Man­
teuffel's algorithm was also changed. The modified power iteration was 
replaced by an Arnoldi iteration, which is the standard Krylov subspace 
method for estimating eigenvalues (discussed next in §28) . One advantage 
of the Arnoldi process is that it also forms the basis of the GMRES algo-

. 
2In the symmetric case, GMRES reduces to the MINRES iteration, which can be 

Implemented by a three-term recurrence, requiring an amount of work per step indepen­
dent of k [274, 596] . Therefore matrix-vector multiplications usually do dominate in the 
symmetric case, at least on serial computers . 

W �
Manteuffel [524] attributes earlier work in this direction to Wachspress ( 1962) , 

R n�ley ( 1963) , Hageman ( 1972) , and Kincaid ( 1974) . Another early contributor was 
ut\shauser . There IS also an early Russian l iterature that anticipates semi-iterative 

algorithms based on ellipses and more general conformal maps; see [253,  Chap. 9] .  
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Table 27. 1 :  Non-Hermitian hybrid iterative algorithms since 1977. Except for 
the Hybrid GMRES algorithm [570] , all are based on estimates of eigenvalues or 
related quantities in the complex plane.  

Manteuffel 1 971 [524,  525, 15] : 
modified power iteration --t eigenvalue estimates --t ellipse 

--t Chebyshev iteration 

Smolarski and Saylor 1 981 [705 , 706] : 
modified power iteration --t eigenvalue estimates --t polygon 

--t L2-optimal Pk (Z) --t Richardson iteration 

Elman, Saad, and Saylor 1 986 [240] : 
Arnoldi/GMRES --t eigenvalue estimates --t ellipse --t Chebyshev iteration 

Elman and Streit 1 986 [241 ] : 
Arnoldi/GMRES --t eigenvalue estimates --t polygon 

--t L 00 -optimal pd z) --t Horner iteration 

Saad 1 987 [651 ] : 
Arnoldi/GMRES --t eigenvalue estimates --t polygon 

--t Chebyshev basis --t L 2 -optimal Pk (z) --t 2nd-order Richardson iteration 

Saylor and Smolarski 1 991 [663, 664] : 
Arnoldi/GMRES --t eigenvalue estimates --t polygon 

--t L2 -optimal pd z) --t Richardson iteration 

Li 1 992 [501 ] : 
Arnoldi/GMRES --t eigenvalue estimates --t polygon 

--t conformal map --t rational approximation --t (k ,  f)-step iteration 

Nachtigal, Reichel, and Trefethen 1 992 [570] : Hybrid GMRES 
GMRES --t Pk (Z) --t Richardson iteration 

Starke and Varga 1 993 [720] : 
Arnoldi/GMRES --t eigenvalue estimates --t polygon 

----> conformal map ----> Faber polynomials --t Richardson iteration 

Manteuffel and Starke 1 996 [528] : 
Arnoldi/GMRES --t numerical range and reciprocal estimates --t polygon 

----> conformal map --t Faber polynomials --t Richardson iteration 

rithm for solving Ax = b, so that a hybrid algorithm that uses the Arnoldi 
iteration in Step 1 can begin the process of convergence toward the solution 
of Ax = b simultaneously at little additional cost . All of the post- 1985 
algorithms take advantage of this possibility, and this is the meaning of the 
indications 'Arnoldi/GMRES' in Table 27. 1 .  Manteuffel and Starke [528] 
use the Arnoldi information not just to estimate eigenvalues but to estimate 
the numerical ranges of A and A- I . 
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In summary, eigenvalue-based hybrid iterations follow this template: 

Step 1: Arnoldi/GMRES for eigenvalues or related estimates , 
Step 2: Enclose the eigenvalue estimates by a polygon and 

solve an approximation problem on that polygon, 
Step 3: Richardson or Horner iteration. 

Of course this sequence is only a bare outline of how these algorithms 
are assembled in practice . A robust code will monitor convergence as the 
computation proceeds and may loop back to Step 1 to acquire more spectral 
information if necessary. Another issue of crucial practical importance that 
we shall not consider here is the efficient and stable implementation of 
Step 3 ;  see [631 ]  for a discussion of Leja ordering of polynomial roots. 

This completes our survey of conventional hybrid algorithms , based on 
eigenvalues . We now come to the reason for including this topic here : the 
limitations , partly practical and partly conceptual , of using eigenvalues and 
estimated eigenvalues as a basis for matrix algorithms. 

Suppose that one is lucky enough to know the spectrum of A exactly. If 
A is normal, this is all it takes to design an optimal polynomial iteration, 
at least in principle , via a problem in complex Chebyshev approximation. 
If A is far from normal, however, knowledge of the spectrum may be of 
little use . Two matrices with the same eigenvalues may have very different 
convergence rates for iterative methods, as seen in the previous two sec­
tions . On the other hand, in practice one does not know the spectrum of 
A exactly, but must settle for estimates . Obviously this is a further source 
of error, which may apply regardless of whether A is normal. 

Figure 27. 1 presents an example that can be interpreted as illustrating 
either of these sources of error. The shaded region is bounded by the 
lemniscate 

{z E <C : I p (z ) 1 = 4} ,  p ( z )  = (z - 1 ) (z - 5) . (27. 1 ) 

Suppose A is a normal matrix whose spectrum is approximately the bound­
ary of this region. For example, A might be a diagonal matrix with eigen­
values closely spaced along the lemniscate. Or, equally well for the purposes 
of this example, let A be a non normal matrix with eigenvalues 1 and 5 and 
pseudospectra closely approximating the lemniscatic region for some small 
value of E. A block Toeplitz variant of Theorem 7.2 (see [632] ) implies that 
a matrix with this property can be constructed in the form of a large bidi­
agonal block Toeplitz matrix with 2 on the superdiagonal and alternating 
numbers 1 , 5 , 1 , 5 , . . .  on the diagonal . It is such a matrix with dimension 
N === 300 that is used for Figure 27 .2 ;  for pseudospectra of this matrix, look 
ahead to Figure 27 .5 .  

Since A ' lives ' on a lemniscate defined by p(z) , its optimal iteration 
polynomials will be normalized powers of p(z) , with asymptotic conver­
gence factor 2/ y'5 � 0.89 . Figure 27.2 confirms that this is the linear 
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Figure 27. 1 :  If the spectrum or c:-pseudospectra for small c: fill the shaded region 
(bounded by the lemniscate {z E tC :  I (z - l ) (z - 5) 1 = 4} ) ,  . . .  
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Figure 27.2 :  . . .  then a Chebyshev iteration based on the eigenvalue estimates 
{ I ,  5} will converge at a suboptimal rate. The dashed lines show the theoretical 
linear convergence rates for the Chebyshev iteration and full GMRES (optimal) . 
The solid curves show actual convergence of these algorithms in a numerical 
experiment involving a 300 x 300 bidiagonal matrix A and a random vector b.  
The dotted curve corresponds to the Hybrid GMRES algorithm, discussed below, 
starting from the degree-6 GMRES polynomial . 

rate at which the full GMRES algorithm converges for this problem, as 
described in §26.4 On the other hand suppose than the actual eigenval-

4To derive this asymptotic rate, we divide the lemniscate level 4 of (27. 1 )  by I p(O) I ,  
then take the square root o f  the result because p(z) i s  o f  degree 2.  
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ues of A are 1 and 5 and that a hybrid algorithm manages to find these 
exactly ; or suppose that A is normal with actual eigenvalues along the 
lemniscate but that the hybrid algorithm estimates these eigenvalues as 
{ 1 , 5 } ,  as in principle it might do. (For reasons related to the phenomenon 
known as 'balayage' in potential theory, it would never do so in practice. )  
Suppose the hybrid algorithm then uses the estimates { l , 5}  as the basis 
of a Step 2/Step 3 iteration. Most of the algorithms in Table 27. 1 will 
take the interval [ 1 , 5] as a set on which to construct iteration polynomials . 
The Chebyshev iteration is optimal for this set , as it is a real interval . Its 
asymptotic convergence factor is determined by the smallest ellipse with 
foci { 1 , 5} that encloses the shaded region in the figure . This number is 
� 0.92 . 5 

We conclude that an eigenvalue-based hybrid iteration for the matrix 
of Figure 27. 1 ,  under certain circumstances, may be expected to be about 
40% slower than optimal , as reflected in Figure 27. 2 .  If A is normal with 
eigenvalues along the lemniscate, this poor performance can be blamed on 
imperfect eigenvalue estimates. If it is nonnormal with eigenvalues exactly 
1 and 5, it can be blamed on the non normality. 

These effects may be more pronounced. In Figure 27 .3 the shaded region 
corresponds to the lemniscate 

{z E <C :  I p(z) 1 = 2
25n , p(z) = (z  - 1 ) (z - 5) 2 . (27 .2) 

Since this lemniscate is better separated from the origin than the last one, 
the asymptotic convergence factor for the optimal iteration based on powers 
of the polynomial p(z)  improves to � 0 .72 .  However , a hybrid iteration 
based on the estimate o-(A) � [ 1 , 5] in Step 1 will now diverge , because 
the ellipse that circumscribes the shaded region lies outside the origin. 
The asymptotic convergence factor is � 1 . 15 , as illustrated in Figure 27 .4 .  
(The matrix used to generate this figure has entries 1 ,  5 ,  and 5 repeated on 
the main diagonal , with (256/27) 1 /3 on all the first superdiagonal entries ; 
its pseudospectra are shown in Figure 27. 5 . )  

These examples show that there i s  reason to doubt whether hybrid 
iterative algorithms ought to work very well in practice . After all , they are 
based on imperfect estimates of information that is inappropriate to begin 
with. Nevertheless, they often do work well, and one part of the explanation 
is a particularly intriguing fact . To a degree, these two sources of error 
tend to cancel. Eigenvalue estimates are better than exact eigenvalues! In 
practice an Arnoldi process for a matrix like that of Figure 27. 1 would 
Virtually never deliver eigenvalue estimates close to { I ,  5 } .  

0This figure i s  obtained by calculating that under the conformal map that carries the 
exterior of the ellipse with foci { I ,  5}  that passes through the origin onto the exterior of 
the unit disk, the ellipse that circumscribes the shaded region in Figure 27. 1 is carried to 
the circle of radius approximately 0.92 [2 15] . The exact number is (2 + 2V2)/(3 + v'5 ) .  
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Figure 27 .3 :  If the spectrum or c:-pseudospectra for small c: fill the shaded region 
(bounded by the lemniscate {z E <C :  I (z - l ) (z - 5) 2 1 = 256/27} ) , . . .  
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Figure 27.4: . . .  then a Chebyshev iteration based on the eigenvalues estimates 
{ 1 , 5 } will not converge at all . Again, the dashed lines are theoretical estimates 
and the other curves come from numerical experiments. The Hybrid GMRES 
curve is again based on the degree-6 GMRES polynomial . 

The explanation of this curious phenomenon is related to the robustness 
of typical eigenvalue estimators . An estimate as simple as Gerschgorin's 
theorem, for example , may be crude, but it has the virtue that it is insensi­
tive to small perturbations in the matrix [247J . The same conclusion applies 
to other related estimates , such as the Enestrom-Kakeya theorem [7J .  In 
other words, what is conventionally thought of as an estimate of the spec­
trum is often also a good estimate of pseudospectra. As described in the 
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previous section, knowledge of pseudospectra may be sufficient for the de­
sign of good polynomial iterations even when knowledge of the spectrum 
alone is insufficient . Consequently hybrid iterative algorithms sometimes 
work better than they 'ought ' to, and most of the algorithms listed in 
Table 27. 1 are better than the eigenvalue ideas they are based upon. 

Suppose one tried to design a hybrid iterative algorithm from the start 
without making hidden assumptions of near-normality. In Step 1, one 
might aim to get a good estimate of an E-pseudospectrum for some suitable 
value of E. One way to do this would be to use a Chebyshev lemniscate as the 
estimated pseudospectral boundary-a level curve of the polynomial Pk (z) 
implicitly constructed by the Arnoldi iteration ( §29) . In Step 2, one would 
then want to compute polynomials that are as small as possible on the 
region bounded by this lemniscate. But these polynomials are simply Pk (Z) 
itself and its powers ! In other words, the lemniscate and indeed the complex 
plane drop out of the discussion and one is left with an unexpectedly simple 
algorithm: Construct a polynomial in Step 1 ;  use it over and over again in 
Step 3 .  

This is the Hybrid GMRES algorithm [570] , the only algorithm in Ta­
ble 27. 1 that is not based on estimating eigenvalues or related sets in the 
complex plane.6 One point was omitted from the description above: be­
cause the iteration polynomials must be normalized by Pk (O) = 1 ,  the ap­
propriate polynomial to estimate in Step 1 and then apply in Step 3 is the 
GMRES polynomial , not the Arnoldi polynomial. Here is the algorithm: 

Step 1: GMRES (giving a polynomial Pk (Z) ) ,  

Step 3 :  Richardson iteration (with the same Pk (z) ) . 

Eigenvalues, eigenvalue estimates, and approximation problems have van­
ished from consideration; there is no Step 2 .  For details, including a crucial 
principle of how many GMRES steps to take before switching to Richard­
son iteration, see [570] . The efficacy of this approach is seen in Figures 27 .2 
and 27.4 . The Hybrid GMRES algorithm, based in these experiments on it­
erating the degree-6 GMRES polynomial , converges not much more slowly 
than the more expensive full GMRES method, even in the case where 
Chebyshev iteration fails. The roots of the Hybrid GMRES polynomials 
are shown in Figure 27.5 along with the pseudospectra of the associated 
matrices .  

A lesson put forward by the authors of the Hybrid GMRES algorithm is 
that sometimes the correct response to the limitations of eigenvalue tech-

6 Gene Golub has pointed out to us that , in an article years ahead of its time, 1. M .  
Khabaza proposed a similar algorithm i n  1963 [454] . This method explicitly computes 
the coefficients of what we would now call the GMRES polynomial . Though in some 
respects this work anticipated the GMRES algorithm that was to follow twenty years 
later,  the numerical implementation is unstable for high-degree polynomials. For what­
ever reason, Khabaza's paper was overlooked. 
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Figure 27.5 :  Spectra and c-pseudospectra of the 300 x 300 bidiagonal matrices 
used for the computations shown in Figures 27 .2 and 27.4; c = 10- 1 , 10- 2 , 10-4 , 
. . .  , 10- 16 . The gray regions are bounded by the lemniscates from Figures 27. 1 
and 27 .2 .  The six white dots in each plot show the roots of a degree-6 GMRES 
polynomial , which are repeatedly applied to give the Hybrid GMRES convergence 
curves in the previous figures . The roots are poor eigenvalue estimates, but they 
lead to fine convergence. 

niques may be not to use the complex plane more skillfully, by pseudo­
spectra or other means, but to bypass it entirely. But is this method 
more effective in practice than the other hybrid algorithms summarized in 
Table 27. 1?  Unfortunately, practical experience on which to decide this 
question is lacking. Despite the sizable academic literature on hybrid algo­
rithms, practitioners use restarted GMRES and methods based on Lanczos 
biorthogonalization much more often. 



28 . Arnold i and related eigenva lue iterations ----

The preceding sections have described how nonnormality can complicate 
the convergence of iterative methods for solving linear systems of equations . 
These algorithms are closely related to methods for computing eigenvalues 
of large, sparse matrices , so one naturally expects nonnormality to play a 
similar role there too. In fact , eigenvalue algorithms introduce a few new 
wrinkles . 

Over the past dozen years large-scale non-Hermitian eigenvalue com­
putations have become increasingly routine due to improvements in algo­
rithms, software, and computers . Like iterative methods for linear systems, 
these algorithms construct approximate solutions from low-dimensional 
subspaces. Methods vary in the subspaces they use, which should contain 
good approximations to the eigenspace or invariant subspace of interest , 
but must also be efficiently computable. 

The Arnoldi method, a non-Hermitian generalization of the Lanczos 
algorithm, is the cornerstone of this subject . It draws its approximations 
from the Krylov subspace 

(28 . 1 )  

generated by A E <eN x N and a starting vector U1 E <eN . Proposed in 
1951 [12] , the Arnoldi algorithm only gained popular attention as an iter­
ative method following an important 1980 paper by Saad [648] . A decade 
later, Sorensen [709] proposed several key improvements that made it suf­
ficiently robust to allow for implementation in black-box software. The 
resulting ARPACK subroutine library [494] has enjoyed widespread use 
among physicists and engineers ; it is incorporated in MATLAB via the 
eigs command. 

As explained below, the Arnoldi algorithm typically has greatest suc­
cess in locating eigenvalues on the periphery of the spectrum; in most cases , 
interior eigenvalues can only be found after much more effort .  Thus , an 
important class of eigenvalue algorithms works not with (28 . 1 ) ,  but with a 
Krylov subspace generated by (A - /l) - 1 for some /l E <e near the desired 
eigenvalues . The eigenvalues of A nearest to /l are mapped to the largest 
magnitude eigenvalues of (A - /l) - 1 . The simplest method of this type is 
the shift-and-invert Arnoldi algorithm, which applies the usual Arnoldi it­
eration to (A - /l) - 1 . The matrix A - /l is often difficult to invert due to the �ize of A and its spectral properties ; alternative algorithms avoid factor­
Ization of A - /l in favor of various approximations , which yield subspaces 
that are not precisely Krylov. One approach is to use ' inexact methods ' , 
Which iteratively solve equations involving A - /l to a prescribed toler-
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ance. Preconditioners can also be applied; see [23, Chap . 1 1] .  Among the 
most prominent such algorithms are the Davidson [ 171 , 1 76] and Jacobi­
Davidson methods [697] . For detailed information about these and other 
non-Hermitian eigensolvers , see the surveys [23, 653, 790] . 

Before beginning our analysis, we must first address a philosophical 
question: Doesn't the desire to compute eigenvalues of matrices that are 
far from normal run counter to this book's prevailing theme? 

There can be good reasons to seek eigenvalues of nonnormal matri­
ces . First , the eigenvalues significant to the motivating application may be 
well-conditioned, even though eigenvalues in a distant region of the com­
plex plane are not . One finds such localized nonnormality in applications 
such as the Gauss-Seidel iteration for the standard discretization of the 
Laplacian ( §24) , stable oscillators in laser theory ( §60) , and transition ma­
trices in Markov chains ( §§56 and 57) . Alternatively, a set of eigenvalues 
may be individually ill-conditioned, while the associated invariant subspace 
is well-conditioned, i . e . ,  nearly orthogonal to the complementary invari­
ant subspace [729] . In such circumstances , the well-conditioned invariant 
subspace should be computable to good accuracy, even if the individual 
eigenvalues are not . Even more fundamentally, in many cases of practi­
cal interest the nonnormality of a non-Hermitian matrix is strong enough 
to affect convergence of algorithms but not strong enough to make the 
eigenvalues useless for applications . 

Here we shall focus our attention on the convergence of the standard 
Arnoldi aJgorithm; more practical algorithms add further subtleties . We 
begin by studying the most elementary eigenvalue algorithm of all , the 
power method. Even in this simple setting, we shall see a number of the 
primary issues that arise in the Arnoldi convergence theory to follow. 

The power method approximates the eigenvector of A E CCN x N asso­
ciated with the largest magnitude eigenvalue by repeatedly applying A 
to a starting vector U1 , then normalizing to prevent under- or overflow. 
Given the unit-length starting vector U1 , the kth iterate takes the form 
Uk = Ak- 1 ud I I Ak- 1 u1 1 1 . Provided there is a simple eigenvalue Al whose 
magnitude is larger than all others, and U1 has a component in the direc­
tion of the associated eigenvector VI , span { Uk } will converge to span { VI } as 
k ----> 00. For simplicity, suppose A is diagonalizable with eigenvalues {Aj } 
and associa.ted eigenvectors {Vj } .  Order the eigenvalues by magnitude , 

I A 1 1 > I A2 1 � I A3 1 � . . .  � I AN I · 
Decomposing the starting vector in the eigenvector basis , 

one readily sees that 

(28 .2 )  
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This simple expression reveals three critical influences on the convergence 
behavior : the ratio of the two dominant eigenvalues, I A2 1 / I A 1 1 ;  the bias of 
the starting vector toward Vl , described by Cl ; and nonnormality, reflected 
by the possibility that I Cj I » I l ud due to cancellation effects . 

To illustrate the influence of nonnormality, we consider the matrix 

a 

3/4 
o 

with eigenvalues Al = 1 and A2 ,3 = ±3/4 and eigenvectors 

(28 .3) 

The parameters a and (3 control nonnormality. We seek Vl using the power 
method with starting vector Ul = ( 1 ,  1 ,  l )T  /,;3. When a » 1 ,  Vl and V2 
are nearly aligned; when l a l « 1 and (3 » 1 ,  V2 and V3 are nearly aligned, 
but nearly orthogonal to Vl . Figure 28 . 1 illustrates the early iterates of the 
power method for three different choices of a and (3. One observes a curious 
phenomenon, already apparent from (28 . 2 ) : When the desired eigenvector 
Vl forms a small angle with one of the other eigenvectors, say V2 , the 
convergence actually seems to accelerate. This is because the components 
of Ul in these two directions will be exceptionally large in such a case, but 
nearly cancelling; steps of the power method reduce the cancellation effect , 
leaving large vector components in these directions. In contrast , when A 
is nonnormal due to a small angle between V2 and V3 ,  convergence slows. 
Now it is the components in directions V2 and V3 that are large and nearly 
cancelling, so that when steps of the power method reduce the cancellation, 
one is left with large components in unwanted directions . 

Figure 28. 1 :  Power method iterates {Ul , . . .  , U9 } for the matrix (28 .3) with start­
ing vector Ul = ( 1 ,  1 ,  l )T  /-13. On the left ,  a = j3 = 0: The problem is normal, 
and convergence is steady but gradual. In the middle , a = 10 and j3 = 0: The 
eigenvectors V l and V2 are nearly aligned, resulting in rapid initial convergence. 
On the right , a = 0 and j3 = 10 :  Now the eigenvectors V2 and V3 are nearly 
aligned, and the power method is biased toward them at early iterations . 
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min I l vl  - ul l  uEspan{ud 

L-�--------------�--------' Uk 

Figure 28 .2 :  The angle between V I and Uk . 

To obtain general convergence bounds, we shall measure the accuracy 
of the eigenvector approximation Uk . Assuming that I lvl i I  = 1 , we have 

sin L (Vl ' Uk ) = min 
llEspan{ud 

see Figure 28. 2 . To separate the desired eigenvector from the complemen­
tary invariant subspace , we shall repeatedly use the spectral projector P 
associated with AI ' Note that P projects onto span{vt } ,  with Ker P equal 
to the complementary invariant subspace . Hence PVl = VI , while PVj = 0 
for j i- 1 ; further details are provided in §52 .  Though P is not in general 
an orthogonal projector, it always commutes with A, a property we shall 
repeatedly use . For the 3 x 3 example (28 .3) , ( 1  4Ct 

P =  0 0 
o 0 

16Ct,8/7 ) 
o . 
o 

Applying P to the starting vector Ul reveals the component of Ul in the 
direction VI : PUI = Cl VI , and by our previous assumption, Cl i- O. Thus 
follows an alternative characterization of the convergence angle: 

min I l vl - ')'Uk I I  
')'E<C 

min I lvl - ,),PUk - ')'(1 - P)uk l l 
,),E<C 

min I I  VI - ')'PAk- lUl - ')'(1 - P)Ak-lUl l l  
')'E<C 

min I I VI - ')'Cl A�- lVI - ')'(1 - P)Ak- lUl l l · 
,),E<C 

(28 .4) 
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Since P is a spectral projector , I - P is the spectral projector for the 
invariant subspace complementary to span{ Yd. Because this latter matrix 
commutes with A, 

provided k > 1 ,  and we thus obtain the following convergence bound. 

Convergence of the power method 

Theorem 28. 1 Let the power method be applied to the matrix A with 
starting vector u1 ' Suppose A1 is a simple eigenvalue of A with asso­
ciated eigenvector V1 , and I A 1 1 > I A I for all other A E a(A) . Then, in 
the above notation, 

and, provided ViUk i=- 0, the eigenvalue estimate & = u;;'Auk satisfies 

I A - & 1 < 4 J I IA I I  
1 _ � '  

Results similar to the first part of this theorem can be found in Saad [653, 
Thm. 5 .2] ( in the context of the more general subspace iteration algorithm) 
and Stewart [727, p. 57] . The second part follows from Jia and Stewart [432 ,  
Cor. 4 .2] . 

Bounding convergence of the power method reduces , then, to bounding 
the norms of the powers of a matrix, a subject addressed at length in § 16 .  
(The same problem of decay of  powers of  A(I - P) i s  fundamental to the 
convergence of Markov chains , as detailed in §§56 and 57 . )  Note that the 
matrix A(I - P) has the same spectrum as A, except that A1 is moved to 
zero (A (I - P)V1 = AV1 - APVl = 0) .  In fact , if A is diagonalizable, 
A = V A V- 1 , then A(I - P) is the matrix obtained by replacing A1 on the 
diagonal of A by zero . For the 3 x 3 example (28 .3) , 

A(I - P) � ( ! -3a 
3/4 

° 

- 16af3/7 ) 
f3 . 

-3/4 

When a = 0 ,  the desired eigenvector V1 is orthogonal to the other two, and 
for behavioral purposes A(I - P)  reduces to a 2 x 2 matrix. When l a l  » 0, 
the zero eigenvalue of A(I - P) i s  ill-conditioned, with implications for 
I I [A (I - p) ] k- 1 1 1 . 
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Bounds on matrix powers transform Theorem 28 . 1  into a more concrete 
bound. For diagonalizable A, ( 16 . 10) implies 

(V) I A I k- l 
sin L (Vl ' Uk ) ::; '"'I cl i A� 

For any A, we can apply ( 16 .6) to obtain 

. < 1 p,, (A(I _ p) ) k 
Slll L (Vl ' Uk ) - c: l cl i I A l l k- l 

for all c: > 0 ,  where the pseudospectral radius p,, (A(I - P ) )  approaches 
I A2 1 as c: � O. For a normal matrix, the convergence rate depends upon 
the relative sizes of the two largest magnitude eigenvalues. For non normal 
problems, these bounds allow for potential stagnation. As observed in § 16 ,  
the latter bound has the ability to model a convergence rate that improves 
to I Ad Al l as k increases . (Though the bounds can predict transient growth, 
note that sin L (Vl ' Uk ) E [0, 1 ]  for all k . The apparent potential for growth 
reflects a poor choice for "( in (28 .4) ; in those cases , "( = 0 would be 
superior. )  

The power method serves as a prototype for understanding the con­
vergence behavior of more powerful eigenvalue algorithms . In practice it 
often fails to be effective, as the desired eigenvalue may be part of a cluster 
( I A2 / Al l � 1 )  or may not be the largest in magnitude. For this reason 
one must often turn to more sophisticated algorithms that construct larger 
approximating subspaces . 

One can readily appreciate why the Arnoldi algorithm, with its approx­
imating subspace 

Xk (A, ud = span{ul , Au l , ' "  , Ak- l ud,  

should yield an improvement . This Krylov subspace consists o f  the span of 
the power method's first k iterates , and thus should be rich in eigenvectors 
corresponding to the largest magnitude eigenvalues. Furthermore, Krylov 
subspaces are invariant with respect to shifts in A, 

Xk (A,  ud = Xk (A + j.l,  ud , 

for any j.l E ([;; see , e.g. , [601 ] . Hence they should also yield good approxi­
mations to any eigenvalues that can be made largest in magnitude through 
some shift .  

As described in §26 ,  the Arnoldi process constructs an orthonormal 
basis {Uj }  for Xk (A, ud,  stored as columns of the matrix Uk E ([;Nx k . 
Eigenvalue approximations , called Ritz values, are obtained by restricting 
the domain and range of A to Xk (A, ud .  Specifically, the Ritz values are 
the eigenvalues {8j }J= l of the upper Hessenberg matrix 

Hk = Uk AUk E ([;kx k . 
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When k = N, this is a unitary similarity transformation, and the Ritz val­
ues match the eigenvalues of A exactly. For large scale problems, one hopes 
some Ritz values provide good approximations to the desired eigenvalues 
for k « N. One can gain some intuition about the location of the Ritz 
values by noting that they are roots of the polynomial that satisfies the 
approximation problem 

min I Ip(A)Ul l l , 
pE'J'k 

p monic 
as described in [344] . For typical Ul we may expect that the optimal polyno­
mial p will be close to that associated with the ' ideal Arnoldi minimization 
problem' discussed in the next section, 

min I Ip(A) I I ; pE'J'k 
p monic 

when the Arnoldi method obtains eigenvalue information about A, it is at 
least in part because a polynomial that minimizes I Ip(A) I I  must necessar­
ily have roots that come close to certain eigenvalues. Just as we expect 
the Ritz values {Bj }  to approximate eigenvalues of A, so we can use the 
pseudospectra of Hk or Hk = Uk+1 AUk E <e(k+l ) x k to approximate those 
of A [761 ] . Figure 28 .3 illustrates Ritz values and approximate pseudospec­
tra for a sample nonnormal matrix of dimension N = 2000. For further 
details, see §§40 and 46. Careful non-Hermitian eigenvalue trappers can 
look to these approximate pseudospectra for insight into the accuracy of 
their computations, in the same way as one can check a condition number 
estimate following Gaussian elimination. 

If Zj is the eigenvector of Hk associated with Bj , then Yj = Uk zj E <eN 
is the associated Ritz vector. From the fundamental Arnoldi relation­
ship (26 . 5 ) ,  

AUk = UkHk + hk+l ,kuk+l e;;' , 

follows a compact formula for the residual norm: 

I I (AUk - UkHk )zj l l  
I l hk+ l , kuke;;'zj l l  = I hk+ l , k l l e;;'zj l ·  

With the normalization I l zk l l  = 1 ,  we conclude that Bj E O'c (A) for E = 
I hk+ l , k l l e;;'zj I ::; I hk+ l ,k l ; cf. Theorem 26. 1 .  A small value of I hk+ l ,k l re­
flects the fact that Ran Uk is nearly an invariant subspace of A, and all the 
Ritz values may be regarded as accurate, at least in the sense of backward 
error (see §53) . On the other hand, a small value of l e;;,z l implies that 
the Ritz vector Yj received minimal benefit from the most

] 
recent Krylov 

direction Ak- l Ul . The associated Ritz value is an accurate eigenvalue ap­
proximation, though the other Ritz values may be far from accurate. 
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Figure 28 .3 :  Eigenvalues ( - ) ,  Ritz values ( x ) , and approximate c:-pseudospectra 
(c: = 100 , 10-0 . 5 ) from the Arnoldi iteration for the dimension N = 2000 Olm­
stead matrix from [22, 68] . The spectrum of A extends far into the left half-plane; 
these plots show only the rightmost eigenvalues. For approximate pseudospectra, 
we show (J,, (Hk ) ,  guaranteed to approximate (J,, (A) from below, as described in 
§§40 and 46. In practice, one would use the restarted Arnoldi iteration to obtain 
greater accuracy with much smaller subspace dimensions . 

Residual norms are the most accessible means for an eigenvalue algo­
rithm to monitor its progress . For example, when ARPACK [494] reports 
an eigenvalue () accurate to the user-specified tolerance TOL, a user actually 
knows that () E O"E (A) for all E: > TOL I IA I I . 

When A is Hermitian, the Ritz values obey an interlacing property that 
ensures monotone convergence. For general non-Hermitian matrices , this 
property is lost , and convergence can be irregular . Defective eigenvalues 
lead to further complications , with multiple Ritz values converging to a 
single eigenvalue. Figure 28.4 illustrates how nonnormality can affect the 
convergence of Ritz values . We seek the rightmost eigenvalue, a simple 
eigenvalue located in the left half-plane; there are 100 other simple eigen­
values on a vertical line in the complex plane. For a normal matrix, the 
Ritz values contain excellent approximations to the rightmost eigenvalue 
for iteration k = 20 and beyond. Now suppose the eigenvalues on the ver­
tical line are made nonnormal , though the desired eigenvalue remains per­
fectly conditioned. The convergence behavior changes completely; though 
all the eigenvalues are in the left half-plane, the rightmost Ritz value is in 
the right half-plane for all four iterations shown in the figure . Moreover, 
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one would struggle to identify a particular Ritz value that was converging 
toward the desired eigenvalue: The Ritz values markedly change from it­
eration to iteration. Admittedly, this is an extreme example, one in which 
the rightmost eigenvalue would be of little physical importance due to the 
nonnormality of the undesired eigenvalues . In practice , one most often sees 
behavior somewhere between these normal and nonnormal extremes, as in 
Figure 28.3 .  

Though the behavior of the Ritz values can be erratic, the convergence 
of the Arnoldi algorithm is more easily described by the angle between 
the desired eigenvector and the Krylov subspace. This approach has the 
advantage that it applies not only to the Arnoldi iteration, but to any 
method that draws approximations from Krylov subspaces , such as the 
non-Hermitian Lanczos algorithm. The derivation follows the same tack 
that led to Theorem 28. 1 ,  though now the angle of interest is between the 
desired eigenvector and an approximating subspace: 

2 

I 

2 2 2 

0 0 x 0 x 

-2 -2 -2 -2 

-2 0 -2 0 -2 0 -2 0 

k = 10 k = 20 k = 40 k = 80 

-2 o 

Figure 28.4 : Ritz values for a normal matrix with N = 101 (top) and a nonnormal 
variant (bottom) for k = 10 ,  20, 40, and 80. True eigenvalues are shown as 
small dots, and the Ritz values are marked by x .  The contours on the bottom 
plots show the boundary of O"c (A) for E = ! hk+ 1 , k ! .  (In all the cases shown, 
! hk+ 1 , k ! � 2 . )  
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Assume again that Al is a simple eigenvalue with associated unit-length 
eigenvector VI and that the starting vector Ul is not deficient in the desired 
eigenvector VI , i .e . , PUI = Cl VI for some Cl i= O. We utilize the polynomial 
characterization of Krylov subspaces , 

to obtain 

min I l vl - u l l  
uExdA,u, ) 

I Cl l - l min I l cIVl - u l l  
UEXk (A ,u, ) 

I Cl l - 1 min I l clVl - P(A)Ul l l  
PE:Pk-1  

I Cl l - 1 min I l clVl - p(Adclvl - p(A) (I - P)ul l I ·  
pE:J'k-l  

We may eliminate terms in this last formula by requiring that p(Ad = 1 .  
This restriction leads t o  the following characterization due t o  Saad [648 , 
Prop. 2 . 1 ] ;  see also [727, Thm. 3 . 10] . (Again, the Ritz value estimate was 
established in [432 ,  Cor. 4 .2] . For further convergence results for Arnoldi 
Ritz values, see [456] . )  

Convergence of the Arnoldi iteration 

Theorem 28.2 Let the Arnoldi iteration be applied to the matrix A 
with starting vector Ul ' Suppose Al is any simple eigenvalue of A with 
associated eigenvector VI . Then, in the above notation, 

sin L(Vl , Xk (A,  ud) :S _
I
l

l 
min I I p (A) (I - P) I I , Cl PE:J'k- l 

p (>- , )= l 

(28 .5 )  

and, provided VI is  not orthogonal to Xk (A, ud , there is  a Ritz value 
o E O'(Hk ) such that 

I A _ 0 1 < 4 ( 8 1 1A I I )l /k (2 1 1A I I  + 8 1 1A I I  )l - l/k 
1 - Jf=52 Jf=52 '  

where 8 = sin L(Vl ' Xk (A, ud ) .  

First compare this result to the GMRES optimization problem (26 .3) . 
In the present setting, the polynomial is normalized at the eigenvalue Al 
of A rather than the origin. This normalization makes it impossible to 
drive I Ip(  A) I I  to zero, but the presence of the projector I - P following the 
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p(A) in (28 .5 )  removes this obstacle . Also compare Theorem 28.2 to the 
power method bound in Theorem 28. 1 .  In both bounds, the influence of the 
starting vector is incorporated via the constant 1/ I c1 1 . While this quantity 
scales the bounds, it does not affect the asymptotic convergence rate. Just 
as in Theorem 28 . 1 ,  that rate is governed by a function of A(I - P) : now 
a polynomial rather than a simple power. 1 As demonstrated in §26 and 
elsewhere , the problem of making a polynomial of a matrix small depends 
on both the spectrum and nonnormality. When A is diagonalizable , A = 

YAy- I ,  

Pseudospectral bounds also follow simply. One can write p(A(I - P ) )  as 
the integral 

p(A) (I - P) = � r p(z) (z - A) - 1 dz, 
27rl Jr 

where f is a finite union of positively oriented Jordan curves containing in 
their collective interior all the eigenvalues of A except AI . Suppose that E: is 
sufficiently small that the component of the pseudospectrum 0"£ (A) contain­
ing Al is disjoint from those components containing the other eigenvalues , 
and suppose that f encloses these other components but not AI . Our usual 
procedure for bounding resolvent integrals (see § 14) gives 

I I p (A) (I - P) I I  � 
L£ max I p(z) l , 27rE: zEr 

where Lc denotes the arc length of f. Substituting this bound into Theo­
rem 28 .2  leads to a pseudospectral bound on the angle the desired eigen­
vector makes with the Krylov subspace : 

L 
sin L (Vl ' Xk (A, ud) � --£1 

-
I 

min max I p (z ) l · 27rE: Cl pE'J'k - l  zEr 
p(-X , J = 1 

The ability of the Krylov subspace to capture the eigenvector VI depends 
on how small polynomials can be on the rest of the (pseudo )spectrum, 
While remaining normalized at the desired eigenvalue. This indicates that 
VI may be difficult to find when Al is part of a tight cluster , or otherwise 
located in the interior of the spectrum. The leading constant i cl l - 1 = 
I I PU1 1 1 - 1 describes bias in the starting vector and depends implicitly on 
the conditioning of the eigenvalue AI . Its presence confirms the notion that 
convergence should be quicker the richer the starting vector is in the desired 
eigenvector U1 , though the starting vector does not generally influence the 

l Since I - P commutes with A, we can write p(A)(I - P) = p(A(I - P)(I - Pl .  
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asymptotic convergence behavior . The eigenvalue condition number K:(Al ) ,  
discussed in §52, is a measure of the angle formed between left and right 
eigenvectors : 

K:(Al ) = I I��� I l vi l l  , 
V1 V1 

for the left eigenvector VI associated with AI . One can show that I I P I I  
K:(Ad , and thus 

This expression suggests that the bounds in Theorems 28 . 1  and 28.2 may 
improve as Al becomes increasingly ill-conditioned. We observed such 
counterintuitive behavior in the middle plot of Figure 28. 1 .  Eigenvalue 
ill-conditioning implies that several eigenvectors are nearly linearly depen­
dent . The Krylov subspace is initially rich in this over-represented direc­
tion, leading to a small angle at early iterations. 

Our present setting remains several steps removed from practical eigen­
value computations . One often seeks a collection of eigenvalues (and the 
associated invariant subspace) , rather than one particular eigenpair . This 
is particularly important when the eigenvalue of practical interest is part of 
a cluster, defective, or otherwise ill-conditioned. In this context the angle 
we previously studied can be generalized to the containment gap between 
the desired invariant subspace V and the Krylov subspace: 

. I l v - u l l  
J (V, Xk (A, ud )  = max mm 

I I I I  vEV UEXk (A,ut ! v 

Let m = dim (V) . The analysis in [39 , 40J leads to several bounds for this 
situation. For example, 

(28. 6) 

where ag E 1'm consists of the factors of the minimal polynomial of A 
associated with the desired eigenvalues, and the constant C1 describes the 
bias of the starting vector : 

1 1 7P (A)Pul l l 
1 1 7P (A) (J - P)ul l l ' 

Here r encircles the components of o"e(A) associated with the undesired 
eigenvalues, omitting the eigenvalues associated with V. Again in (28 .6) , 
nonnormality associated with the good eigenvalues alone does not appear 
to influence the bound (aside from an incidental impact on Cd . On the 
other hand, ill-conditioning of unwanted eigenvalues impedes the predicted 
convergence, even if the desired eigenvalues are perfectly conditioned. 



28 · ARNOLDI AND RELATED EIGENVALUE ITERATIONS 275 

A normal 
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Figure 28 .5 :  Gap convergence to a six-dimensional invariant subspace for five 
matrices with the same eigenvalues but varying nonnormality. Internal ill­
conditioning of the desired eigenvalues (associated with the eigenspace V) does 
not much affect convergence , but ill-conditioning of the unwanted eigenvalues 
(associated with the eigenspace W) does . Convergence improves by a constant 
factor when V is nearly aligned with W. In each plot , the vertical axis represents 
8(17, Xk (A, Ul ) ) ,  and the horizontal axis shows the iteration number, k .  
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Figure 28 .6 :  Spectra and c:-pseudospectra of the five matrices of Figure 28 .5 , with 
E: = 10- 2 , . . .  , 10- 1° . (In three of the five plots, the lower level curves are not 
visible . )  We seek the six eigenvalues with zero real part , corresponding to the 
invariant subspace V.  
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Figure 28.5 confirms these predictions , illustrating convergence of the 
containment gap 8(V, Xk (A, ud)  for a six-dimensional subspace associated 
with the rightmost eigenvalues of a matrix of dimension N = 200. We cre­
ate five matrices with the same spectrum, but with other factors varied :  
the nonnormality of the desired eigenvalues (associated with V) , the non­
normality of the remaining eigenvalues (associated with the complementary 
invariant subspace, W) , and the angle between V and W. Pseudospectra 
of these matrices are shown in Figure 28 .6 .  As expected, the nonnormality 
associated with V has little effect on the convergence, while nonnormal­
ity associated with the unwanted eigenvalues slows the rate considerably. 
When V and W form a small angle with one another , the convergence 
improves by a constant factor , as predicted by a decreased value of C1 
in (28 .6) . The pseudospectra of A alone do not reveal everything about 
convergence ; one must also understand how A behaves on the subspaces V 
and W. 

Practical eigenvalue algorithms require further refinements still . Con­
struction and storage of the orthogonal basis for Xk (A, ud become increas­
ingly expensive as k grows, so one typically fixes a maximal dimension for 
the approximating subspace and restarts the method with an improved 
starting vector [648, 709] . Convergence analysis for restarted Krylov sub­
spaces is presented in [39 ,  40] . Alternative algorithms based on (A - J.L) - 1 
introduce further complications , not all of which are yet understood. 
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The theme throughout this part of the book has been norms of polyno­
mials of matrices , I l pk (A) I I ,  where k is the polynomial degree. Iterative 
methods for solving linear systems of equations depend on convergence of 
I I Pk (A) 1 1 to zero as n ----+ 00, and as we have seen in the last section, it­
erative methods for finding eigenvalues also depend on such convergence, 
typically extracting eigenvalue approximations as roots of Pk ' In fact , the 
Arnoldi iteration for finding eigenvalues can be precisely characterized as 
a method that finds the sequence of monic polynomials Pk that minimize 
the successive norms I l pk (A)uI i I , where Ul is a starting vector [344, 649] ; 
Arnoldi reduces to Lanczos if A is Hermitian [476 , 601] . The purpose of 
this section is to consider the same problem, except minimizing I l pk (A) 1 1  
instead of I l pk (A)Ul l l .  This modified problem is elegant theoretically, and 
it captures some of the fundamental properties of the convergence of the 
Arnoldi iteration, which is typically insensitive to the choice of Ul . It also 
sheds further light on the links between nonnormality of matrices and their 
behavior . 

Chebyshev polynomials of matrices were defined in [344] (under the 
name ' ideal Arnoldi polynomials ' )  and considered at length in [757, 762] . 

Chebyshev polynomial of a matrix 

Let A be an N x N matrix, let k be a nonnegative integer , and let 1 1 · 1 1  
denote the matrix 2-norm. The degree-k Chebyshev polynomial of A is 
the degree-k monic polynomial <Pk for which 

I I <pk (A) 1 1  = minimum (29. 1 )  

or, equivalently, 

(29 .2) 

The term 'Chebyshev polynomial ' is widely familiar in connection with 
polynomials of minimal norm on an interval [535] , and in approximation 
theory one also finds this idea generalized to the Chebyshev polynomials 
of a compact set K in the complex plane, defined as monic polynomials 
of specified degree with minimax norm on K [656, 815 ,  822] ; this gener­
alization originated with Faber in 1920 [250] . The extension (29. 1 )--(29 .2) 
to matrices could be regarded as a further generalization, for it is easily 
shown that if A is normal , then the degree-k Chebyshev polynomial of A 
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is the same as the degree-k Chebyshev polynomial in Faber 's sense of the 
spectrum d A) . 

The wording of our definition suggests that Chebyshev polynomials of 
matrices exist and are unique. This is indeed the case, as is spelled out in 
the following theorem from [344] . 

Existence and uniqueness of Chebyshev polynomials of a matrix 

Theorem 29. 1 A Chebyshev polynomial (h exists for any A and k .  
It i s  unique if and only if k i s  less than or  equal t o  the degree of the 
minimal polynomial of A, hence in particular if I I (Pk (A) 1 1  > o .  

Proof. The proof o f  existence i s  routine i f  we note that we can describe 
(29 .2) in an abstract vector space as a problem of finding a best approx­
imation of a vector W (namely Ak ) by a vector Vk in a finite-dimensional 
subspace V (spanned by I, A, . . .  , Ak- I ) .  The existence of such a vector 
Vk follows by a standard compactness argument that can be found in any 
book on approximation theory; see , for example, [144, p .  20] or [5 16 ,  p. 17] .  

Since the matrix norm 1 1 · 1 1  is not strictly convex, the proof o f  uniqueness 
is not routine. First we note that by the assumption on k, the matrices 
I, A, . . .  , Ak- I are linearly independent . Therefore any v E V has a unique 
expression as a linear combination of these matrices , and so, proving the 
uniqueness of ¢k is the same as proving uniqueness of Vk . We now argue by 
contradiction. Suppose that 41 and ¢ are two distinct solutions to (29 . 1 )­
(29 .2 ) , and let the minimal norm they attain be I I ¢(A) I I  = I I ¢(A) I I  = C. If 
we define ¢ = (41 + ¢) /2 , then I I ¢(A) I I ::;; c, so we have I I ¢(A) I I  = C since 
41 and ¢ are minimal . Let WI , . . .  , wJ be a set of maximal right singular 
vectors for ¢(A) , i .e . , a set of orthonormal vectors with 

1 1 ¢(A)Wj l l  = C, 1 ::;; j ::;; J, 

with J as large as possible . For each Wj we have 1 1 ¢ (A)wj l l  = 1 1 ¢(A)wj l l  = 
C and ¢(A)wj = ¢(A)wj , for otherwise , by the strict convexity of the 
norm I I  . I I  applied to  vectors , we would have I I  ¢(A)wj I I  < C. Thus 

( ¢ - ¢ ) (A) (wj ) = 0, 1 ::;; j ::;; J. 

Now since ( ¢ - 41 Hz) is not identically zero, we can multiply it by a scalar 
and a suitable power of z to obtain a monic polynomial D..¢ of degree k 
such that D..¢(A)wj = 0 for 1 ::;; j ::;; J. For E E (0 ,  I ) , consider now the 
monic polynomial ¢€ defined by 

¢E (Z) = ( 1  - E) ¢(Z) + ED..¢(Z) . 

If W J + I , . . . , WN denote the remainder of a set of N singular vectors of 
¢(A) , with corresponding singular values C > O"J+I � . . .  � O"N � 0, then 
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we have 

l ::; j ::; J, 
J + 1 ::; j ::; N. 

The first case is < C for arbitrary c, and the second row is < C for suf­
ficiently small c, since O"J+I < C. Since the singular vectors WI , . . .  , wN 
form an orthonormal basis, this implies that II ¢,, (A) I I  < C for sufficiently 
small c, contradicting the assumption that ¢ and ¢ are minimal. _ 

Chebyshev polynomials of the familiar kind on [- 1 , 1 ] are defined by ex­
plicit formulas, and Faber's Chebyshev polynomials of sets K <;;;; <C can be 
computed by various methods related to the Remez algorithm or to linear 
or semi-infinite programming [275 , 489 , 743] . What about computing the 
Chebyshev polynomials of a matrix A? A powerful technique in this case 
is semidefinite programming, a term that refers to solution of optimization 
problems in which the objective function or the constraints involve eigen­
values of Hermitian matrices [10 1 ,  573 , 755] . In (29 . 1 )-(29 .2 ) , the aim is to 
find parameters Co , . . .  , Ck- I to minimize the largest singular value of the 
matrix I l pk (A) 1 1  of  dimension N; this singular value i s  the square root of 
the largest eigenvalue of 

a Hermitian matrix of dimension 2N. Determination of the Chebyshev 
polynomial of A thus reduces to a semidefinite programming problem, 
and powerful primal-dual interior point iterative methods have been de­
veloped for solving it numerically. The details are presented in [762] , and 
a MATLAB program called chebymat is included as part of the SDPT3 
semidefinite programming package of Toh, Todd, and Tiitiincii [759] . 

For example, chebymat informs us that the Chebyshev polynomials of 

are 

with 

A � O � n 
I I ¢o (A) 1 1  = 1 , I I ¢I (A) I I  � 1 1 .4077, 1 1 ¢2 (A) 1 1  = 9. 

By looking at matrices that are normal or reasonably close to normal, 
we can get an indication of how the Arnoldi and Lanczos iterations locate 
eigenvalues . For example , suppose A is the 32 x 32 (normal) diagonal 
matrix with diagonal entries 1 and 20, 2 1 ,  . . .  , 50 .  For k = 1 , 2 ,  . . .  , 10 ,  we 
find that the smallest roots of the Chebyshev polynomials ¢k of A are 
approximately as follows: 
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25 .5000 , 8 . 1 723, 3 .6779 , 1 . 7032, 1 . 1668, 

1 . 0386, 1 . 0090, 1 .002 1 ,  1 .0005, 1 .000 1 .  

281 

Evidently we have geometric convergence to the smallest eigenvalue, 1 .  
Similarly, suppose we have a 100 x 100 matrix whose entries are indepen­
dent , normally distributed real random numbers . Figure 29 . 1  shows the 
eigenvalues of a matrix A of this kind and also the roots of its Chebyshev 
polynomial of degree 30. Again there is evidence of convergence of the 
outer roots to the outer eigenvalues of A. 

In both of the examples just given, a true Arnoldi iteration, built on 
a starting vector q, would converge faster , for Chebyshev polynomials of 
matrices give only partial insight into the convergence of Arnoldi iterations . 
They do better at explaining failure of convergence in cases that are highly 
nonnormal . 

For an example of this kind , let A be the Grcar matrix, a Toeplitz 
matrix with symbol (7 . 14) , of dimension N = 60. Figure 29 . 2  shows spectra 
and pseudospectra of this matrix in the first panel, and in the other panels 
it shows roots and lemniscates of Chebyshev polynomials . We must explain 
what this means. For any polynomial p, a lemniscate of p is the curve or 
union of curves in the complex plane defined by the condition 

1 ¢ (z) 1 = C, (29.3) 

where C is a constant . Given A, k, and the degree-k Chebyshev polynomial 

1 0  Cl 8 � 
8 G 

0 ' 0 ' 
() ·0 0 

G 9 
'0 ' 0 

0 o· . G 
. p . Q  

8 6 
0 '0 0 0 . 0 . 

8 8 G Q 0 
- 1 0  

-1 0 0 1 0  

Figure 29. 1 :  Eigenvalues o f  a random 100 x 100 matrix (dots) and roots o f  the 
Corresponding Chebyshev polynomial CPk of degree 30 (circles) . The outer roots 
approximate some of the outer eigenvalues. 
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Figure 29 .2 :  Spectra and E-pseudospectra (first plot ) and roots and p-Iemniscates 
(other plots) of Chebyshev polynomials for the Grcar matrix of dimension N = 
60. The dark curves are the Chebyshev lemniscates defined by (29 .5 ) , and the 
light curves are the additional lemniscates given by 1 </>k (z) 1 1 /k = Pk (A) + E. In 
both cases E takes values t ,  t ,  � ,  g ,  1 .  

¢k of A, we define the k-capacity of A t o  b e  the number 

(29.4) 

and we define the degree-k Chebyshev lemniscate of A to be the lemniscate 
given by the condition 

(29 .5) 

The Chebyshev lemniscate is the one shown as a dark curve in Figure 29 .2 .  
In addition, further lemniscates are shown corresponding to 
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We see from the images that the Chebyshev polynomials of A have little to 
do with the spectrum, but quite a lot to do with the pseudospectra. The 
agreement of pseudospectra and lemniscates is not exact in any sense , but 
it is nevertheless quite striking. 

In [341] ,  Greenbaum presents a figure much like our Figure 29 .2 ,  except 
with lemniscates for true Arnoldi polynomials based on I l pk (A)ul i l rather 
than Chebyshev or ideal Arnoldi polynomials based on I l pk (A) I I .  

Figure 29.3 repeats this experiment for the Scottish flag matrix of Fig­
ure 9.4 , which also is strongly nonnormal. Again we have a remarkable 
correspondence between lemniscates and pseudospectra, with the eigenval­
ues nowhere in evidence. 

These two examples are exceptionally clean. To illustrate that the con­
nection between pseudospectra and lemniscates is not always so close , our 
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Figure 29.3 :  Same as Figure 29 .2 but for the Scottish flag matrix (9 .7) of dimen­
sion N = 101 . 
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next example is generated with the MATLAB command 

A = triu (rand ( 60) + 1 i *rand ( 60 ) , -2 ) . (29 .6) 

This is a matrix whose entries in the second subdiagonal and above are 
random complex numbers with real and imaginary parts each uniformly 
distributed in [0, 1 ] ' with zeros below the second sub diagonal . The result 
in Figure 29.4 shows much greater complexity than before . 

A connection can be made between the Chebyshev lemniscates of Fig­
ures 29 .2-29.4 and the sets known as the polynomial numerical hulls of 
a matrix, defined originally by Nevanlinna [575 , 576] and considered sub­
sequently by Greenbaum et al . [25 1 ,  340 , 341] ; see especially [341 ]  for an 
extensive discussion . We shall take II . II = I I . 1 1 2 , though other norms can 
also be used (as indeed is true of Chebyshev polynomials , too) . 

k = 4 

4 

�4L-------�O--------�4 ------�8 
8 ,-------�--------------_, 

4 4 

o o 

k = 16 
o 4 8 

Figure 29.4 : Like Figures 29 .2 and 29.3 but for the random matrix of dimension 
N = 60 defined by (29.6) . 
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Polynomial numerical hull 

Let A be an N x N matrix, let k be a nonnegative integer , and let 

1 1 · 1 1 denote the matrix 2-norm. The degree-k polynomial numerical hull 
Ji:k (A) is the set of all Z E ([; such that for every polynomial p of degree 
k, Ip(z) 1 ::::; I Ip(A) I I · 

The results of the following theorem can be found in [341 ] . 

Chebyshev lemniscates and polynomial numerical hulls 

Theorem 29.2 Given a matrix A and a nonnegative integer k ,  let 
'cdA) be the region bounded by the degree-k Chebyshev lemniscate, let 
Ji:k (A) be the degree k polynomial numerical hull of A, and let a(A) 
denote the spectrum of A as usual. Then 

(29 .7) 

Proof. The first inclusion is a consequence of the spectral mapping theorem. 
For the second, note that the region 'ck (A) is defined by the condition 
Ip(z) 1 ::::; I Ip(A) 1 1  for the particular polynomial p = (h , whereas Ji:k (A) is 
defined by the same inequality for all polynomials of degree k. The latter 
is thus a stricter condition, and therefore JCk (A) � 'ck (A) . • 

One might wonder if perhaps JCk (A) = 'ck (A) for any A and k ,  but 
this is not so . Indeed, 'c1 is always a disk, whereas JC1 (A) = W(A) , the 
numerical range, is a polygon if A is normal. 

Chebyshev polynomials of matrices have in common with polynomial 
numerical hulls the property that unlike pseudospectra, they are specially 
tied to polynomials of A rather than more general functions . As of this 
writing, they are easier to compute. 1  We do not know which concept will 
prove more useful in the long run. 

Figure 29 .5 ,  in the style of the previous three, presents an example 
considered by Greenbaum in [341] . The matrix here is the decay ma­
trix A = p - poo associated with the riffie shuffie of a deck of N = 52 
cards, described in §57. The figure resembles corresponding figures in [341] , 
though those show hulls instead of lemniscates and are computed in the 
I-norm (appropriate for the shuffiing problem) rather than the 2-norm. 
For k = 1 , 2 ,  . . .  , 12 the maximal moduli of all points on the Chebyshev 
lemniscates ,c k (A) for this matrix are approximately 

2 .717, 1 . 390, 1 . 175 , 1 . 043, . 997, . 958, .826, .685, .584, . 5 16 ,  . 50 1 ,  . 500. 

. 1 In fact ,  the primary method for computing polynomial numerical hulls requires the 
tdeal

. 
GMRES polynomial of Zjt - A on a grid of points {Zje}  in the complex plane [340] . 

!he Ideal GMRES polynomial is similar to the Chebyshev polynomial of a matrix, and 
Its computation is a problem of similar complexity [761 ] . 
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Figure 29 .5 :  Plots as in the previous three figures, but for a riffle shuffle matrix 
with N = 52 , following Greenbaum [341 ] . The dashed curve is the unit circle . 

Eventually these numbers converge to 1/2 ,  the largest eigenvalue of A. 
But not until n = 7 do they fall much below 1 ,  and this is related to the 
Bayer-Diaconis phenomenon that 'it takes seven shuffles to randomize a 
deck of cards ' , discussed in §57. 



V I I .  N u merica l Sol ution 

of Differentia l  Eq uations 





30 . Spectra l d ifferentiation matrices -------

Much of scientific computing depends on processes of numerical differentia­
tion, in which a derivative of a function is replaced by some kind of discrete 
approximation. Specifically, in the field of spectral collocation methods, 1 
derivatives may be computed numerically by multiplying a vector of data 
by a differentiation matrix [99, 127, 282, 775] . If the underlying grid is 
not periodic, these differentiation matrices are typically nonnormal , and 
the departure from normality may grow exponentially as a function of the 
number of grid points. In such cases the nonnormality may have a big effect 
on numerical stability and behavior of the methods. This was one of the 
applications that contributed to the rise of interest in nonnormality and 
pseudospectra among numerical analysts in the early 1990s [625 ,  770 , 782] . 

Let us consider the classic example of Chebyshev spectral differentiation 
on the interval [- 1 , 1] . Let N be a positive integer, and let Xo , . . .  , XN be 
the N + 1 Chebyshev points 

Xj = cos( j7r/N) , j = 0, 1 ,  . . .  , N. (30 . 1 )  

Note that the points are numbered from right to  left for convenience and 
that they cluster near ±1 .  For example, the Chebyshev points for N = 8 
and 24 are shown in Figure 30. 1 .  

• • • • 

•• •  • • • • • • • • 

• 

• 

• • • • 

• • • • • • • • •• 

Figure 30. 1 :  Chebyshev points in [- 1 , 1 ]  for N = 8 and 24. 

Spectral differentiation proceeds as follows. Given a function u defined 
on the grid {x j } ,  we obtain a discrete derivative w by differentiating a 
polynomial interpolant : 
• Let p be the unique polynomial of degree :::; N with p(  x j )  = Uj , 0 :::; j :::; N.  
• Set Wj = p' (Xj ) .  

We do not construct p(x) explicitly, but instead note that since the differ­=..ntiation operator is linear , it can be represented by multiplication by an 
l
.
Spectral collocation methods are also known, confusingly, as pseudospectral methods, 

the Idea being to distinguish them from the alternative spectral Galerkin methods, based 
on integrals rather than point evaluations. There is no connection between that use of 
the term pseudospectral and the one that is the basis of this book. 
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(N + 1 )  x (N + 1) matrix DN : 

w = DNU, 

The entries of D N can be determined analytically, and spectral methods 
manipulate these matrices explicitly to solve problems of ODEs, PDEs, and 
integral equations . 2 

For example , for N = 1 ,  the interpolation points are Xo = 1 and Xl = 
- 1 ,  and the differentiation process takes the form 

For N = 2 the points are Xo = 1 ,  Xl = 0 ,  and X2 = -1 ,  and we have 

Note that these matrices are neither symmetric nor skew-symmetric. The 
formulas for general N can be found on page 410 and are embodied in the 
following MATLAB function adapted from [775] : 

funct i on [D , x] = cheb (N) 

x = cos (pi* ( O : N) /N ) ' ;  

c = [2 ; one s (N- l , l ) ; 2] . * ( - l ) . - (O : N) ' ;  

X = repmat (x , l , N+ l ) ; dX = X-X ' ; 

D = ( c* ( l . /c ) ' ) . / (dX+ ( eye (N+ l » ) ;  

D = D - diag ( sum (D , 2» ; 

A simple theorem establishes that there is a departure from normality.3 

Proof. The upper left corner entry of DN is (2N2 + 1 ) /6 ,  and as this is 
greater than N2/3 , the same must be true of I I DN I I . As for the nilpotency, 
the definition of D N implies that for any vector u, (D N )N+ l u is the vec­
tor obtained by interpolating u by p(  x) , differentiating N + 1 times, and 
evaluating the result on the grid. Since p(x) is a polynomial of degree at 
most N, the result will always be zero, regardless of u. Thus (D N ) N+ l is 
the zero matrix. _ 

2 Alternatively, the implementation sometimes involves the Fast Fourier Transform 
rather than explicit matrix manipulation. 

3Though mathematically nilpotent , these matrices do not behave as such on a com­
puter in finite precision arithmetic; see page 165.  
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In fact , the norms grow approximately like I IDN I I  rv 0 .5498N2 as N ----+ 
00 [770] . This scaling suggests that the cleanest results will be obtained if 
we consider the matrices AN = N-2D N . Figure 30 .2 shows pseudospectra 
of these matrices for N = 8 and N = 24. The departure from normality 
is pronounced. As N ----+ 00, such figures appear to converge to a limit in 
which I I (x - Aoo) - l l l  grows roughly in proportion to ( 1 .8) 1/x as x ----+ O .  

Theorem 30. 1 and Figure 30 .2 describe a spectral differentiation pro­
cess with no boundary conditions . In applications , however , boundary 
conditions are usually present . In the simplest case , suppose the condition 
Uo = 0 is imposed at the point x = 1 ,  which would be the ' inflow' point for 
the PDE Ut = UX ' This condition can be imposed in the spectral method 
by deleting the first row and the first column of D N , producing a square 
matrix D N of dimension N instead of N + 1 .  Figure 30.3 shows the effect 
on the spectra and pseudospectra of AN = N-2n N . The matrix is no 
longer nilpotent ; the eigenvalues are all nonzero. Most of them shrink to 
the origin as N ----+ 00 in this normalization, but as they shrink, they leave 
behind certain 'outliers ' of size (9 ( 1 ) .  This limit was considered in [625] . 
The largest of the outliers has magnitude approximately 0 .0886 as N ----+ 00 ,  
corresponding to 0 .0886N2 before normalization. 

In applications , spectral differentiation aims to provide a 'spectrally 
accurate' approximation of exact differentiation-meaning that for smooth 
functions , the errors decrease faster than any power of N as N ----+ 00 ,  
and for analytic functions , they decrease exponentially. An aspect of the 
spectral accuracy is revealed graphically in the portion in Figure 30.3 near 
the origin. As far as the eye can see, the boundaries of the pseudospectra are 
exactly vertical in this fascinating corner of the plot , as the enlargement of 
Figure 30.4 confirms . Now for the differentiation operator djdx on [- 1 , 1 ] 
with boundary condition u(l) = 0 ,  as shown in §5 ,  the pseudospectra 
are precisely half-planes bounded by vertical lines . Thus we see here a 

N = 24 
0. 1 0 . 1  

-0. 1 -0 . 1  

L I 
-0.2 -0. 1 0 0. 1 0.2 -0.2 -0.1  0 0. 1  0.2 

Figure 30 . 2 :  E-pseudospectra of the normalized Chebyshev spectral differentiation 
matrices N-2DN for N = 8 and 24, E = 10-2 , 10-4 , 10-6 , . . .  , 10- 14 . These 
matrices are nilpotent , so their eigenvalues are all zero . 
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N = 8  N = 24 
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Figure 30.3 :  Same as Figure 30 .2 ,  but for the matrices N-2fi N obtained from 
N-2DN by removing a row and a column to impose a boundary condition. 
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Figure 30.4: Closeup of the second plot of Figure 30 .3 .  

beautiful example of 'spectrally accurate pseudospectra' . The eigenvalues , 
by contrast , do not approximate anything in the original problem at all : 
they are an epiphenomenon. 

In 1986, before the significance of the nonnormality of spectral differ­
entiation matrices had been recognized, Tal-Ezer published an intriguing 
paper based in part on ideas of Dubiner [741 ] . Tal-Ezer proposed that the 
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fJ (N2 ) eigenvalues of the matrices DN could be shrunk to fJ (N) by mak­
ing a small change : replacing the Chebyshev grid (30 . 1 )  by a Legendre grid 
consisting of the point x = 1 together with the zeros of the degree N Leg­
endre polynomial PN (X) . This reduction in eigenvalues would have huge 
advantages in applications , for it would permit an increase in stable time 
step sizes for time-dependent PDE simulations from fJ (N-2 ) to fJ (N- l ) . 

Figure 30 .5 repeats Figure 30.3 for matrices AN = N-25 N based on 
these Legendre points. We see that Legendre grids do indeed have smaller 
eigenvalues : The outliers are gone. Their pseudospectra, however, are no 
smaller than for Chebyshev grids . Thus here is a case in which the scaling 
of the spectra differs from that of the pseudospectra by a whole factor of N. 
Which of the two is it that matters in applications? Do the Legendre grids 
really permit increased time steps? As we shall see in the next two sections , 
in general the answer is no. 

Figure 30 .6 ,  a closeup of Figure 30 .5 ,  reveals much the same behavior 
as before :  vertical lines that appear perfectly straight . Evidently, although 
Chebyshev and Legendre grids differ in their eigenvalues, their pseudospec­
tra near the origin agree to spectral accuracy. 

The comparison of the nonnormal properties of Chebyshev and Leg­
endre spectral differentiation matrices began with a paper in 1987 by Tre­
fethen and Trummer [782] , who noted that the eigenvalues of these matrices 
were so sensitive to perturbations that it could make an important differ­
ence whether they were computed in single precision or double precision . 
Trefethen and Trummer did not investigate pseudospectra, and as a re-

N = 8  N =  24 

0. 1  0 . 1  

o o 

-0. 1  
-0.1  

-0.2 -0. 1 o -0.2 -0 . 1  o 

Figure 30 .5 :  Same as Figure 30 .3 ,  but for Legendre points instead of Chebyshev 
Points . 
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Figure 30.6 :  Closeup of the second plot of Figure 30 . 5 .  

suIt overestimated the significance of machine precision. Soon afterward 
it became clear that the computed eigenvalues in question were lining up 
nicely near the boundary of the E-pseudospectrum, with E on the order of 
machine epsilon, but that deeper aspects of the matrices in question might 
be necessary to explain their behavior in applications . 

We close by mentioning an interesting theoretical problem where much 
work remains to be done. Do pseudospectra of spectral approximations 
really converge to those of corresponding differential or integral operators? 
How fast? Under what conditions? For general studies of spectral approxi­
mation for differential and integral equations , see [2 , 139] . Several theorems 
have been published that describe the convergence of the pseudospectra of 
operator approximations [375 , 836] , though it remains to be seen if spectral 
discretizations fit into such frameworks. For many operators , the numerical 
evidence of convergence is convincing; see §43. 



31 . Nonmodal  insta bi l ity of P D E  discretizations __ 

In this section we describe the phenomenon of nonmodal instability of 
certain discretizations of time-dependent partial differential equations . In 
the next , we present theorems to characterize discretizations that are free 
of this effect . 

As computers began to appear in the late 1940s and early 1950s, they 
were employed almost immediately for the solution of time-dependent PDEs 
by finite difference discretizations . It was quickly discovered that some dis­
cretizations were stable and others were unstable, giving useless results .  For 
example, consider the first-order wave equation 

8u 8u 
8t ax ' 

together with initial data 

x E ( - l , l ) ,  

u(x, O) = { ��S2 (1f(X - i ) ) ,  I x - 1 1 < 1 4 - 2 ' 
otherwise, 

(31 . 1 )  

and boundary data u ( l , t )  = 0 for all t .  Suppose this initial value problem is 
approximated numerically on a regular b.x-b.t grid by centered differences 
in x and the third-order Adams-Bashforth formula in t ;  see , e .g . , [426] . If 
uj denotes the discrete approximation at x = - 1  + jb.x, t = nb.t, then 
the spatial discretization is 

�� (jb.x, nb.t) � Duj ,  

where D is the tridiagonal matrix defined by! 

Uj+1 - uj_ 1 Duj = 

2b.x 
and the full space-time discretization is 

(31 . 2 )  

(31 .3 ) 

un+1 = un + b.t D( 23 un _ 16 un- 1 + �un-2 ) (31 .4) J J 12  J 12  J 12 J . 

To be specific, let us take N = 60, b.x = 2N- 1 , uN = 0, Uo = uJ' , and 
initial values u� , uJ , uJ ( 1  :S j :S N - 1 )  taken from the exact solution 
u(x , t) = u(x + t , 0) . Figure 3 1 . 1  shows computed results with b.t = 0 .6b.x 
and b.t = 1 . 2b.x. For the first choice, the computation is stable, generating 
the correct solution, a wave propagating left at speed 1. For the second, 
it is unstable. The discretization errors introduced at each step are not 

l In principle one should write (Dun)j ,  but the notation D u"! is standard in the field 
of finite difference methods. 

J 
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D.t = 0 .6D.x 

-1 

D.t = 1 . 2D.x 

-1 
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0 .5 

0 .5 

Figure 3 1 . 1 :  Stable and unstable finite difference approximations of (3 1 . 1 ) .  This 
is a modal instability, associated with a sawtoothed eigenvector (four grid points 
per wavelength) with eigenvalue of modulus > 1 .  At t = 1 ,  the amplitude ex­
ceeds 105 . 

much bigger than before , but they compound exponentially in successive 
time steps until the wave is obliterated by a sawtooth oscillation. If this 
computation is continued for a longer time, the values uj are greater than 
105 at t = 1 and close to 1015 at t = 2 .  

The standard technique for explaining the instability of finite difference 
formulas was developed by von Neumann and others and described in a 
1951 paper of O'Brien, Hyman, and Kaplan [583] . 2 'Von Neumann analysis ' 

2With hindsight , it was seen that the roots of von Neumann analysis lie earlier, before 
the invention of computers. A 1928 paper of Courant , Friedrichs , and Lewy showed that 
a discrete approximation to a wave equation cannot converge to the correct solution in 
general as the mesh is refined unless 6.t and 6.x satisfy a certain inequality [167] .  This 
'CFL condition' was justified on the basis of numerical and mathematical domains of 
dependence, not instability, but it was later realized that when it is not satisfied , the 
failure of the numerical scheme does indeed take the form of instability. Even earlier, 
L. F .  Richardson solved PDEs by finite differences around 1910  [637] and foresaw the 
era of numerical weather prediction [638] . Among other schemes, Richardson proposed 
a ' leap frog' formula for the heat equation that we now recognize as unstable. Forn­
berg [282, pp. 58-60] points out that Richardson computed just five time steps with this 
scheme and saw no problems, but if he had been able to take 25 steps , he would have 
seen a result much like the lower plot of Figure 3 1 . 1 .  
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is another term for discrete Fourier analysis .  One begins by noting that if 
we ignore the complication of boundary conditions and imagine that the 
domain is unbounded, then any initial condition for the finite difference 
formula can be written as a superposition of waves 

(31 .5 )  

for real wave numbers k and corresponding amplification factors ( i .e . , eigen­
values) >. = >'(k) . If 1 >' 1  > 1 for some k, we have exponential growth and 
instability. In the case of the formula (31 .4) , inserting (31 .5 )  and cancelling 
the common factor eijkt:..x yields the cubic equation 

>. - 1 = 
i (23 - 16>.-1 + 5>.

-

2 ) b.t 
sin(kb.x) . 

12  b.x 

It can be shown that for b.t/ b.x = 0 .6 ,  or indeed for any value of b.t/ b.x 
less than about 0 .724, all solutions of this equation satisfy 1 >' 1  :::; 1, whereas 
for b.t/ b.x = 1 . 2 ,  this is no longer true, and the numerical solutions blow 
up. The wave number that blows up fastest is k = �7r / b.x, i .e . , four grid 
points per wavelength, and the corresponding eigenvalue is >. � 0 .28+2 .09 i ,  
with 1>' 1  � 2 . 1 1 .  

By now it should b e  clear why the subject of stability o f  discretizations 
of PDEs is a part of this book. Discretizations of linear time-dependent 
PDEs are discrete time dynamical systems , and the problem of numerical 
stability is a problem of ensuring that these dynamical systems cannot 
amplify rounding or truncation errors explosively. This much was evident 
to experts by the end of the 1940s. 

Then, in the 1950s, a general mathematical theory was developed by 
Lax and Richtmyer, now often called the theory of Lax-stability [488, 639] . 
Lax and Richtmyer observed that the problem of stability is the problem of 
bounding the norms of powers of certain discrete solution operators . They 
developed conditions that characterize convergence of discrete approxima­
tions to the correct solution as the mesh is refined (ignoring rounding errors , 
and assuming the underlying problem is linear and well-posed) .  The main 
result is the famous Lax Equivalence Theorem, which states that if the dis­
crete approximation is consistent, meaning that it approximates the right 
PDE as b.x --+ 0 and b.t --+ 0, then 

convergence {::=} stability. 

Here 'stability ' means that the solution operators are uniformly bounded 
as the time and space grid sizes approach zero. For example, if S t:..t is an 
operator that advances the numerical solution for a time-independent PDE 
from one time step to the next on a grid associated with time step b.t, then 
stability is the condition 

(31 .6) 
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for some fixed function C(t) , uniformly for all n as Ilt, Ilx ----t O. 
All this is a bit vague, omitting various details necessary for a math­

ematically precise statement . One detail is that (31 .6 )  does not involve a 
single function space or norm, but a set of spaces and norms that must 
converge to a continuous limit as Ilt ----t 0; the solution operator {S6,.d will 
involve matrices of growing dimensions as Ilt ----t O. Another is that a mul­
tistep numerical process such as (31 .4) does not simply advance from one 
step to the next , but combines several steps together . For a full treatment 
of such matters, see [639] . The essential point , however, is clear : Conver­
gence of PDE discretizations depends on norm-boundedness of families of 
matrices . If the powers are bounded, the computation is stable . The prob­
lem of characterizing power-bounded families of matrices led to the Kreiss 
matrix theorem of 1962 ( § 18) [465] . 

We can now explain how von Neumann analysis fits into the general 
theory of Lax-stability. A priori, the question of stability requires the 
analysis of families of matrices , and eigenvalue analysis alone could never 
give bounds on norms of powers of arbitrary families of matrices. In the 
special case of constant-coefficient problems on regular grids , however, the 
Fourier transform takes what would be families of matrices of unbounded 
dimensions in space into families of matrices of a fixed dimension, indexed 
over wave numbers. The transformation is unitary, and as a consequence, 
eigenvalue analysis of the resulting matrices is enough to ensure stability. 
For practical problems involving boundaries or variable coefficients, further 
theorems have been proved to show that von Neumann analysis still gives 
the correct results provided certain additional assumptions are satisfied 
such as smoothness of coefficients [639, 748] . 

On the other hand, there are some discretizations of PDEs that are 
fundamentally not translation-invariant . For these , von Neumann analysis 
is inapplicable , and instabilities may appear that are nonmodal in nature. 
A vivid example of such effects was presented in a paper by Parter from 
1962 [603] . More extreme examples of nonmodal instabilities arise in the 
field of spectral methods for the solution of PDEs [127 , 775] , introduced 
in the last section. The remainder of this section is devoted to exploring 
an example of this kind , taken from [770 , 782] . We shall look at the same 
example from another angle in the next section. 

Let us consider (3 1 . 1 )  again, but now discretize x by spectral differen­
tiation in the unevenly spaced grid of N Legendre points {x j } '  i .e . , roots 
of the Legendre polynomial of degree N, as described in the last section. 
Such discretizations were proposed in [2 1 7] and [740] . Given N data points 
Uj on this grid, we construct their approximate spatial derivative by inter­
polating these data, as well as the boundary value 0 at x = 1 ,  by a single 
global polynomial PN of degree N, and then differentiating this interpolant . 



3 1 · NONMOOAL INSTABILITY OF POE DISCRETIZATIONS 299 

t6.t = 0.3N- 1 

-1 0 .5 

-1 0.5 

Figure 31 .2 :  Legendre spectral approximation of the same problem (31 . 1 ) on 
a spatial grid with N = 30 . Now there is a nonmodal, transient instability 
associated with a pseudoeigenvector localized at the boundary. For slightly larger 
time steps the solution becomes rapidly worse than shown here . 

Thus (31 .2 )  is replaced by 

au 
ox 

(xj , nfj,t) � Duj = P',. (Xj ) ,  (3 1 . 7) 

where D is the Legendre spectral differentiation matrix. Figure 3 1 . 2  now 
reveals quite a different kind of instability than we saw in Figure 31 . 1 .  As 
t --+ 00 , on a fixed grid , things do not look too bad. For finite t, however ,  
large transient errors appear near the boundary x = -1 .  This i s  a perfect 
example of transient growth and eventual decay of a highly nonnormal 
linear ,  time-independent dynamical system. 

We can reduce this multistep Adams--Bashforth formula to a one-step 
process by forming the 3N x 3N block matrix 

s 
( I  0 0 ) fj,t ( 23D I 0 0  + - 0 

12 
o I 0 0 - 16D 

o 
o 

5D ) 
o , 
o 

(31 .8 )  

which maps (un , un- l , un-2 )T to (un+1 , un , un- 1 )T . Stability now be­
comes a matter of norms of powers of S ,  and these are plotted in Fig-
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1 06 
,---------,---------,---------,---------,---------, 

N =  20 

o 0. 1 0.2 0.3 0.4 0.5 t 

1 06 
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N = 40 

o 0. 1 0 .2 0.3 0.4 0.5 

Figure 31 .3 :  Norms of powers of the compound matrix S of (3 1 . 8) for the Legendre 
spectral discretization of (31 . 1 ) with a nonmodal instability. The scheme is Lax­
stable if tlt = O (N-2 ) as N � 00, otherwise Lax-unstable. 

ure 31 . 3 .  This figure reveals that if t::..t = r:J (N-2 ) as N � 00, then the 
maximal norm, though possibly large, is uniformly bounded for all N. 
The discretization is Lax-stable , and the numerical solution will converge 
to the exact solution in the absence of rounding errors . If t::..t -I- r:J(N-2 ) 
as N --; 00, on the other hand, there will be Lax-instability and no conver­
gence. In particular, a choice such as t::..t = 0 .4N- 1  will be catastrophic , 
even though the eigenvalues in that case remain inside the unit disk for 
all N. 

Figure 31 .4  shows the pseudospectra of S for the particular choice N = 

20 and t::..t = 0.4N-1 = 8N-2 (thus S has dimension 60) . Around most 
of the unit circle , the resolvent norm is of modest size , but in the region 
z � -1  it takes values beyond 106 , making it clear that there must be large 
transient growth. Since the boundary of the 1O-6-pseudospectrum crosses 
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0.5 

\ 

0 Q 
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- 1 .5 - 1  -0.5 0 0.5 

Figure 31 .4 :  €-pseudospectra of the matrix S of (31 .8) with N = 20, �t = 0.4N- 1 
for € = 10-2 , 10-\ . . .  , 10- 10 .  The dashed curve is the unit circle . The large 
resolvent norms for z � - 1  imply that the powers of this matrix must grow 
transiently by a factor greater than 104 before eventually decaying, as seen in 
Figure 31 .3 .  

the real axis near z = - 1 .035, Theorem 16 .4 implies that there must be 
transient growth of the powers I l sn l l  by a factor of at least 106 x 0 .035 = 
3 .5  x 104 . From Figure 3 1 . 3  it is evident that the actual growth is about 
six times greater than this . 

Could one use a discretization of this kind for large-t simulations , since 
the instability is transient and dies away eventually? At a glance it might 
seem so, but as Kreiss emphasized in 1962 [465] , the instability can only 
be expected to be transient for a purely constant-coefficient linear prob­
lem in the absence of rounding errors. As soon as variable coefficients or 
nonlinearities or other perturbations are introduced, the loss of conver­
gence is likely to become global . Just as Richardson failed to recognize his 
modal instability in 1910 ,  so Dubiner [2 17] , Tal-Ezer [740] , and Trefethen 
and Trummer [782] all failed to recognize this nonmodal instability during 
1986-87. 
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The last section showed that for discretizations of time-dependent PDEs, 
the proper location of eigenvalues is not enough in general to ensure stabil­
ity, and hence convergence to the correct solution, as the mesh is refined. 
Here we show that for many such problems, the correct condition for sta­
bility is that the pseudospectra of the spatial discretization operator must 
be contained in the stability region of the time-stepping formula. More 
precisely, the c-pseudospectrum must lie within a distance 19 (c) of the sta­
bility region as c ----> O. For stability over t E [0 ,  T] instead of [0 , 00 ) , this 
condition loosens to 19 (c) + (,) (�t ) as �t ----> 0 and c ----> O .  

The problems in question are finite difference, finite element , or spectral 
discretizations of time-dependent PDEs for which one can separate the 
treatments of space and time. Suppose we have a time-dependent PDE and 
discretize it with respect to the spatial variables . The result is a system 
of coupled ODEs, one for each grid point for a simple finite-difference 
discretization of a scalar problem. Suppose we then discretize this system 
in time by a numerical formula for ODEs such as an Adams or Runge-Kutta 
formula. This two-step process is called the method of lines, an allusion 
to the idea that after discretization in space, one has a system of coupled 
problems whose solutions are defined along ' lines ' in the t direction [424] . 

Here is an example. Suppose we have the first-order wave equation on 
the domain [-7r, 7r] with periodic boundary conditions , 

au au 

at ax ' x E [-7r, 7r] , (32 . 1 )  

together with initial data u(x, O) = f (x) . I f  we discretize by a one-sided 
'upwind' approximation in x, the result is the system of ODEs 

duj (t) _ uj+1 (t )  - uj (t) 

dt 
-

�x 
(32 .2) 

indexed over appropriate values of j .  One way to solve a system of ODEs 
dujdt = f (u) numerically is by the forward Euler formula, 

UM1 = un + �t f(un ) . 

For our particular choice of f defined by (32.2) , we obtain 

n+l n �t 
( n n ) uj = uj + 

�x 
Uj+l - Uj . 

(32 .3) 

(32.4) 

This discretization in x and t can be described as the method of lines dis­
cretization of (32 . 1 )  obtained by combining forward ( 'upwind' ) differencing 
in x with forward ( 'Euler ' ) differencing in t .  
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At a practical computational level, it is common to use the method 
of lines to reduce a PDE to a set of ODEs that can then be treated by 
black-box adaptive software. At a theoretical level, one may hope that to 
determine stability and convergence of a fully discrete PDE discretization 
such as (32.4) , one may be able to use the well-established theory of dis­
cretizations of ODEs worked out by Dahlquist and others beginning in the 
1950s. That is the theme of this section. 

The key idea is the notion of a stability region [365, 473] . Suppose a 
discrete ODE formula with time step ll.t is applied to the linear scalar 
constant-coefficient model problem 

du 
dt 

= AU, (32 .5 )  

where A E <C i s  a constant . This process amounts to a linear recurrence 
relation whose order depends on the number of steps or stages of the ODE 
scheme. The stability region for the ODE formula is the set of points in 
the All.t -plane for which this recurrence is stable in the sense that all its 
solutions are bounded as n --+ 00. Figure 32 . 1  shows stability regions for 
three of the most important families of methods. In the field of numerical 
solution of ODEs, stability regions are used to assess whether a discretiza­
tion is likely to behave successfully or not , especially for stiff ODEs, i .e . , 
those with widely disparate time scales (see §33) . Many method of lines 
discretizations of PDEs lead to stiff systems of ODEs, because the space 
derivatives lead to low- and high-wave number components that evolve on 
different time scales . For such problems, the standard rule of thumb is 
that a discretization is stable if all eigenvalues of the spatial discretization 
operator ( scaled by ll.t ) lie in the stability region of the time discretization 
operator. 

0 

- 1  

Let us work out the example (32 .4) . By considering Fourier modes 

Adams-Bashforth Runge-Kutta backward differentiation 
3 6 

.,.. --- � " 
/ 1 .5 3 

I 

0 0 

, -1 .5 -3 - - ..-.. � 

-3 _6 �---L--__ � __ � 

-2 -1 0 -4 -2 0 2 -4 0 4 8 

Figure 32 . 1 :  Stability regions in the A�t -plane for ODE formulas of orders 1 
(dashed) , 2 (dotted) , and 3 (solid) . For the Adams-Bashforth and Runge-Kutta 
formulas, the stability regions are the interiors of the curves drawn. For the 
backward differentiation formulas , they are the exteriors. 
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uj = An exp ( ikj�x ) for arbitrary wave numbers k ,  we find that the space 
discretization is a normal operator with eigenvalues 

eik.6.x - 1 
A = --,----­

�x 

(More precisely, since the domain [-7f, 7f] is bounded, the wave numbers 
are restricted to the integers , but as �x --+ 0 this makes little difference . )  
Multiplying by �t gives the scaled eigenvalues 

A = 
�t 

(eik.6.x _ 1 ) ,  
�x 

a set of numbers that lie along the circle of radius �t / �x centered at 
-�t / �x . On the other hand, the stability region for the forward Euler 
formula (32 .3) is the disk of radius 1 centered at - 1 .  Comparing these 
computations , we find that (32.4) can be expected to be stable provided 
that �t / �x :::; 1 ,  i . e . ,  �t :::; �x ; see Figure 32 .2 .  A more rigorous analysis 
confirms that this is indeed the correct stability condition for (32.4) . 

Figure 32 .3 considers a second example , the finite difference discretiza­
tion of au/at = au/ax with nonperiodic boundary conditions described at 
the beginning of §31 .  The time discretization is now carried out by the 
third-order Adams�Bashforth formula, which has a more interesting stabil­
ity region. The spatial difference is centered rather than upwind, leading to 
eigenvalues on an imaginary interval (approximately) rather than a circle . 

t:.t = 0 .6t:.x t:.t = 1. 2t:.x 

a a 

-1 - 1  

- 3  -2 - 1  a -3 -2 -1 a 

Figure 32 .2 :  Eigenvalues of t:.t times the spatial difference operator (32 .2) su­
perimposed on the stability region (shown in gray) of the forward Euler for­
mula (32 .3) for the finite difference approximation (32.4) , for two different choices 
of t:.t . On the left , the eigenvalues fit in the stability region and the computation 
is stable . On the right it is unstable. 
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6.t = 0 .66.x 

0.5 0.5 

o o 

-0.5 -0.5 

-1 -1 

-2 -1 . 5  -1 -0 . 5 o -2 -1 .5 -1 -0.5 o 

Figure 32 .3 :  Eigenvalues of 6.t times the spatial difference operator D of (31 .3) 
superimposed on the stability region of the third-order Adams-Bashforth formula 
for the finite difference approximation (31 . 2 )  that generated Figure 3 1 . 1 .  Again, 
the computation is stable on the left and unstable on the right . 

6.t = 0 .4N�-_1 ___ 

0.5 0 . 5  

o o 

-0.5 -0.5 

-1 -1  

-2 - 1 .5 - 1  -0.5 o -2 - 1 .5 -1 -0.5 o 

Figure 32 .4 :  Like Figure 32 .3  but for the Legendre spectral discretization (31 .7) 
that generated Figure 3 1 . 2 .  Now c:-pseudospectra o f  6.t D are shown for c: = 

10- 2 ,  10-\ . . .  , 10- 10 as well as eigenvalues, since this discretization is far from 
normal . The slight splitting of the eigenvalues is caused by rounding errors , which 
were investigated in [782] . 

In the figure we see that the choice !It = O .6!lx appears stable , whereas 
!It = 1 .2!lx appears unstable , confirming the results of Figure 31 . 3 .  The 
reason our prediction is correct is that although this spatial discretization 
matrix is not normal , it is close to normal . 

Figure 32 .4 ,  by contrast , shows the situation for the highly nonnormal 
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Legendre spectral discretization of Figure 31 . 2 .  We see now that for both 
choices b.t = 0 .3N-1  and b.t = 0 .4N- 1 ,  the eigenvalues are well within the 
stability region . However, the pseudospectra protrude decisively outside , 
and it is hardly surprising that there should be some significant transient 
instability, just as observed in §31 . 

In a pair of papers 1990 and 1992 , Reddy and Trefethen proved a set 
of theorems that make these connections precise [625 ,  626] , and related 
results have been published by many authors . The remainder of this section 
summarizes the results of [625 , 626] , together with indications of how these 
results have been sharpened by later authors . Some of our wording is taken 
directly from [626] . For a different presentation of much the same material , 
see [425] . 

Consider a time-independent linear evolution equation 

au 
at 

= Lu, u(x, O) = f(x) , t E [O , T] or [0 , 00 ) , (32.6) 

where L is a linear differential operator , which may incorporate boundary 
conditions , T > 0, and u is a scalar or vector function of t and of one 
or more space variables x. (A time-dependent forcing term could also 
be included, but this drops out in the analysis of propagation of errors . ) 
Equation (32 .6) is first approximated with respect to the space variables 
by finite differences , finite elements, or spectral methods on a discrete grid , 
transforming the PDE into the system of ODEs, 

au 
at 

= LE.tu, u(O) = fE.h (32 . 7) 

where u( t )  is a vector of dimension N E.t ::; 00 and LE.t is a matrix or 
bounded linear operator . At this stage the subscript b.t is an arbitrary 
positive parameter that determines the spatial grid in an unspecified man­
ner. The semidiscretization (32 . 7) is then approximated with respect to t 
by a linear multistep , Runge-Kutta, or more general one-step formula with 
time step b.t . If we write un � u(nb.t ) ,  the resulting full discretization 
becomes 

(32 .8) 

with appropriate initial conditions . For a one-step time integration formula, 
vn = un ,  while for an 8-step formula we define 

(32 .9) 

The function G characterizes the time integration formula. For a linear 
multistep method, G ( w) is a companion matrix. Its entries are affine and 
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rational functions of w for explicit and implicit multistep methods, respec­
tively. For Runge-Kutta or one-step methods, G(w) is a polynomial or 
rational function that approximates eW for w ;::::; O .  

The full discretization (32.8) i s  defined to be Lax-stable if 

I IA1t l i � C(n6.t ) for all n and 6.t with O � n6.t � T (32 . 10)  

for some fixed function C(6.t ) and all sufficiently small 6.t . The Lax 
Equivalence Theorem states that (32 . 10) is a necessary and sufficient con­
dition for convergence of the discrete approximation as 6.t ---+ 0, assum­
ing that the initial-value problem (32 .6) is well-posed and that the dis­
cretization (32 .8) is consistent [639J . Throughout this discussion, II . I I  de­
notes the weighted vector 2-norm defined by a nonsingular weight matrix 
W, I l x l l  = I l x l lw = I IWxlb and also the corresponding matrix norm 
I I E I I = I I E l lw = I IWEW-1 1 1 2 . The matrix W depends on the grid, and 
hence on 6.t , in a fashion that in principle is arbitrary. In applications , if 
W is not the identity, it will typically be a discrete diagonal approximation 
to a smooth weight function such as a Jacobi or Laguerre weight ; see §43. 

We shall state two theorems from [626] , one for t E [0 , 00) and one for 
t E [0 , TJ . These theorems apply to both one-step and multistep formulas , 
but the details of the assumptions made in the two cases differ. 

First consider the one-step case. If a one-step formula is applied to the 
model problem (32 .5 ) ,  then at each step the result is multiplied by ¢()...6.t ) ,  
where ¢ is a rational function. The formula can be written 

(32. 1 1 )  

We assume that ¢ is analytic i n  a neighborhood of the spectrum of 6. t  L�t , 
which ensures that ¢(6.t L�t ) is well defined. The stability region S is 
defined by 

S = {w E <C : 1 ¢ (w) 1 � I } .  

We make the following assumption about S (but will discuss later how such 
assumptions can be loosened) .  

Assumption AI . S is bounded and ¢/ (w) =f. 0 for w E 8S. 
This condition excludes many common implicit one-step methods with un­
bounded stability regions , such as the first-order backward Euler formula 
and other A-stable methods . 

Assumption A2 . There exists a nonempty domain V r:;; <C and a con­
stant M < 00 such that 1 1 (p, - 6.t L�t ) -

1 1 1  � M for all p, E V and all 6.t . 

Uniform bounded ness of {6.t L�t } is enough to imply this condition. 
Next consider multistep formulas , whether explicit or implicit . An s­

step linear multistep approximation to the semidiscretization (32 .2) can be 
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written in the form 

s s 

L ajvn+j - 6.t L ;3jL2>t Vn+j = 0 
j=O j=O 

and is characterized by the polynomials 

with the convention 

.9 

p(z) = L ajzj , 
j=O 

o- (z) = L ;3jzj 
j=O 

as = I , l ao l + 1 ;30 1 > o . 

(32 . 12) 

(32 . 1 3) 

By introducing the vector v in (32 .9) , the full discretization (32 . 12)  can be 
written in the compact form (32 .8 )  with 

(32. 14) 

I 

Here 

for 0 ::; j ::; s - I , and I is the identity operator of dimension N 2>t . 
The stability region S of the linear multistep formula is the set of w E <C 

for which all roots Zj of the stability polynomial 7rw (z) = p(z) - wo- (z) 
satisfy I Zj l  ::; I , and any root with I Zj l  = 1 is simple. This region can be 
characterized in terms of the image of the unit circle under the rational 
function 

p(Z) r (z) = o-(z) ' 

Again we need some assumptions . 

Assumption Bl . S is bounded, with r (z) i- 00 for I z i = 1 ;  

Assumption B2 .  r' (z) i- 0 for I z l = l .  

For explicit formulas the condition r (z) i- 00 for I z l = 1 implies that S 
is bounded, but this does not hold for implicit methods . Assumption B2 
implies that the stability region does not have cusps ; generalizations for 
regions with cusps are given in [626] . 

Here are our fundamental stability theorems. 



32 · STABILITY OF THE METHOD OF LINES 309 

Stabil ity of the method of l ines on [0 , 00) 

Theorem 32 . 1  Let (32 .8) be the method of lines discretization of 
(32 .6) based upon a time integration formula with stability region S sat­
isfying Assumptions A1-A2 ( one-step formula) or B1-B2 (multistep) . 
If 

(32 . 15 )  

for al l  sufficiently small 6.t , then the E-pseudoeigenvalues J.L e:  of the 
operators 6.t L�t satisfy 

(32 . 16) 

Conversely, (32 . 16) implies 

(32 . 1 7) 

for all sufficiently small 6.t . Here Gl , G2 , and G3 are constants inde­
pendent of 6.x and 6.t . 

Stability of the method of l ines on [0 , T] 

Theorem 32 .2  Let (32 .8) be the method of lines discretization of 
(32 .6) based upon a time integration formula with stability region S 
satisfying Assumptions A1-A2 or B1-B2 .  If 

o � n6.t � T, (32 . 18) 

then the E-pseudoeigenvalues J.L e:  of the operators 6.t L�t satisfy 

(32 . 19) 

Conversely, (32 . 19) implies 

I IA1t l i  � G4 min{N�t , n} ,  0 <  n6.t � T. (32 .20) 

Here Gl , G2 , G3 , and G4 are constants independent of 6.x and 6.t . 

We shall not give the proofs of these theorems , which are complicated. 
However, let us indicate the kinds of arguments involved. The key idea is 
to transplant the ODE formula and stability region to a problem of powers 
of matrices and the unit disk, where the Kreiss Matrix Theorem ( § 18) and 
the estimates described in § 16 can be employed. The factor min {N �t , n} is 
thus the same one that we saw in ( 14 .27) and (14 .28) . The crucial matter 
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in this transplantation is the relationship between two resolvent norms: 

On the left ,  J.L is a point outside the stability region S and Lilt is the 
operator defining the semidiscretization (32 .7) . On the right , ,\ is a point 
outside the unit disk and Ailt is the operator defining the equivalent one­
step process (32 .8 ) . 

In words, if {Ilt Lilt } satisfies the Kreiss condition with respect to S 
( i .e . , at most inverse-linear blow-up of the resolvent norm as J.L ----+ S) , 
does {Ailt } satisfy the Kreiss condition with respect to the unit disk­
and conversely? To prove the theorems, we need to bound each of these 
resolvents in terms of the other . In [625 , 626] this is done with arguments 
involving contour integrals and partial fractions . Various further results 
and estimates are also presented in these papers that do not appear in 
Theorems 32 . 1-32 .2 ,  including more information about the constants Cj .  

We have emphasized the results of [625] and [626] rather than those 
of many other authors because we know them best , and because they are 
very general . Briefly, however, here are a few remarks about some of these 
other contributions up to 1992, which on the whole tend to concentrate 
on sufficient rather than necessary conditions for stability, based, for ex­
ample , on some variety of contractivity. Brenner and Thomee use the 
Hille-Phillips operational calculus to prove a stability result for A-stable 
one-step formulas applied to a special class of operators Lilt [108] . Spijker, 
Lenferink, and Kraaijevanger consider more general one-step time integra­
tion formulas ,  but restrict attention to operators satisfying a circle condi­
tion: I I Ilt Lilt + pI I I ::::: p for some p > 0 [463, 495, 714] . Sanz-Serna and 
Verwer derive sufficient conditions for stability based on contractivity and 
C-stability for more general PDEs, both linear and nonlinear [659, 805] . 
Di Lena and Trigiante focus on the notion of the spectrum of a family of 
matrices ( §6) , showing that a necessary condition for stability is that the 
spectrum of the family {Ilt Lilt } must be contained in the stability region 
S [204] . Lenferink and Spijker obtain several results based on the convex 
set known as the M -numerical range of Ilt Lilt [496] . Lubich and Nevan­
linna show stability for A-stable one-step and multistep formulas applied to 
problems where the pseudospectra of {Ilt Lilt } lie within a distance (') (E) of 
the left half-plane [518] . Kreiss and Wu derive sufficient conditions for sta­
bility of one-step and multistep formulas in norms exponentially weighted 
in t [470] . They show that the full method of lines discretization is stable 
if the semi discretization is stable and the full discretization is locally stable 
in the sense that the open half-disk {w : Rew < 0, Iw l < I l llt Lilt I I } is 
contained in the stability region. 

Since 1992, refinements of Theorems 32 . 1  and 32 .2 have appeared, espec 
cially in work by Spijker and coauthors [425, 716] . Spijker and Straetemans 
point out that these theorems are not restricted to a weighted 2-norm; any 
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matrix norm induced by a vector norm will do. I n  the direction o f  sufficient 
conditions for stability, i .e . , (32 . 1 6 )=?(32. 1 7) and (32 . 1 9)=? (32 .20) , Theo­
rem 3 .2  of [716] shows that Assumptions Al and A2 can be dispensed with 
for one-step schemes, and Theorem 3 .2  of [425] shows that Assumptions 
B1 and B2 can be dispensed with for multistep schemes , provided that S 
is a closed subset of <C U {oo} .  Theorems 2 . 2  and 3 .4 of [425] also show 
that the factor min{Nl'.t , n} of (32 . 1 7) and (32 .20) cannot be eliminated 
except in trivial cases . Sharper estimates are also given in these papers of 
the relationships , usually linear , between the constants C1 , C2 , C3 , C4 . 

According to (32 . 1 0 ) ,  the presence of the factor min{Nl'.t , n} implies 
that the estimates (32 . 1 7) and (32 .20) fall short of Lax-stability. By the Lax 
Equivalence Theorem, it follows that (32 . 1 7) and (32. 20) are not enough 
to imply convergence of these discretizations as b.t ---+ O. This sounds 
worrisome, but since the factor min {N l'.t , n} is so modest , one still gets 
convergence for a large subclass of problems defined by data with a small 
degree of smoothness ( i .e . , one more derivative than usually assumed) .  
Thus as a practical matter the factor min { N  l'.t , n }  is usually not a concern; 
the instabilities that cause trouble in practice are generally exponential ,  not 
algebraic. 

For another approach to transplantation of the Kreiss Matrix Theorem 
from the unit disk to a general region in the complex plane , see [763] . 

Let us close with one more example, the simplest and best-known ex­
ample of a nonnormal method of lines discretization, which has been men­
tioned, among other places , in [564] . (The example is so simple that its ex­
planation certainly does not need the generality of Theorems 32 . 1 and 32 .2 . )  
Suppose we consider again the problem of (31 . 1 ) ,  

au au 
at ax ' x E ( - 1 , 1 ) ,  t � 0 ,  (32 . 2 1  ) 

again with boundary data u ( l ,  t) = 0 and the same initial data as in §3 1 .  
We discretize by the same upwind/Euler formula of  (32 .4) ; what i s  new is 
that now the domain is (- 1 , 1 )  and nonperiodic rather than [- Jr ,  Jr] and 
periodic. It is easily seen that this discretization leads to (32 .8) taking the 
form 

where A is the Jordan block 

A = 

1 - 0" 0" 
1 - 0"  0" 

1 - 0" 0" 
1 - 0" 
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where (J = 6.t /6.x . Readers of this book will see immediately that whereas 
the eigenvalues of A satisfy I A I < 1 for (J < 2, the powers of A will grow 
exponentially before eventually decaying for any 1 < (J < 2 .  As a conse­
quence, the discretization is strongly unstable for values of (J in this range. 

D..t = 0 .6D..x D..t = 1 . 2D..x 
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Figure 32 .5 :  Like Figure 32 .2 but for the problem (32 .21 )  with the Dirichlet 
boundary condition u(l )  = 0 instead of periodic boundary conditions . The 
spatial discretization is now upper triangular and far from normal. Together 
with eigenvalues and the stability region , the plots show E-pseudospectra for 
E = 10-2 , 10-4 , . . .  , 10- 1 0 . 

D..t = 1 . 2D..x 

1 .2 

Figure 32 .6 :  Nonmodal instability of the second discretization of Figure 32 .5 . For 
larger t the unstable oscillation grows rapidly. 
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Figure 32 .5 illustrates the application of Theorem 32. 1 to this problem. 
For both 6..t /6..x = 0 .6 and 6..t /6..x = 1 . 2 ,  the eigenvalue of the forward 
difference spatial discretization operator lies in the stability region for the 
Euler ODE formula. In the latter case the pseudospectra, however, extend 
significantly outside the stability region, and the discretization is unstable , 
as is confirmed in Figure 32 .6 .  
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A central problem in the numerical solution of ordinary differential equa­
tions is the phenomenon known as stiffness .  For the purposes of this book, 
one might regard this as a specialized topic: If you are not interested in 
discretizations of ODEs, you could bypass this section. Yet at the same 
time , the issues that arise here are at the very heart of our subject , for 
stiffness is a phenomenon of transient behavior of dynamical systems that 
blends together the universal themes of discrete and continuous time, linear 
and nonlinear equations , and constant and variable coefficients. 

What is a stiff ODE? The following are the symptoms most often 
mentioned: 

1 . The problem contains widely varying time scales. 
2. Stability is more of a constraint on the time step than accuracy. 
3. Explicit methods do not work. 

Each of these statements has been used as a characterization of stiffness by 
some authors . l Here we attempt to explain how they relate to one another 
and to spectra and pseudospectra. 

We begin with a scalar example; matrices and their eigenvalues will 
appear on page 318 .  The linear initial-value problem 

u' (t )  = - 100 (u(t ) - cos t) - sin t ,  u (O) = 1 (33 . 1 )  

has the unique solution u( t )  = cos t . We note that for this solution, the first 
term on the right-hand side of (33 . 1 )  is zero and thus the large coefficient 
- 100 drops out of the equation. That coefficient has a dominant effect 
on nearby solutions of the ODE corresponding to different initial data, 
however, as is illustrated in Figure 33 . 1 .  A typical trajectory u(t) of a 
solution to this ODE begins by shooting rapidly toward the curve cos t on 
a time scale � 1/100. This is the hallmark of stiffness : rapidly changing 
components that are present in an ODE but absent from the particular 
solution being tracked. 

I Though the roots of the study of stiffness go back to a paper by Curtiss and 
Hirschfelder in 1952 [172] , stiffness was not a part of the ' classic' theory of stability 
and convergence developed by Dahlquist in the 1950s [173} and disseminated in the 
1962 book of Henrici [381 ] , because this theory focused upon convergence in the limit 
6.t --> 0 rather than on behavior for finite 6.t . Later in the 1960s, following another 
landmark theoretical paper by Dahlquist [1 74} and the work on stiff solvers by Gear and 
others [304] , stiffness came to be seen as crucial . For an extensive discussion of every 
corner of this subject , see [365} . The actual term 'stiff' may have been coined by the 
statistician John Tukey [1  72} . 
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Figure 33. 1 :  Example of a stiff ODE: u(t) = cos t and some nearby solutions 
of (33. 1 ) .  

Table 33. 1  shows the remarkable influence that this property has on 

numerical computations . For six values of the time step f1t , the table com­

pares the results at t = 1 computed by the second-order Adams-Bashforth 

and backward differentiation formulas , abbreviated by AB2 and BD2 (both 

computations start from exact initial data) . BD2 behaves beautifully, con­

verging smoothly and quadratically to the correct answer, but AB2 gener­

ates enormous incorrect solutions. Yet when f1t becomes small enough, it 

settles down to be just as accurate as BD2. We have here a prototypical 

stiff equation, and BD2 is a prototypical stiff solver. The effect is shown 

graphically in Figure 33 . 2 .  

In practice, O D E  software employs adaptive time-stepping to obtain 

results accurate to a user-specified tolerance [364, 365, 673] . For this prob­

lem, we can see that if the user asks for ,  say, three digits of accuracy at 

t = 1 ,  an adaptive solver built on BD2 could achieve this with f1t >::: 0 . 2 ,  

whereas a solver built o n  AB2 would need f1t >::: 0. 0 1 .  That i s  o n  the order 

of 20 times more computation, a factor that could grow to thousands or 

millions if the constant 100 in (33 . 1 ) were increased . It is for this reason 

that stiffness is such an important practical issue in scientific computing. 

Clearly we would want to use BD in preference to AB formulas for certain 

Table 33. 1 :  Computed values for u ( l )  for the ODE (33 . 1 ) . 

b.t AB2 BD2 
0.2 14.40 0 .5404 
0 . 1  -5 . 70 x 104 0 .54033 
0.05 - 1 .9 1  x 109 0 .540309 
0.02 -5 .77 x 1010 0 .5403034 
0 .01  0 .54030196 0 .54030258 
0 .005 0 .54030222 0 .54030238 

0 0 .540302306 . . .  0 .540302306 . . . = cos ( l )  
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Figure 33 .2 :  Errors I Ul /L!.t - cos ( l ) 1  as a function of step size 6t for the same 
problem (log-log scale) . The AB formula is useless until the time step becomes 
very small, whereas the BD formula gives good results for all time steps. 

equations . For other equations , on the other hand, the AB formulas work 
perfectly well and the BD formulas are much more expensive because they 
are implicit-requiring an iterative solution at each time step if the ODE 
is nonlinear . 

The computational challenge is clear , and so is the related theoretical 
challenge, which is the subject of this section. How can we characterize 
ODEs that are subject to the effect shown in Figure 33 .2? 

Our example (33 . 1 )  can be analyzed completely. If u(t) is any solution 
to u' = -lOO(u - cos t) - sin t ,  then w(t)  = u(t)  - cos t satisfies the scalar , 
linear , constant-coefficient ODE 

w' = AW, A = - 100. (33 .2 )  

The AB2 formula applied to this equation takes the form of the three-term 
recurrence relation 

where Un denotes the approximate solution at time step n; that is, 

Un+2 - ( � A�t + l )Un+l + � A�t Un = O. 

The characteristic polynomial of this recurrence is 

p(z) = z2 - ( � A�t + l ) z  + � A�t . 

For A�t < -1 ,  one of the two roots of this polynomial lies in the neg­
ative real interval ( - 00 ,  -1 ) .  This means that for �t > - l/A = 1/100 , 
successive steps of the AB2 formula will amplify any truncation errors in 
the solution exponentially, as observed in Table 33 . 1  and Figure 33 .2 .  For 
�t ::; 1/ 100, on the other hand, the troublesome root crosses into the inter­
val [- 1 , 0) and there is no amplification. This is why �t = -1/).. = 1/ 100 
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i s  the critical value for the AB2 formula applied to this problem, as i s  ev­
ident in Figure 33 .2 .  A similar analysis of the BD2 formula would reveal 
no unstable roots of the recurrence relation, regardless of 6.t . 

The explanation just given can be recast in the language of stability 
regions. As was described in the previous section, the stability region of an 
ODE formula is defined by considering discretizations of the scalar model 
problem (33 .2) for various values of A. It is the set of points in the complex 
Ab.t -plane for which the recurrence relation obtained by such discretization 
is stable in the sense that all of its solutions are bounded as n --> 00. For 
AB2,  Figure 32 . 1  shows that the stability region is a bounded subset of the 
left half-plane whose intersection with the negative real axis is [- 1 ,  0] . For 
Wi = -lOOw, it follows that AB2 is good for b.t <::; 1/ 100. By contrast , 
Figure 32. 1 shows that the stability region for BD2 includes the entire left 
half-plane, including the negative real axis , and that is why this formula 
has no difficulty with stiff equations . 

We are now ready to turn to the general problem: a system of ordinary 
differential equations 

u' = f(u, t ) (33 .3) 

where u(t) is an N-vector for each t and f is in general nonlinear . Systems 
of ODEs arise routinely in ODE applications and also in the treatment of 
PDEs by the method of lines , discussed in the previous section . Suppose we 
are interested in a particular solution u * ( t) for values of t near a particular 
time t* . When will the problem of computing u * (t) for t � t *  be stiff? The 

u' f( u, t )  (i ) 
1 linearize 

u' A(t )u ( ii) 
1 freeze coefficients 

u' Au ( iii) 
1 diagonalize 

u' AU ( iv) 

Figure 33.3 : Outline of how eigenvalues arise in the analysis of stiffness and 
of dynamical processes across the mathematical sciences . We begin with a time­
dependent nonlinear equation and reduce it by a sequence of three approximations 
to a set of scalar, constant-coefficient linear problems. The first two approxima­
tions are valid for short times , and the last is valid for long times. If there is no 
overlap between these ranges of validity, eigenvalue analysis is unlikely to give 
Useful predictions. 
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simplest approach to this question, going back many years , is to look at 
eigenvalues . The argument that may be used to justify such an analysis is 
summarized in Figure 33 .3 .  

We begin with (i) , a nonlinear system of N first-order ODEs. If we 
make the substitution 

u(t) = u* (t) + wet) , 

as before, then stability and stiffness depend on the evolution of wet) .  
The first step is to linearize the equation by assuming w is small. I f  f is 
differentiable with respect to each component of u, we have 

feu, t) = f(u*, t) + A(t)w(t) + o ( l lw l l ) , 

where A(t) is the N x N Jacobian matrix of partial derivatives of f with 
respect to u: 

[A(t)]j k = �fj (u* (t) , t) , 
UUk 

1 ::::: j, k ::::: N. 

This means that if w is small, the ODE can be accurately approximated 
by a linear problem: 

u' (t) = f (u*, t) + A(t)w(t) . 

If we subtract (33.3) from this equation, we obtain 

w' = A(t)w. 

One can think of this result as approximate, if w is small, or exact , if w is 
infinitesimal. Rewriting w as a new variable u gives (ii) . 

The second step is to freeze coefficients by setting 

A = A(t* ) .  

The idea here is that stability and stiffness are local phenomena, which 
may appear at some times t* and not others . The result is the constant­
coefficient linear problem ( iii) . 

Finally, assuming A is diagonalizable, we diagonalize it. This gives us 
the set ( iv) of N scalar , linear , constant-coefficient model problems u' 

= AU. 

The traditional 'eigenvalue view' of stability and stiffness of a numerical 
formula can now be summarized as follows (these are rough conditions , not 
precise statements) . 

Eigenvalue characterization of stability. A numerical ODE for­
mula is stable for computing u * (t) for t � t* if tlt is small enough 
that for each eigenvalue A of A(t* ) ,  Atlt lies inside the stability 
region (or at least within a distance C) (tlt ) ) . 
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Eigenvalue characterization of stiffness. An ODE is stiff for the 
solution u* (t ) for t � t*  if the largest eigenvalue modulus 1 ).. 1 of 
A (t* ) is much greater than the rate of change of u* (t ) itself. 
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For our scalar example (33. 1 ) ,  the Jacobian is the 1 x 1 matrix A(t)  = 

A = -100, whose entry and eigenvalue have nothing to do with the time 
scale 0 ( 1 )  of the solution u(t) = cos t .  Since 100 » 1 ,  the problem is stiff. 
For many other ODE problems, however, the solution u(t) changes at a 
rate also determined by A (t)-typically by its smaller eigenvalues . And 
from here one derives the notion of a stiffness ratio for a solution of an 
ODE. Depending on the author and the context , this may be a ratio of 
the absolute values of the eigenvalues of A, or of their real parts. For 
example, if A is a Hermitian matrix with eigenvalues ranging from -106 
to - 1 ,  the stiffness ratio would be 106 and one would conclude that the 
problem is highly stiff. 

Readers of this book will quickly recognize that since eigenvalues need 
not be closely coupled to matrix behavior , attempts to characterize stiffness 
by eigenvalues or stiffness ratios cannot fully succeed. This fact has been 
investigated from various angles in the literature of numerical solution of 
ODEs, and it was discussed from the point of view of pseudospectra by 
D. J. Higham and Trefethen in 1993 [387] , who wrote: 

Stiffness cannot properly be characterized in terms of the eigenvalues 
of the Jacobian, because stiffness is a transient phenomenon whereas 
the significance of eigenvalues is asymptotic. 

An extensive discussion appears in [387] of links between pseudo spectra 
and stiffness ,  with a variety of numerical experiments and some interesting 
quotations from the literature about eigenvalues . 

Here is a numerical illustration following the pattern of Figure 33 .2 .  
Consider the linear constant-coefficierit matrix equation 

u' = Au, u(O) = uo , (33.4) 

where uo is the N-vector of all ones and A is the N x N triangular matrix 
with - I on the main diagonal and -2 everywhere below. The pseudospec­
tra of this highly nonnormal matrix are shown in Figure 33.4, and they 
show that the matrix ' lives' in a region of size O (N) in the left half-plane 
that extends much beyond the single eigenvalue -l .  It is hardly surpris­
ing that the figure shows explosive behavior of AB2 just as in Figure 33 .2 
for time steps tlt = 0 ( 1 ) , a transient instability that settles down only 
for tlt = 0 ( 10- 1 ) .  In the light of such examples , Higham and Trefethen 
proposed these alternative characterizations in terms of pseudospectra: 

Pseudospectral characterization of stability. A numerical ODE 
formula is stable for computing u* (t )  for t � t * if /).t is small enough 
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Figure 33.4: On the left , eigenvalue and E-pseudospectra of the 40 x 40 matrix 
A of (33.4) for E = 10-2 , 10-4 , . . .  , 10- 16 ; the dashed line is the imaginary axis. 
On the right , the analogue of Figure 33.2 for this problem. Clearly an equation 
controlled by this matrix may be stiff, though the eigenvalues are all equal to - 1 .  

that the E-pseudospectra o f  t:.t  A( t * ) lie within a distance <:J (E + t:.t  ) 
of the stability region. 

Pseudospectral characterization of stiffness. An ODE is stiff for 
the solution u* (t) for t � t *  if the pseudospectra of A(t* ) extend 
far into the left half-plane as compared with the time scale of the 
solution u* (t) itself. 

While it would be good for theorists to reach a consensus on the charac­
terization of stiffness, the business of practical scientific computing does not 
depend on this event . Adaptive ODE codes are rarely misled by harmless­
looking eigenvalue distributions into taking dangerously large time steps . 2 
For the example (33.4 ) , the adaptive Runge-Kutta MATLAB code ode23 

samples the ODE at fully 274 grid points and obtains an accurate result , 
whereas if the numbers -2 below the diagonal are changed to -0 .2 ,  which 
has no effect on the eigenvalue, the number of sample points shrinks to 82. 
The subject of adaptive step size selection in ODE software is a fascinating 
one , and in recent years it has been linked more explicitly to various areas 
of dynamics and control theory [358, 359, 365, 366 , 614] .  

The theoretical literature on the numerical solution of stiff ODEs, ex­
emplified by the books [193 ,  365] , gives more attention to coping with 
stiffness than to characterizing it. In these and related works one instead 
finds discussion of topics such as B-stability and G-stability, contractivity 
and dissipativity, Lipschitz and one-sided Lipschitz constants, and logarith­
mic norms. The aim of such discussions is to derive sufficient conditions 
for certain schemes to behave successfully when applied to certain prob-

2For an analogous observation about adaptive algorithms in iterative numerical linear 
algebra, see page 261 .  
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lems. All of the tools just mentioned are employed to ensure that when 
a problem has some kind of contractivity property, nothing can go wrong. 
Because this is a local condition, it applies to nonlinear as well as linear 
problems, and thus such analysis is widely called nonlinear stability anal­
ysis. The same term is used in exactly the same way in the field of fluid 
mechanics [436] . However, the essential idea of this 'nonlinear ' analysis , as 
emphasized in § 17 ,  is linear : If the numerical range of a J aco bian matrix lies 
in the open left half-plane, then certain desirable properties follow. From 
here , attractive corollaries for nonlinear problems can be derived, but these 
are always sufficient conditions for good behavior , never necessary and suf­
ficient . 

In this section we have discussed ordinary differential equations , the 
field in which the subject of stiffness was first investigated, while hardly 
mentioning the broader world of partial differential equations-and indeed 
without making much reference to the previous three sections . In fact , 
however, the most important applications of the notion of stiffness are in 
the solution of PDEs, where one so often encounters contrasts between fast 
time scales (e.g. , diffusion or dispersion) and slow ones (e.g. , convection 
or reaction) .  Roughly speaking, any time-dependent PDE for which it is 
advantageous to use an implicit or semi-implicit discretization in time is 
likely to correspond to a stiff system of ODEs if it is discretized in space . 
Mathematically, the observations of this section are much the same as those 
of §32, and ultimately it is results like Theorems 32 . 1  and 32 .2 that must 
be appealed to if one wants to make rigorous connections between stiffness 
and pseudospectra. 
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The last four sections have focused on nonmodal instabilities of a poten­
tially explosive kind in the numerical solution of differential equations . In 
this final section of this part of the book we turn to a milder kind of in­
stability that is perhaps the best known example of nonmodal behavior 
in numerical analysis. At issue here are numerical boundary conditions 
for finite difference discretizations of linear hyperbolic PDEs. In the late 
1960s and early 1 970s , Kreiss , Osher , and others showed that poorly cho­
sen boundary conditions for such discretizations are susceptible to a special 
kind of instability. The standard name for their work became the theory 
of GKS-stability, after an important but difficult 1972 paper of Gustafs­
son, Kreiss , and Sundstrom [356, 357] . This theory can be interpreted in 
terms of the group velocities of certain waves propagating dispersively on 
the finite difference grid [768, 769] . 

As an example, consider the linear scalar hyperbolic constant-coefficient 
one-dimensional initial boundary value problem 

Ut = Ux ' u(x, O) = uo (x) , u( l , t) = 0 (34. 1 ) 

defined for t > 0 on the interval 0 < x < 1 ,  where Uo represents the initial 
data. The analytical solution is 

U(x, t )  = 
{ �o (x + t ) for x + t < 1 ,  

for x + t ::::: 1 ,  

i .e . , a wave propagating leftward at speed 1 until it is absorbed at the 
boundary. To solve the problem numerically, we set up a regular grid in 
the x-t plane with space step �x = 1/ N for a positive integer N and time 
step �t = (j�x for a constant (j < 1 ,  and compute approximations 

V'J � u(j�x, n�t) 

on this grid. For t = n = 0, we take initial values vJ = uo ( j�x) .  To march 
forward to later time steps , we use the Crank-Nicolson-type implicit finite 
difference formula 

n+l n 1 ( n n ) 1 ( n+l n+l ) Vj - Vj "2 Vj+l - Vj_ l "2 Vj+1 - Vj _ 1  
�t = 2�x + -"'--"-'--2�"'--x

--"--

for 1 :S j :S N - 1 together with the inflow boundary condition 

V�+l  = O. 

(34 .2) 
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One would not usually use an implicit formula like this for a wave equation, 
but it is convenient for illustration. 

So far we have specified N - 1 equations involving the N unknowns 
vg+l , . . . , VN�\ ' We need one more equation to define the numerical method 
fully, a numerical boundary condition involving the outflow point vg+l .  A 
standard approach is to define vg+1 by some kind of extrapolation of values 
from the interior . For example, here are two possibilities : 

(a) vg+l = vf , (b) v�+l = v� . (34.3) 

Each of these choices gives us a complete numerical method, a well-defined 
procedure for marching from step n to n + 1 . Since the procedure is linear , 
it must be equivalent to multiplication by a matrix: 

( n+l n+l n+I )T _ A( n n n )T va , VI " " ' VN- I - Va , VI , · · · , VN- I · 

These matrices can be readily computed since they take the form A 
All A2 for appropriate tridiagonal finite differencing matrices Al and A2 , 
suitably modified in their first rows to impose the boundary conditions . 

Have we got a stable numerical method? According to the Lax Equiv­
alence Theorem, stability is the condition that I I  An I I  � C for all n � N 
for some constant C independent of N,  and this is necessary and sufficient 
for convergence to the solution of the PDE as N ---7 00 .  As usual in this 
book, we seek insight into these norms of powers by examining pseudospec­
tra. Figure 34. 1 shows c:-pseudospectra for the matrices A corresponding 

, 
, 

(a) v�+1 = vi 

, 
, 

(b) v�+l = v� 

Figure 34. 1 :  Eigenvalues and E-pseudospectra of the Crank-Nicolson matrices 
A corresponding to (34.2) with N = 60 and (T = 1/2  for the outflow boundary 
conditions (a) and (b) of (34 .3) , for E = 0 .4 , 0 .8 , 1 . 2 , 1 .6 , 2 .0 ;  the dashed curve is 
the unit circle . The bulge in the pseudospectra in case (b) reveals the instability 
of this boundary condition. 
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Figure 34.2 :  Norms I IAn l 1  for the two discretizations, confirming instability in 
case (b) . 

to boundary conditions (a) and (b) , with linearly spaced values of E. In 
case (a) , we see that the boundaries of these pseudospectra are likewise 
linearly spaced outside the unit disk. In case (b) , by contrast , there is 
a bulge near z = 1 . These observations suggest that (a) may be stable , 
whereas (b) may be unstable. 

Figure 34.2 shows that these predictions are right on target . Condition 
(a) is abundantly stable , but it is clear that (b) is not . The instability 
is mild , of magnitude I IAn l 1 = (,) (n1/2 ) ,  but this will be enough to prevent 
convergence in general to the correct solution as N ---+ 00. Figure 34.3 gives 
a physical feeling for what is going on by showing the evolution up to t = 1 
resulting from the initial data 

(34.4) 

For boundary condition (a) , the computed solution for t » 1/2 is close 
to the correct result�zero�whereas for (b) , we see a spurious sawtoothed 
solution on the grid of amplitude (') ( 1 ) .  Here the initial Gaussian propagates 
leftward with the correct velocity - 1 ,  but upon hitting the boundary, it 
excites a sawtoothed reflected wave of similar amplitude traveling right 
with group velocity + 1 .  This numerical artifact will not go away as the 
mesh is refined. The standard GKS stability criterion can be interpreted as 
a test for the possibility that the finite difference formula with homogeneous 
boundary conditions, as defined on a semi-infinite grid bounded by a single 
left-hand boundary, admits a nonzero wave solution like this one with group 
velocity ;:: O. In this example the unstable wave is 

vj = (- 1)) , 

which satisfies both the interior formula (34 .2 )  and the boundary condition 
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(a) 
stable 

(b) 
unstable 
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Figure 34.3: Results for 0 :S x :S 1 (horizontal axis) and 0 :S t :S 1 (vertical axis) 
for the two boundary conditions starting from Gaussian initial data. Every third 
time step is shown. The instability of boundary condition (b) takes the form of 
a sawtoothed reflected wave . 

(b) of (34 .3) .  By differentiation of a numerical dispersion relation, its 
group velocity can be found to be + 1. See [768] and [769] for theorems and 
numerical examples .  

For another example of stable and unstable boundary conditions , we 
can discretize the same problem (34. 1 )  by the leap frog approximation 

vn+l _ vn- 1 
J J 

2t::..t 
Vj+ l  - vj_ l  

2t::..x 
(34 .5 )  

!his formula is explicit rather than implicit , meaning that no linear algebra 
IS needed for its implementation. Since it couples three levels of data, 
however, we must analyze it by a matrix of dimension 2N rather than N: 

(vn+1 n+l n n )T _ A( n n n- l  n- l )T o , . . . , vN_ l ' VO " " ' VN_ l - VO ' ' ' ' ' VN- l ' Vo ' ' ' ' ' VN_ l . 
Figure 34 .4 is an analogue of Figure 34. 1 for this new discretization, now 
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with the boundary conditions 

(34.6) 

Again, the second boundary condition is unstable. This time the unstable 
wave takes the form vj = (_ l ) n ,  again with group velocity +1 ,  but now 
the instability is of order I I An l 1  = O (n) (because of an infinite reflection 
coefficient , in the terminology of [768] ) .  

(a) v�+ l = vi' 

o 
Figure 34.4: Same as Figure 34. 1 ,  but for the leap frog discretization (34 .5 )  with 
boundary conditions (34.6) . Now boundary condition (b) has an unstable bulge 
at z = - 1 ,  indicating the existence of an unstable mode that is sawtoothed with 
respect to t .  

We shall not pursue this leap frog example further but return to Crank­
Nicolson. In practice , the GKS instabilities that appear usually share the 
following features of Figures 34. 1-34.3 :  a bulge in the pseudospectra near 
some troublesome point Zo on the unit circle; growth of the norms I IAn I I  
at a rate O (n1/2 ) or  higher; and existence of  a wave , often sawtoothed in x 
or t ,  that propagates from the boundary into the interior . We can make a 
more precise connection in this example between the norm of the resolvent 
near z = 1 and the norms I IAn l l . Define the function 

K(x ) = (x - l) l l (x - A) - I I I  (34.7) 

for x > 1. If A were normal with eigenvalue of largest magnitude at z = 1 , 
we would have I I An l l  = 1 for all n 2: 0 and K(x ) = 1 for all x > 1 . 
Here , however, the resolvent norms are larger. Figure 34. 5  plots K(x ) as 
a function of x - I on a log-log scale for matrices with N = 60, 120 , and 
240. We see that whereas K (x ) is close to 1 for large x ,  it grows like 
(x _ 1 ) - 1/2 for smaller x. By condition ( 16 . 15 )  of Theorem 16 .4 ,  it follows 
that some norm I I An l 1  with n of order (x _ 1 ) - 1 must be at least as great as 
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Figure 34.5 :  Resolvent norms I I (x - A) - I I I for x near the unit circle , as revealed 
by the function K of (34 .7) .  

K(x) � ( x  - 1 ) - 1/2 . This closely matches the () (n1/2 ) instability actually 
observed. 

We can construct a simpler system that has much the same behavior . 
Consider the N x N 'GKS-instability matrix' 

A 

1 
1 0 

1 0 
1 0 

1 0 

(34.8) 

where all entries not listed are zero; thus A is a lower bidiagonal Jordan 
block except for the special value al l  = 1 .  When A acts on a vector it 
shifts it down, duplicating the top entry. Thus , for example, we have 

A3 ( l , O , O , . . .  , O)T = ( l , l , l , l , O , O , . . .  , O)T . 
Successive powers An generate waves propagating rightward from the bound­
ary, just as in the case of a GKS instability, and the norms are I I An II = 

vn+T (exactly) for n < N. It is no surprise that Figure 34.6 shows a 
familiar bulge in the pseudospectra. 

The discussion up to this point has been straightforward. It would seem 
that GKS instabilities correspond to small bulges in the pseudospectra, to 
algebraic growth of norms of powers , and to propagation of waves into the 
domain from a boundary. They can even be modeled by taking powers 
of a matrix that differs in just one entry from a Jordan block. In view 
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Figure 34.6: Pseudospectra for the GKS-instability matrix (34 .8)  for N = 60. 
The bulge near z = 1 looks much the same as in Figure 34. 1 ;  the same values 
of c are plotted. This simple model captures some of the 'physics ' of typical 
GKS-instabilities . 

of this pretty picture, why is it widely thought that the GKS theory and 
paper [357] are difficult? 

Unfortunately, there are good reasons for these perceptions . Suppose 
one tries to expand the observations we have made into a general theory 
of stability of boundary conditions for finite difference approximations of 
PDEs. To keep the project in bounds we assume that the domain is one­
dimensional and that the equations are linear and hyperbolic . The trouble 
is , there are still many further simplifying assumptions that it would be 
helpful to make, such as : 

( 1 )  constant coefficients (no explicit dependence on x ) ; 
(2) scalar (e.g . , wave equation, not linearized Navier-Stokes) ; 
(3) initial data only (no interior or boundary forcing terms) ; 
(4) two-level formula (e.g . , Crank-Nicolson, not leap frog) ; 
(5) dissipative formula (e.g . , Lax-Wendroff, not Crank-Nicolson) ; 
(6) explicit formula (e.g . , Lax-Wendroff, not Crank-Nicolson) . 

Our Crank-Nicolson example has the first four of of these convenient prop­
erties , and the earlier , pre-GKS literature on stability of boundary condi­
tions also depended on such assumptions . The principal papers in this era 
were by Strang, Kreiss , and Osher [466, 467, 468 , 589, 590, 733 , 734] . Each 
of these articles , in different contexts, obtained theorems to the effect that 
under appropriate assumptions , stability could be assured if there were 
no rightgoing waves of the kind we have described, known as 'generalized 
eigensolutions ' . 
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Kreiss and his colleagues , however, were determined to find a general 
theory. A hint that difficulties must arise in such a theory can be found 
in the theorems of § § 16 ,  18 , and 32 . We know from the Kreiss Matrix 
Theorem that although a bulge in pseudospectra guarantees instability, 
the lack of a bulge cannot guarantee stability under all circumstances ; 
there is a gap between upper and lower bounds of a factor of either n, 
the time step, or N,  the matrix dimension. Thus a complete connection 
between resolvent norms or pseudospectra and stability would necessarily 
be delicate. Assumptions such as those above can be used to shrink the 
gap. For example , the dissipativity assumption (5) is utilized in [467] to 
preclude the possibility of bulges near points of the unit circle other than 
z = I ,  making it possible to obtain an upper bound, independent of n and 
N, from a Cauchy integral over a contour that passes outside the unit circle 
only near that single point . 

In the general setting, Gustafsson, Kreiss , and Sundstrom were unable 
to keep the theory as clean as in the previous , more specialized publica­
tions . It is generally agreed that their central result (stated in [357] as 
Corollary 10 .3 and the sentence that follows it ! ) is a theorem of necessity 
and sufficiency: 

GKS-stable -¢=::::} no rightgoing waves. 

This looks simple, and indeed, the condition of no rightgoing waves or 
generalized eigensolutions (called the 'determinant condition' ) is essen­
tially what we have described above. However, the term GKS-stable is 
quite complicated . This is a special definition of stability, given as Defini­
tion 3 .3 of [357] , that involves exponential decay factors with respect to t 
and other algebraic terms that remove it significantly from the familiar 
stability notion of bounded norms of powers. Gustafsson et al . argued that 
GKS-stability is the ' right ' definition in important senses , and Gustafsson 
showed in [355] that under suitable assumptions it is equivalent to a certain 
kind of convergence. Yet the details remain technical . 

There are sizeable literatures of the stability of boundary conditions and 
of pseudospectra, but the two are nearly disjoint .  (So far as we know, the 
intersection consists of the single paper [849] , together with some unpub­
lished notes communicated to us by Niles Pierce in 2002 . )  In particular , 
there is no tradition of looking for GKS instabilities by plotting pseudo­
Spectra as in Figures 34. 1 and 34.4 .  Part of the reason for this situation 
is undoubtedly that the routine computation of pseudospectra is a more 
recent development than GKS stability theory, popular among a younger 
generation of researchers . It will be interesting to see if the use of pseudo­
Spectra for analyzing boundary conditions catches on in the future . 
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35 . Random dense matrices ----------­

Random matrices are of interest in condensed matter physics [544] , number 
theory [58] , statistics [567] , and numerical analysis [226] ; their literature 
includes hundreds of published articles and a number of books. What 
do their pseudospectra look like? Are random matrices sufficiently close 
to normal that one need only consider the eigenvalues? This section will 
suggest answers to these questions . Dense random matrices are indeed close 
to normal, but subsequent sections will show the distance from normality 
increases from algebraic to exponential if the matrix is not dense but has 
triangular or other nonsymmetric sparsity structure . 

Let us say that an N-dimensional (dense) real random matrix is a ma­
trix with independent entries drawn from the normal distribution of mean 
o and standard deviation N-1/2 . That is , each entry has the form 

x 
ajk = VR '  (35 . 1 )  

where x i s  a sample from the standard normal distribution N (O ,  1 ) .  This 
normalization by VR turns out to be the natural one for obtaining regular 
behavior as N -7 00 . A complex random matrix, similarly, has indepen­
dent entries from the complex normal distribution of mean 0 and standard 
deviation N- 1/2 , which means that each entry has the form 

x iy 
ajk = V2N + V2N ' 

where x and y are independent samples from N (O ,  1 ) .  

(35 .2) 

Figures 35 . 1  and 35 .2 illustrate the beautiful behavior of eigenvalues 
of real and complex random matrices : They are uniformly distributed in 
the unit disk. Of course, for each finite N, this statement cannot be ex­
actly correct . For complex matrices , the probability density function of the 
eigenvalues is a continuous function that is nonzero throughout the com­
plex plane. For real matrices , not only is the probability density nonzero 
throughout the plane, but it has a delta function singularity along the 
real axis , since for any finite N, there is a positive probability that some 
eigenvalues will be purely reaP In the limit N -7 00, however , these 
complexities fade away and the distribution converges to the constant 7l'-1  
inside the unit disk and zero outside . This fact , known as the circular law, 

l The problem of what proportion of the eigenvalues can be expected to be real 
has been solved by Edelman, Kostlan, and Shub [227] : The answer is asymptotic 
to (2j-rrN) 1 /2 For N = 10, the expected fraction of real eigenvalues is exactly 
67843.;2/327680 � 0.2928. 
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100 matrices, ( I I  Al l ) � l . 836 
N =  200 

10  matrices, ( I I  A l l ) � l . 964 

N = 2000 
1 matrix, I IA I I  � l . 997 

2000 random points in unit disk 

Figure 35. 1 :  Eigenvalues of random complex matrices of various dimensions. 
The first three plots show superpositions of eigenvalues of 2000/N matrices of 
the indicated dimensions, hence 2000 dots altogether in each image ; the solid 
curve is the unit circle. Though the spectral radii of these matrices are � 1 ,  
their norms are � 2 .  Note that eigenvalues o f  random matrices tend t o  avoid one 
another: They are more smoothly distributed than random points in the disk . 
(This effect is concealed in the top images by the superposition of eigenvalues of 
different matrices . ) 

was first established by Ginibre and Mehta and has been generalized by 
Girko [3 10 ,  3 1 1 ,  313 ,  544] . 

Like the eigenvalues , the singular values of random matrices behave 
simply in the limit N -+ 00 :  The probability distribution converges to a 
quarter-circle over the interval [0, 2] . This fact is known as the quarter­
circle law, established by Marcenko and Pastur in 1967 [529] , and it is 
closely related to the Wigner semicircle law [824] for eigenvalues of random 
Hermitian matrices . For related results ,  as well as applications in physics 
and multivariate statistics , see [159 ,  226, 313 ,  544, 567, 824] . 

We summarize these facts in the following theorem. For details and 
proofs ,  including precise definitions of the probabilistic notions of conver­
gence underlying all the statements of this section, see the above references. 
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N = 20 . . 
100 matrices, ( I I A I I) � 1 . 848 

N = 2000 
1 matrix, I IA I I  � 1 . 992 

N = 200 
10  matrices, ( I IA I I )  � 1 . 974 

1000 random conjugate pairs in unit disk 

Figure 35 . 2 :  Same as Figure 35 . 1 ,  but for real instead of complex matrices . For 
finite N, there is a positive fraction of purely real eigenvalues, but as N ---> 00 
the distribution is the same as before. 

Eigenvalues and singular values of random matrices 

Theorem 35 .1  Let the distribution of dense random matrices A be 
defined as above, either real or complex. As N ---> 00, in both the 
real and the complex cases, the probability density functions for the 
eigenvalues and singular values approach the following limits: 

(i) Eigenvalues: lim 
p (A) 

= { 1':0 - 1 
N�oc N 

for I A I :::; 1 ,  
for I A I > 1 ;  

(35 . 3) 

(ii) Singular values: lim p( 0') 
N�oo N 

{ O�Jl -
<J4
2 for 0 :::; 0' :::; 2 , (35 .4) 

for (J > 2 .  

Though we shall not prove Theorem 35 . 1 ,  we mention an elegant tech­
nique that can be used in its proof, due originally to Silverstein [691 ] , which 
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provides an intuitive explanation of where such results come from. In nu­
merical linear algebra, the standard algorithm for computing eigenvalues 
first reduces a matrix to Hessenberg form by a sequence of unitary simi­
larity transformations involving Householder matrices, while the standard 
algorithm for computing singular values first reduces a matrix to bidiagonal 
form by multiplying on the left and right by sequences of Householder ma­
trices ; see, e .g . , [327, 776] . Silverstein's idea was to apply such reductions 
to random matrices . For example , suppose an N x N random matrix is 
bidiagonalized in the standard fashion. Since each unitary multiplication 
preserves norms, we find that the resulting matrix will be approximately 1 IN;;I JNN1 JNN2 

The argument sounds heuristic , but in fact it can easily be made precise, 
leading to the conclusion that the distribution of singular values of a dense 
random matrix is exactly that of a bidiagonal random matrix with inde­
pendent entries from certain chi-squared distributions . For large N the 
bidiagonal matrix begins with entries approximately equal to I ,  1 1 1 1 1 1 
and from here it is clear that the norm is approximately 2 ,  as is implicit in 
(35.4) . Indeed, an intriguing conclusion suggested by Theorem 35 . 1  is that 
for a large random matrix, the norm is approximately twice the spectral 
radius . Geman has proved that this is true [307, 308] : 

a . s .  
lim p(AN) = I ,  

N�CX) (35.5) 

a . s .  
where = means 'almost surely' , i .e . , with probability 1 if we consider a 
sequence {AN} of increasing dimensions N (see, e .g . , [350] ) .  

The two parts of Theorem 35 . 1  can be viewed as boundary points of 
a continuum. Girko and Sommers et al . have derived a result that inter­
polates between them by considering matrices A for which the correlation 
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of A and A* is a prescribed constant between - 1  and 1 [3 12 ,  313 ,  708] . 
The resulting spectra are uniformly distributed in an ellipse, and as the 
correlation coefficient approaches 1, the ellipse squashes to a real interval 
with a semicircular density function. 

The limits (35 .5) are a good starting point for a discussion of nonnor­
mality. If random matrices were normal, I IA I I  and p(A) would be equal . 
Evidently, then, random matrices deviate from normality to a degree. How­
ever, the deviation is mild . As a first illustration of this fact, consider 
Figure 35 .3 ,  which presents pseudospectra of a single random matrix of 
dimension 256. From this plot it is clear that the eigenvalues of this matrix 
are much less sensitive to perturbations than those of most other examples 
presented in this book; the most sensitive eigenvalue in this figure has con­
dition number (defined in §52) less than 100. An analysis of the eigenvec­
tors of random matrices has been carried out by Mehlig and Chalker [543] , 
whose results imply that for dense random matrices, the eigenvalue con­
dition numbers scale as r:J (  VN) as N ---+ 00. (Mehlig and Chalker show 
much more than this , establishing details of the probability distributions 
of eigenvectors and their correlations . ) 

Figure 35 .4 illustrates the mild nonnormality of random matrices from 
another point of view. For each dimension N from 1 to 100, the figure 
plots average values of K(AN) from an experiment involving 100 random 
complex matrices. To be precise , it is not exactly K(AN) that is averaged in 
making the figure, since this distribution has a heavy tail ( in fact an uninte­
grable tail , in the case of real matrices) . Instead , following Smale and Edel-

Figure 35 .3 :  Spectrum and E-pseudospectra of a complex random matrix of di­
mension N = 256, for E = 10- 1 , 10- 1 . 5 , 10- 2 , 10- 2 . 5 , 10-3 . The dashed curve is 
the unit circle. The degree of nonnormality is mild, of order 0 ( .IN ) ,  increasing 
gently as one moves in toward the origin. 
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Figure 35.4 :  Condition numbers of complex random matrices A (circles) . Each 
data point represents a sample mean exp ( (log(t-;;(A) ) ) )  over 100 matrices of the 
given dimension N. The condition numbers grow linearly with N. The asymp­
totic slope for t-;; (A) is CE = 2e,/2 � 2 .669, as indicated by the solid line. 

man [225 , 699] , the logarithms of these condition numbers are averaged and 
the average is then exponentiated. Thus the plot shows exp ( (log( "" ( AN ) ) ) ) , 
where ( . ) signifies a mean. 

These experiments suggest that the condition number of a random dense 
matrix grows linearly with the dimension, and indeed this has been proved 
by Edelman, who found the asymptotic slope to be CE = 2e"l/2 ::::: 2 .669, 
where 'Y ::::: 0 .5772 is Euler 's constant [225] . Similar experiments indicate 
that the condition number of the associated eigenvector matrix also grows 
linearly. This hardly indicates a high degree of nonnormality; it suggests , 
as a practical matter , that eigenvalue analysis of random dense matrices is 
unlikely to lead to difficulties . 

Perhaps the modest degree of nonnormality of dense random matrices 
can best be summarized as follows . From Edelman's theorems we know 
the condition number scales as () (N) . This rate can be interpreted as the 
product of two square roots: 

() (N) = ()(VN) x ()(VN) . 
One factor VN comes from the eigenvalues, whose absolute values range 
from ()(N- l/2 ) to () ( l ) ,  and the other comes from their condition numbers . 
To put it another way, if we take a point z in the unit disk and consider 
the probability distributions for its distance to the nearest eigenvalue and 
for its resolvent norm, we find the former scales as () (N- 1/2 ) and the latter 
as ()(N) . 



36 . Hatano-Nelson matrices and loca l ization --_ 
One of the most influential scientific papers of the twentieth century was 
'Absence of Diffusion in Certain Random Lattices ' ,  published by Nobel 
laureate Philip Anderson in 1958 [8] . At the heart of Anderson's analysis 
of the quantum mechanics of disordered systems is a non-Hermitian ran­
dom matrix problem now known as the Anderson model. In its simplest 
form, the Anderson model is a tridiagonal matrix with 1 on the sub- and 
superdiagonals and independent samples from a fixed random variable X 
on the main diagonal : 

A = (36 . 1 )  

The dimension N i s  large-in principle, on  the order o f  108 , the cube root of 
Avogadro's number. Mathematically, such matrices are fascinating because 
in the limit N --> 00, with probability I ,  each eigenvector is localized around 
a central point ,  decaying exponentially to either side . Physically, this im­
plies that one-dimensional disordered media tend to be insulators , since 
electrons cannot propagate [751 ] . (In two or three dimensions, whether or 
not localization occurs is a more complicated matter . ) 

Beginning in 1996, Hatano, Nelson, and Shnerb published several papers 
based on a non-Hermitian analogue of the Anderson model [377, 378, 572, 
681 ] ' which attracted a great deal of attention [109, 1 10 ,  182, 271 , 272, 
324, 325, 379, 428, 778] . The non-Hermitian Anderson or Hatano-Nelson 
model takes the form 

A = (36 .2) 

where g is a fixed real parameter. Again, the diagonal entries are inde­
pendent samples from a fixed random variable X .  Note that Hatano­
Nelson matrices differ from Anderson matrices in two respects : They are 
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Figure 36. 1 :  Eigenvalues of realizations of the Hatano-Nelson matrix (36.2) , 
based on uniform [-2 , 2) random numbers and 9 = 1/2 .  

non-Hermitian, and they contain corner entries that make the structure 
periodic . The parameter 9 controls the degree of asymmetry. 

Hatano and Nelson discovered that the eigenvalues of these matrices 
have a very interesting behavior , illustrated in Figure 36 . 1  for the case in 
which X is the uniform distribution on [-2 , 2] and 9 = 1/2 .  We see that 
most of the eigenvalues lie along a complex 'bubble ' extending from about 
-2 .5  to 2 .5 ,  and the rest lie on two real 'wings' . As the dimension N 
is increased, the pattern stays in essentially the same place and becomes 
more regular . Hatano and Nelson observed this behavior, and theorems 
explaining it mathematically and quantifying the locations of the curves 
were published subsequently by Goldsheid and Khoruzhenko [324, 325] , 
Brezin and Zee [109] , and Brouwer, Silvestrov, and Beenakker [1 10] . 

The behavior of the eigenvectors of (36 .2 )  is even more interesting. 
The real eigenvalues in Figure 36 . 1  correspond to localized eigenvectors , 
as in the Anderson model (although no longer symmetrical) . The com­
plex eigenvalues , however, correspond to global, 'delocalized' eigenvectors . 
Figure 36.2 illustrates these different structures . Roughly speaking, for 
9 � a we have the Anderson situation, with pinned eigenvectors , but as 9 
increases , the 'wind blows stronger ' (e.g. , in one application of Shnerb and 
Nelson [681 ] , the magnetic field strength increases) ; it becomes harder for 
an eigenvector to remain pinned. Hatano and Nelson speak of a delocaliza­
tion transition as 9 is increased. For sufficiently large g, all the eigenvalues 
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A = 3 .000 

0 50 75 1 00 

1 00 

1 0-2 

delocalized A = 1 . 076 + 0 .637i 

1 0-4 

0 25 50 75 1 00 

Figure 36.2 :  Two eigenvectors of the matrix with N = 100 of Figure 36. 1 .  The 
first is exponentially localized, and the second is delocalized. Note the log scales, 
and also the asymmetry of the localized eigenvector . 

move into the complex plane and all the eigenvectors are global . 
The Hatano-Nelson matrices (36 .2 )  are not normal , but their nonnor­

mality is mild, and it has little to do with their behavior . If a physical 
system were governed by one of these matrices , one could expect the eigen­
values and eigenvectors to have physical significance. However, everything 
changes if the corner entries eg and e-g are replaced by zero so that we 
have a nonperiodic Hatano-Nelson matrix : 

� � 0 

e g 
A = � �q/)QQ � (36 .3) 

-g � 

0 

e �� 
Now we have a symmctrizable matrix: if D = diag(l ,  e g , e2g , . . . , e(N-l )g ) ,  
then DAD- l is Hermitian. (Physicists call this a gauge transformation . )  
Thus the eigenvalues of A must be real , and indeed, they are identical to 
those for the Anderson model . However, the condition number of D is 
exponentially large , so we may expect pronounced effects of nonnormality, 
�nd Figure 36.3 reveals just this. The eigenvalues are no longer interest­
mg, but in their place, the pseudospectra trace the very same bubble as 
before [778] . For further illustrations of pseudospectra for such matrices , 
see [379, 842] . 
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N =  100 
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N = 400 
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-0.5 

-1 

-4 -3 -2 -1 0 2 3 4 

Figure 36 .3 :  Eigenvalues and E-pseudospectra of nonperiodic Hatano-Nelson ma­
trices (36 .3) of dimensions N = 100 and 400 , for E = 10- 1 , 10-2 , . . .  , 10- 10 . 
Though the eigenvalues are real, the pseudospectra reveal the Hatano-Nelson 
'bubble ' .  

Looking more closely at the pseudospectra reveals an interesting fea­
ture of these matrices . In the lower plot of Figure 36.3 , the boundaries 
of the illustrated pseudospectra cluster tightly at the inner edge . What 
is happening is that as N --+ 00, the resolvent norm is diverging to 00 

at an exponential rate inside the bubble , but at a much slower algebraic 
rate in a certain domain outside the bubble . As N --+ 00, the complex 
plane divides neatly into three regions of distinct behavior , as shown in 
Figure 36.4 : exponential growth of I I (z - A)- l l l , algebraic growth, and no 
growth. Figure 36.5 illustrates this trichotomy by considering one point in 
each region. 

These observations can be explained as follows . For a fixed z E <0, 
consider the resolvent R = (z - A) - l for the nonperiodic Hatano-Nelson 
matrix (36 .3 ) . If y denotes column k of R, then y satisfies the equation 

(z - A)y = ek , 

where ek is the kth column of the N x N identity matrix. Thus the entries 
Yj of y are related by a three-term recurrence relation 

if j = k ,  
i f  j oj k ,  (36 .4) 

with boundary conditions Yo = YN+l = 0 ,  where Xj is the jth indepen-
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Figure 36.4: Behavior of the nonperiodic Hatano-Nelson matrices (36.3) as N -> 
00. At any point z in the dark region (nJ u nIl ) , the resolvent norm grows 
exponentially at a rate determined by the Lyapunov constant of a random system. 
At any point z in the light region (nIld , it grows at a far slower algebraic rate 
determined by rare events. At any point z in the region exterior to these (nJv ) , 
it is uniformly bounded. The crosses mark the special values z = O .5 i ,  O .9 i ,  1 . 3 i  
considered in  Figure 36 .5 .  

dent sample from the random variable X .  Now a three-term recurrence 
relation has in general a two-dimensional space of solutions . Suppose for 
a moment that the coefficients Xj are constant . Then generically, this 
space is spanned by the particular solutions Yj = Ai and Yj = A� for two 
numbers Al and A2 , each of which is either < 1 or > 1 in absolute value . 
Depending on these inequalities , we may say that the two fundamental so­
lutions fit the pattern growth/decay, growth/growth, or decay/decay. If it 
is growth/decay, (36.4) will generally have a solution of size <9 ( 1 )  localized 
at j = k, decaying exponentially to either side . In the growth/growth case 
we get an exponentially large solution with a boundary layer at j � N, 
and in the decay/decay case , an exponentially large solution with a bound­
ary layer at j � O. (These are precisely the phenomena underlying the 
behavior of pseudospectra of tridiagonal Toeplitz matrices discussed in §7, 
where growth/growth, growth/decay, and decay/decay correspond to wind­
ing numbers 1 ,  0, and - 1  of z with respect to the symbol curve . )  

For our present application, the coefficients are random because of  the 
numbers Xj ' The behavior remains much as just described, except that 
the roles of Al  and A2 are now played by two real numbers known as the 
Lyapunov constants of this stochastic recurrence relation, each of which 
generically will be > 1 or < 1 .  Again we have <9 ( 1 )  solutions localized at 
j = k if the pattern is growth/decay, but exponentially large solutions 
with a boundary layer if the pattern is growth/growth or decay/decay. In 
addition there is a further complication: Depending on z ,  g,  and X, these 
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Figure 36 .5 :  Resolvent norm I I (z - A) - l l l as a function of dimension N for the 
nonperiodic Hatano-Nelson matrices of (36 .3) , for three values of z .  

conclusions may hold surely (i .e . ,  for all possible sequences {x j } )  or almost 
surely, abbreviated a.s .  ( i .e . , with probability I-for all but a measure 0 
subset of sequences {x j } ) . 

The different regions of Figure 36.4 are explained by these various pos­
sibilities . We can distinguish four cases , corresponding to four regions Or ,  
On , 0I I I ' 0rv in the complex plane: 

Or : If solutions to (36.4) grow/grow or decay/decay, 
I I  (z - A) - 1 1 1  grows exponentially as N ---+ 00. 

On : If solutions to (36.4) grow/grow or decay/decay (a.s . ) ,  
I I (z - A) - I I I grows exponentially as N ---+ 00 (a.s . ) . 

Om :  If solutions to (36.4) grow/decay (a.s . but not surely) , 
I I (z - A) - I I I  grows algebraically as N ---+ 00 (a.s . ) .  

0rv : If solutions to (36.4) grow/decay (surely) , 
I I (z - A) - I I I  is bounded as N ---+ 00 .  

Both Or and On contribute to the region of exponential growth observed 
in practice , i .e . , the region inside the bubble in Figure 36.4 . Goldsheid and 
Khoruzhenko have shown that the bubble itself, i .e . , the curve separating 
On and Om ,  can be characterized by an equipotential condition [324, 325] .  

The observation that there may b e  distinct regions of exponential and 
algebraic resolvent norm growth comes from [778] , where the division into 
regions Or ,  On ,  Om ,  0rv is introduced. A rigorous treatment of these dis­
tinctions is presented in that paper for a bidiagonal or 'one-way' analogue 
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of the nonperiodic Hatano-Nelson matrices , 

A =  (36 .5) 

where as always, the diagonal entries are samples from a random vari­
able X .  (A periodic version of this matrix had previously been considered 
in [109, 271 , 272] . )  The behavior of this matrix is essentially the same as 
that of (36.3) , but much easier to analyze. Since (36 .5 )  is bidiagonal, its re­
solvent can be computed immediately: If rjk is the (j, k) entry of (z - A) - l 
for k � j ,  we have rjk = rr;=j (z - Xe) - l and therefore 

k 
log I rjk l = - I )og I z - xf l · 

f=j 
(36 .6) 

(If Z = Xc in any of these factors , we define I rj k l = 00 . ) This formula reveals 
that log I rjk I is the sum of independent random variables , so it is readily 
analyzed by the Central Limit Theorem and related tools of probability 
theory. 1 Assume that supp( X) , the support of X ,  is compact . Define 

and 

dmin (z) = min I z - x l , 
x E supp(X)  

dmax (z) = max I z - x l , 
X E supp(X)  

dmean (z) = exp ( (log l z - X I ) ) ,  

where ( - ) denotes expected value . Thus dmean (z) is the geometric mean dis­
tance of z to supp(X) , weighted appropriately by the probability measure 
of X. Then we have 0 :s: dmin (z) :s: dmean (z) :s: dmax (z) < 00, and we can 
define the four subsets of the complex plane by 

°1 : dmax (z) < 1 ,  
On : dmean (z) < 1 :s: dmax (z) , 

Om : dmin (z) :s: 1 :s: dmean (z) , 
0IV : 1 < dmin (z) . 

(Either or both of 01 and On may be empty, but Om and 0IV are always 
nonempty. ) The sets are disjoint ,  with 01 U On U Om U 0IV = <C. (Any 
or all of 01 ' On ,  and Om may contain a portion of supp(X) , but 0IV 

1 For a similar analysis of a related problem of stochastic differential equations, 
see [385] . 
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lies at a distance 1 from supp (X) . )  Lemma 3 . 1  of [778] asserts that for z 
in Dr , DIl ,  Dm , and Drv we have guaranteed exponential growth ,  almost 
sure exponential growth, almost sure exponential decay, and guaranteed 
exponential decay of l rJ -i l as j - i -7 00, respectively. From this point the 
following theorem is then proved. As always, we write I I (z - A) - 1 1 1  = 00 if 
(z - A) - 1 does not exist , and the definition of the limit of sets at the end is 
that KN -7 K as N -7 00  if for every c > 0, there exists an integer No such 
that for all N 2': No , KN and K are each contained in the c-neighborhood 
of the other . The notation conv ( . ) denotes the convex hull. 

Pseudospectra of nonperiodic bidiagonal random matrices 

Theorem 36. 1  Let A be an N x N matrix of the form (36 .5 ) , let z E <C 
be fixed, and let dmin (z) , dmean (z) , dmax (z) and Dr , DIl , Dm , Drv be 
defined as above. 

(i) If z E Dr , then I I (z - A) - I I I  2': dmax (z) -N (exponential growth) . 

(ii) If z E Dr U DIl , then I I ( z  - A)- I I I -7 00  a. s . , and if in addition 
z f/. supp(X) , then I I (z - A) - 1 1 1 1 /N -7 dmean (z) - 1 a.s. as N -7 00 
(almost sure exponential growth) . 

(iii) If z E Dm , then I I ( z  - A) - I I I  -7 00 a .s . , and if in  addition 
z f/. supp(X) , then I I (z - A) -1 1 1 1 /N -7 1 a. s. as N -7 00 (almost 
sure subexponential growth) . 

(iv) If z E Drv ' then I I (z - A)- I I I  < (dmin (z) _ 1 ) - 1 (boundedness) . 

The spectrum satisfies o-(A) � supp(X) , with u(A) -7 supp(X) a .s .  
as N -7 00 .  The numerical range satisfies W(A) � conv (Dm ) ,  with 
W(A) -7 conv (Dm ) a.s .  as N -7 00 .  

The variable dmean is essentially a potential , and i t  is the appearance 
of this variable in the theorem that corresponds to the use of potential 
theory by Goldsheid and Khoruzhenko [324] . In [778] , analogous theorems 
are proved for periodic bidiagonal random matrices , singly infinite bidiag­
onal random matrices ( 'stochastic Toeplitz operators ' ) ,  and doubly infinite 
bidiagonal random matrices ( 'stochastic Laurent operators ' ) .  In the case 
of periodic bidiagonal random matrices , the eigenvalues lie almost surely 
along the bubble and wings as in the Hatano-Nelson example, defined by 

Sbubble = {z E <C :  dmean (z) = I } , Swings = {z E supp(X) : dmean (z) > I } . 

For the infinite matrices , the spectrum is Dr U On U DIll a.s. in the singly 
infinite case and On U OIll a.s. in the doubly infinite case. These large spec­
tra of the infinite matrices result from the fact that at a point z E DIll ' 
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although the resolvent entries generally decay away from the diagonal , un­
usual random patterns in the coefficients will cause localized pockets of 
growth. For a finite matrix, these pockets account for the algebraic growth 
in condition (iii) of Theorem 36. 1 ,  and for an infinite matrix, since arbitrar­
ily large pockets will almost surely appear , the resolvent norm is almost 
surely 00 throughout Om ' These matters of spectra of infinite random 
matrices are investigated in detail in [182] ' but although it is a mathemat­
ical fact that Om is part of the spectrum of the infinite matrix (a.s . ) , it 
would be a rare application in which the finite-dimensional matrices would 
be sufficiently large for Om to behave like part of the spectrum in practice . 

Figure 36 .6  illustrates Theorem 36. 1 with the first pseudospectra of a 
matrix of dimension in the millions ever computed, from [778] . Here A 
is a single 106 x 106 realization of (36 .5) , where X is again the uniform 
distribution on [-2 , 2] . 

Of course , this is not the only possible choice of X .  Figure 36.7 , also 
from [778] , shows pseudospectra for bidiagonal matrices of dimensions 102 
and 104 , with X taken as the uniform discrete distribution on the points 
{ I ,  - I } .  Here 01 is again empty, OIl is the open set bounded by the 
lemniscate I z2 - 1 1 = 1 ,  and Om is the region defined by I z2 - 1 1 ;:::: 1 and 
I Z - l l :::; 1 or I z + l l :::; l .  

I n  this section we have considered several classes o f  non-Hermitian ran­
dom matrices , some periodic and others nonperiodic. The two types of 
matrices appear quite different , and it is natural to ask, which one might 
be a realistic model of a physical system? \Ve believe the answer is sim­
ply that the periodic matrices might be good models of certain periodic 
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Figure 36 .6 :  Numerically computed E-pseudospectra for a single N x N nonpe­
riodic bidiagonal matrix (36.5) with N = 106 for E = 10- 1 , 10- 2 , and 10- 1°° , 
from [778] , where X is the uniform distribution on [-2 , 2] . The inner dashed 
Curve is the bubble separating On and Om , defined by dmean (z) = 1, and the 
outer dashed curve is the boundary of Om and 0rv , defined by dmin (Z) = 1 . 
Inside the bubble, the resolvent norm is very large : at the point Z = O . l i  marked 
by the cross , about 1099698 . The eigenvalues, 106 random numbers in [-2 , 2] ,  are 
not shown. 
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systems and the nonperiodic ones might be good models of certain nonpe­
riodic systems. In the papers by Hatano and Nelson and others that made 
these problems famous , only the periodic matrices appear. It was argued 
in [778] that the ultimate reason for this may be that these papers rely on 
eigenvalue analysis , which fails in the nonperiodic case . In [377, 378] , the 
matrix (36 .2) is proposed as a model of a type II superconductor in the 
shape of a cylinder, and in [572, 681] ' the same matrix models a biological 
system in a circular petri dish . 

This raises the question of whether a delocalization effect occurs in the 
nonperiodic case, and if so , how it can be examined if not by eigenvectors . 
Indeed, what is the meaning of localization if not as a statement about 
eigenvectors? 

The philosophy throughout this book is that what matters about a 
matrix or operator A is ultimately its behavior as measured by functions 
such as A - 1 , Ak , or etA and their norms (see §47) . Let us first ask, if 
A is Hermitian and all its eigenvectors are localized , as in the Anderson 
case , what does this imply about functions of A? One way to answer 

N = 100 

N = 10 ,000 

Figure 36 .7 :  Spectra and c:-pseudospectra of two nonperiodic bidiagonal ma­
trices (36 .5) , where X is the uniform discrete distribution on { I ,  - I } , for 
c: = 10-2 , 10-6 , 10- 10 , . . .  , 10-3° , from [778] . The solid dots, the eigenvalues; 
are the points z = ±1 .  The resolvent norm increases exponentially with N 
throughout the lemniscatic region defined by I z2 - 1 1  < 1 .  
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the question is to diagonalize A: A = QAQ* , where Q is unitary, that 
is, A = L:k Akqkqk ' where {qk } are the normalized eigenvectors . If the 
eigenvectors are localized, then the significant entries in each matrix qkqk 
are concentrated near the diagonal . Since f (A) = L:k f(Ak )qkqk for any 
function f analytic on u(A) ,  we see that the same is true of f(A) , and 
thus here is our answer: For any f analytic on the spectrum of A, f (A) 
maps inputs localized at a particular point to outputs localized at the same 
point . 

This argument breaks A into its various eigenspaces and then puts 
them together . But we can argue without eigenvectors if we break A into 
its actions at various complex frequencies z and then put these together . 
For any z ,  consider the ODE system 

u' (t) = Au(t) + eztv , 

where v is a fixed vector. The solution is 

(36.7) 

(36 .8) 

Thus the response to v at frequency z is determined by the resolvent (or 
Green's function) (Z - A) - l . Now suppose that (z - A) - l , like the matrices 
qkqk in the last paragraph, has its entries concentrated near the diagonal . 
Then the response to a localized input at frequency z will be localized. 
Combining frequencies , we can write a function f(A) as a Cauchy integral 

f (A) = � r (z - A) - l f (z) dz, 
2m Jr (36 .9) 

where r is any Jordan curve enclosing the spectrum of A but no singular­
ities of f; see § 14. From here we reach the same conclusion as before : for 
any f , f(A) maps localized inputs to localized outputs. 

Next we may ask, what if A is a matrix of the Hatano--Nelson type 
(36 .2) , non-Hermitian but not too far from normal , for which some of the 
eigenvectors are localized but not all of them? Does f (A) map localized 
inputs to localized outputs? The answer will depend on f. Supposing A 
is diagonalizable , we can argue with eigenvectors again. Decompose A as 
A = XAX-1 = L:k AkXkYk ' where Xk denotes the kth column of X and Yk 
denotes the kth row of X- I . We can assume that since A is not too far from 
normal , the left eigenvectors {Yk } are localized like the right eigenvectors 
{xd· Now suppose that for any eigenvalue of A whose eigenvector is not 
localized, f(A) is negligible , such as f(z) = zk for I z l  < 1 and large k or 
J (z) = etz for Re z < 0 and large t. Then f (A) = L:k f(Ak ) xkYk will again 
have its significant entries near the diagonal and map localized inputs to 
localized outputs. On the other hand, if f takes significant values at some 
eigenvalues with delocalized eigenvectors , this will not be so. 
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Figure 36.8 :  Delocalization as seen in the resolvents (z - A)- l  for a nonperiodic 
bidiagonal matrix (36.5) of dimension N = 400, from [778] . A dot is printed 
at each position of the matrix with I Tjk l > 1 /2 .  For z outside the bubble (first 
plot) , the resolvent is concentrated near the diagonal , while for z inside the 
bubble (second plot ) ,  it is not concentrated. As z approaches the bubble, local 
exceptions of larger and larger scale appear . 

The Cauchy integral (36 .9) enables us to broaden this conclusion to an 
arbitrary A, which may or may not be diagonalizable or close to normal. 
Suppose finally that we have a matrix like (36 .3 )  or (36 .5 )  with the prop­
erty that for some values of z, the nonnegligible entries of (z - A)- l are 
concentrated near the main diagonal, while for other values of z, they are 
not . Suppose that for those values of z where (z - A)- l is not localized, 
J(z) is negligible . Then again, from the Cauchy integral , we conclude that 
J(A) will map localized inputs to localized outputs . 

Figure 36.S illustrates these ideas for a nonperiodic bidiagonal matrix 
(36 .5 )  as in Figure 36 .6 but of dimension 400. We see that a stimulus at 
z = 0 .6 i ,  outside the bubble, excites a response only near the diagonal 
(exponentially decaying away from the diagonal) , whereas z = 0 .3 i ,  inside 
the bubble , excites a global response (exponentially growing) .  It follows 
that exp(t( -iA - 0 .6) ) ,  for example , would tend to have localized behavior 
for large t, whereas exp(t( -iA-0.3) ) would not . Both images show pockets 
of exceptional behavior near the diagonal , whose scale will diverge to 00 as 
z approaches the bubble , a phenomenon familiar to physicists interested in 
the behavior of condensed matter near critical points. 



37 ·  Random Fibonacci matrices ---------

In the last section we saw that the resolvents of certain random bidiagonal 
and tridiagonal matrices are related to recurrence relations with random 
coefficients. Here we consider related matrices in which the second super­
diagonal may also be nonzero, and in particular , make a connection with 
random Fibonacci sequences and related problems. 

We concentrate on what we shall call the random Fibonacci matrix, 
0 ±1  ±1  

0 ±1  ±1  

A = (37. 1 )  
0 ±1  ±1  

0 ±1  
0 

of dimension N. This matrix has two nonzero diagonals along which the 
numbers 1 and - 1 appear at each position randomly with equal proba­
bility 1/2 .  We say that these numbers are independent samples from the 
{±1}  distribution. Figure 37. 1 shows pseudospectra of a matrix of this kind 
of dimension N = 300 . We see that the pseudospectra are approximately 
disks about the origin and that the resolvent norm I I (z - A) - I I I  is very 
large for smaller values of 14 Figure 37.2 shows norms of powers of the 
same matrix. Since A is strictly upper triangular , it is nilpotent , but as 
one would expect from the pseudospectra, a great deal of transient growth 
in the powers occurs before the eventual collapse to zero. 

A closer look at Figure 37. 1 raises some questions . Several of the con­
tours show irregularities , and one might wonder whether these are caused 
by some kind of computational mistake. In fact , they are genuine, as in­
dicated by the closeups shown in Figure 37.3 .  We are observing that , at 
various points z E ({j, I I  (z - A) - I I I  has a local minimum. I f  we took a differ­
ent matrix A from the same class , the locations of the local minima would 
be different , but the general pattern would typically remain the same. 

Figure 37.4 shows the norm of the resolvent I I (z - A) - I I I  for values of 
z along the positive real axis for matrices A of various dimensions . We 
see that above a certain number z :::::: 1 .231 ,  the norms are modest , while 
for smaller z , they are exponentially large. The increase as z --+ 0 is not 
monotonic , however. There are little pockets of contrary behavior , another 
reflection of the local minima of Figure 37.3 .  

Although the behavior revealed in Figures 37. 1-37.4 is intricate , it is 
not hard to analyze, at least the main features . We shall look at resolvents 
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Figure 37. 1 :  E-pseudospectra of a random Fibonacci matrix (37. 1 )  of dimen­
sion 300, for E = 10- 1 , 10-4 , 10-7 , . . .  , 10- 100 . The irregularities are genuine . 

300 
k 

Figure 37. 2 :  Norms of powers of a matrix of the form (37. 1 )  of dimension 300. 
The norm of A299 is exactly 1, and for k 2: 300 , Ak 

= O .  The dashed line 
represents 1 . 231 k . Compare Figure 14 .4 . 
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Figure 37.3: Closeups of Figure 37. 1 near four points z where I I ( z  - A) - I I I has 
a local minimum. The largest values of c ( i . e . ,  those nearest the minima) in 
the four plots are (a) 10- 15 . 2 , (b) 10-81 . 2 , (c) 10-23 . 6 , and (d) 10-21 . 2 , with the 
additional contours in each case corresponding to successive reductions of c by 
powers of 10° . 2 • 

0.5 1 .231 

r ·  
I 

1 .5 2 z 
Figure 37.4: Resolvent norms I I (z - A)- I I I along the z > 0 axis for random 
Fibonacci matrices (37. 1 )  of dimensions N = 100, 200, 400 , 800, 1600. 
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and pseudospectra; the analysis of the the matrix powers themselves would 
be much the same. Taking first z = 1 for simplicity, consider 

1 -al -b2 
1 -a2 -b3 

I - A =  1 (37.2) -a3 

where {aj }  and {bj }  are independent samples from the {± I }  distribution. 
Since I - A is upper triangular , so is (I - A) - I .  If we write 

(I - A) - l = (37.3) 

then the product of (37 .3) and (37 .2) must be the identity, and from the 
top row of this product (I - A) - I (I - A) we find that 

rl l  1 ,  

rl2 al rl l , 

rl3 a2rl2 + b2rl l , 

rl4 a3rl3 + b3r12 ' 

rl5 a4rl4 + b4r13 ' 

In other words, the first row of (I - A) - l contains numbers rlj generated 
by a three-term recurrence relation with random coefficients, the random 
Fibonacci recurrence, 

Xj+l = ±Xj ± Xj_ l ' (37.4) 

where each coefficient is an independent sample from the {± I} distribution. 
(The other rows also contain numbers generated by the same formula. ) This 
recurrence relation was analyzed in a beautiful paper by Viswanath [809] , 
who proved that any sequence generated by (37.4) almost surely satisfies 

lim I Xj I l fj = V = 1 . 13198824 . . .  ; 
) -> 00 

V is Viswanath 's constant. From (37. 5 )  it follows that 

lim 1 1 (1 - AN ) -I I I I IN = V 
N->oo 

(37.5) 

(37.6) 
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for a sequence of N x N matrices (37. 1 )  with probability 1. For N = 300 we 
have VN � 1 .42 x 1016 ; this is consistent with the fact that z = 1 is between 
the £ = 10- 1 5 .6 and £- 15 .8 contours in the first panel of Figure 37 .3 .  

All this concerns the resolvent I I (z - A) - 1 1 1  at z = 1 .  For general z, the 
diagonal of (37.2) changes from 1 to z and the equations take the form 

- 1 Z , 
z- 1 a1 rl l , 

z- 1 a2r12 + z- 1 b2rl l , 

- 1 + - 1 b z a3r13 z 3r12 ' 
- 1 - 1 b z a4r14 + z 4r13 ' 

corresponding to the generalization of (37.4) , 

± - 1 ± - 1 Xj+1 = Z Xj Z Xj- 1 . (37.7) 

The investigation of multistep random recurrences like these is often pur­
sued by formulating them as one-step matrix processes , ( XJ ) ( 0 1 ) ( XJ- 1 ) 

xJ+1 ±z- 1 ±z- 1 xJ 
. (37.8) 

By iterating this step , we see that the random recurrence is a problem of 
random matrix products, a subject initiated by Bellman in 1954 and studied 
by Furstenberg and many others since then [45 , 94, 295] . For the partic­
ular recurrence (37.7) , we find that for larger values of z, solutions decay 
exponentially with probability 1 ,  whereas for smaller values of z they grow 
exponentially with probability 1 ;  the exponential growth or decay constant 
is the Lyapunov constant for the recurrence (more precisely, the larger of 
its two Lyapunov constants) . The transition value at which the Lyapunov 
constant is 1 ,  so that there is neither exponential growth nor exponential 
decay, is � 1 . 231 ;  we do not know this number exactly. Figure 37.5 illus­
trates these three situations . The irregularity in the curves reflects the same 
statistical fluctuations that gave rise to the irregularities in Figures 37. 1 ,  
37.3 ,  and 37.4 discussed above. 

The growth or decay of solutions to the recurrence (37. 7) affects the 
resolvent norm I I (z - A) - 1 1 1  for a random Fibonacci matrix (37. 1 )  in the 
same manner as we saw for Hatano-Nelson and related matrices in the 
last section. Within a region nI close to the origin, I I (z - A) - 1 1 1  must 
grow exponentially as N ---+ 00, and within a somewhat larger region nn it 
will almost surely grow exponentially ( i .e . ,  with probability 1 ) ;  in a typical 
experiment nr and nn will be indistinguishable. Further from the origin 
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Figure 37.5 :  1000 steps of the random recurrence (37 .7) for three values of the 
parameter z. The dashed line represents Vk , where V is Viswanath's constant 
1 . 13198824 . . . .  

lies a region Om of algebraic but not exponential growth (almost sure) , and 
further out still , for I z l > 2 ,  a region 0IV in which the resolvent norm is 
bounded by l / ( l z l - 2) , independently of N. This behavior is summarized 
in Figure 37 .6 ,  which is analogous to Figure 36.4 . Theorems to establish 
these behaviors rigorously have not yet been proved, and indeed , we do not 
know whether the boundary between On and Om is smooth or irregular, 
as might be suggested by the fractal dependences of random recurrences 
on their defining parameters investigated in [246] . 

Random Fibonacci matrices can be generalized in all kinds of ways. An 
empty generalization would be to eliminate the random signs on one of the 
diagonals , for the matrices 

o 1 ±1  

o 1 ±1  
o 1 

o 

o ±1 1 

o ±1 1 
o ±1  

o 

have the same properties as (37. 1 ) ,  as is readily proved by unitary diagonal 
similarity transformations . A more substantial change would be to modify 
the {± I }  distribution, replacing it, for example , by a normal distribution 
or by a distribution of complex numbers on the unit circle ; some of the 
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Figure 37.6 :  Behavior of random Fibonacci matrices (37. 1 )  as N -> 00 
(schematic) ; compare Figure 36.4 . In the dark region , the resolvent norm grows 
exponentially (surely or almost surely) , in the light region it grows subexponen­
tially (almost surely) , and in the region with I z l  > 2 it is bounded by l / ( l z l - 2) . 

effects that arise from such generalizations have been studied in [246, 839] . 
Alternatively, we could retain the {±1 }  distribution but modify the selec­
tion of diagonals on which it is applied. Figure 37.7 shows four variations 
of this type. In the first , 0 is replaced on the main diagonal by {±1 } ;  the 
result is again a strongly nonnormal matrix, but now with two eigenvalues 
±1 instead of the single eigenvalue O. In the second, it is the first subdi­
agonal that is replaced by {±1 } ;  now the eigenvalues are complex and the 
matrix is again far from normal , though not so far as before. In the third, 
we have a matrix in which random {±1 }  entries appear solely on the first 
8ubdiagonal and the first superdiagonal. Note the two axes of symmetry 
and the nonzero fraction of eigenvalues that are pure imaginary. Such 'sign 
model' matrices , which are not strongly nonnormal , have been analyzed 
by Feinberg and Zee and others [152 ,  271] . Finally, the fourth panel re­
turns to the random Fibonacci matrix (37. 1 ) ,  with the single change that 
the structure is made periodic by including random ±1  entries in positions 
(N - 1 ,  I ) ,  (N, l ) ,  and (N, 2 ) .  As with the Hatano�Nelson matrices of 
the last section, this periodicity changes the picture completely inside the 
'bubble ' that separates On and Om ,  where the resolvent is delocalized, but 
has little effect outside, where it is localized. To physicists interested in 
random matrices , this is a familiar principle : if the boundary conditions 
matter ,  the eigenvectors are delocalized [751 ] . 
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Figure 37.7 : Variations on the theme of the random Fibonacci matrix (37. 1 )  
with N = 200 and E: = 10-\ 10- 1 . 5 , . . .  , 10-6 . (a )  Main diagonal {±1} instead 
of O. (b) First subdiagonal {±1 }  instead of O. (c) {±1 } entries on first sub- and 
superdiagonals . (d) Same as (37 . 1 )  but with nonzero entries in lower left corner 
to make the structure periodic. 

All the matrices we have mentioned share a pattern : Along each diag­
onal , the entries are independent samples from a fixed distribution. They 
might accordingly be called stochastic Toeplitz matrices, or in the periodic 
case, stochastic circulant matrices. Clearly the possible structures of the 
spectra and pseudospectra of such matrices are extremely varied . A further 
example we shall investigate, in the next section , is a case in which nonzero 
entries appear throughout the upper triangular block. 



38 ·  Random triangular matrices --------­

In this final section of this part of the book, we turn our attention to 
another class of random matrices with exponentially strong nonnormality: 
matrices of the strictly upper triangular form 

0 al2 aI3 alN 
0 a23 a2N 

A = 0 (38 . 1  ) 

aN- l ,N 
0 

with independent nonzero entries drawn from a normal distribution. To 
obtain clean behavior in the limit N ----* 00 ,  we follow the example of §35 
and take this to be the normal distribution with mean zero and variance 
liN, denoted by N(O ,  N- I ) .  We shall also be interested in variations of A 
that have random entries on the main diagonal instead of zeros , or complex 
entries instead of real . 1 

A hint that such upper triangular matrices may exhibit significant non­
normality comes from the fact that , aside from the trivial exception A = 0 ,  
they are all nondiagonalizable. Since A is  already in upper triangular form, 
it is simple to gauge its departure from normality, dePF (A) (defined in §48) . 
We expect each N(O ,  N- I ) entry to have magnitude on the order of N- 1/2 . 
As A has <:J (N2 ) such entries , we expect that dePF (A) = I IA I I F will grow 
at a rate <:J (NI /2 ) as N ----* 00 .  Though statistics like these hint that typical 
matrices A will be far from normal , they shed little light on their behavior. 
Figure 14 .2 indicates that nonnormality is significant here . 

More precise information was obtained by Viswanath and Trefethen, 
who considered random triangular matrices with nonzero entries on the 
main diagonal as well as above it. (The variance does not matter , as it 
cancels out in the formula /'l; ( A) = II A 1 1 1 1  A- I I I . )  They found that the norms 
of the inverses I IA-I I I  of such matrices grow exponentially with N [810] . 
As we shall see , the entries of A- I satisfy a random recurrence relation, 
and by deriving the Lyapunov constant for this recurrence, Viswanath and 
Trefethen established almost sure (a .s . )  exponential growth of the condition 
numbers: 

real , random diagonal : I IA- 1 1 1 1 /N ----* 2 a.s . ,  
complex, random diagonal: I IA- 1 1 1 1 /N ----* Ve � 1 .6487 a.s . 

1 In this case a j k; = x + iy for independent variables x and y ,  each taken from the 
N(O, (2N) - 1 )  distribution. 
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Figure 38. 1 :  Comparison of the condition numbers of complex random upper 
triangular ( x )  and dense (0) matrices . Each data point is a mean exp ( (log (!"i; ( - ) ) ) ) 
of 100 trials . The solid lines illustrate the expected behavior: the condition 
numbers grow exponentially for triangular matrices, but only linearly for dense 
matrices . Compare Figure 35 .4 .  

Since I IA I I  grows only algebraically with N, I IA I I I /N -> 1 a.s . ,  and the 
above results imply exponential growth of the condition number K(A) at 
the same rates. Figure 38 . 1  contrasts this rapid growth in N with the 
linear growth of the condition numbers of dense random matrices shown in 
Figure 35 .4 .  

One might think the growth of I I A- I I I  as N -> 00 is caused by the 
small entries of the diagonal of A, which may be arbitrarily close to zero . 
However, this is not so , for the diagonal entries are only algebraically close 
to zero, whereas the growth is exponential .  To make this point precisely, 
Viswanath and Trefethen analyzed a modified set of matrices in which 
the diagonal entries are all exactly equal to N-I/2 , i .e . ,  in the language 
of numerical analysis, matrices that are 'unit triangular ' apart from the 
normalization factor N-I /2 . They found that here , too, the norms of the 
inverse grow exponentially, though at slightly lower rates: 

real , unit diagonal : I I A- I I I I /N -> 1 .305683410 . . . a.s . , 

complex, unit diagonal : I I A- I I I I /N -> 1 .347395784 . . .  a.s . 

These growth rates for matrices with the fixed diagonal ajj = N-I /2 
have a pseudospectral interpretation: They describe the norm of the resol­
vent of strictly upper triangular random matrices ( i .e . , zero on the main 
diagonal) at the point z = N-I/2 as N -> 00 .  

We wish to characterize the resolvent norm at finite values of z as 
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Figure 38 .2 :  Spectra and c-pseudospectra of various random triangular matrices 
for c = 10-2 , 10- 3 , . . .  , 10- 10 . The dashed line is the circle of radius 1/2 .  
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Figure 38.3 :  Comparison of resolvent norms at the point z = 1/4 for real (e)  and 
complex ( ... ) random triangular matrices with either zeros or random entries on 
the main diagonal . While the resolvent norms differ for small N, they all appear 
to converge to the same limit . Each data point is the average of ten trials . 
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N ----> 00. Figure 38 .2 illustrates pseudospectra for twelve matrices with 
real and complex random entries and with zero and random diagonals . 
Despite these differences , the pseudospectra appear to be converging to a 
common limit as N increases . Further evidence of this convergence is given 
in Figure 38 .3 ,  which shows I I (z - A) - I I I at z = 1/4 as a function of N for 
matrices of dimensions as large as N = 5000 . The matrices with random 
diagonals have larger resolvent norms when N is sufficiently small that the 
diagonal entries fall near z = 1/4 ,  but these differences recede as N grows. 
There is no consistent difference between the real and complex versions , 
with radial symmetry appearing as N ----> 00 for the real entries just as for 
the complex. For the remainder of this section, we shall concentrate on 
real , strictly upper triangular random matrices. 

To gain a quantitative understanding of these plots, we follow the ex­
ample of the last two sections and write the entries of A-I as terms of a 
random recurrence. For example , when N = 3 we have 

with resolvent ( - 1 

(z - A) - ' �  
z� 

o 

For an arbitrary fixed N, let Tk denote the ( I ,  k) entry of the resolvent 
of A. Once again, these entries obey a recurrence relation with random 
coefficients: 

-1 Z , 
- 1 Z a21  Tl , 

Z- l a31 Tl + z- l a32 T2 , 

To analyze these numbers , we write them out explicitly, using the change 
of variables CXjk = Z- lajk to simplify the formulas : 

Z- I ,  
z- ICX21 , 
Z- 1 (CX31 + CX32 CX2d , 
z- 1 (CY41 + CY42 CY21 + CY43 CY31 + CY43 CY32 CY2d , 
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Figure 38.4: The corner entries of the resolvent of random triangular matrices 
decay as N ---+ 00, while the norms of their first rows rT converge toward the 
predicted value (38 .3) (dashed line) , which is somewhat smaller than the resolvent 
norm. Each data point is the average, in the same sense as in Figures 38 . 1  
and 38.3 , of fifty trials . 

Suppose that z is real and positive . Then ftjk is a real normal random 
variable with variance z-2 N- I . Hence rk is the scaled sum of products 
of independent , identically distributed random variables. The sum for rk 
contains (�=�) terms that are the product of j distinct variables. 

With this characterization of rk , we can readily obtain formulas for 
the mean (rk ) and variance Var [rk l  of rk . Since each ftjk has mean zero, 
(rk ) = O . The variance is more interesting, for it indicates the magnitude 
of rk : Varh l = (r� ) - (rk ) 2 = (r� ) .  Since the variance of a sum of 
independent variables equals the sum of the variances , we have 

k- l 
Var [rk l = z-2 L (�=DVj , 

j=l 
where Vj denotes the variance of the product of j independent N(O, z-2 N- I )  
variables . If Xl , . . . , Xj denote such variables , then 

Vj Var [IT xe l  
(IT xZ )  - (IT x,Y 

(IT xZ )  = IT (xZ )  
I t  follows that Vj = z-2j N-j , and hence 

k- l 
Varhl  = z-2 2: (�=i) z-2j N--j 

j=l 
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For the corner entry, this formula gives Var [rN 1 = z-4 N- 1 ( 1+z-2 N-1 )N-2 , 
and so 

2 exp(z-2 ) 
Var [rN l = (rN ) � 

z4N ' N --; 00 .  

Thus we expect the corner entry of the resolvent to decay as N --; 00 ,  
as confirmed in Figure 38 .4 .  (This is  a consequence of the scaling of our 
matrix entries by N-1/2 ; without this normalization, there would be strong 
exponential growth. ) By the same reasoning, all the entries of the resolvent 
decay as N --; 00. However, for small values of z the cumulative effect of 
these individually decaying entries is substantial ,  as shown in Figure 38.4 . 
The resolvent norm is large, and is well estimated by the norm of the first 
row. Denoting this first row of (z - A) -1 by r T , we find that 

N N 
( 1 I r I 1 2 ) = 2:)rk ) z-2 + L I z l -4N- 1 ( 1  + z-2N- 1 ) k-2 

k= l k=2 

which implies 

(38 .2 )  

One can prove more detailed results about the convergence of I I r l 1 2 to 
exp( Z-2 ) / Z2 as N --; 00 in various probabalistic senses , and similar re­
sults follow (for all z E (jJ) for matrices drawn from the complex normal 
distribution. 2 

We can interpret this characterization of I I r l 1 2 as yielding a lower bound 
on the norm of the resolvent in the sense that ( 1 1 (z-A) - 1 1 1 2 ) 2: ( 1 I r I l 2 ) .  Does 
the norm of the first column capture the large-N behavior of the actual 
resolvent norm? In principle the resolvent norm might grow more rapidly, 
by as much as a factor of N1/2 , but computational evidence suggests that 
there is only mild, if any, N dependence in the limit N --; 00 .  Thus , 
presuming that the size of the first row captures most of the non normality 
in A, we propose the following model: 

I I (z - A) - l l 1  ;:::j exp ( l�;�2/2)
. (38 .3) 

For values 100 ::; N ::; 1000 and 0.15 < I z l  < 0.5 , numerical experiments 
show that the left-hand side of (38.3) exceeds the right-hand side by roughly 
a factor of about 5. We do not have a theorem to make such agreement 
precise , but as a minimum it is presumably true that 

2While we have spoken about the entries of A being N(O , N- 1 ) random variables, 
the above analysis holds without change for any triangular A with real random variables 
having mean 0 and variance 1/ N. 
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almost surely as N -+ 00 and I z l -+ O .  Figure 38.5 compares the pseudo­
spectra of real triangular random matrices of various dimensions with the 
model (38 .3 ) . Though the model overestimates the resolvent norm for 
small N in most of the displayed contours, as N grows, the resolvent norm 
eventually surpasses the prediction, which is consistent with Figure 38.4 . 

We mentioned in §35 that a number of results concerning dense ran­
dom matrices can be derived by applying standard matrix decompositions 
from numerical linear algebra to these matrices; for one such example, 
see [691 ] . Suppose we attempt a similar approach here . Since unitary sim­
ilarity transformations do not change the 2-norm pseudospectra, we can 
imagine applying such operations to reduce A to some deterministic form, 
with statistically small entries elsewhere . In particular , we shall consider 
applying the standard technique for upper Hessenberg reduction [327, 776] 
to the matrix A* . (This algorithm would do nothing to A, since it is al­
ready upper triangular . )  Unlike the clean situations that arise in the dense 
matrix case , this operation introduces dependencies among the combined 
entries as it progresses . Still, it provides a useful heuristic. At the first 
step, a unitary similarity Q1 A* Qi zeros the first column below the (2 , 1 )  
entry and sets the magnitude o f  the (2 , 1 )  entry equal t o  the 2-norm o f  the 
first column of A* . Since this column consists of N - 1 entries of variance 
N- 1 , the (2 , 1 )  entry will be approximately 1 ;  the remaining 'mass ' is now 
distributed throughout the lower (N - 1 )  x (N - 1 )  submatrix. The next 
step applies a unitary similarity to QI A* Qi to zero the second column be­
low the (3 , 2) entry. As a consequence of the previous transformation, the 
norm of this eliminated column approximately equals 1/ J2. Continuing in 
this fashion suggests that the pseudospectra of A will resemble those of 
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Figure 38 .5 :  E-pseudospectra (top) and corresponding predictions from the 
model (38 .3) (bottom) for two random real strictly upper triangular matrices, 
with E = 10-2 , 10-3 , . . •  , 10- 10 • The dashed curve is the circle of radius 1/2 .  
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o 
1 0 

1 
v'2 o 

1 
V3 

o 
1 0 .IN- 1  

(38.4) 

Let hT denote the first row of the resolvent (z - H) - 1 . With a short 
calculation, one finds 

which is consistent , to leading order , with the expected value of the square 
of the first row sum of A computed above. Figure 38.6 shows the excellent 
agreement between the pseudospectra of H and the model (38.3) and also 
illustrates the sub diagonal entries of an upper Hessenberg reduction of a 
sample A of dimension N = 1000 . 

We turn to the question of what these random triangular matrices reveal 
about more general matrices . Every matrix can be reduced by a unitary 
similarity transformation to Schur upper triangular form, and as a con­
sequence, the pseudospectra associated with a general A E ([jN x N  must 
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Figure 38 .6 :  On the left , c-pseudospectra of the upper Hessenberg matrix (38.4) 
(top half) of dimension N = 1000 and those predicted by the model (38.3) 
(bottom half) for c = 10-2 , 10- 3 , . . .  , 10- 10 . One can hardly see the difference 
between the two halves. On the right , a comparison of the subdiagonal entries 
of an upper Hessenberg reduction of a random triangular matrix of dimension 
N = 1000 with those of (38.4) (solid line) . 
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match those of some upper triangular matrix. Similarly, any possible ma­
trix behavior ( §47) or GMRES convergence curve ( §26) must occur for 
some triangular matrix. Yet throughout this section, we have seen that 
triangular matrices drawn at random from a canonical distribution have 
very special behavior . Understanding, from a probabilistic point of view, 
how algorithms behave for this class of matrices will not say much about 
performance for general matrices. 

In particular , studies of the numerical stability of Gaussian elimination 
with pivoting (i .e . , row interchanges) have drawn attention to questions in­
volving random triangular matrices [776, 779] . A longstanding mystery in 
numerical analysis is , Why is this algorithm so effective in practice , given 
its potential for exponential instability? Gaussian elimination factors a 
matrix A E <cN x N  into PA = LV, where P is a permutation matrix, L is 
unit lower triangular , and V is upper triangular . Wilkinson showed that 
this process is stable provided that L is well-conditioned [825] . Examples 
exist where L is exponentially ill-conditioned , but years of experience have 
shown them to be vanishingly rare in practice . Now to explain this behav­
ior , one might be tempted to guess that the triangular matrices Gaussian 
elimination produces , to a reasonable approximation, should be random 
triangular matrices along the lines considered in this section. If random 
triangular matrices had well-behaved condition numbers , this would then 
give some explanation of the good behavior of Gaussian elimination. In 
fact , we have seen just the opposite: The condition numbers of random 
triangular matrices could hardly be worse , and if Gaussian elimination be­
haved like this it would be useless as a numerical method. The triangular 
matrices that arise in Gaussian elimination are actually nothing like ran­
dom. There is an exponentially pronounced difference between random 
triangular matrices and the triangular factors of random dense matrices . 

Similar effects are familiar in connection with other matrix factoriza­
tions , which are generally simpler than PA = LV. If the entries of a square 
random matrix are governed by one joint probability distribution, factor­
ization of that matrix will change that distribution entirely in a precisely 
analyzable fashion. One considers the Jacobian of the transformation cor­
responding to the matrix factorization, and for most of the standard matrix 
factorizations of numerical linear algebra, these Jacobians are known ex­
plicitly. A classic early paper on this subject is by Olkin and Sampson [584] , 
and an extended treatment is given in the book by Mathai [536] . 
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39 . Computation of matrix pseudospectra ----­

Nearly every section of this book includes plots of pseudospectra. In this 
section and the next , which are built largely on [774] and [837] , we explain 
the algorithms behind the pictures . We first concentrate on methods most 
appropriate for dense matrices . At the time of this writing, we regard 
the 'core EigTool algorithm' presented on page 375 as the procedure of 
choice for matrices of dimension N :::; 1000; when properly implemented, 
as in the EigTool system itself [838] , it provides black-box functionality for 
such problems. Larger matrices require either patience or the specialized 
approaches detailed in § §40 and 4 l .  

Basic SVD algorithm. All algorithms for computing pseudospectra 
start from the definitions 

O"c; (A) = { z  E <C :  I I (z - A) - I I I > c- I } , 

or, if I I  . I I  = I I  . 1 1 2 , 

O"c; (A) = {z  E <C :  Smin (Z - A) < c} , 

where Smin C) denotes the minimum singular value. What we call the 'basic 
algorithm' , which is far from optimal , computes Smin (Z - A) on a regular 
grid of points in the complex plane, then visualizes the data, typically via 
a contour plot . Since we assume A is of modest dimension, it is possible to 
obtain Smin (Z - A) by computing the entire set of singular values of Z - A 
using library software such as LAPACK [6] . If the computational grid con­
sists of m points in both the real and imaginary directions , with coordinates 
indexed by the vectors x and y,  this algorithm can be implemented in four 
lines of MATLAB: 

for k=l : m ,  f or j = l : m  

sigmin ( j , k) = min (svd ( (x (k) +y ( j ) * l i ) *eye ( N) -A ) ) ;  

end , end 

contour (x , y , log1 0 ( sigmin) ) 

This algorithm was the method used in 1991 to compute pseudospectra 
of thirteen matrices of dimension 32 on a Cray I supercomputer for the 
paper [772] . It is also at the heart of Higham's MATLAB routine pscont , 
a popular early code for pseudospectral computation [390] . The remainder 
of this section describes improvements that typically increase the efficiency 
of this method by factors of 10 to 100. We shall compare the various 
methods we describe in this section on a single test problem arising in laser 
theory, one of the first applications of pseudospectral ideas [479 , 480] . 
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Specifically, we take A to be a spectral discretization (described at the 
end of §43) of the compact integral operator presented in §60 as equa­
tion (60 .3) , 

(39 . 1 )  

for U E L2 [- 1 ,  1] . Here F i s  a large constant called the Fresnel number. 
Since A is compact , it is bounded; its eigenvalues spiral toward the origin, 
as shown in Figure 60 . 2 .  The algorithm described above requited about 
249 minutes 1 to compute the pseudospectra shown in Figure 39. 1 on a grid 
of 100 x 100 points for a discretization A of dimension N = 400 . 

Inverse iteration. The basic algorithm just described is simpk but inef­
ficient : It computes all the singular values of z - A. The natural improve­
ment , computing only the smallest singular value, can be acc()mplished 
through a variety of iterative algorithms. Since 

Smin (Z - A) = Jsmallest eigenvalue of (z - A) * (z - A) 

smallest positive eigenvalue of (z _0 
A* 

z -- A ) 
() , 

the minimal singular value can be computed using iterative methods for 
Hermitian eigenvalue problems. Many such algorithms are availa,ble (for a 
survey, see [23] ) ,  and some of these have been advocated when .A is large 
and sparse, as discussed in §41 . But even when A is dense, simpk iterative 
methods still can result in a significant speedup . 

Let B = z - A. The simplest way to compute the smallest eig(�nvalue of 
B*B is to use inverse iteration, i . e . ,  apply the power method to (B*B) - l .  
The smallest eigenvalue of B * B  corresponds to the largest eigenvalue of 
(B*B) - l , and inverse iteration will generally converge at a rat� dictated 
by the separation between this and the next eigenvalue, i .e . , between the 
smallest two singular values of B (see the beginning of §28 for analysis of the 
power method) . Inverse iteration requires multiplications by B-* and B- 1 , 
which is implemented by computing an LV factorization of B [327, 776] .  
The factorization of z - A at each grid point is a major bottlelleck: this 
procedure requires (J (N3 ) operations per grid point ,  which is the same 
asymptotic complexity as computing the full singular value decolllposition. 
On a grid of m2 points, one has the total complexity of (J(m2 N3) .  

In MATLAB, the algorithm takes the following form. 

l The timed computations in this chapter were performed on a 1 .7GHz f>entium III 
Xeon using MATLAB version 6 . 1 ,  which incorporates LAPACK for dense lin6,ar algebra, 
including the svd command. 
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Figure 39 . 1 :  E-pseudospectra of a matrix discretization of (39 . 1 ) for F = 407f and 
N = 400 with E = 10- 1 , 10-2 , . . .  , 10-8 , computed using different algorithms with 
differing degrees of accuracy on a grid of 100 x 100 points . On the left ,  O'min (z-A) 
is computed using the full SVD (code on p. 371 ) ; on the right , inverse iteration 
is used with an L U decomposition at each grid point (code below) . The plots are 
indistinguishable. 

f or k=1 : m ,  for j = 1 : m  

B = (x (k) +y (j ) * 1 i ) *eye (N) -A ; 

u = randn (N , 1 ) + 1 i *randn (N , 1 ) ; 

[L , U] = lu (B) ; Ls = L ' ; Us = U ' ;  

for p=1 : maxit 

end 

u = Ls\ (Us\ (U\ (L\u) ) ) ; sig = 1 /norm (u) ; 

if abs ( s igold/sig- 1 )  < 1e-2 , break , end 

u = s ig*u ; s igold = s ig ;  

sigmin (j , k) = sqrt ( s ig) ; 

end , end 

contour (x , y , log10 ( s igmin) ) 

Preliminary triangularization. In a 1997 paper , Lui [520] made a key 
observation. Recall that every square matrix A has a Schur decomposi­
tion; that is, A can be reduced to triangular form via a unitary similarity 
transformation, 

A = UTU* , 

with upper triangular T. Since unitary similarity transformations do not 
alter the 2-norm pseudospectra, CT,, (T) = CT,, (A) , and we have a much 
more efficient way to perform inverse iterations : At each grid point z - T 
is already in triangular form, so no L U factorization is required. The 
Schur decomposition is performed only once , before any grid points are 
processed, imposing a one-time (j (N3) cost . At each grid point , solving the 
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triangular systems requires only r:J (N2 ) operations, and as inverse iteration 
typically converges in only a few iterations, one has the overall complexity 
r:J(N3 + m2 N2 ) ,  an improvement that makes an enormous difference in 
practice . 

Lui's reduction of A to triangular form is the cornerstone of dense 
pseudospectra computations : 

1 .  Reduce A to triangular form (Schur decomposition) . 
2 .  Iteratively compute Smin (Z - A) on a grid of Z values . 

Lanczos iteration. We can improve performance over inverse iteration 
by using a more sophisticated iterative method for computing the minimal 
singular value . A natural choice is the Lanczos method, which approxi­
mates the minimal singular value of B = Zj - A by taking linear combina­
tions of the iterates generated by inverse iteration. Essentially, it applies 

inverse iteration: 36 min. inverse Lanczos: 25 min . 

. . . . 
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inverse iteration w /continuation: 16 min. inverse Lanczos w /continuation: 19 min. 
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Figure 39 . 2 :  €-pseudospectra of the same matrix as in Figure 39. 1 with the same 
values of €, but computed with four different algorithms, each of which performs 
a preliminary Schur factorization. 
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Core EigTool algorithm 

T = s chur (A , ' complex ' ) ; 

for k= l : m ,  f or j = l : m  

T1 = (x (k) +y ( j ) * l i ) *eye (N) -T ; T2 = T l ' ; 
sigold = 0 ; qold = zeros (n , l ) ; beta = 0 ;  H = [] ; 

q = randn (N , l ) + l i *randn (N , l ) ; q = q/norm (q) ;  

for p= l : maxit 

end 

v = Tl\ (T2\q) - beta*qold ; 

alpha = real (q ' *v) ; v = v - alpha*q ;  

beta = norm (v) ; qold = q ;  q = v/bet a ;  

H (p+ l , p )  = bet a ;  H (p , p+ l )  = beta ; H (p , p) 

s ig = max ( e i g (H ( l : p ,  l : p) ) ) ; 

if abs ( sigold/sig- l ) < le-3 , break , end 

s igold = sig ; 

s igmin ( j , k) = sqrt ( s ig) ; 

end , end 

contour (x , y , log10 ( sigmin) ) 

alpha ; 

375 

Figure 39.3 :  Core EigTool algorithm for computing pseudospectra using inverse 
Lanczos iteration with preliminary triangularization, adapted from psa . m  in [774] 
and efficiently implemented in the EigTool system [838] . 

the Arnoldi method (§28) to (B*B) - l , and since B*B is Hermitian, this 
can be accomplished using only three-term recurrences . At typical grid 
points inverse Lanczos iteration quickly converges to acceptable accuracy 
(say, five or fewer iterations) . The overall algorithm does not improve 
the asymptotic complexity of the inverse iteration algorithm (both require 
() (N3 + m2 N2 ) operations) , but the speedup is still worthwhile: See the 
results reported in Figure 39 .2 .  

The MATLAB algorithm in Figure 39.3 computes pseudospectra using 
Schur decomposition and inverse Lanczos iteration. It is adapted from the 
program p s a . m  from [774] , and forms the basis of the core algorithm in 
EigTool [838] . 

Continuation. One of Lui's motivations for using an iterative method 
was to apply continuation, that is, to use the singular vector computed at 
one grid point as the starting vector for an adjacent grid point . While this 
idea has intuitive appeal, it proves problematic near points where the min­
imal singular value is not unique, as occurs almost invariably along certain 
curves in the complex plane in a pseudospectral plot , typically in regions 
between two eigenvalues . This is illustrated in Figure 39.4, which shows 
pseudospectra for the matrix discretization of (39. 1 )  on a smaller axis than 
in the previous figures . Both plots were computed using inverse iteration. 
For the top one, the algorithm used continuation as the iteration progressed 
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Figure 39.4 : Boundaries of c:-pseudospectra for c: = 10- 1° , 10-9 . 75 , . . .  , 10-4 . 
The top plot was computed using inverse iteration with continuation, the bottom 
one without continuation , both with 100 grid points in the horizontal direction. 
The plots should be identical ; discrepancies in the top one result from errors 
introduced by the continuation procedure. 
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Figure 39 .5 :  Lower singular values of Zj - A. The smallest singular values form 
a slice of data used in the contour plots in Figure 39.4 for 1m Zj � 0 . 1 7778. The 
solid dots are true singular values of Zj - A; the inverse iteration procedure will 
virtually always find the smallest one. The circles represent the results of inverse 
iteration with continuation. which tracks the wrong singular value for several 
points after two minimal singular values cross. 
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across horizontal lines on the computational grid; no continuation was used 
for the bottom plot . The same stringent stopping criterion was used for 
each calculation. Why the great discrepancy? As one traverses the compu­
tational grid along the real axis, the singular value that was once smallest 
drifts larger in magnitude, crossing with another singular value, which be­
comes the new smallest . Since the starting vector is continued from one 
iteration to the next , at some points the starting vector is almost orthogo­
nal to the desired singular vector, and as a result , the wrong singular value 
is tracked. This is highlighted in Figure 39 .5 .  Finer grids-where there 
is less difference between consecutive grid points-can potentially exacer­
bate this problem, even though they appear to improve the execution time 
of inverse iteration with continuation, as there is a smaller change in the 
minimal singular vector between adjacent grid points. 2 

The lower right pane of Figure 39.2 illustrates that crudely combining 
continuation with the inverse Lanczos algorithm can yield disastrous re­
sults, much worse than the errors introduced by continued inverse iteration 
for the same example. 

In summary, although Figure 39 .2 indicates that continuation methods 
can yield a tempting performance improvement , the errors they introduce 
are troublesome. Thus , we recommend inverse Lanczos iteration with no 
continuation for most computations .3 

Grid selection. Some implementation details remain. In the absence of 
information from the user , how should an algorithm automatically deter­
mine a grid on which to compute O'c (A) ? Braconnier et al . suggest using 
the numerical range W(A) to establish the outer limits of the grid [104] . 
Theorem 17 .2  offers justification for this: The c:-pseudospectrum can never 
exceed W(A) by a distance greater than c. However, the numerical range 
is often much larger than the pseudospectral region of interest . (For ex­
ample, consider the stabilized Boeing 767 matrix whose pseudospectra are 
illustrated in Figure 15 .3 .  The numerical range is approximately a disk 
centered at the origin with radius 8 .45 x 106 , an area far too large to be 
interesting for most purposes . ) Thus , while no method is perfect , we rec-

2Close examination of Figure 39.5 reveals eleven points where singular value curves 
cross , and several other points (notably one near Re Zj = 0) where rather than crossing, 
two curves come close together but then turn aside to avoid each other . This phenomenon 
of avoidance is familiar in parameterized eigenvalue problems, where indeed it is generic, 
essentially because matrices with degenerate eigenvalues form a space of codimension at 
least 2 rather than 1 ,  since one free parameter is absorbed by having two eigenvalues 
equal and another is absorbed by two invariant subspaces fusing into one [60] , [487, 
§9 . 5] , [747] , [812] . Avoidance of singular values in parameterized matrix problems is not 
generic, however. 

3 Clever programming can lead to even better performance. For the pseudospectra 
shown in Figures 39 . 1  and 39 .2 ,  the EigTool system (which uses the same Lanczos 
algorithm as shown here, but with key components implemented in compiled C code) 
requires less than five minutes, making it more than five times quicker than the standard 
MATLAB implementation and fifty times quicker than the basic SVD algorithm. 
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ommend deriving the grid limits from the eigenvalues obtained from the 
Schur decomposition. EigTool does this, roughly doubling the span of the 
spectrum to obtain its default grid. 

When one knows the largest value of E of interest before computing, var­
ious strategies exist for excluding points from the computational domain by 
quickly identifying those that fall outside the outermost pseudospectrum. 
For small matrices , the ability to adjust E after the computation (as facili­
tated by the graphical interface of EigTool) usually outweighs the benefit 
of such exclusion methods . For very large problems, where every singular 
value computation is costly, they can prove more important . Details are 
given in §41 . 

Parallel implementation. The grid algorithm is 'embarassingly paral­
lel ' :  it can easily take advantage of multiple processors. Once the Schur 
decomposition has been performed, the computations at each grid point 
are independent , and thus the labor can be divided among all available 
processors with minimal need for interprocessor communication. (Perhaps 
the first parallel computations of pseudospectra, though without the Schur 
decomposition, were reported in [780] . )  To minimize communication, one 
might allocate an entire line of the computational domain at a time to each 
processor . For very large matrices , it may be necessary to split the matrix 
itself over numerous processors and have all processors compute for one 
grid point at a time in unison; see §41 .  

POOT man's pseudospectTum. To this point , our algorithms have been 
based on the definition of pseudospectra based on resolvent norms. The 
equivalent definition based on perturbed eigenvalues, 

(Tc: (A) = U (T(A + E) , 
I I E I I <c: 

also suggests an algorithm: Select random matrices E with I I E I I  = E, and 
superimpose plots of a-(A + E) , computed using standard dense matrix 
eigenvalue algorithms. The result is a 'poor man's pseudospectrum' ,  a 
cloud of eigenvalues surrounding the spectrum whose density depends upon 
the number of perturbations taken and the probability distribution of the 
random perturbations . As can be seen from the proof of Theorem 2 . 1 , 
one can obtain any point in the pseudospectrum by restricting E to be of 
rank 1 .  If E is generated as a full-rank random matrix, then the cost of 
normalizing this matrix (so that I I E I I  :::; E) is C! (N3 ) operations , whereas 
rank-1 matrices can be constructed and normalized in C! (N2 ) operations. 
This observation was perhaps first made by Riedel [640] . (Naturally, these 
rank-1 matrices will have different statistical properties from matrices with 
independent random entries . )  

The above exercise must b e  repeated i f  E-pseudospectra for other values 
of E are required. Such perturbation plots have intuitive appeal , but they 
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Figure 39.6 :  'Poor man's f-pseudospectra' for a discretization of (39 . 1 )  with 
N = 400 and f = 10- 1 , 10- 2 . Each plot shows the spectrum of A + E for 
ten different (full-rank) random perturbations E of norm f .  The boundary of 
o-,,(A) is also shown for comparison. Ideally, one would hope for the perturbed 
eigenvalues to fill the entire region O"e (A) or trace out its boundary. A good rule, 
appropriate especially for matrices that are not so far from normal , is that these 
random perturbations instead tend to fill the region O"e/VN (A) . 

necessarily provide only lower bounds on O"E (A) , and from the plots in 
Figure 39 .6 ,  one observes that these bounds need not be sharp. Their utility 
is in providing an inexpensive approximation, though with developments 
in fast grid-based pseudospectral computations , even this attraction has 
diminished. 

Pseudospectra in other norms. The algorithms described above assume 
we seek pseudospectra in the standard Euclidean norm. It is a simple 
matter to adapt these techniques to different norms based upon an inner 
product ; cf. § §44, 45, and 5 1 .  Any finite-dimensional inner product can be 
written as (X, Y)L == y*L*Lx for some invertible matrix L, giving 

Thus the L-norm pseudospectra of A can be computed as the standard 
2-norm pseudospectra of LAL - 1 . (The same result appears with differ­
ent notation in equation (45 .9 ) . )  This norm flexibility is especially helpful 
when considering discretizations of infinite-dimensional operators , where 
the physically relevant inner product (e.g. , describing energy) may differ 
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from the Euclidean inner product , as discussed in §43. Further algorithms 
for computation of pseudospectra in weighted norms for large, sparse ma­
trices are outlined in §44 and described in detail in [837, Chap .  5] . 

For norms associated with Banach rather than Hilbert spaces , the sit­
uation at present is more difficult . The basic procedure requires explicit 
computation of the resolvent (an t:l(N3 ) process) at each grid point , fol­
lowed by computation of the appropriate norm. Higham and Tisseur [393] 
have considered computation of I-norm and oo-norm pseudospectra, which 
are relevant for examples in applications in heat flow ( § I2) and probability 
theory ( § §56, 57) . They advocate use of a norm estimation scheme that can 
provide excellent estimates of the pseudospectra at an efficiency similar to 
that of the 2-norm algorithm described above. 



40 . Projection for large-sca le matrices ------

Many applications require the computation of pseudospectra of matrices of 
dimension N » 1000, for which the algorithms detailed in the last section 
are too expensive . Preliminary reduction of A to Schur triangular form, 
with its ()(N3 ) complexity, becomes intractable. 

In this section, we review an important technique that reduces such 
matrices to a fraction of their original size by orthogonally projecting A 
onto an appropriate low-dimensional subspace. While, strictly speaking, 
this procedure only approximates the pseudospectra of A, in many appli­
cations the results are in excellent agreement with the exact pseudospectra 
in a region of the complex plane of interest , and , if desired, descriptive error 
bounds can be explicitly computed . Furthermore , such projections are im­
mediate bypro ducts of large, sparse eigenvalue calculations . The satisfying 
outcome is that , whereas fifteen years ago a supercomputer was used to 
calculate the pseudospectra of matrix of dimension N = 32 [772] , one can 
now handle matrices with N on the order of a million on a mass-market 
machine. 

That it is a challenge to compute pseudospectra of large matrices comes 
as no surprise, since computing the entire spectrum of such a matrix is 
itself an ()(N3) operation. Instead, eigenvalues of large matrices are rou­
tinely calculated by identifying those of interest for an application (e.g. , 
rightmost eigenvalues for stability analysis of continuous time dynamical 
systems) and then projecting the matrix onto a carefully constructed low­
dimensional subspace, such that the eigenvalues of the projected matrix 
are accurate approximations to the true eigenvalues of interest ; for details, 
see §28 and the surveys [23, 653] . This methodology is at the core of 
all major large-scale non-Hermitian eigenvalue algorithms . The Arnoldi, 
bi-orthogonal Lanczos , rational Krylov, Jacobi-Davidson, and subspace it­
eration algorithms differ mainly in the way they construct and refine the 
approximating subspace . 

The idea of computing only a small subset of the spectrum is not simply 
a practical expedient ; it makes good sense for applications . For example , 
When A results from the discretization of a differential operator , some of 
the eigenvalues may have no physical significance. Furthermore , discretiza­
tions often induce spurious eigenvalues that pollute the spectrum. With 
projection, we only compute the physically significant eigenvalues . 

Similarly, one often seeks accurate pseudospectra in a particular region 
of the complex plane . By restricting A to an appropriate low-dimensional 
subspace, one can approximate the pseudospectra of A by those of a much 
smaller matrix, which can be efficiently computed using the dense matrix 
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techniques described in §39. How should we select the approximating sub­
space? Here we consider two choices : projection onto invariant subspaces , 
and projection onto Krylov subspaces . A combination of these two ideas 
naturally emerges from large-scale eigenvalue software. 

Projection onto an invariant subspace. It is natural to take the projec­
tion subspace 1L c <[;N to be the span of the eigenvectors or, more generally, 
the invariant subspace, associated with the physically interesting eigenval­
ues of A. If U E <[;N xp is a matrix whose columns form an orthonormal 
basis for 1L, then the eigenvalues of the projected matrix U*AU are simply 
the eigenvalues of A associated with 1L, 

O"(U*AU) � O"(A) . 

The pseudospectra obey the analogous containment , since , in the 2-norm, 

I I ( z  - A) � l l l = max I I (z - A) � lx l l  
xE<cN 
I l x l l=l  

> max I I (z - A) � lUy l l  
yE<CP 
I l y l l= l  

max I I (z - U*AU) � ly l l  
yE<CP 
I ly l l = l  

I I ( z  - U*AU) � l l l · 

(The third line holds because range (U) is an invariant subspace of Ai it is 
not true for general matrices U with orthonormal columns. )  We state this 
bound on the resolvent norm in terms of pseudospectra. 

Proposition 40. 1  If range(U) is an invariant subspace of A, then 

O"e (U*AU) � O"e (A) . 

This invariant subspace projection technique was proposed by Reddy, 
Schmid, and Henningson [624] , who used it in their analysis of the Orr� 
Sommerfeld operator (§22) . We illustrate the method with two examples ; 
a third study involving the differential operator ( 1 1 . 2 1 )  can be found in the 
survey [774] . 

The first example takes A to be a spectral discretization with N = 1000 
of the Orr�Sommerfeld operator for plane Poiseuille flow with Reynolds 
number equal to the critical value 5772. To analyze the continuous time 
stability of this operator (see § 15) ,  we require the rightmost part of the 
spectrum and pseudospectra, and thus we project A onto invariant sub­
spaces associated with the rightmost eigenvalues . Figure 40 . 1  shows the 
approximate pseudo spectra resulting from projection onto such subs paces 
of dimension p = 20 , 40, and 60. In the latter case , we obtain an excellent 
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Figure 40. 1 :  Approximation of E-pseudospectra for a discretization of the Orr­
Sommerfeld operator with N = 1000 by projection onto invariant subspaces 
of dimensions p = 20, 40 , and 60 associated with the rightmost eigenvalues; 
E = 10-2 , 10-3 , . . •  , 10-7 . Note that the eigenvalues of the projected matrix are 
always a subset of the unprojected spectrum, and the pseudospectra are nested 
in agreement with Proposition 40. 1 .  It is difficult to find any difference between 
the two bottom plots, but the unprojected computation on the right took nearly 
four hours, whereas the p = 60 case took under five minutes, the bulk of it spent 
constructing the basis vectors for U. Compare Figure 22.4 .  

approximation of the true pseudospectra in the region of interest , while 
reducing the dimension of the problem from N = 1000 to P = 60 and 
accelerating the computation by a factor of 50. 

The second example is the laser integral operator (39 . 1 ) ,  which formed 
the central test problem in the last section. Here we take a discretization of 
dimension N = 1000 with Fresnel number F = lOOK. For this application 
one is concerned with the behavior of powers of the operator , and thus we 
seek the largest magnitude components of the pseudospectra. This compact 
operator has infinitely many eigenvalues that spiral toward the origin, and 



384 IX · COMPUTATION OF PSEUDOSPECTRA 

we project onto the invariant subspaces associated with the eigenvalues of 
largest modulus . Figure 40 . 2  shows the results. 

How should one obtain the subspace U and its representation U? When 
the dimension of A is not prohibitive (say, N :::; 1000) , one can compute 
the Schur factorization of A, and it is then a simple matter to reorder this 
decomposition to put the p desired eigenvalues in the first p positions on 
the diagonal of the Schur factor T; for details, see [327 , §7 .6 .2] '  [774] . This 
reordering also transforms the unitary factor in the Schur decomposition 
into the matrix [U -0] ) where U has orthonormal columns spanning U as 
required. The Schur factorization takes the form 

T = [U U] * A [U U] = � 

� � [ U*AU 

U*AU 
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Figure 40 .2 :  Spectra and E-pseudospectra of the laser operator (60.3) and its 
projections onto invariant subs paces for E = 10- 1 , 10-2 , . . .  , 10- 10 . The original 
matrix has dimension N = 1000 with Fresnel number F = 1007T. Projecting onto 
an invariant subspace of dimension 200 gives an accurate approximation of the 
outermost contours .  
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where Tl l  and T22 are upper triangular matrices, with Tl l  equal t o  the de­
sired compression U*AU. When the dimension of A is too large for Schur 
factorization, U can be obtained using algorithms for computing eigenval­
ues and invariant subspaces of large matrices . We discuss this option at 
greater length later in this section. 

Can we obtain a better estimate of the agreement between O"c; (U*AU) 
and O"c; (A)? How sharp is the inequality in the proof of Proposition 40. 1 ?  
Grammont and Largillier have developed bounds on the pseudospectra of 
block matrices of the form (40 . 1 )  [335] . In particular , they demonstrate 
that 

O"c; (A) � O"ry (Tl l ) U O"ry (T22 ) , 
for 7) = eJ1 + I I T12 1 1 /e � e . A slightly different approach gives a bound 
on the resolvent norm, 

( 40 .2 )  

where P i s  the spectral projector onto the invariant subspace U. If T 12 = 0 ,  
then range (U) i s  itself an invariant subspace, orthogonal to U, and I I P I I  = l . 
Thus U is perfectly conditioned, and from Theorem 2 .4 we have 

8 8 

4 � 
0 o 

-4 � -4 

-8 u,, (A) 

-5 0 5 -5 o 5 

Figure 40 .3 :  Example of the projection bound (40 .2 ) . The matrix A is block 
Upper triangular with shifted and rotated versions of the Grcar matrix (7 . 14) of 
dimension 50 on the main diagonal and an off-diagonal block giving I I P I I � 168 .8 .  
The left plot shows u,, (A) for E = 10-2 , 10-3 , 10-4 , 10-5 , while the right plot 
shows ug (U*AU) ,  where 'U is the invariant subspace associated with the top 
eigenvalues and E" =  E I I P I I  for the same values o f  E used i n  the left plot . 
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Near the eigenvalues of Tn , the approximate pseudospectra must match 
the true pseudospectra. When TI2 -I- 0, Figure 40 .3 illustrates that the 
bound (40 .2) can be quite descriptive for smaller values of E, provided 
that the spectrum of the projected matrix is not too near the rest of the 
spectrum of A. 

The bound (40 .2 )  suggests that projection can be misleading when the 
invariant subspace being projected upon is ill-conditioned, i .e . , when I I P I I  
i s  large and ti forms a small angle with its complementary invariant sub­
space . 1 In applications where the resolvent norm grows exponentially with 
the matrix dimension N, such as examples in §§7 ,  8, and 36, projection 
will typically produce misleading results .  

Projection onto Krylov subspaces. Projection onto invariant subs paces 
can be an effective tool for approximating pseudospectra in a particular 
region of the complex plane. However, for applications that require approx­
imation of the pseudospectra over the whole outer part of the spectrum, 
other projections can prove useful. One powerful choice for the projection 
space ti, proposed in [761 ] , is the Krylov subspace 

Xp (A, x) = span{x, Ax, . . .  , N'- Ix} 

generated by A with starting vector x E (jJN . Let the columns of U form 
an orthonormal basis for Xp (A, x) . Typically the eigenvalues of U*AU, 
known as Ritz values, converge quickly as p increases to well-separated 
eigenvalues of A on the periphery of the spectrum. 

Krylov subspaces form the core of many sparse matrix eigenvalue algo­
rithms. As detailed in §26, the Arnoldi algorithm constructs an orthonor­
mal basis for subspaces Xp (A, x) of increasing dimension p < N, building 
matrices Up+1 = [Up Up+l ] and Hp that satisfy 

(40.3) 

where range(U)j = Xj (A, x) with UjUj = I for all 1 ::::: j ::::: p and Hp is 
a (p + 1) x p upper Hessenberg matrix. The matrix Up can be augmented 
by a matrix Up such that [Up Up] is unitary and 

( 40.4) 

Here, Hp = U;AUp E (jJpxp is a square upper Hessenberg matrix, the 
upper p x p part of Hp . In general , hp+1 ,p -I- 0, and because of the nonzero 
(2 , 1 )  block in (40 .4) , 

1 Note that an invariant subspace can be well-conditioned even when the eigenvalues 
it contains are ill-conditioned [729J ; see Figure 28 .5 .  
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in typical circumstances. This must be so whenever the Ritz values have not 
exactly converged, i .e . , a(Hk ) Cf:. a(A) . As we shall see in §46 , augmenting 
a matrix with additional columns only enlarges its pseudospectra, and so 

ac (Hp) = ac ( [ h  Hp * ] ) � ac (A) . p+ l ,pe 1ep 

Because of this containment , ac (Hp) � often preferred over ac (Hp) in prac­
tice, despite the possibility that a,, (Hp ) = 0 for some values of E > 0; see 
§46 for details. 

How accurate are such approximations? The results are mixed [761 ] , 
and two extremes can be seen in the Orr-Sommerfeld and laser examples 
shown earlier. For the former case , shown in Figure 40.4 , projection onto 
a Krylov subspace of dimension p = 400 yields only a crude approxima­
tion of the pseudospectra of physical interest . Projection onto a degree 40 
invariant subspace performs much better ; cf. Figure 40. 1 .  For the latter 
case, shown in Figure 40. 5 ,  Krylov subspace projection actually does bet­
ter than invariant subspace projection when p = 50; cf. Figure 40 .2 .  An 
explanation is that there are more than fifty eigenvalues on the outer ring 
of the spiral . The Krylov subspace projection cannot give accurate esti­
mates for them all , but it does have some rough estimate to which they all 
contribute, and this is good enough to provide a decent approximation to 
the lO- l _pseudospectrum. 

While the fact that the Krylov subspace is influenced by all the eigen­
values of A was an advantage for the approximation of the pseudospectra 

o p = 400 o no projection 
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Figure 40.4: Analogue of Figure 40 . 1 ,  but with projection onto a 400-dimensional 
Krylov subspace rather than invariant subspaces. The left plot shows pseudo­
spectra of the rectangular matrix H4oo ; only contours for c = 10-2 and 10-3 
are clearly visible . (The c = 10- 4 contour appears as dot on the imaginary 
axis ; there is no contour for c -:; 10-5 . ) For this unbounded operator, the basic 
Krylov subspace does not estimate many of the relevant eigenvalues well even 
when p = 400 . None of the eigenvalues of H400 appear on these axes . 
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Figure 40 .5 :  Analogue of Figure 40 .2 ,  but with projection onto Krylov subspaces 
rather than invariant subspaces . The first ,!hree plots show pseudospectra of 
the (p + 1 )  x p upper Hessenberg matrix Hp ; the black dots show the Ritz 
values, eigenvalues of the square upper Hessenberg matrix Hp . Krylov subspaces 
of modest dimension provide good estimates of the outermost eigenvalues and 
surrounding pseudospectra. 

of the integral operator (39. 1 ) ,  it is often a significant limitation, especially 
for discretizations of unbounded operators like the Orr- Sommerfeld exam­
ple. One might expect the approximate pseudospectra to be accurate to 
some relative tolerance, which could be quite slack when I IA I I  is large due 
to physically irrelevant parts of the spectrum. 

The Arnoldi eigenvalue algorithm, which uses the Ritz values to ap­
proximate a(A) , suffers from the same difficulty. In order to obtain accu­
rate eigenvalue estimates with a modest subspace dimension p, one often 
must restart the iteration with an improved starting vector, thus enhanc­
ing the components of x in the direction of eigenvectors associated with 
the desired eigenvalues [648] . Sorensen designed a numerically stable im­
plementation and proposed a very effective technique for improving the 
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starting vector [709] . This variant , the implicitly restarted A rnoldi algo­
rithm, is implemented in the ARPACK software package [494] , which can 
be accessed in MATLAB via the e igs command. To execute ARPACK, 
the user specifies the number of desired eigenvalues k ,  the maximal Krylov 
subspace dimension p > k, and the part of the spectrum to be computed 
(e.g . ,  rightmost eigenvalues) .  At the end of a successful run, the algo­
rithm produces an Arnoldi factorization (40 .3 ) , where the first k columns 
of Up span, up to a prescribed tolerance, a k-dimensional invariant sub­
space associated with the desired eigenvalues. However , range (Up )  also 
contains a (p - k)-dimensional Krylov subspace orthogonal to the invari­
ant subspace . By projecting onto range(Up) , one combines the advantages 

® (j ® (!, 
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0) \0 0 � 
k = 50 k = 100 - 1  P = 100 -1  P = 200 
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Figure 40.6 :  Spectra and E-pseudospectra approximated via projection onto 
Krylov subspaces , as computed by EigTool for a matrix of dimension N = 1500 
arising from the discretization of an invariant measure associated with a random 
Fibonacci recurrence ( §37) ; E = 10- 1 , 10- 1 . 5 , . . .  , 1 0-4 . In the first three plots, 
k == 50 ,  100, and 200 eigenvalues are computed; £To (A) is approximated by an 
(p + 1 ) x p upper Hessenberg matrix, where p = 2k .  The final plot shows the 
exact pseudospectra computed using the dense techniques of §39. 
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of invariant subspace and Krylov subspace projection. This approach was 
proposed in [840] and is implemented in EigTool [838] . For typical large­
scale applications , computing O'e (Hp ) takes a fraction of the time required 
by ARPACK to find the k eigenvalues of A; see [837, Fig. 2 . 14] for sample 
timings . Thus we strongly recommend that any sparse eigenvalue com­
putation for a non-Hermitian matrix be followed by an approximation of 
pseudospectra. By doing this , one can estimate the accuracy of the com­
puted spectrum, just as one would check a condition number estimate after 
solving a dense system of linear equations . 

The quality of the approximations one obtains from this ARPACK pro­
jection technique will vary with the matrix, the choices for k and p, and the 
tolerance to which ARPACK computes the k eigenvalues. Wright 's thesis 
provides a comprehensive study of such issues with many more illustra­
tions than we present here . We content ourselves with just one example, 
shown in Figure 40.6 .  The matrix, of dimension N = 1500, arises from 
calculation of the Lyapunov constant for the random Fibonacci recurrence 
Xn+1 = Xn ± Xn- l discussed in §37; see [246] . 

While we have focused on Krylov subspaces and the Arnoldi algorithm, 
we emphasize that any algorithm that generates an orthogonal basis ap­
proximating an invariant subspace of A could similarly be used for com­
putation of pseudospectra. For example , to approximate O'e (A ) near the 
point jJ, E C, one could apply the shift-and-invert Arnoldi method (i .e . , 
Arnoldi iteration on (jJ, - A) - l instead of A) to generate the projection 
subspace. Similarly, Ruhe has investigated using the rational Krylov algo­
rithm for pseudospectra approximation [646] , and Wright has performed 
experiments with the Jacobi-Davidson QR (JDQR) method [837] . 



41 . Other computational techniques ______ _ 

When A is too large for the core EigTool algorithm of page 375 to be 
practical , projection onto key subspaces (as performed by the implicitly 
restarted Arnoldi approach that is implemented in EigTool and described 
in the last section) is usually effective . Sometimes, however, neither of these 
approaches is workable, and one looks for further alternatives to reduce the 
computational cost . This section focuses on three of these: 

• Exploit sparse matrix methods when computing Smin (Z - A) , 

• Reduce the number of grid points at which Smin (Z - A) is computed, 

• Use curve-tracing methods to find a single pseudospectral boundary. 

These techniques can also be useful for matrices of more modest dimension 
in particular applications . 

Sparse methods for computation of Smin (Z - A) . The core EigTool al­
gorithm determines the 2-norm of the resolvent by computing Smin (Z - A) 
on a regular grid in the complex plane using an inverse Lanczos iteration, 
as described in §39. At most grid points , convergence is attained in just 
a few steps. The dominant cost arises from the solution of linear systems 
involving Z - A and its adjoint , the complexity of which can be reduced 
from () (N3 ) to () (N2 ) operations by transforming A to Schur triangular 
form before the singular value computations commence. When A is too 
large to triangularize , one can proceed without the Schur factor , instead 
expediting the computation of Smin (Z - A) by exploiting sparsity or other 
structure in A itself. 

Several options are available. First , one can still apply the inverse 
Lanczos iteration, either to the matrix 

(Z - A) * (z - A) , (4l . 1  ) 

whose eigenvalues are the squares of the singular values of Z - A, or to the 
augmented matrix 

Z - A ) 
o ' ( 4l .2 )  

whose eigenvalues are the singular values of  Z - A and their negatives. The 
former approach is the same one implemented in EigTool, but now A does 
not have triangular form. Both approaches require the solution of linear 
systems involving z - A and z - A* . If A is sparse , one can compute a 
sparse direct LV factorization of Z - A at each grid point [2 18] , or solve 
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the systems with a (possibly preconditioned) iterative method [541] . A va­
riety of fast algorithms are also available when z - A has special structure 
(e.g . , Toeplitz ) . With such methods one can sometimes recover the CJ(N2 ) 
complexity obtained with triangular systems , or do even better . Alterna­
tives to inverse Lanczos iteration, including preconditioned eigensolvers like 
the Jacobi� Davidson algorithm [405, 697] , can also be employed. Bracon­
nier and Higham use an inverse Lanczos method with explicit Chebyshev 
restarting and reorthogonalization [103] ; for other approaches based on 
variations of the Lanczos theme, see [530 , 531 ,  842] . A Davidson method 
is used in [129] . 

As an alternative technique for computing Smin (Z - A) , one can apply 
the standard Lanczos algorithm to (z - A) * (z - A) . Avoiding inverse 
iteration, this method relies on matrix-vector multiplications with z - A 
and z - A* rather than the solution of linear systems . Algorithms such 
as the implicitly restarted Lanczos method [126, 494] can be applied here , 
though convergence may be slow if z - A has many small singular values . 
(The augmented form (41 . 2 )  is not well suited for this direct iteration, as 
the desired eigenvalue of smallest modulus is located in the interior of the 
spectrum, which causes eigenvalue iterations to converge slowly. ) 

Any grid-based algorithm for computing pseudospectra of dense matri­
ces is 'embarassingly parallel ' ,  since the individual singular value computa­
tions can be distributed over multiple processors , either in a single machine 
or over a network. For very large matrices the situation may change, for 
the entire matrix may be stored across the available processors . 1 Then the 
processors can collaborate on the computation of Smin (z - A) , processing 
one grid point at a time with either of the Lanczos approaches described 
above . The Qualitative Computing research group at CERFACS made 
numerous early contributions concerning the computation of large-scale 
pseudospectra on high-performance computers . Among the fruits of their 
research are the numerous 'spectral portraits ' of large matrices included in 
the MatrixMarket collection [68] . 

To compute the pseudospectra of the Hatano-Nelson matrix of dimen­
sion 106 shown in Figure 36 .6 ,  we applied the inverse Lanczos algorithm to 
(z - A) * (z - A) , exploiting the fact that A was already in bidiagonal form 
and stored in a sparse data structure. In order to get a high-resolution 
image , a fine grid was required , and sparse matrix methods alone were 
insufficient . Using the asymptotics of the problem, described in §36, to 
predict where the desired pseudospectral boundaries should fall, we elimi­
nated the need for singular value computations at most grid points . 

Reducing the number of singular value computations. In many cases , 
like the one just mentioned , the pseudospectra of interest fill only a portion 

1 In this case, one can still use the ideas of the last section by running ARPACK in 
parallel to compute the projection subspace. 
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of the rectangular domain on which a grid-based algorithm like EigTool 
computes singular values . If one seeks only a single E-pseudospectrum, 
there are a variety of techniques that improve performance by eliminating 
singular value computations in regions that can be identified as far from 
the boundary of (/€ (A) . (EigTool does not incorporate such ideas , in order 
to allow the user to adjust the desired E levels without requiring further 
computation. ) 

The most primitive approach along these lines is to simply stop the 
iterative computation of smin (z-A) in Figure 39 .3 after a few steps , judging 
when the eigenvalue estimate s i g  appears to be converging far from E2 . 
Since the minimal singular value estimates generated by the inverse Lanczos 
method must decrease monotonically, as soon as s ig < E2 , one can conclude 
that z E (/E (A) without the need for further computation. Heuristics can 
be designed to rule out cases where s i g  » E2 . 

A more elegant approach, due to Koutis and Gallopoulos [462] , has 
the power to eliminate many grid points from (/E (A) with just a single 
resolvent norm computation. Suppose one knows some z tf. (/€ (A) . Then 
by elementary arguments (essentially the same as will be used for the proof 
of Theorem 52 .4 below) , one can show 

dist (z, (/€ (A) ) � 
I I (z _ �)- 1 1 1  - E, ( 41 .3 ) 

which implies 
z + �r n (/E (A) = 0 ,  

where �r i s  the open disk of radius r = l / l l (z - A) - I I I - E .  The quality of 
the bound (41 .3 )  is not difficult to deduce: we expect it to be accurate if A 
is nearly normal, while it will likely be poor in areas of the complex plane 
where the resolvent norm is rapidly changing. Figure 4 1 . 1  illustrates the 
use of exclusion regions to eliminate points from the 1O-2-pseudospectrum 
of the Orr-Sommerfeld operator described in §22 and used as an example 
in the last section. The exclusion regions roughly describe the bottom 
edge of the pseudospectrum, but are less helpful near the upper boundary. 
This can be explained by looking at Figure 40. 1 ,  where one observes larger 
separation of the pseudospectral boundaries above the eigenvalues than 
below them. 

One can imagine how this tool could be implemented in coordination 
with a grid-based algorithm, where the resolvent norm would be first com­
puted on a coarse grid of points, followed by calculations on a finer grid at 
points not yet excluded from (/,, (A) by the coarse-grid calculations . Such 
an approach resembles Gallestey's ' SH algorithm' ,  which uses the fact that 
the function II (z - A) - I I I  is subharmonic away from the eigenvalues of A 
(Theorem 4.2) to exclude regions from (/€ (A) [297] . Gallestey's algorithm 
first divides the computational domain into large rectangles , some of which 
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Figure 41 . 1 :  Exclusion disks eliminate areas of the complex plane from the 10-2_ 
pseudospectrum of a degree-500 spectral discretization of the Orr-Sommerfeld 
operator with Reynolds number equal to the critical value 5772. The radius of 
each disk is derived from a resolvent norm computation at its center (+) , based 
on a technique of Koutis and Gallopoulos [462J . 

are entirely disjoint from O'g (A) ; the remaining rectangles are subdivided 
until a satisfactory approximation to O'g (A) is obtained. 

Curve-tracing to compute a pseudospectral boundary. For a more dra­
matic reduction in singular value computations , one can depart from grid­
based computations altogether and instead attempt to trace the boundary 
oO'g (A) . That is , given some starting point Zo E oO'g (A) and some fixed 
€ > 0, compute the level curve 

Kostin proposed this approach in an early pseudospectra paper [460, §3] , 
and Bruhl developed a full implementation for his Diploma thesis; see [ l l l ] .  
The method exploits the fact that I I ( z-A)- 1 1 1 2 = l/smin (z-A) . It consists 
of two main components: 

• Find a starting point Zo E 00' E (A) . 
Bruhl advocates using Newton's method to find zo , though one could 
also apply techniques used by Burke, Lewis , Overton, and Mengi [ 1 1 7, 
545] , described in the next section, for the computation of the pseu­
dospectral abscissa and radius . 

• Given Zk - l E 80' g (A) , find a nearby point Zk also in 80' E (A) . 
To follow a level curve of a function, one searches orthogonally to 
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the direction of steepest descent . Breaking z into real and imaginary 
components, define 

1 
g(x, y) = O'rnin ( (X + iy) - A) = I I ( (x + iy) _ A) - 1 1 1 2 

Then, provided the minimal singular value of (x + iy) - A is simple , 
one can show that 

_ ( Re (v*u) ) "\lg(x , y) 
- Im (v*u) , 

where u and v are the left and right singular vectors corresponding to 
the minimal singular value of (x + iy) - Ai see [1 1 1] .  In the complex 
plane, the gradient direction is v*u, so the direction orthogonal is 
i v*u. After updating Zk- l by a step of length T orthogonal to the 
gradient , Bruhl advocates one step of Newton's method to correct 
the approximation. In pseudocode, we have: 

�/ ". 

-1 

(0', U, v) = minimum singular triplet of Zo - A 
repeat 

Zk = Zk- l + T i (v*u) / Iv*u l 
(0', U, v ) = minimum singular triplet of Zk - A 
Zk = Zk - (0' - c) / (u*v) 

until the contour is completed. 
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Figure 4 1 . 2 :  Examples of the curve-tracing algorithm for the laser integral op­
erator (60 .3)  with N = 100 and F = 107r .  In each plot , points generated 
by a curve-tracing routine are superimposed upon the boundary of the 10- 1_ 
pseudospectrum, computed using the dense matrix techniques described in §39. 
The left plot shows that when the algorithm is executed with the relatively large 
step size T = 1/10 ,  it generates an inaccurate curve, and eventually fails com­
pletely. Reducing the step size to T = 1/20 leads to improved performance, as 
seen in the right plot . 



396 IX · COMPUTATION OF PSEUDOSPECTRA 

To accelerate his algorithm, Bruhl uses gradient information from the pre­
dicted point Zk above , rather than the corrected point Zk , thus requiring 
only one singular value computation for each point of the contour . One 
could alternatively determine the minimal singular triplet of Zk and use 
these values in the formula for Zk . Bruhl also suggests the possibility of 
adjusting T at each step . 

Several complications may arise in a curve-tracing algorithm. If aE (A) 
comprises several disjoint components, one must repeat the procedure for 
each component . Also , it is common for oaE (A) to have cusps , where the 
curve-tracing algorithm may break down. Finally, if other level curves are 
desired (e.g . , as required to compute an envelope of c-dependent bounds 
like those described in § 14) , the curve-tracing procedure must be repeated. 
Improvements to the basic procedure that address these issues have been 
proposed by Bekas and Gallopoulos [42 , 43] and Mezher and Philippe [550] ; 
these works also address parallel implementation. Mezher , Najem, and 
Philippe have implemented a path-following algorithm in freely available 
software [549] designed to run on parallel computers or networks of worksta­
tions . For recent work on curve-tracing techniques for large-scale problems , 
see [44] . 

Figure 41 . 2  shows results of the curve-tracing algorithm applied to the 
laser integral operator (60 .3 )  with discretization size N = 100 and Fresnel 
number F = 107r .  The step-length parameter T controls the number of 
points that describe the contour, as well as the accuracy. 
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The last three sections described efficient ways to compute the pseudospec­
tra of dense and sparse matrices . However, in a variety of circumstances 
one does not need to know entire pseudospectra, but only certain scalar 
quantities derived from them. For example , to apply many of the bounds 
presented in § § 15  and 16 ,  one only needs to know the resolvent norm at 
a single point . In this section we describe algorithms for determining two 
quantities that are fundamental to such bounds, the E-pseudospectral ab­
scissa and the E-pseudospectral radius : 

ctc (A) = sup Re z ,  
zEo-,, (A) 

Pc (A) = sup I z i . 
zEo-,, (A) 

In words, we seek algorithms that find the points with largest real part and 
largest magnitude on the boundary of the E-pseudospectrum of A, denoted 
by oO"c (A) . This task is closely related to the problem of computing the 
distance to instability, the smallest value of E for which oO"e: (A) intersects 
the imaginary axis (continuous time) or the unit circle (discrete time) ; see 
§49 .  Indeed, methods for computing the distance to instability [100, 123] 
are at the root of the algorithms we discuss for ctc (A) and pe: (A) . 

An obvious algorithm for computing pseudospectral abscissae and radii 
springs to mind. One could approximate oO"c (A) with a curve-tracing algo­
rithm, as described in the last section, then find the points on this bound­
ary with largest real part and largest magnitude. This approach requires 
considerable computation, which multiplies when O"c (A) contains discon­
nected components. Refinement strategies would be necessary to obtain 
high-accuracy estimates of ctc (A) and pe: (A) . 

Fortunately, there is a startlingly efficient alternative . Motivated by 
spectral optimization problems for nonnormal matrices (see , e .g . , the Boe­
ing 767 example in § 15 ) ,  Burke, Lewis, Overton, and Mengi have developed 
robust , globally convergent 'criss-cross ' algorithms for computing the pseu­
dospectral abscissa [ 1 17] and radius [545] . These closely related procedures 
are included in the EigTool system [838] . 

As the computation of the pseudospectral radius introduces additional 
subtleties , we start with the pseudospectral abscissa. The algorithm begins 
from the rightmost eigenvalue of A and then proceeds with a series of hor­
izontal and vertical searches to find the boundary 00" c (A) . (Convergence 
at the end is guaranteed. ) Each horizontal search gives an estimate for 
ctc (A) , while each vertical search identifies favorable locations for the next 
round of horizontal searches. The details are described below, with each 
step illustrated in Figure 42 . 1 .  
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Criss-cross algorithm for the pseudospectral abscissa 

1 .  Find a rightmost eigenvalue A E O"(A) , i .e . ,  ReA = a (A) . 

2. Find the rightmost point on oO"c: (A) that intersects the horizontal 
line through A, {z E <C : Imz = ImA} . Let Zl denote this point ; 
note that Rezl is a lower bound for ac: (A) . 

For k = 1 , 2 ,  . . . until convergence: 

3. Find all the points at which 00" c: (A) intersects the vertical line 
through Zk , {z E <C : Rez = Rezd . From these intersections , de­
termine the intervals along this vertical line that intersect 0" c: (A) . 

4. Compute the midpoints of these intervals, each of which is con­
tained in O"c: (A) . From each midpoint , search horizontally for 
the rightmost intersection with oO"c: (A) . Call the rightmost point 
of all these intersections Zk+l . Check convergence; if necessary, 
return to step 3 .  

0 CD 0 
8> 8> 8> 

Steps 1 and 2 Step 3 Step 4 
Find A: ReA = a(A) Vertical search to find Horizontal search 
Horizontal search intervals in a c (A) from midpoints 

Figure 42. 1 :  The initial iteration of the criss-cross algorithm for computing the 
pseudospectral abscissa. Steps 1 and 2 find an initial point on BUc (A) . Step 3 
identifies intervals where the vertical line intersects BUc (A) ; here the lowest in­
terval is degenerate, i .e . ,  a single point . Step 4 searches horizontally for BUc (A) 
from the midpoint of each interval; the rightmost of the resulting points gives the 
new estimate of (Xc (A) . 
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The Burke-Lewis-Overton algorithm relies on the ability to repeatedly 
find the intersection of a line in the complex plane with the boundary 
oO"c: (A) . One might expect that this would require the solution of a non­
linear optimization problem, but there is a far better approach. First we 
consider the problem in step 3 of finding the intersection of a vertical line 
with oO"c: (A) . (The horizontal search can be derived from the same tech­
nique . )  Suppose that c is a singular value of (x + iy) - A, which is the case 
if and only if c is an eigenvalue of the augmented matrix 

Equivalently, the matrix ( -d 
(x - iy) - A* 

(x + iy) - A  
o 

)
. 

(X + iY) - A ) 
-d 

is singular , as is any matrix that results if we scale and swap its rows. In 
particular , multiply the first block-row by -1 and exchange it with the 
second to obtain the singular matrix ( (x - A* ) - iy 

d 
-d 

(A - x) - iy 
)

. 
We have proved the following fundamental lemma [ 1 17J .  It is essentially 
due to Byers , who proved a similar result and applied it in his algorithm 
for the distance to instability [123J . 

Lemma 42 . 1  The matrix (x + iy) - A has a singular value c if and 
only if iy is an eigenvalue of ( X - A* -d )

. d A - x  
(42 . 1 )  

Suppose for a moment that c « 1 and A i s  far from normal . We would 
then expect the eigenvalues of (42 . 1 )  to be highly sensitive to perturbations , 
and it would be risky to build an algorithm upon such a foundation. But 
Lemma 42 . 1  is special , for though the matrix (42 . 1 )  may be far from normal , 
it is Hamiltonian (see p .  491 for a definition and discussion) .  Algorithms 
exist to compute the eigenvalues of matrices with such structure accurately, 
even when A is large and sparse ; see , e .g. , [5 1 , 52J . 

We now turn to the problem of determining the intervals of the vertical 
line {z E <C : Rez = x} that intersect O"e: (A) . Suppose that iy is a purely 
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imaginary eigenvalue of the matrix (42 . 1 ) .  Note that x + if] E oaAA) if 
and only if E is a minimal singular value of (x + if]) - A. Lemma 42 . 1  
ensures that ( x  + if]) - A has a singular value E ,  but we do not yet know 
if E is minimal . Thus, for each purely imaginary eigenvalue of (42 . 1 ) ,  we 
must compute the minimal singular value (or, equivalently, the norm of the 
inverse) of an N x N matrix. Suppose that E is the minimal singular value 
of (x + iYj ) - A for m of the purely imaginary eigenvalues, iYl , " " iYm ' 
labeled by increasing imaginary part . Then the points {:1: + iYj } are the 
ends of the intervals where a-c: (A) intersects the line {z E <C : Rez = x} .  
As  the matrix (42 . 1 )  has dimension 2N, it follows that m :::; 2N ;  i .e . , a 
vertical line cannot intersect the boundary of a pseudospectrum at more 
than 2N points. 1 

We now have the endpoints of the intervals at which a-c: (A) intersects 
the vertical line {z E <C : Rez = x} ,  but still must determine whether 
each of these points falls at the top or bottom of an interval. Since a-c: (A) 
is bounded , it must be that Yl corresponds to the bottom of an interval , 
while Ym marks the top . This would be enough to determine the nature 
of Y2 , " " Ym- l , except for the possibility that some intervals could be 
degenerate; i . e . ,  Yj could be both the bottom and top of an interval. This 
'noncrossing' situation occurs when the vertical line intersects a-c: (A) at 
x + iYj but no neighboring points. Conveniently, there is an easy test 
for this degenerate case that usually requires no further computation [ 1 17 ,  
Lemma 2 .4J : Provided the minimal singular value E of (x+if]) -A is simple , 
Yj is a noncrossing point if and only if iYj is an eigenvalue of (42 . 1 )  with 
even algebraic multiplicity. Such noncrossing cases may seem like rarities , 
but they do arise in practice; the 'step 3 ' plot in Figure 42 . 1  is such an 
example. 

Once the top and bottom endpoints of the intervals where the vertical 
line { z  E <C : Rez = x} intersects a-c: (A) have been found, step 4 of the 
criss-cross algorithm computes the midpoint of each interval, then searches 
horizontally from each midpoint for the rightmost point on oa-c: (A) . Again , 
this is a problem of finding where oO'c: (A) intersects a line . We can solve 
it by transforming the horizontal search into a vertical search and then 
applying Lemma 42 . 1 :  (x + iy) - A has a singular value E if and only if 
i (x + iy - A) does as well . Thus from Lemma 42 . 1 ,  we seek the purely 
imaginary eigenvalues ix of the matrix ( -Y + iA* 

d 

which again is Hamiltonian. 

-d 
iA + y 

( 42 .2 ) 

1 As we shall see, the fact that circles centered at the origin can intersect oa« A) at 
infinitely many points introduces a technical complication for the analogous pseudospec­
tral radius algorithm. 
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Iteration 1 
3 vertical intervals 
o<£ (A) "" 0 .239159 

o 
8 

Iteration 2 
3 vertical intervals 
o« (A) "" 0 .728692 

o 
8 

Iteration 3 
1 vertical interval 
o<£ (A) "" 0.836643 
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Figure 42.2 :  Steps 3 and 4 for three iterations of the criss-cross pseudospectral 
abscissa algorithm for the same example as in Figure 42. 1 .  In this case the 
algorithm terminates exactly at the third iteration. 

Since the goal of our computation is the rightmost point in 8oAA) , 
we are interested only in the rightmost point at which the horizontal line 
{z E <C : Rez = x} intersects 8oAA) . One might expect this would require 
us to check whether each purely imaginary eigenvalue ix corresponds to a 
matrix (x+ iy) - A with minimal singular value E: , but in fact we are spared 
this labor . Burke, Lewis, and Overton show that the largest of the purely 
imaginary eigenvalues of (42 .2 )  always corresponds to a case where E: is the 
minimal singular value [ 1 1  7] . 

With the vertical and horizontal searches in place, all that remains is to 
repeat this procedure until satisfactory accuracy is attained. Figure 42 .2 
shows further iterations of the computation begun in Figure 42 . 1 .  The 
estimates for the pseudospectral abscissa are monotonically increasing and 
bounded above by Dc (A) . Burke, Lewis , and Overton show that , in exact 
arithmetic , the algorithm will always converge, and locally, the convergence 
rate is quadratic [ 1 17] .  (If the estimates are not strictly increasing, then 
Dc (A) has been computed exactly. ) In floating-point arithmetic, the algo­
rithm is backward stable: it computes the exact E:-pseudospectral abscissa 
of a matrix that differs from A by entries on the order of machine preci­
sion times I IA I I . (To achieve this , the algorithm requires a backward stable 
Hamiltonian eigensolver, not used in the current EigTool implementation. )  

The Mengi-·Overton algorithm for computing the pseudospectral radius 
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follows a similar pattern [545] . The horizontal searches are replaced by 
searches along radial lines through the origin, each of which provides an 
estimate for Pc (A) . The vertical intervals are replaced by arc-intervals of a 
circle centered at the origin. Several steps of this algorithm are illustrated 
in Figure 42 .3 .  

Criss-cross algorithm for the pseudospectral radius 

1. Find an eigenvalue A E dA) of largest magnitude, i .e . , IA I 
p(A) . 

2. Find the largest magnitude point on oO'c (A) that intersects the 
line through the origin and .A, {z E CC : argz = argA} . Let Zl 
denote this point ;  note that I Zl l is a lower bound for Pc (A) . 

For k = 1 , 2 ,  . . . until convergence: 

3. Find all the points at which oO'c (A) intersects the circle of radius 
I Zk l . From these intersections , determine the arcs of this circle 
that intersect 0' c (A) . 

4 . Compute the midpoint of each of these arcs . From each mid­
point , search radially for the largest magnitude intersection with 
oO'c (A) . Call the largest magnitude point of all these intersec­
tions Zk+ l . Check convergence; if necessary, return to step 3 .  

The algorithm begins by finding an eigenvalue A = fleie E O'c (A) of 
largest magnitude, then searching for the largest magnitude point along 
the ray {reiO : r � o} . Finding the points at which a radial line intersects 
00' c (A) is essentially the same as the computation of horizontal and vertical 
intersections in the pseudospectral abscissa algorithm. Just as we rotated 
the horizontal search to a vertical search by multiplying Z -A by i, now we 
multiply reiO -A by ie-io and apply Lemma 42 . 1  to see that E is a singular 
value of reiO - A if and only if ir is an eigenvalue of ( ieie A* -d ) . 

d ie-lo A 

As before, this is a Hamiltonian matrix, and if ir is the largest purely 
imaginary eigenvalue with r � 0, then E is the minimum singular value of 
reiO - A. Thus reiO is the largest magnitude intersection of oO'c (A) with 
the ray {z = reiO : r � o} .  

Now one must compute all intersections of  oO'c (A) with the circle of 
radius r. Unfortunately, this is significantly more difficult than the search 
for intersections of oO'c (A) with a line . In fact , for some A the boundary 
oO'c (A) intersects the circle of radius r at infinitely many points . (For 
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Steps 1 and 2 
Find ).: 1 ). 1  = peA) 
Radial search 

Iteration 1 ,  step 4 

/ 
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d .  

/ 

Radial searches from midpoints 
pe (A) ::::; 0 .96390 

Iteration 1, step 3 
3 arcs (one degenerate) 

Iteration 2, steps 3 and 4 
2 arcs 
pe (A) ::::; 1 . 1 1720 

403 

Figure 42.3 :  Illustration of two iterations of the criss-cross algorithm for the 
pseudospectral ra,dius . In this case, the exact solution is determined at the end 
of the second iteration. 

example, let A be a Jordan block with eigenvalue zero; then reiO -A has the 
same minimal singular value for all () E [0 , 21f) . )  Mengi and Overton [545] , 
again building on the work of Byers [123] , show that the intersections of 
aa€ (A) with the circle of radius r occur for values of () for which eiO solves 
the generalized eigenvalue problem ( -d A ) 

v eie 
( 0 

rI 0 A* 
rI ) 

-d v ( 42 .3) 

for some nonzero v .  On occasion this will hold for all values of eie , in 
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which case one can only conclude that there are infinitely many points of 
intersection of the circle and 00' E (A) . Mengi and Overton show that this 
situation can arise only during the first iteration of the algorithm. The 
generalized eigenvalue problem (42 .3) has structure, but there are not yet 
backward stable algorithms for its solution. Given such a stable method, 
this pseudospectral radius algorithm would also be backward stable . In 
exact arithmetic, like the pseudospectral abscissa method, this algorithm 
converges globally with a local quadratic rate. 

Here is a numerical example with the flavor of [80] . Let A be the 
100 x 100 Grcar matrix shown in Figure 7 .5 ,  except multiplied by 0 .4 .  
This matrix is power-bounded, with spectral radius p(A) ;::j 0 .9052, but its 
powers grow as large as I IA104 1 1  ;::j 60 ,060,433 before eventually decaying. 
Suppose we set c = 10-8 and use the criss-cross algorithm to compute 
the c-pseudospectral radius . The result is PE (A) ;::j 1 .032 1 ,  attained for 
z ;::j 0 . 1576 ± 1 . 0200i .  From equation ( 16 . 15) of Theorem 16 .4 we can infer 
from this value alone that the norms I IAk I I must rise at least as high as 
3 .2  . 106 on a time scale roughly on the order of k = 100. 



43 . Discretization of continuous operators ____ _ 

To compute pseudospectra of differential or integral operators , the usual 
procedure is to approximate them by matrices and then apply the algo­
rithms for matrices described in the last few sections . This is not the only 
approach to such problems , nor always the most powerful. But it is cer­
tainly the most flexible , and it is the method we have used to generate 
about fifty of the figures in this book. We discretize by spectral methods 
rather than finite differences or finite elements, because high accuracy is 
needed if one wants plots of E-pseudospectra for small E .  

In this section we outline the techniques we have found so useful, em­
ploying a 'how to' style illustrated by MATLAB code segments. An earlier 
discussion of some of these ideas appears in [774] , and in §30 we have al­
ready mentioned the pseudospectra of some of the matrices that arise in 
spectral discretizations . We make no attempt to survey systematically the 
vast and highly developed field of numerical discretization of operators . 
Our methods are essentially those described in Trefethen's textbook on 
spectral methods [775] . A software suite for such computations has been 
developed by Weideman and Reddy [817] , and the books by Boyd and Forn­
berg offer a wealth of practical information [99, 282] . Our computations of 
pseudospectra and other norm-dependent quantities rely on discretization 
of integrals of smooth functions and are thus mainly restricted to Hilbert 
spaces, e .g . , the L2-norm. (The Ll -norm, for example, is also defined by 
an integral , but contains an absolute value that introduces derivative dis­
continuities . ) 

If the domain is periodic , we use a Fourier spectral collocation method. l 
To treat a periodic function u defined on [0 , 21f] , say, we pick an integer 
N > 0 and consider vectors of sample values 

21fj 
Xj = 

N ' j = 1 , 2 ,  . . .  , N. 

We associate each such vector v E <eN with its trigonometric interpolant 
v (x) defined on [0, 21f] , a trigonometric polynomial satisfying v (Xj ) = Vj 
for each j ,  which takes one of the forms 

N/2 
v (x) = L ake1kx 

k=-N/2 

(N- l ) /2 
v (x) = L akeikx 

k= ( l -N) /2 
depending on whether N is even or odd, respectively. The interpolant 
is unique if we impose the condition a-N/2 = aN/2 in the former case . 

l See the footnote on p. 289. 
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The coefficients ak in these expansions are not computed explicitly; all 
computations work instead with the data vector v. Thus the derivative of 
v (x) satisfies the identity v/ (x ) = I: ikakeikx ,  but we do not work with it 
in this form. Instead we consider the vector w of its values on the grid and 
write 

Wj = v/ (Xj ) = (Dv )j 
for an N x N circulant matrix D known as a differentiation matrix. The 
( i ,  j )  entry of D is equal to the value at Xi of the derivative of the trigono­
metric polynomial that interpolates the vector that is 1 at x j and zero 
elsewhere . The entries of D are known explicitly, 

(D) . .  = l (-l )j-i+ l cot (j - i)7r 
'J 2 N ' 

and similarly, the entries of the second derivative matrix D(2) are 

(i = j ) ,  

(i =j: j) ,  

(43 . 1  ) 

( 43 .2) 

where csc denotes the cosecant . 2 (These expressions are valid for even N; 
for odd N, the details change. ) Alternatively, rather than using formulas 
like these, one can construct D or D (2) on the fly by taking a Discrete 
Fourier Transform (DFT) , multiplying by ik or (ik) 2 , and inverse trans­
forming. The latter approach is very flexible and can be generalized to 
pseudodifferential operators . 

For example, here is a slightly stripped-down version of the MATLAB 
code that was used to generate Figure 12 .8 ,  concerning a linear operator 
of Benilov et al . [49 , 50] . The operator is 

( 43 .3) 

with h = 1/10 and periodic boundary conditions on [-7r, 7r] , and we ap­
proximate it by the N x N matrix 

( 43.4) 

where S is the diagonal matrix with entries sin ( Xl ) ' . . .  , sin ( X N ) . This code 
uses the DFT method of discretization and takes N odd in order to exclude 
spurious sawtoothed pseudoeigenvectors that appear if N is even. 

% Set up Fourier grid : 

N = 27 1 ;  % N must be odd 

dx = 2*pi/N ; x = -pi+dx* ( 1 : N) ' ;  % step s ize and grid 

2n (2) is not quite the same as n2 , because of differing treatments of the maximal 
wave number k = ±N /2 ,  but the difference would be unimportant for most applications. 
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o o 

N = 75 

o o �:. . . . . 
Figure 43. 1 :  Eigenvalues and c:-pseudospectra of Fourier spectral discretizations 
of various dimensions of the operator (43.3) of Benilov et al . Each image shows 
the rectangle - 1 . 5  ::; ReA ::; 1 . 5 ,  -2 ::; ImA ::; 2, and the contours correspond to 
c: = 10- 1 , 10-2 , . . . .  Compare Figure 12.8 .  

% Fourier spectral different iat i on matrices : 
omega = exp (pi*2i/N) ; % Nth root of unity 

A = omega . - ( ( 0 : N- 1 ) ' * (0 : N- 1 ) ) /sqrt (N) ; % DFT matrix 

ik = 1 i* ( [0 : (N- 1 ) /2 ( 1 -N) /2 : - 1 ] ) ; % Fourier mult ipliers 

D = real (A*diag ( ik) *A ' ) ;  % 1st-order diff . matrix 

D2 = real (A*diag ( ik . - 2) *A ' ) ;  % 2nd-order diff . matrix 

% The Benilov-Q ' Brian-Sazonov operator : 

h = 0 . 1 ;  

A = h- 2*diag ( s in (x) ) *D2 + h*D ; 

% Call EigTool to compute e igenvalues and pseudospectra : 

opt s . ax = [-3 3 -2 2] ; 

opt s . levels = -8 : - 1 ;  

eigtool (A , opts )  

Figure 43. 1 shows eigenvalues and pseudospectra generated by this code 
for three values of N. The images hint at a common property of spectral 
discretizations : A computed number, such as a particular eigenvalue of £ ,  
tends to  'snap in ' t o  the correct value when N becomes sufficiently large, 
so that , roughly speaking, any particular computed quantity will be either 
highly accurate or entirely wrong. The snapping-in generally occurs once 
the grid is fine enough that the function of interest is resolved by at least 
two points per wavelength. As N increases beyond this point , one observes 
'spectral accuracy' , which means convergence at a rate CJ(CN ) for some 
C < 1 if u is analytic or CJ (N-M) for all M if u is Coo . For example, 
Figure 43.2 shows the error in the resolvent norm I I (z - L) - 1 1 1  as a function 
of N for the particular choice z = 1 + 1 .5 i ,  the value marked by the cross 
in Figure 12 .8 .  The convergence is geometric, satisfying 
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Figure 43 .2 :  Convergence of the resolvent norm I I ( z  - L(N) ) - l l l to the correct 
value 98.403046 . . .  as the matrix dimension is increased for the example (43 .3 )  
of Benilov et al. with z = 1 + 1 . 5 i .  The anomalously small errors near N = 60 
and N = 100 are caused by sign changes. 

Note that the first norm on the left-hand side is a matrix 2-norm, while 
the second is an operator £2-norm. 

Theorems establishing the spectral accuracy of spectral discretizations 
have been published in many papers and books, including [56 , 127, 294, 
775] , and a small literature exists on approximation of pseudospectra per 
se [373 , 374, 375 , 836] . Three related effects combine to make the compu­
tation of a resolvent norm by a Fourier spectral method successful . First 
are phenomena of approximation that ensure that a smooth function can 
be approximated by trigonometric polynomials with rapidly improving ac­
curacy as N ----> 00. Second are effects of collocation, ensuring that the 
trigonometric polynomial implicitly utilized by the spectral method is suf­
ficiently close to optimal for this rapid convergence rate to be realized. 
Third is a matter of quadrature. The definition of the £2-norm involves an 
integral , and when we approximate the resolvent norm of an operator by 
that of a matrix derived by Fourier discretization, we are implicitly taking 
advantage of the fact that for smooth functions on a periodic domain, the 
trapezoid rule is a spectrally accurate quadrature formula. See Chapters 4 
and 12 of [775] . 

As a second illustration of a Fourier spectral method, the next code was 
used to plot the pseudospectra of Davies ' complex harmonic oscillator in 
Figure 1 1 .3 .  The operator is 

(43 . 5) 

on the whole real line , and therefore , this might not seem a candidate for 
a Fourier spectral method. However, the eigenfunctions and pseudoeigen­
functions decay exponentially, so one can cut off the domain to a finite 
interval [- £, £] with negligible error . On that interval , zero boundary con-
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Figure 43 .3 :  Eigenvalues and c:-pseudospectra of Fourier spectral discretizations 
of Davies' operator (43. 5) . Each image shows the square 0 ::; ReA, ImA ::; 5, and 
the contours correspond to c: = 10- 1 , 10-2 , . . . .  Compare Figures 5 . 1  and 1 1 . 3 .  

ditions would be appropriate, which could be imposed by a Chebyshev 
spectral method. Alternatively, it is just as effective to take the boundary 
conditions to be periodic , and this enables one to get the same accuracy 
with smaller values of N, because fewer grid points are wasted near the 
boundary. Our matrix approximation is 

(43 .6) 

where S is the diagonal matrix with entries xI , . . .  , xJv . This time the 
code uses the explicit formula (43 .2 )  via MATLAB's 't oepl itz'  command; 
results for three values of N are shown in Figure 43 .3 .  Plots (not shown) 
like those of Figure 43 . 2  again reveal geometric convergence of eigenvalues 
and resolvent norms . 

% Fourier grid : 

L 6 ;  

N = 150 ; 
x = 2*L* ( 1-N/2 : N/2) /N ; 

% real l ine is approximated by [-L , L] 

% N must be even 

% regular grid in [-L , L] 

% 2nd-order diff erent iat ion matrix : 

column = [-N-2/ 12-1/6 - . 5* ( - 1 ) . - ( 1 : N- 1 ) . /sin(pi* ( 1 : N- 1 ) /N) . - 2] ; 

D2 = (pi/L ) - 2*toeplitz ( column) ;  

% The Davies operator : 
h = 0 . 1 ; 

A = -h- 2*D2 + 1 i *diag (x . - 2 ) ; 

% Call EigTool to compute eigenvalues and pseudospectra : 
opts . ax = [0 5 0 5] ; 
opt s . levels = - 13 : - 1 ;  
e igtool ( A , opt s )  

Now we turn to  problems on bounded nonperiodic domains , where we 
use Chebyshev spectral collocation methods. To treat a function u defined 
on [- 1 , 1 ] , we pick an integer N > 0 and consider vectors 

Vj ::::; u (Xj ) ,  Xj = cos ( j7r/N) , j = O , l ,  . . .  , N. 
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These Chebyshev points {Xj } (given earlier in (30 . 1 ) )  are not uniformly 
distributed, but clustered near the endpoints, for unavoidable reasons ex­
plained in Chapter 5 of [775] . We associate a vector v with its unique 
polynomial interpolant v (x) defined on [- 1 , 1 ] ' an algebraic polynomial 
satisfying v (Xj ) = Vj for each j ,  taking the form 

N 
v (x) = L akTk (x) , 

k=O 

where Tk is the kth Chebyshev polynomial . As before, the coefficients ak 
in these expansions are not computed explicitly, nor do we make explicit 
use of Chebyshev polynomials . Again we work with derivatives via their 
values on the grid, writing, for example , 

for a differentiation matrix D (no longer circulant ) of dimension (N + 1 )  x 
(N + 1 ) .  The (i , j )  entry of D is equal to the value at Xi of the derivative 
of the polynomial that interpolates the vector that is 1 at Xj and zero 
elsewhere, and these numbers are known explicitly; they were apparently 
first published in [330] . If the rows and columns are indexed from 0 to N, 
the off-diagonal entries are 

i i- j, i , j = O ,  . . . , N, 

where Co = CN = 2 and Ci = 1 otherwise , and the diagonal entries are 
defined by the condition that each row of D sums to zero. Alternatively, 
as in the Fourier case, it is possible to compute D on the fly by use of the 
DFT [775 , Chap .  8] . 

The following code segment , building upon code listed on page 290, illus­
trates the use of such methods for the advection-diffusion operator ( 12 .3) . 
The operator is 

X E (O , I )  (43 .7) 

with 'f/ = 0 .015 ,  and the eigenvalues and pseudospectra were plotted in 
Figure 12 .4 .  In Figure 43 .4 we repeat this computation for several values 
of N. 

% Chebyshev diff erent iat i on matrix : 

N 60 ; 

x = cos (pi* ( O : N) /N) ' ;  

c = [2 ;  ones ( N- 1 , 1 ) ; 2J . * ( - 1 ) . - ( O : N) ' ;  

X = repmat (x , 1 , N+ 1 ) ; dX = X-X ' ; 
D = ( c* ( 1 . /c ) ' ) . / (dX+ ( eye (N+ 1 » ) ;  
D D - diag ( sum (D ' » ; 
D = 2*D ; x = (x+ 1 ) /2 ; 

% Chebyshev point s 

% off-diagonal entries 

% diagonal entries 
% rescale [ - 1 , 1J -> [0 , 1 J 
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N = 20 N = 40 N = 60 

Figure 43 .4 :  Eigenvalues and E-pseudospectra of Chebyshev spectral discretiza­
tions of the advection-diffusion operator (43 .7) .  Each image shows the rect­
angle -60 :=:; ReA :=:; 20, -50 :=:; ImA :=:; 50, and the contours correspond to 
E = 10- 1 , 10-2 , . . . .  Compare Figure 12 .4 .  

% Advect ion-diffusion operator : 

eta = 0 . 01 5 ; 

L 

L 

W 

L 

eta*D- 2  + D ;  

L ( 2 : N , 2 : N) ; 

diag ( sqrt (pi* sqrt (x-x . - 2 ) / (2*N» ) ;  

W*L/W ; 

% impose BCs u (O ) =u ( l ) =O 
% Gaus s-Chebyshev weight s 

% s imilarity transformat ion 

% Call EigTool to  compute e igenvalues and pseudospectra : 

opt s . ax = [-60 20 -50 50] ; 

opt s . levels = - 1 2 : 0 ;  

eigtool (L , opt s )  

Two new issues arise with this computation that did not appear for 
periodic problems. The first is the enforcement of boundary conditions . 
For this problem, with u(O) = u( l )  = 0 ,  this is simply a matter of stripping 
off the first and last rows and columns of the differentiation matrix by the 
command L = L( 2 : N ,  2 :  N) . More complicated boundary conditions can 
be treated by methods discussed, for example, in [775 , Chap . 13J . 

The more interesting issue pertains to the next two lines of the program: 

W = diag ( sqrt (pi* sqrt (x-x . - 2 ) / (2*N» ) ;  

L = W*L/W ; 

For many purposes in the numerical solution of differential equations , there 
is no need to calculate a norm. Pseudospectra, however , are norm-depend­
ent ,  as are associated quantities such as I l et£' I I . Thus we are faced with 
the third of the three numerical effects mentioned earlier, that of quadra­
ture. For periodic problems, one generally does not need to think about 
quadrature , because the matrix norm amounts to a spectrally accurate ap­
proximation of the appropriate operator norm (due to the accuracy of the 



412 IX · COMPUTATION OF PSEUDOSPECTRA 

trapezoid rule in this setting) . On an irregular grid such as a Chebyshev 
grid , however, simply taking the matrix norm will lead to the wrong an­
swer. For example , if we delete the two lines just listed from the code 
abovc, wc find convincing convergence as N ----> 00 to the following three 
numbers : 

1 1 ( - 10 - q-1 1 1  ;:::;; 6992 .73, I l eo . 1e l l ;:::;; 1 . 0446, Q;(,C) ;:::;; 0 . 87637. 

(Here () denotes the numerical abscissa, i .e . , the maximal real part of all 
points in the numerical range; see § 17 . )  All three of these numbers are 
wrong. Indeed, the latter two can be seen to be wrong by inspection, since 
/:.; is a dissipative operator in L2 [O, 1 ] . The correct results are 

I I ( -10  - q-1 1 1  ;:::;; 6618 .37, I l eo . 1e l l ;:::;; 0 .98392, (}(q ;:::;; -0. 148044. 

To compute quantities like these correctly, we must introduce a weight­
ing to compensate for the irregularity of the grid. Suppose that 1 1 · 1 1 2 is the 
usual vector 2-norm and I I . I I  denotes the weighted vector norm intended 
to approximate the continuous L2-norm on functions . Then we have 

l I u l 1 2 = L wk luk l 2 

for some set of quadrature weights {wd . If W = diag ( { (wd 1/2 } ) , then 
this implies 

l I u l l = I IWu l 1 2 , 
and at the matrix level (see (45 .9) ) ,  

O"c (A) = 0"�-nocm (WAw-1 ) . 
If we cared only about convergence, not efficiency, then any set of weights 
with asymptotic density proportional to (x - X2 ) 1 /2 would do, since this 
would compensate for the asymptotic density proportional to (x - x2 ) - 1/2 
of the Chebyshev points scaled to [0 , 1 ] . For efficiency, however, one would 
like to choose the weights more carefully so as to achieve rapid convergence . 
As it happens , weights proportional to (x - x2 ) 1 /2 are an accurate choice 
as well as an adequate one, differing from our two lines of code only by a 
constant factor, which cancels in the similarity transformation. The weights 
in the code are the Gauss-Chebyshev-Lobatto weights for the interval [0 , 1] ' 
and they will compute the L2-norm I l u l l  exactly for any function u whose 
square is equal to J x - x2 times a polynomial of degree :::; 2N - 1 .  

An alternative set of weights that are more appropriate in principle 
and moderately better in practice are Clenshaw-Curtis weights [ 153 ,  189] . 
With this discretization, the result will be exact for any u whose square is 
a polynomial of degree :::; 2N - 1 .  The Clenshaw-Curtis weights are not 
given by quite as simple a formula, but they can be computed by means of 
the DFT or by expressions encoded, for example, in the program c lencurt 
of [775] ; it is then enough to replace the two lines above by 
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unweighted 

Gauss-Chebyshev 

o 50 1 00 1 50 
N 

Figure 43 .5 :  Convergence of the computed numerical abscissa a:(L(N) )  of the 
advection-diffusion operator (43 . 7) to the correct value - T/ 7r2 as N -> 00. With 
unweighted Chebyshev matrix approximations, there is no convergence. Both 
Gauss-Chebyshev and Clenshaw-Curtis formulas are effective, the latter more 
so. Nevertheless , the convergence for this discretization falls short of spectral 
accuracy. 

[S , w] = clencurt (N) ; 

W diag ( sqrt (w ( 2 : N) ) /2 ) ; 

L = W*L/W ; 

Figure 43 . 5  shows the results of using these various methods to compute 
the numerical abscissa of ,c. We see that Clenshaw-Curtis quadrature out­
performs Gauss-Chebyshev. However, the difference is not too important 
in practice , since the errors in the Gauss-Chebyshev approach are relative 
to the quantity being computed, not to the scale of the matrix; thus they 
are invisible to the eye in a typical plot of s-pseudospectra, even for very 
small s .  We also note that the convergence in Figure 43 . 5  is not spec­
tral , but only algebraic: The error is r:J(N-2 ) for the Gauss-Chebyshev 
weights and r:J (N-4 ) for Clenshaw-Curtis . No doubt one could develop 
better discretizahons of this problem. 

Our fourth and final example concerns an integral rather than differ­
ential operator : the complex symmetric operator (60.3) that arises in the 
theory of lasers , 

Au(x) = If!-III e- iF(x-s ) 2 u(s ) ds, ( 43.8) 

where F > 0 is the Fresnel number. Since the spatial domain is [- 1 , 1 ] , 
the operator (43 .8) could be discretized by Chebyshev methods . However , 
for maximal accuracy and to show a variety of methods, the following code 
Uses Gauss quadrature instead. (The appearance of W*A*W rather than 
W*A/W in this code is not an error ; the extra factor of W*W on the right 
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Figure 43.6 : Eigenvalues and c:-pseudospectra of Gauss quadrature discretiza­
tions of the laser integral operator (43 .8) with F = 161l' . Each image shows the 
rectangle - 1 . 1  :::; ReA :::; 1 . 2 ,  - 1 . 1 :::; ImA :::; 1 . 1 ,  and the contours correspond to 
c: = 10- 1 , 10- 1 . 5 , 10-2 , • • . .  Compare Figure 60 .2 .  

arises from the fact that in addition to the matter of appropriate weighting 
of vectors , the operator itself is defined by an integral that is approximated 
by Gauss quadrature . ) Pseudospectra for three values of N are shown in 
Figure 43 .6 ,  and a look at the numbers reveals satisfying spectral accuracy. 
For example, Figure 43 .7  shows rapid convergence to the numbers 

I IA I I  � 1 . 000000, I IA- 1 1 1  � 88.6952 , a(A) � 0 .999714. 

% Nodes and weight s f or Gauss quadrature : 

N = 150 ; 

beta = 0 . 5* ( 1- (2* ( 1 : N- l ) ) . � ( -2) ) . � ( - 1/2) ; 

T = diag (beta , l ) + diag (beta , - l ) ; 

[V D] = eig (T) ; 

[x ii]  = sort (diag (D) ' ) ; 

w = 2*V ( 1 , ii ) . � 2 ;  

% Integral operator A :  

F = 16*pi ; 

A = zeros (N) ; 

for k= l : N 

% tridiagonal Jacobi matrix 

% eigenvalues and vectors 

% nodes 

% weights 

A (k , : )  = sqrt ( l i *F/pi) *exp ( - l i *F* (x (k) -x) . � 2 ) ; 

end 

W = diag ( sqrt (w) ) ; 

A = W*A*W ; 

% Call EigTool to compute eigenvalues and pseudospectra : 

opts . ax = [- 1 . 1  1 . 2  - 1 . 1  1 . 1 ] ;  

opt s . levels = -3 :  . 5 : - 1 ;  

e igtool ( A , opt s )  

All of  our discussion has concerned operators acting in one space di­
mension, and indeed, because the one-dimensional case suffices to illus­
trate most effects of nonnormality, multivariate operators hardly appear in 
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Figure 43.7 :  Errors as a function of N in I IA I I , I IA - 1 1 1 ,  and the numerical abscissa 
a(A) ,  computed via Gauss quadrature for the laser operator (43 .8) . In each case , 
once N is large enough, there is rapid convergence down to the level of rounding 
errors . 

this book at all . Such operators can be discretized by spectral methods in 
which the dimensions are treated independently. Often one utilizes a mix 
of Fourier discretization in some directions and Chebyshev in others , e .g . , if 
the domain is a disk or a sphere or a cylinder. In such problems the contri­
butions along a periodic or unbounded coordinate with constant coefficients 
may be orthogonal , in which case there may be no need to discretize at all :  
the pseudospectra problem decouples into a set of problems of lower dimen­
sion. For example, the pseudospectra of hydrodynamic stability operators 
in §20 correspond to three-dimensional problems, conceptually speaking, 
but in each case two of the dimensions are eliminated by Fourier transfor­
mation, leaving a two-parameter family of spectral discretizations in one 
dimension. 

A more challenging matter is the question of what one can do to com­
pute operator norms that are not defined by integrals of smooth functions , 
that is, norms in Banach rather than Hilbert spaces . In such cases there 
is usually no quadrature formula, and the 1- or oo-norms of a spectral 
discretization matrix, say, cannot be expected to match those of the corre­
sponding operator to high accuracy. There must be effective methods for 
such computations, but we do not know them. 



44 . A flow chart of pseudospectra a lgorithms __ _ 

The appearance in 2002 of Thomas Wright 's Oxford D .Phil . thesis Algo­
rithms and Software for Pseudospectra [837] was a landmark in the de­
velopment of methods for the computation of pseudospectra. This thesis 
introduced the EigTool software system [838] and the method of computing 
pseudospectra of large matrices via implicitly restarted Arnoldi iteration 
( §40) . It also put forward a wider vision of how pseudospectra might be 
calculated for a diverse range of problems. Though some of his ideas were 
not implemented in EigTool, Wright also proposed algorithms for dense and 
sparse pseudospectra computations associated with generalized eigenvalue 
problems (§45) , rectangular matrices (§46) , and weighted norms ( §51 ) .  He 
summarized this vision in four pages of flow charts. 

With Wright 's permission, we have reproduced his flow charts in this 
section. They are reprinted directly, without being re-typeset to match the 
rest of the book. Our view is that Wright 's summary is so comprehensive, 
and such an interesting snapshot of the state of the art in 2002 , that it is 
most appropriate to present it exactly as he did. As the years go by, some 
of the methods he proposed will undoubtedly be improved upon, but as we 
write, just two years later, there is little we would change. 

Given a matrix pseudospectra problem, one begins in the first flow 
chart, Figure 44. 1 ,  by checking if the problem concerns a weighted norm 
as opposed to the standard matrix 2-norm. After appropriate preliminary 
calculations , one then moves to one of the next three flow charts, Fig­
ures 44.2-44.4 ,  depending on whether the matrix is dense and square (the 
standard case discussed in §39) , sparse and square (typically for dimensions 
in the thousands or higher) ,  or dense and rectangular , respectively. The 
last case is of great importance in practice because a calculation by the 
implicitly restarted Arnoldi method, as described in §40, reduces a large 
sparse matrix to a dense rectangular one, with one more row than column, 
as indicated in the bottom right portion of the flow chart of Figure 44 .3 . 
Cases with many more rows than columns have received much less attention 
as yet . 

Wright 's schema covers algorithms for a broad range of 2-norm and 
weighted 2-norm ( i .e . , Hilbert space) computations , but it does not in­
corporate 1- ,  00- , or other Banach space norms. Details of each of these 
computational steps can be found in [837] . 
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Is it practical and 
numerically safe 

to invert matrices 
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Figure 44. 1 :  Starting point of a pseudospectra computation; the operations shown 
set up data for the other three flow charts . Boldface marks the path explicitly 
implemented in EigTool. Reproduced with permission from [837] . 
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OR := B 
B := R 

A := OA 

Dense 
Rectangular 

IX · COMPUTATION OF PSEUDOSPECTRA 

No 

Replace A(n+ 1 om, : )  
with i ts  QR factorisation 
and drop 2n+ 1 :m rows 

of zeros. 

No az factorisation of 

Yes 

A, B (or A, I) to get 
S, T 

Banded OR := zT -S 
Drop rows of zeros 

from R 

Inverse Lanczos 
iteration for R*R 

Figure 44.4: Algorithms for computing pseudospectra of dense rectangular ma­
trices , from [837] , In the common situation where this flow chart is entered with 
an (n + 1) x n upper Hessenberg matrix from Arnoldi projection as in Figure 44 .3 ,  
there is no need to carry out the QZ factorization indicated in the upper right 
box: One proceeds directly to banded QR factorization. 
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45 . Genera l ized eigenva lue problems ______ _ 

If A is a square matrix, then the evolution equation 

has solutions 

du 
= Au 

dt 

whenever A and v solve the eigenvalue problem 

Av = AV. 

(45 . 1  ) 

( 45 .2 )  

In some applications , however, the equation takes the more general form 

du 
B ill = Au, ( 45 .3) 

where B is another square matrix of the same dimension. Now there will be 
solutions of the form (45 . 1 )  provided A and v solve a generalized eigenvalue 
problem, 

Av = ABv. (45 .4) 

It is also common to write this as (A-AB)v = 0 ;  the parameter-dependent 
matrix A - AB is known as a matrix pencil. In finite element analysis, B 
is called the 'mass matrix' and A is the 'stiffness matrix' , since (45 .3) is 
like Newton's first law for a mass B attached to a spring of stiffness A. 
(To be precise , in that application there would be a minus sign and the 
time derivative would be of second order . ) In many applications B will 
be Hermitian positive definite, but in others it may be non-Hermitian, 
indefinite ,  and even singular . In the singular case , (45 . 1 )  is known as a 
system of differential-algebraic equations (DAEs) [ 14 , 365, 6 10] . 

These remarks apply to continuous time dynamics, but of course , there 
are analogous statements for discrete time. The evolution equation 

has solutions 
( 45 .5 )  

whenever A and v satisfy (45 .2 ) , and the more general evolution equation 

(45 .6 )  
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has solutions (45 .5 )  provided >. and v satisfy (45.4) . These notions can 
be generalized to linear operators, but for simplicity we shall confine our 
attention to matrices . 

In principle, many evolution problems originate in generalized form. 
Nevertheless, one sees standard eigenvalue problems more often than gen­
eralized ones , and there are various reasons for this. In many applications , 
B may be a constant ( i . e . , a multiple of the identity matrix, typically with 
physical dimensions attached) , in which case it is trivially eliminated from 
the problem. More generally, if B is nonsingular, then it can again be 
eliminated by reducing (45.4) to the standard eigenvalue problem 

( 45.7) 

Conventionally, there would be just two main reasons to work with the 
generalized eigenvalue problem (45.4) rather than its equivalent standard 
form (45 . 7) . First , one might be concerned with a case where B was singu­
lar .  Second, the generalized form might be preferable for reasons of insight , 
scaling, or computation. For example, in an application in structural me­
chanics , the mass matrix may be invertible mathematically, but of too large 
a dimension to be inverted explicitly on a computer . 

When we turn to nonnormal dynamics and pseudospectra, the matter 
of standard vs . generalized formulations requires more careful thought , be­
cause now, norms matter. Multiplying a vector by B- 1 changes its norm, 
and thus from a quantitative point of view, (45.4) and (45 . 7) begin to look 
very different . 

What is the 'right ' definition of pseudospectra for a matrix pencil? 
Should we think of perturbations of A alone? Should we consider indepen­
dent perturbations of both A and B? Should we reduce the problem to 
that of the pseudospectra of B- 1A? There is a small literature on such 
questions dating to 1994, and the definitions considered by the dozen or so 
authors involved can be summarized as follows . 

Definition 1 .  H B  is nonsingular , one can define i7E (A, B) = i7c (B- IA) . 
This amounts to saying that the boundary of i7c (A, B) is the 10- 1  level curve 
of 1 1 (>' - B- IA) - l l l , and this is the definition used by Ruhe [646] . 

Definition 2. Another approach is to say that i7c (A,  B)  is bounded by 
the C1 level curve of I I (>'B - A) - I I I .  This is equivalent t o  considering 
perturbations of A only, not B, and is the course followed by van Dors­
selaer [794, 795] . It is also mentioned by Riedel [640] , though he prefers 
Definition 4, below. 

Definition 3 .  More generally, one could define i7E (A, B) by perturbing 
both A and B by independently controllable amounts. This approach 
requires the introduction of parameters to control the relative perturbations 
of the two matrices . It is favored by Fraysse et al . ,  Higham and Tisseur , 
Lavallee, and Toumazou [290 , 485 , 754, 764] . 

Definition 4. Suppose B is Hermitian positive definite with Cholesky 
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factorization B = F*F .  Riedel proposes defining O"c: (A, B) to be the set 
bounded by the C1 level curve of 1 1 (>, - F-*  AF- 1 ) - 1 1 1  [640] , where F-* = 

(F- 1 ) * as usual . 
Rather than treat all of these ideas as equal we shall take a stand on 

which one is ' right ' . Throughout this book, we take the view that the most 
important applications of pseudospectra are to the behavior of nonnormal 
matrices and operators , and that applications to eigenvalue perturbations 
are secondary. This judgment is a matter of taste, and of course , we recog­
nize that perturbation of eigenvalues is an important subject too and that 
in some applications it is the key issue . Nevertheless , we shall follow our 
emphasis on behavior here and note that it suggests the following principle : 
The pseudospectra associated with a pencil A- AB should not change if both 
A and B are multiplied by a nonsingular matrix C.  If pseudospectra are 
to shed light on dynamical behavior such as transients in the dependence 
of I l u (t) 1 1 on t or I l uCk) 1 1  on k, for example , then since premultiplying the 
evolution equation (45 .3) or (45 .6) by C does not change this dependence, 
it should not change the pseudospectra. 

This principle immediately suggests that Definition 1 above is the right 
one, but with an important caveat . The caveat helps to explain why there 
have been a multiplicity of definitions in use, and specifically, it explains 
the rationale behind Definition 4 .  

Definition of  pseudospectra for generalized eigenvalue problems 

For any c > 0 ,  if B is nonsingular , the c -pseudospectrum of the pencil 
A - AB is 

( 45.8) 

However, one must note that as always , 0"c: ( B- 1A) is defined with re­
spect to a particular choice of norm I I  . I I in the space of vectors u 
to which B-1A is applied. In many applications , this norm is given 
by I l u l l  = I I Fu l 1 2 for some nonsingular matrix F, in which case (45 .8) 
reduces to 

( 45 .9) 

In some of these applications , the matrix F satisfies B = F*F, in which 
case we have the further simplification 

( 45 . 10) 

Equation (45 .9) can be derived as follows. By (45 . 8 ) ,  O"c: (A, B) is 
bounded by the c1 level curve of I I (z - B-1A) - 1 1 1 , for which we com­
pute 



426 x ·  FURTHER MATHEMATICAL ISSUES 

I I F (z  - B- 1A) - lF- 1u I 1 2 SUp 
u#O I I FF- 1u I 1 2 

I I F (z - B- 1A) - lF- 1 1 1 2 , 

which establishes (45 .9 ) . As for (45 . 1 0) ,  if B = F*F ,  then this last expres­
sion is the same as I I (z-FF- 1F-*AF- 1 ) - 1 1 1 2 , that is, I I (z-F-*AF- 1 ) - 1 1 1 2 ' 
(Essentially the same calculation was presented in different notation on 
p. 379 . )  

We have just defined O'c (A, B) by reducing i t  to O'c ( B- 1A) .  This i s  a 
mathematical definition, and it is not intended to imply anything about 
how O'c (A, B) should be computed in practice . Sometimes the explicit re­
duction to B-1A or FB-1AF-1 or F-*AF- 1 is a good idea; it is certainly 
simple to carry out when the matrices are of small enough dimensions (e .g . , 
hundreds rather than thousands) and B and F are well-conditioned. On 
the other hand, there may be advantages of speed, feasibility, or numeri­
cal accuracy in working with a formulation that does not require inverting 
B or F. Methods of this kind are advocated by Riedel [640] , who re­
lates O'c (A, B) to the generalized singular value decomposition of the pair 
A, B [327, 800] . Such computational methods were outlined in the last 
section. For a survey of related issues concerning large-scale generalized 
eigenvalue calculations , see [542] . 

In a number of cases in the literature, authors have transformed their 
matrices to achieve the effect of (45 .9 )  or (45 . 10) without referring ex­
plicitly to generalized eigenvalue problems. An early example is the 1993 
paper of Reddy, Schmid, and Henningson on the Orr-Sommerfeld operator, 
considered in §22 [624] . Equation ( 1 .5 )  of [624] is Au = ABu, and in equa­
tion (4 .3) and at the bottom of page 27 of that paper it is explained that the 
appropriate energy norm for the problem is I l u l l  = I I Fu l 1 2 with F*F = B.  
This leads t o  I I (z - B-1A) - 1 1 1  = I I F (z - B-1A) - lF- 1 1 1 2 just as we have 
described, and Reddy et al . present the details in their Appendix A .  

We have seen that investigation of dynamical problems leads naturally 
to generalized eigenvalue problems. In fact , it very often leads to second­
order generalized problems, and indeed, virtually all of the problems that 
arise in the analysis of structures and vibrations are of second order . We 
shall now consider a general equation of this kind . 

Suppose we have the evolution equation 

Mx" + Cx' + Kx = 0,  (45. 1 1 )  

where x = x(t) i s  a vector, ' denotes the time derivative , and M, C ,  and K 
are square matrices . In an application, M is typically associated with mass 
and K with stiffness, and we shall assume that both of these matrices are 
Hermitian positive definite . We also assume that the energy of the system 
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at any time t is given by the sum 

energy = (x' ) * Mx' + x* Kx, (45 . 12)  

with the two terms corresponding to kinetic and potential energy. If C is 
zero or very small in norm, the dynamics will be close to normal . If C is 
large and positive definite, the system is strongly damped. We do not as­
sume that C is positive definite ,  however, and some interesting applications 
involve matrices that are not . 

All the questions we have discussed for first-order generalized eigen­
value problems arise again for the second-order problem (45. 1 1 ) .  In par­
ticular , how should pseudospectra be defined? Of the many possibilities , 
we shall again select the one most closely tied to dynamical behavior . We 
rewrite (45 . 1 1 )  as the first-order equation 

(45 . 13) 

which has the form (45 .3) with 

(45 . 14) 

At this point , following the ideas of (45.8)-(45 . 10) , let us suppose that K 
and M have factorizations 

K = G*G,  M = H*H; (45 . 15 )  

in  practice these would typically be Cholesky factorizations with G and H 
upper triangular . Then according to (45 . 12) , the appropriate energy norm 
is defined by 

I l u l l  = I I Fu I 1 2 , F = (G 
H ) ' (45 . 16)  

with the blank entries representing zero matrices . From here, the defini­
tion (45 .9 )  can be applied, revealing that the matrix describing the dynam­
ics in first-order , 2-norm form is FB- 1AF- 1 . To derive the same result 
explicitly, we may rewrite (45 . 13) as 

(45 . 17) 

or equivalently, 

(G 
H ) ( �,) ' 

= ( G 
H ) ( _�- lK _M

1
- 1 C ) (G-�_ l) (G 

H ) ( �,) . (45 . 18) 
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This formulation is simply 

Hence by multiplying the first three matrices on the right of (45 . 18) we find 

or upon using the identities KG-1 = G* and HM-1 = H- * , 

(45 . 19 )  

This is  the matrix one could use to investigate the dynamics of (45 . 1 1 )  via 
pseudospectra of a standard (not generalized) problem. Note that in the 
undamped case, C = 0, this matrix is skew-Hermitian and hence normal , 
with eigenvalues on the imaginary axis , but in general, (45 . 19 )  is nonnor­
mal . 

All of this discussion, including the definition (45 .8 ) , has assumed that 
B is nonsingular . The theory of pseudospectra for cases in which B is 
singular has begun to receive some attention, for example in [394] , but 
such studies are not far advanced as yet . Among the complications that 
arise are the fact that when B is singular and A is not , the pencil must 
have an infinite eigenvalue, A = 00 .  When A is also singular and its null 
space has a nontrivial intersection with that of B, then there exist x i- 0 
such that Ax = ABx for all A E <C, and the pencil is said to be singular ; 
see , e .g . , [299, 729] . Rather than exploring such situations systematically, 
we shall simply give an example to illustrate some of the issues that may 
arise if one wishes to apply the principle of dynamical behavior followed in 
this section to problems with singular B.  

Consider the linear differential-algebraic system 

u = v , v' = v , 

which we may write in matrix form as the system 

(45 . 20) 

where the matrix on the left is singular . What should we say are the 
pseudospectra of the associated pencil? One answer comes by interpreting 
this system as the is ----> 0 limit of 
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that is, 

As !j -> 0, one eigenvalue of this last matrix diverges to -Xl while the other 
stays fixed at 1. Meanwhile, one component of the c-pseudospectrum moves 
off to -00 and the other component converges to the open disk of radius 
V2c around the point z = 1 .  This latter set would be a possible choice for 
the c-pseudospectrum of the pencil associated with (45 .20) . 

In closing, we reiterate that we have focused in this section on a sin­
gle definition of pseudospectra of matrix pencils , which is not the only 
reasonable one. Theorems, algorithms, and applications appropriate to 
other definitions can be found in the references . In particular , many au­
thors consider independent perturbations of A and B ,  and such investi­
gations are related to perturbation theory for generalized eigenvalue prob­
lems [200 , 291 , 725, 729] . Related notions have been proposed for polyno­
mial eigenvalue problems [394, 474, 754] . 

For rectangular , rather than square, pencils , see the remarks at the end 
of the next section. 
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Eigenvalues are ordinarily defined for square matrices , but it is possible to 
extend the idea to the rectangular case . If A is an M x N matrix with 
M > N, we define an eigenvalue A and eigenvector v i- 0 of A by the 
equation 

(A - AJ)V = 0 ,  (46 . 1  ) 

where I denotes the M x N ' rectangular identity' with 1 on the main 
diagonal and 0 elsewhere. This idea has appeared, for example , in [70 , 725 , 
750] . However, the consideration of eigenvalues of rectangular matrices is 
not common. One indication of its limitations follows from (46. 1 ) :  Most 
rectangular matrices have no eigenvalues at all , and for those that do, an 
infinitesimal perturbation will in general remove them. 

Pseudospectra are better behaved. The pseudospectra of a rectangular 
matrix are stable under perturbations and can be used in various applica­
tions . In particular , they are a crucial tool in the algorithm for comput­
ing pseudospectra of large-scale square matrices presented in §40, based 
on implicitly restarted Arnoldi iterations. Every time EigTool computes 
the pseudospectra of a large sparse matrix by iterative methods , the final 
phase of the process is the computation of the pseudospectra of a smaller 
(N + 1) x N rectangular matrix [837] . Even for Hermitian matrices, pseudo­
spectra of rectangular projected submatrices give interesting insight into 
the convergence of Lanczos iterations. 

We collect the definitions in the following theorem, which closely follows 
the developments of §2 for square matrices . These ideas have a rather short 
history: we only know of the references [97, 1 18 ,  394, 761 ,  841] . The first 
two conditions of the theorem apply to any matrix norm subordinate to a 
pair of vector norms (one in the domain <eN , the other in the range <eM) . 
The second two are restricted to the case where 1 1 · 1 1  = 1 1 · 1 1 2 in both spaces . 
In this circumstance we define the pseudoinverse of an M x N matrix A 
(M � N) with singular value decomposition 

by 

N 
A = U}jV* = L Sj UjV; 

j= 1 

N 
A+ = (A* A) - 1A* = '" �v u* (46 .2 )  L s .  J J ' 

j= 1  J 

when SN is nonzero; i .e . , A has full rank [327, 776] . If A is rank-deficient , 
we take A+ to be undefined and interpret its norm to be 00 in condition (iv) . 



46 · PSEUDO SPECTRA OF RECTANGULAR MATRICES 431 

Equivalent definitions of pseudospectra of a rectangular matrix 

Theorem 46. 1  Let A be an M x N matrix and I the M x N 'identity ', 
and let E > 0 be arbitrary. The following two definitions of the E ­
pseudospectrum ac (A) are equivalent: It is the set of z E <e such that 

(i) there exists v E <eN with I l v l l  = 1 such that I I (z - A)v l l  < E; 

(ii) z is an eigenvalue of A + E for some E E <eMXN with I I E I I  < E . 

If I I  . I I  = I I  . 1 1 2 , two further equivalent conditions are 

(iii) SN (z - A) < E ;  

(iv) I I (z - A)+ I I  > C1 . 
Proof (compare Theorem 2 . 1 ) .  If z E a(A) , the equivalence of (i )-( iv) is 
trivial , so assume z tf. a(A) . To prove (ii)=} (i) , suppose (A + E)v = zv 
for some E E <eMxN with I I E I I  < E and v E <eN with I l v l l  = 1 . Then 
I I (z - A)v l l  = I I Ev l 1 < E, as required. Conversely, if I I (z - A)v l l  < E for 
some v E <eN with I l v l l  = 1 , a rank-1 matrix E = cvw* with I I E I I  < E and 
(A + E)v = zv can be constructed as in the proof of Theorem 2 . 1 .  

Turning t o  (iii) and (iv) , suppose I I · I I = 1 1 · 1 1 2 . Since I I (z - A)+ I I  = 

l/sN (z - A) , the equivalence of these two conditions is immediate, and 
their equivalence to (ii) follows from the Schmidt-Mirsky theorem, which 
states that the 2-norm distance of a matrix to the space of rank-deficient 
matrices is equal to its smallest singular value [327, 729] . • 

We now come to a theorem that is important for ap�ications . In words , 
condition (i) below states that if A is a matrix and A is a submatrix of 
A obtained by selecting certain columns, then the pseudospectra of A are 
contained in those of A. For this to be true we assume that the norms 
involved are consistent in the following sense : If v is a vector obtained 
from a vector v by selecting certain entries , then I l v l l  :::; I l v l l . This property 
holds , for example, if 1 1 · 1 1  = 1 1 · l l p for some p with 1 :::; P :::; 00. (This theorem 
Uses MATLAB notation for submatrices . )  

Monotonicity of  pseudospectra 

Theorem 46.2  Let A be an M x N matrix with M � N .  Then for 
any E > 0, 

(i) ac (A( : ,  l : k) )  <;;; ac (A( : , 1 : k+ 1) ) , 1 :::; k < N, 

(ii) ac (A( 1 : k+ 1 , : ) ) <;;; ac (A(l : k , : ) ) , 1 :::; k < M, 

assuming that the norms are consistent in  the sense defined above. 
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Proof. These assertions follow from condition (i) of Theorem 46. 1 ,  together 
with the fact that the quantity min l l v l l = I I I (z  - A)v l l  can only increase (or 
remain constant ) if a column is removed from A or if a new row is added 
to A . •  

It is time for some examples , based as usual on the norm I I  . I I  = I I  . 1 1 2 . 
Our first , following [841] , is the 4 x 3 matrix 

10 
2 . 1  
0 . 1  
0 . 1  

10 ) 
4 .2  
0 . 2  
0 .2  

( 46.3) 

Unlike most rectangular matrices , this one has some eigenvalues : Al = ° 
and A2 = 1 ,  with eigenvectors ( 1O , -2 , 1 )T  and ( l , O , O )T .  The first panel 
of Figure 46 . 1  shows these points together with some of the pseudospectra. 
We see immediately that in addition to the two eigenvalues , where I I (z -
A) - 1 1 1  goes to infinity, there is a third area in the complex plane where 
I I (z - A) - I I I  has a finite local maximum. This could not happen for a 
square matrix, for which I I (z  - A) - I I I  would satisfy a maximum principle . 
The local maximum is further illustrated in the surface plot of Figure 46 .2 .  

This lack of a maximum principle reflects some profound differences 
between the square and rectangular eigenvalue problems . For a square 
matrix A, the resolvent (Z - A) - I is an analytic function of z for z (j. O'(A) . 
If I I  . I I  = I I  . 1 1 2 , this implies that log I I  (z  - A) - 1 1 1  i s  a subharmonic function, 
and this is one way to derive the maximum principle for I I (z - A) - I I I  (cf. Theorem 4.2) . I t  also implies that projectors and other matrix functions 
can be computed by Cauchy integrals . All these convenient properties 
vanish in the rectangular case . For example, because the pseudoinversc 
of a matrix B is defined by a formula B+ = (B*B) - I B* that contains a 
complex conjugate, it is evident that (z - A) + does not depend analytically 
on z . To analyze it one has to use more cumbersome techniques, and 

I- '� 
A 1-' -'- - ' -_ . A(1 :3 , : )  : 

:' � : � ! :I 
-1 1 ""'. -1 1 , -1 1 
� L __ _ 

o 2 3 0 -;------=-2- 3 

A( : , 1 : 2) 

Figure 46. 1 :  E-pseudospectra of the matrix A of (46 .3)  and two of its submatrices , 
for E = 10- 1 , 10- 1 . 25 , . . .  , 10-2 . The pseudospectra are nested, as established by 
Theorem 46 .2 .  
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-1 

Figure 46 .2 :  A surface plot of the same data as in the left panel of Figure 46 . 1 ,  
that is, I I (z - A) - I I I  as a function o f  z for the 4 x 3 matrix (46 .3) . The first two 
peaks are eigenvalues where the height goes to infinity, but the third is finite. 
This could not happen for a square matrix. 

in fact , it is not known precisely how many local maxima l I (z  - A) - l l l  
can have for an M x N matrix A with M > N, or perhaps equivalently, 
how many connected components the pseudospectrum O",, (A) can have. 
Byers [124] and Gu [352] emphasize that the answer must be c:J (N) or even 
greater , and Burke, Lewis, and Overton have established an upper bound 
of 2N(4N - 1) [ 1 18] .  

The second and third panels of Figure 46 . 1  illustrate Theorem 46 . 2 .  In 
the second panel we have deleted a row to obtain a square matrix, and as 
established in condition (ii) of the theorem, the pseudospectra grow bigger 
and there is now a full set of three eigenvalues. In the right panel we have 
deleted a column, and as established in condition (i) , the pseudospectra 
shrink. 

For a quite different set of examples , Figure 46 .3  shows pseudospec­
tra of three rectangular matrices adapted from examples appearing else­
where in this book. In each case we start from an N x N matrix and 
then delete its final column, thereby obtaining a rectangular matrix of di­
mensions N x (N - 1 ) .  The first panel comes from the Grcar matrix of 
Figure 7 .5 with N = 100, the second from the Scottish flag matrix (9 . 7) of 
Figure 9 .4 with N = 101 ,  and the third from the complex random matrix 
of Figure 35 .3 with N = 256. In all three cases , there are no eigenvalues . 
Nevertheless , the pseudospectra are quite similar to those displayed in the 
figures indicated. (This does not happen for all matrices . ) vVe do not claim 
that these particular (N - 1) x N matrix sections have much significance 
for any applications . Instead, our point is a more general one . Through­
out this book it is illustrated that for square matrices , pseudospectra may 
reveal structure that is not shown by eigenvalues . We now see that for 
rectangular matrices , pseudospectra may reveal structure even when there 
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�, . .  ---- .� i 1 I 

Figure 46 .3 :  Pseudospectra of rectangular matrices obtained from the matrices 
of Figures 7 .5 ,  9.4 ,  and 35.3 by deleting the final columns . In each case there are 
no eigenvalues, but the pseudospectra look much the same as before. 

are no eigenvalues at all . 
The problem of how best to compute pseudospectra of rectangular ma­

trices is complex. We shall not give details here, but refer the reader to §44 
and [841 ]  for a description of available algorithms and to EigTool [838] for 
their implementation. The problem is made challenging by the fact that 
in contrast to the square case ( §39) [520] , no method appears to be known 
for reducing a rectangular matrix A to triangular or other simple form in a 
way that is preserved under shifts z - A. As a result , EigTool may compute 
the pseudospectra of an N x N matrix twice or more times as fast as those 
of an N x (N - 1) submatrix. Fortunately, even with slowdowns like these , 
the algorithms available for the rectangular case are still eminently practi­
cal .  Assuming I I . I I = I I  . 1 1 2 , an important step in the case of an M x N 
matrix with M 2:: 2N is to reduce the problem to a trapezoidal matrix 
of size 2N x N by a preliminary QR factorization. For N < M < 2N , 
and in particular when M is just slightly bigger than N, one can benefit 
from a different trapezoidal reduction involving the QZ factorization; see 
Figure 44.4 .  

Let us briefly mention some applications of pseudo spectra of rectangular 
matrices . More details can be found in [841] . 

Arnoldi and related iterations . As mentioned at the beginning, pseudo­
spectra of rectangular matrices have found a major application as part of 
a computational algorithm for estimating pseudospectra of large , typically 
sparse , square matrices . This idea originateq with a suggestion of Toh 
and Trefethen [761] that one might estimate pseudo spectra by taking some 
steps of an Arnoldi iteration to project a large N x N matrix A to an 
upper Hessenberg matrix Hk of dimensions N x k for some k « N. By 
Theorem 46 . 2 (i) , the pseudospectra of Hk are lower bounds for those of 
A, and because of the Hessenberg structure, we may delete rows of zeros 
and treat Hk as a matrix of dimension (k + 1 )  x k. In its original form 
this idea proved not very powerful, but when the pure Arnoldi iteration is 
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replaced by the implicitly restarted Arnoldi process [494 , 709 , 710] , it be­
comes powerful indeed. This is a basic part of the method used by EigTool 
for computing pseudospectra of large matrices; see §40. The idea can be 
generalized to block iterations and other variants. 

Bounds for Lanczos iterations . The Lanczos iteration is the special 
case of the Arnoldi iteration for A = A* , and again there is an implicitly 
restarted variant . As in the non-Hermitian case , these iterations construct 
rectangular Hessenberg matrices Hk that represent the compression of A 
to a k-dimensional subspace. As before, we have O"c (Hk ) � O"c (A) , and 
since A is normal , this means that any z E O"c (Hk ) is within a distance 
c of an eigenvalue of A. This suggests a view of convergence of Lanczos 
processes that focuses not on the usual Ritz values (the eigenvalues of the 
upper square k x k block of Hk) but on pseudospectra that shrink down to 
the eigenvalues of A as k increases. As pointed out in [841 ] , this approach is 
related to work of Lehmann [493] (Hermitian case) , Beattie and Ipsen [41] 
(non-Hermitian) , and Jia [431 ] . 

Control theory. A fundamental problem in control theory is that of 
estimating the distance of a controllable linear control system 

x' = Ax + Bu ( 46.4) 

to the nearest uncontrollable system (a system that cannot be driven from 
an arbitrary starting state to an arbitrary finishing state) [443] . In the 
notation of our discussion (which differs from that of control theory) , A 
is N x N, B is N x (M - N) , x is an N-vector of states , and u is an 
(M - N)-vector of control inputs. The distance to uncontrollability was 
defined by Paige [594] and shown by Eising [237] to be equal to the smallest 
singular value, minimized over all values of A, of the M x N matrix 

As pointed out by Higham and Tisseur [394] , this is equal to the infimum 
of all c values for which 

O"c ( 
_
A�* ) =1 0 ; 

see also [332] . In other words, to find the minimum distance to an un­
controllable system, we need to find the maximum of a resolvent norm 
surface like the one illustrated in Figure 46 . 2 .  Algorithms for this problem 
have been proposed by Boley, Byers , Gu, and Burke, Lewis, and Over­
ton [69 , 1 18 ,  124, 352] . 

Game theory. Applications of eigenvalues of rectangular matrices to 
two-player games in which one player has M options and the other has 
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N < M options have been considered by Thompson and Weil [750] . As 
described in [841 ] , the pseudospectra of the same matrices provide bounds 
on the maximum and minimum winnings of each player. 

This section has concerned rectangular matrices , but there is an im­
portant generalization to rectangular pencils A - zB, where A and B are 
matrices with M > N. Most of the articles we have cited in this section 
actually deal with this general situation rather than with the very specific 
case B = i that we have emphasized. However, what is the right definition 
of the pseudospectra (/s (A, B ) of such a pencil? The answer is not obvi­
ous . One would like a definition that reduces to what we have discussed 
in the case B = i and also reduces to the pseudospectra defined in §45 
in the case of a square pencil with m = n .  In §45, we discussed various 
possibilities for pseudospectra of square pencils and took the view that the 
'right ' definition should have the property that (/s (A, B ) is the same as 
the ordinary matrix pseudospectrum (/ s (B - 1 A) . Is there a natural way to 
define pseudospectra for a rectangular pencil A - zB in such a way that 
they uphold this principle in the square case? Such problems are beginning 
to get some attention; see , e .g . , [97, 394] . 
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A central theme of this book is the question, What connections can be 
made between the location of a matrix or operator in the complex plane 
and its behavior? l In this section we consider a precise formulation of this 
question. 

Both ends of the question need to be pinned down. Concerning ' location 
in the complex plane' , among the obvious sets that one might consider are 
the spectrum, the numerical range, and the pseudospectra. As explained 
in §17 ,  the first two of these are determined by the c-pseudospectra in the 
limits c ---7 0 and c ---7 00, respectively, and thus we shall concentrate just 
on pseudospectra. 

Our notion of 'behavior ' will be based upon norms of functions of ma­
trices and operators .  Let A be a square matrix or bounded operator acting 
in a Banach space, and let f be a function that is analytic in a neighbor­
hood of the spectrum a(A) . Then the operator f (A) can be defined by a 
variety of techniques , such as the Dunford-Taylor integral; see , e .g. , ( 14 .9 )  
and the accompanying discussion on page 139 .  

Here we shall take the view that the behavior of A consists of all the 
'measurements ' that might be made of it , where by a measurement , we 
mean the quantity I l f (A) 1 1  for some function f .  This point of view is made 
precise in the following definition. 

Norm behavior 

Two operators A and B have the same norm behavior if a(A) = a(B) 
and, for every function f analytic in a neighborhood of this set , 

I l f (A) 1 I = I l f (B) I I · 

As always, I I  . I I  denotes the norm of  the Banach space under study. A 
and B may operate 011 different Banach spaces , however --even when they 
are matrices , since their dimensions might differ. In constructing matrix 
examples , we shall assume that I I . I I  i s  simply the 2-norm of  the appropri­
ate dimensions . Also , if A and B are matrices , it is enough to consider 
polynomials rather than general functions f; see, e .g . , [415 ,  Thm. 6 .2 . 9] .  

The notion of norm behavior may seem artificial at first , but it is a 
natural one, and it is implicit in most of the sections of this book. For 

I This section is adapted from [343] . 
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example, the following four quantities I I  f (A) I I arise frequently : 

I l etA l 1 (continuous time evolution processes) ; 

I IAk l 1  (discrete time evolution processes) ; 

I l pk (A) 1 1  ( iterative methods in  linear algebra) ; 

I I (z - A) - I I I (response of forced systems) . 

(In the third item, Pk denotes a polynomial of degree k . )  Typical questions 
of concern in applications are stability, which is related to the boundedness 
of I l etA l 1 or I IAk l 1  for all t 2': 0 or n 2': 0 (e .g . , § §20 ,  3 1 ,  58) ; convergence, 
which is related to the rate of decrease of I IAk l 1 or I l pk (A) 1 1 to zero as n � 00 
( § §24-29, 56) ; and resonance or pseudoresonance, which is quantified by 
I I ( z  - A) - I I I  [780] . A fifth example of a quantity I l f (A) 1 1  of recurring 
interest is 

I l g (A) - Pk (A) 1 1  (polynomial approximation of  a function) , 

where g (  A) is a given function such as etA or A-I . Here, again, one is 
typically concerned with the rate of convergence to zero as k � 00 .  

I f  A i s  normal , its norm behavior i s  fully determined by its spectrum. 
For any set S <:;; <C and function f defined on S, let us define 

I l f l l s = sup I f (z ) l · (47. 1 )  
zES 

The following theorem appeared already as equation (2 . 14) for the special 
case f (z) = (). - z) - 1 . 

Norm behavior of normal matrices and operators 

Theorem 47. 1 Let A be a matrix or bounded operator in a Hilbert 
space . If A is normal, then 

I l f (A) 1 1  = I l f l l o-CA) (47. 2) 

for every function f analytic in a neighborhood of a (A) . Consequently, 
if A and B are normal, then A and B have the same norm behavior if 
and only if a(A) = a(B) . 

Proof. If A is a normal matrix, it can be unitarily diagonalized in the form 
A = V A V* . Since any function f applied to a matrix of dimension N 
is equivalent to some polynomial P of degree <;;. N ,  this implies f(A) = 

Vf(A)V* , from which (47.2) follows readily. If A is a bounded operator, 
we can carry out the proof as follows. If A is normal, then f(A) is normal 
also , implying that I l f (A) 1 1  i s  equal to  the spectral radius of  f(A) . But 
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by the spectral mapping theorem [448, 641] , a(f (A) ) = f (a(A) ) ,  so this 
spectral radius is equal to I l f l l a (A) .  • 

Of course , our main concern is the study of matrices and operators 
that are not normal. Any reader of this book knows that in this case , 
the spectrum alone cannot determine norm behavior. For the rest of this 
section, we shall focus on finite-dimensional matrices with I I . I I = I I . 1 1 2 . 
The matrices ( �  � ) , 
have the same spectra but different norms I I Ak I I  and I l etA I I . In fact , even 
their norms I I A I I  are different . For an example where more general functions 
f must be brought into play to reveal distinct norm behavior , consider the 
block diagonal matrices 

(The omitted entries are zero. ) These matrices have identical norms I I Ak l 1 
for all n ::::: ° and I l etA I I  for all t ::::: 0 ,  but they differ when it comes to other 
functions such as 1 1 (1 - A) - I I I  or I I A - 31 1 1 ·  

When do two matrices have identical norm behavior? A sufficient con­
dition is unitary equivalence, since I I . I I  i s  unitarily invariant . Thus , for 
example, the matrices 

have the same norm behavior . Unitary equivalence is not necessary, how­
ever, as one can see from the matrices 

( � � � ) ( � � � ) 
which are behaviorally equivalent to each other as well as to the preced­
ing 2 x 2 examples (by Theorem 47. 1 ,  since all five of these matrices are 
normal and have spectrum {O ,  2 } ) .  Evidently changes of eigenvalue multi­
plicities do not affect norm behavior . Another example of a transformation 
that does not change norm behavior is transposition. For any matrix A, 
I l f (A) 1 1  = I l f (AT ) 1 1 , and thus A and AT have the same norm behavior , 
although they are not in general unitarily equivalent if N ::::: 3 . 2 

2For example, the 3 x 3 matrices A = [1 1 0 ; 0 1 1 ; 0 0 2] and B = [1 2 0; 0 3 4; 0 0 5] 
(MATLAB notation) are not unitarily equivalent to their transposes . We are indebted 
to Roger Horn for providing these examples (private communication, 1991) , which can 
be verified by application of the theorem of Pearcy given as Theorem 2 .2 .8  in [414] . 
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It is noteworthy that the three operations just considered-unitary sim­
ilarity, change of multiplicity, and transposition--Ieave invariant not only 
the norm behavior of a matrix but also all of its pseudospectra. This ob­
servation suggests the conjecture , Might the pseudospectra of a matrix or 
operator determine its norm behavior'! If so, this would be a very satisfying 
state of affairs , establishing that in a certain sense at least , pseudospectra 
contain all the behavioral information one could ask for . And the converse 
is certainly true: Norm behavior determines pseudospectra. 

Unfortunately, the conjecture is false [343] . 

Pseudospectra f;> norm behavior 

Theorem 47.2 There exist matrices A and B for which I I ( z-A) -1 1 1  = 
I I  (z - B) - I I I  for all z E <C but I I p (A) I I  =f. I I p (B) I I  for some polynomial p .  

Proof. Consider the Jordan blocks 

_ ( 0  )2 ) 
J2 - . 

o 

(The entry )2 can be replaced by any number in the interval ( I ,  )2] . ) We 
have I i J l l l  = 1 and 1 1 J2 1 1  = )2, hence 1 1 J2 1 1  > I I J 1 1 1 . On the other hand, 
II (z - J2 ) - 1 1 1  � II (z - J 1 ) - 1 1 1  for all z E <C, with equality achieved at z = 0 
and also in the limit I z l  ----> 00. To prove this, we note first that for any 
Jordan block J ,  I I  (z - J) - 1 1 1  depends only on I z l ; i . e . , the pseudospectra are 
disks about the origin, as can be proved by a diagonal unitary similarity 
transformation . Thus it is enough to establish I I  (z - J2 ) - 1 1 1  � I I  (z - J1 ) - 1 1 1  
for z real and positive , which can be easily checked numerically or  proved 
by algebraic methods. 

The proof of the theorem is completed by taking 

for which we have I IB I I  = )2 > I IA I I  = 1 but I I  (z - A) - I I I  = II (z -
B) - I I I  = I I  (z - J1 ) - 1 1 1  for all z E <C .  (Recall from Theorem 2 .4 that 
O'c (B) = O'c (J 1 ) U O'c (J2 ) . )  If one one prefers a counterexample in which A 
and B have the same dimension, this can be arranged by padding A with 
two additional rows and columns of zeros . _ 

Although Theorem 47.2 places a limit on the uses of pseudospectra, it 
leaves some doors open. In the Frobenius (Hilbert-Schmidt) norm I IA I I} = 

tr(A* A) , it can be shown that the pseudospectra of a matrix do determine 
its behavior [343] . Also, even in the standard 2-norm that is the subject 
of the theorem, it may be that the pseudospectra-behavior link can be 
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made solid by adding an additional hypothesis . For example, it is an open 
question whether or not pseudospectra determine behavior for matrices 
that are nonderogatory, that is, if each eigenvalue is associated with just a 
single Jordan block. 

For the moment , however, the state of our knowledge is that pseudo­
spectra do not determine norm behavior exactly. Of course , a central theme 
of this book is that they determine norm behavior approximately, provid­
ing much closer bounds than spectra alone. Such bounds are the subject 
of Part IV of this book. 

In closing this section we mention another approach that has been taken 
to problems of this kind . Given a matrix or operator A, a set S for which 
the identity I l l (A) 1 1  .::; I l l l l s holds for all 1 is called a spectral set for 
A [605] , [64 1 ,  § § 153-155] . It is known that cr(A) is a spectral set for 
A if and only if A is normal . On the other hand, according to a result 
of von Neumann, the closed disk .6.I IA I I  is a spectral set for any A [641] . 
These observations sound like promising steps toward settling the question 
of where a matrix ' lives ' in <C; isn't the answer simply the smallest spectral 
set? Unfortunately, this notion is not well-defined. The intersection of two 
spectral sets is in general not a spectral set , and in fact , the intersection 
of all of the spectral sets of a matrix A is always just cr (A) , regardless of 
normality. 
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There are an abundance of ways to describe a normal matrix; together , 
the papers of Grone et al . [351 ] and Elsner and Ikramov [242] enumerate 
eighty-nine equivalent characterizations . When a matrix fails to satisfy 
these conditions , one might naturally ask, 'How nonnormal is it? '  Compact 
answers to this question are provided by various scalar measures of the 
departure from normality. 

One appealing starting point is the distance of A E <eN x N from the set 
N of normal matrices , 

dist (A, N )  = min I IA - Ni l ,  NEN 
(48 . 1  ) 

a quantity that has proved more difficult to calculate than one might ex­
pect . In fact , no satisfactory characterization of (48 . 1 ) is yet known in the 
2-norm. However, for the Frobenius norm I IA I IF == O=f.k=l l ajk I 2 ) 1 /2 = 

trace ( A* A) 1 /2 , a solution has been found. The key observation is that 
for this norm, the unitary matrix Q that diagonalizes the minimizing N 
in (48 . 1 ) also solves the optimization problem 

max I ldiag (Q* AQ ) I I F ; Q UnItary 
see [296, 645] . This suggests that one might approximate the nearest nor­
mal matrix by making a series of elementary unitary similarity transforma­
tions to A, transferring the magnitude of entries off the diagonal toward 
the main diagonal . This is accomplished by the Jacobi algorithm, which 
was originally designed for computing eigenvalues [223] . The Frobenius 
norm is induced by the matrix inner product (X, Y)F == trace (Y*X) , and 
thus approximation theory for inner product spaces can be used to char­
acterize the (nonunique) nearest normal matrix [296 , 645] . Unfortunately, 
the Jacobi algorithm often converges slowly, making such a computation 
challenging even for small matrices . 

Here are two examples of nearest normal matrices in the Frobenius 
norm. First , consider the Jordan block of dimension N = 32, with ones 
on the first superdiagonal and zeros everywhere else. Figure 48 . 1  compares 
the pseudospectra of this Toeplitz matrix with the spectrum of a nearest 
normal matrix 

N 31 ( 0  � 1 E <e32 x 32 ; = 

32 1 � 
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Figure 48 . 1 :  Spectrum and E-pseudospectra of a Jordan block of dimension N = 
32 for E = 10- 1 , . . .  , 10-20 (left ) ,  together with the spectrum of a nearest normal 
matrix (middle) , and the range of the symbol (right) , which in this case is the 
unit circle. Here , distF (A, N )  = J31/32. 
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Figure 48 .2 :  Spectrum and E-pseudospectra of the Grcar matrix of dimension 
N = 32 for E = 10- 1 , . . . , 10-5 ( left) , together with the spectrum of a nearest 
normal matrix (middle) , and the range of the symbol (right) . Here distp (A, N )  � 
2. 1997. 

see [645, p .  596] . (This N is not unique: its lower left entry can be replaced 
by �� ei lJ  for any 8 E [0, 27r) . )  Figure 48. 2  makes the same comparison for 
the 32 x 32 Grcar matrix introduced on page 58. 

Though the distance (48 . 1 )  has intrinsic appeal , other scalar measures of 
non normality are simpler to compute and arise more naturally in analysis . 
Perhaps such metrics were first considered by Wielandt in 1953, who pro­
posed a measure of nonnormality and applied it to describe eigenvalue in­
clusion regions [823] . For a diagonalizable matrix A = VAV-I , Wielandt 
measured nonnormality via the 'deformation angle ' 

8(A) = min L(Vx, Vy) .  
x'y=O 
x, y#O 

This angle effectively measures how far an eigenvector matrix is from or­
thogonal, with normal matrices having 8(A) = 7r /2, while nearly defective 
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matrices must have small values of e(A) . A drawback typical of metrics 
based on diagonalization is that the departure from normality can vary 
when A is fixed but the columns of V are scaled . 

Related to Wielandt 's metric is the condition number of a matrix whose 
columns are eigenvectors of A, 

If  A i s  normal , we can take V so that this condition number is  1 ,  while 
/'i:(V) grows without bound as A approaches a defective matrix. House­
holder [416 ,  §3 .4] showed that 

/'i:(V) = cot ( �e(A) ) . 

As seen throughout this book, /'i:(V) arises frequently in analysis , especially 
when bounding the norm of a function of a matrix: 

I l f (A) 1 1 2 = I IVf (A)V- 1 1 1 2 :=::: /'i:(V) max I f (>-) I , 
AEO"(A) 

( 48 .2 )  

where f i s  any function analytic on cr(A) . The Bauer-Fike inclusion (2 . 19) 
of Theorem 2 .3 uses /'i:(V) to bound eigenvalues of perturbations of A. 
Notice that /'i:(V) varies with the scaling of the columns of V. The search 
for the optimal scaling is a classical problem in the study of conditioning 
for linear systems of equations . When A has simple eigenvalues , a theorem 
of van der Sluis [788] guarantees that if each column of V has unit 2-norm, 
then /'i:(V) is within "fN of its optimal value . 

A considerable drawback of both e(A) and /'i:(V) becomes apparent 
from studying the perturbed identity matrix 

( 48.3) 

When � = 0 ,  e(A) = 1/2 and /'i:(V) = 1 , while for all nonzero � , the 
matrix is no longer diagonalizable, yielding e(A) = 0 and /'i:(V) = 00 .  

Thus , both these measures of nonnormality are discontinuous functions of 
the matrix entries . While these quantities can be descriptive in certain 
cases , they tend to exaggerate the importance of nondiagonalizability. The 
matrix (48 .3 )  with I � I « 1 is an example of a nondiagonalizable matrix 
whose nonnormality is inconsequential for many purposes . 

As an alternative, Henrici proposed a departure from normality that is 
more broadly applicable [380] . For any square matrix A, there is a Schur 
decomposition A = UTU* = U(A + R)U* ,  where U is unitary, A is 
diagonal , and R is strictly upper triangular ; see , e .g . , [327, 414] . When R 
is zero, this is a unitary diagonalization, and hence A must be normal . Thus 
I I R I I provides a measure of nonnormality. Since the Schur decomposition 
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is generally not unique, Henrici took the minimum value over all possible 
decompositions , 

dep (A) = min 
A = U ( 1\ + R) U *  

(Schur decompoRition) 
I IR I I · 

This dependence on the particular Schur decomposition is not an issue 
when working in the Frobenius norm, in which case I I A I I � = I I A + RI I � = 
I IA I I � + I IR I I � , and thus 

N N 1 /2 
depF (A) = J I I A I I � - I I A I I � = (2::>.J - L I Aj I 2) , 

j= l j=l 
where {O"j }  and {Aj }  are the singular values and eigenvalues of A,  respec­
tively. Since UAU* is a normal matrix approximating A, in any unitarily 
invariant norm (such as the 2-norm and Frobenius norm) , 

dist (A, N) ::; I I A - UAU* I I  = I IU* RU I I  = dep(A) . 

The normal approximation UAU* has the same eigenvalues as A,  but we 
can see from Figures 48 . 1  and 48 .2 that the spectrum of a nearest normal 
matrix can differ significantly from that of A. In the Frobenius norm, 
Laszl6 has shown that distF (A, N) � depF (A)/VN [482] . 

The Frobenius norm departure from normality, dePF (A) , has been em­
ployed in a variety of applications. Henrici used it to bound the norms 
of matrix powers [380] , and Descloux generalized these bounds to a wider 
class of functions [203] . Eigenvalue bounds involving depF (A) have been 
described by van der Sluis [789] , among others . Lee has suggested bounds 
for depF (A) based directly upon the entries of A [49 1 ,  492] . The simple 
inclusion result below, akin to the Bauer-Fike theorem, gives a flavor of 
how the departure from normality arises . 

Theorem 48. 1  In the 2-norm, 

( 48 .4) 

Proof. Let z E O"c (A) . Then there exists some unit vector v E eN such 
that I IAv - zv l 1 2 < E. Taking the Schur decomposition that minimizes the 
2-norm departure from normality, A = U(A + R)U* , we have 

E > I I Av - zv l 1 2 = I I V (A + R)U*v - zUU*v 1 1 2 = I I (A + R)y - zy l 1 2 , 

where y = U* v has unit norm. Defining x = (A + R)y - zy , we have 
I I x l 1 2 < E and Ay - zy = x - Ry. Thus, 

I I Ay - zY l 1 2 ::; I I x l 1 2 + I I R I 1 2 1 1 Y l 1 2 < E + deP2 (A) , 

implying (48 .4) . • 
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Many other possible metrics for nonnormality can be derived by measur­
ing how much each of the various equivalent characterizations of normality 
is violated for a particular A. For example , since AA* = A* A when A is 
normal , one can quantify the distance from normality as I I AA* - A* A l l .  
Elsner and Paardekooper present a family of bounds relating eleven differ­
ent departures from normality to one another [243] . Chaitin-Chatelin and 
Fraysse compare several measures on a descriptive 2 x 2 example , along 
with a set of matrices from the Harwell-Boeing test matrix collection [133, 
§ 1 O . 1 . 2] .  

In the end, all scalar measures of nonnormality suffer from a basic limi­
tation: Nonnormality is too complex to be summarized in a single number . 
Even when a matrix is 'highly nonnormal ' , one must know the geometry 
of that nonnormality in order to judge whether it will have important con­
sequences for a given application. For example , when considering the size 
of matrix powers , non normality associated with eigenvalues of small mag­
nitude may lead to a large value of dep(A) but have little effect on I IAk l l . 
In this setting, a more descriptive quantity may be 

I IA I I  - p(A) , 

where p(A) denotes the spectral radius . Strictly speaking, this quantity 
does not measure distance from normality, as it can be zero for nonnor­
mal A. 

To obtain more descriptive information than is available from any sin­
gle scalar measure of nonnormality, one could use the condition numbers 
of the individual eigenvalues (§52) or the numerical range ( § 17) .  The c­
pseudospectra, for a range of c values , provide even more information by 
interpolating between these two extremes. 



49 . Dista nce to singularity and instabi l ity -----

Given a matrix A, what is 

min { I IE I I : A + E is singular} 7 ( 49 . 1 )  

This i s  the question o f  distance t o  singularity, and it is equivalent t o  seeking 
the minimum norm of E that gives A + E a zero eigenvalue. The answer is 
well-known to be I I E I I  = I IA- 1 1 1 - 1 ,  as can be seen from Theorem 4. 1 . 1 In 
the 2-norm, the formula reduces to smin (A) , the smallest singular value of 
A [327, 388] . The numerical examples in this section use I I · II = I I  . 1 1 2 . 

It is straightforward to translate (49 . 1 )  into a question of pseudospectra. 
What is the largest value of EO for which 0 tf. oAA) 7 Equivalently, for which 
EO does the boundary of O"E (A) pass through the point 0 7  Thus the distance 
to singularity has a geometric interpretation, as sketched in Figure 49 . 1 .  

Figure 49. 1 :  The distance o f  A t o  singularity i s  equal t o  the value of E: for which 
the boundary of 0"£ (A) passes through the origin. 

For example, consider the matrix whose pseudospectra are plotted in 
Figure 49.2 .  The dot shows that the origin lies inside the contour cor­
responding to 10- 16 . It follows that this matrix can be made singular 
by a perturbation E with I I E I I  < 10-16 . The actual minimum is roughly 
1 .38 x 10- 18 . 

One's motivation for asking how close a matrix is to singular is not 
the possibility that a perturbation might make it exactly singular . After 
all ,  even if the distance to singularity is 10- 10 , there is zero probability 
that a random perturbation will lead to exact singularity. One asks how 

1 In the numerical linear algebra literature, this result is attributed to Gastinel; 
see [441] , [391 , Thm. 6 .5] , [729, p . 133] . 
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Figure 49.2 :  c-pseudospectra of the triangular matrix (49 .2 )  for N = 64, c = 
10-4 , 10-6 , 10-8 , . . .  , 10- 16 ; the origin is marked by a cross . In standard double 
precision arithmetic with Emachine ::::; 10- 16 , this matrix is 'numerically singular ' .  
In the limit N ----> 00 ,  the pseudospectra fill the half-plane Rez < 3/2 (dashed) . 

close A is to singular in order to learn something about A itself. If A 
is nearly singular , then A-I is large, and any process that depends upon 
A - 1 can be expected to amplify the data it is applied to, as well as any 
errors in that data. This association of ill-conditioning with nearness to 
singularity arises in many contexts and has been investigated by Kahan 
and Demmel [197, 442] . 

In other words , the problem of distance to singularity is related to the 
problem of robust rank determination. The most robust way to determine 
the rank of a matrix, at least for problems where the 2-norm is appropriate, 
is to compute its singular value decomposition and then count the number 
of singular values that are significantly nonzero according to some suitable 
measure [327] . This process is expensive , however, and besides that , it is 
an infinite algorithm (in principle) for a problem that is mathematically 
finite . Thus it is common to look for rank-revealing factorizations of ma­
trices that are simpler than the SVD. We shall .take a moment to discuss 
briefly two instances of such factorizations that lead to interesting examples 
of pseudospectra. For further details about rank-revealing factorizations , 
see [63 , 372, 408 , 726] . 

The simplest rank-revealing factorization is an LV decomposition com­
puted by Gaussian elimination with partial or complete pivoting, P1AP2 = 
L U. To determine the rank of A,  one counts the number of significantly 
nonzero elements along the diagonal of U.  However, this algorithm cannot 
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be trusted always to detect near rank-deficiency correctly. A well-known 
example is the N x N triangular matrix of the form 

1 - 1  - 1  - 1  - 1  
1 - 1  - 1  - 1  

A = U =  1 - 1  - 1  ( 49.2) 
1 - 1  

1 

All the diagonal elements of A are far from zero, so rank(A) = N, and this 
is the answer that would be delivered by Gaussian elimination with either 
kind of pivoting. However , a perturbation of norm 21-N ffi is enough to 
make A singular (subtract 21-N from each element aj l ) '  With N > 60, for 
example , the smallest singular value of A is smaller than machine precision 
in IEEE double precision arithmetic. The matrix is numerically singular, 
and for general purposes , one would want a numerical computation of the 
rank to deliver the result N - 1 .  

Figure 49.2 shows a pseudospectral interpretation o f  the near-singular­
ity of (49 .2 )  for N = 64. The plot shows that the pseudospectra are 
approximately disks in the left half-plane with Rez < 3/2. To explain this 
configuration we can make use of the ideas of §7 ,  since A is triangular and 
Toeplitz. The symbol of A is 

1 - z-N 
2 - ----::-

1 - z-l 

or (formally) in the limit N ---> 00 ,  

( 49.3) 

This function is a Mobius transformation that maps the unit disk in the 
z- l -plane onto the half-plane Rez < 3/2 and smaller disks Dr about the 
origin onto disks contained in that half-plane. For a numerical estimate we 
can apply the ideas that led to the proof of Theorem 7 .2 .  Equation (49 .3) 
implies that fN (z) = 0 for a value z- l = 1/2 + () (2-N ) as N ---> 00 .  We 
accordingly estimate that 0 E oAA) for a value of c on the order of 2-N , 
which matches beautifully the actual value 21 -N ffi. 

Since Gaussian elimination may give misleading results, another rank­
revealing factorization was proposed years ago: QR factorization with col­
umn pivoting. In this algorithm, A is factored according to AP = QR, 
where Q is unitary, R is upper triangular, and P is a permutation ma­
trix constructed to enforce the condition that for each j ,  I rjj l is at least as 
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large as the 2-norm of each vector (rjk , . . .  , rkk )T ,  j < k. The number of 
significantly nonzero elements on the diagonal of R is then counted . With 
this algorithm, the matrix of Figure 49.2 could not cause problems , as the 
later columns have greater norm than the earlier ones . Indeed, QR factor­
ization with column pivoting is highly reliable in practice . Nevertheless , 
in a classic paper in 1966, Kahan presented an example showing that this 
algorithm, too, is not fail-safe [327, 441] . Kahan's example is 

1 -e -e -e -e 
s - se -se -se 

A R s2 - s2e -s2e E CCN x N ( 49.4) , 

sN- l 

where s is a number slightly less than 1 and s2 + e2 = 1 .  One can verify that 
this matrix is already in column-pivoted form. If SN- l = , is significantly 
larger than zero, then the rank determination algorithm will conclude that 
A has rank N. However, Kahan showed that a perturbation of norm 

I I E I I  � exp(- v2 N l log , 1 )  (49 .5) 

is enough to make A singular . In other words, for large N, this matrix too 
should properly be detected as 'numerically singular ' . 

0.5 

o 

-0.5 

-0.5 o 

Figure 49 .3 :  E-pseudospectra of the Kahan matrix (49.4) for N = 256, E = 
10- 2 , 10-4 , 10-6 , . . .  , 10- 16 ;  again the origin is marked by a cross . Evidently this 
matrix is at the edge of numerical singularity in double precision arithmetic, and 
numerically singular in single precision. 



49 · DISTANCE TO SINGULARITY AND INSTABILITY 451 

Pseudospectra of (49.4) are shown in Figure 49.3  [772] . This example 
takes , = SN- 1  = 1/10 ,  so the spectrum lies in the interval [ 1/10 ,  1] . The 
pseudospectra, however, lie lopsidedly to the left of this interval. Kahan's 
ingenuity lay in constructing a triangular matrix with this property that 
also satisfies the column pivoting condition. The cross shows that the origin 
lies inside the 1O- 1 4-pseudospectrum, so smin (A) must be less than 10- 14 . 
The actual number is smin (A) :::::: 2 .41 x 10- 15 , and the estimate (49 .5 )  has 
the value :::::: 1 . 23 x 10- 15 . 

Now let us move on to the second, related topic of this section: distance 
to instability. A matrix A is said to be stable if cr(A) is a subset of the 
open left half-plane. Otherwise it is unstable. If the eigenvalues lie far to 
the left of the imaginary axis , however, this is no guarantee that A is far 
from unstable, unless A is close to normal . Thus it is natural to investigate 
the distance to instability or stability radius of A, 

min { I I E I I  : A + E is  unstable} .  ( 49.6) 

The interpretation of (49.6) in terms of pseudospectra is straightforward: 
What is the smallest c for which the boundary of crc (A) touches the imag­
inary axis? See Figure 49.4. 

Re z = 0 

Figure 49 .4 :  The distance of A to instability is equal to the smallest € for which 
the boundary of O'e (A) touches the imaginary axis. 

The distance to instability problem has received a great deal of atten­
tion in the control theory literature since the mid-1980s; it belongs to the 
subfield known as robust control [220, 848] . The term 'stability radius ' was 
introduced by Hinrichsen and Pritchard [398] ; other publications on this 
subject include [ 1 19 ,  123 , 388 , 399, 613] . The usual motivation behind such 
studies is to understand the behavior of the dynamical system x' = Ax and 
the associated continuous evolution process etA . 2 If A is a stable matrix, 

2For the discrete process Ak , the stable set is the unit disk ( § § 16 ,  18) , and of course , 
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SO the usual reasoning goes , one would like to know whether its stability is 
robust in the sense that it will be unaffected by small perturbations . Since 
the right half-plane is a continuum rather than a single point ,  a random 
perturbation large enough to make a matrix unstable actually has a finite 
probability of doing so, in contrast to the situation with distance to sin­
gularity. Thus this usual motivation of (49 .6) in terms of perturbations is, 
to a degree, justifiable . However, we shall argue in the last two pages of 
this section that even here , perturbations are usually not as significant as 
is commonly thought . 

To illustrate what the pseudospectra of a nearly unstable matrix may 
look like, here is an example with a bit of history. In 1985 Van Loan 
suggested as a heuristic that for any matrix A, at least one of the points at 
which (/,, (A) first touches the imaginary axis (the solid dot in Figure 49.4) 
should have the same imaginary part as one of the eigenvalues of A [799J . 
To one familiar with pseudospectra, this heuristic is implausible, for as 
numerous examples in this book have shown, there may be little connection 
between the shapes of pseudospectral boundaries and the positions of the 
eigenvalues . By reasoning in just this way, Demmel in 1987 derived a 
counterexample to Van Loan's heuristic [196J . First he observed that the 
validity of the heuristic would imply that for any matrix A with just a 
single eigenvalue, all of the pseudospectra (/,, (A) must be convex, since , 
otherwise, a scaling and rotation yields a counterexample . Then he showed 
this convexity corollary is not valid. Figures 7 .5 (the top part involving 
a lima<;on) , 14 .4 ,  and 30 .2  represent suitable counterexamples . ( Indeed, 
Van Loan's heuristic would require the pseudospectra of any matrix with 
a single eigenvalue to be circular . )  

Demmel's original counterexample i s  also a Toeplitz matrix, and though 
it is not as simple as Figure 7 .5 ,  it is more dramatic. The matrix is 

- 1  -M _M2 _MN- 1 

-1  -M 
A - 1  -M _M2 (49 . 7) 

- 1  -M 
-1  

where MN- l is a large number. (This is the inverse of the bidiagonal 
Toeplitz matrix with entries - I ,  M. ) The case N = 3, MN- 1 = 104 
is enough to yield nonconvex pseudospectra, and Demmel showed this 
with the plot of pseudospectral contours reproduced as Figure 6 .4 .  Fol­
lowing [772] , the case N = 32, MN- 1 = 108 is illustrated in Figures 49. 5 
and 49 .6 .  

an analogous discussion of  distance to instability would be possible for this problem, or 
for problems involving other special sets in the complex plane. 
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Consider first Figure 49 .5 . On a large scale , the pseudospectra of A 
are dominated by the large entries in its upper right-hand corner and look 
like disks about the origin; we see this with E = 10-4 . Smaller E-values 
reveal more structure near the origin, apparent in Figure 49 .6 .  For very 
small E, O"c (A) approximates a disk around the single eigenvalue -1 . As 
E increases , these disks pinch near the origin, eventually folding over into 
the right half-plane and giving the crescent-shaped configuration seen for 
E = 10-5 in Figure 49 .5 .  When E reaches a value of about 1 . 158 x 10-5 , 
the two horns of the crescent touch each other and O"c (A) acquires the 
topology of an annulus instead of a disk. The pseudospectra are no longer 
simply connected, let alone convex. The point z ;:::;:; 14 .5 at which the horns 
first touch is a saddle point of I I (z - A)- l l l and is marked by the cross in 
Figure 49.6 .  Figure 49 . 7  shows a surface plot of resolvent norms for this 
example, illustrating the local minimum. 

What makes this behavior possible? At a certain point z ;:::;:; 0 .44 on the 
positive real axis, the resolvent norm has a local minimum I I (z - A)- l l l  ;:::;:; 
0 .79 .  (Local maxima of I I ( z  - A)- l l l  are impossible, but not local min­
ima; see Theorem 4 .2 . )  The minimal point is marked by a diamond in 
Figure 49 .6 .  One can explain this behavior qualitatively by noting that 
the symbol of A is 

( 49 .8) 

1 50r--�--�---'---�-�-----' 

1 00 

50 I 

o @ 
-50 I 

-1 00 

-1 ��5=0---1:-:0::-0 -----:5�0---:0---:5-':c0--�10-:-0---'150 

Figure 49 .5 :  c-pseudospectra of Demmel's matrix (49 .7) for N = 32, E: = 
10-4 , 10-5 , . . . , 10-8 . The dashed line is the imaginary axis , and the x marks a 
saddle point in I I (z - A) - I I I . 
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Figure 49.6 : Closeup o f  Figure 49.5 with curves for c = 10-2 , 10-3 , . . .  , 10- 14 . 
The <) marks a local minimum of I I ( z  - A) - I I I . 
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Figure 49.7 :  Resolvent norm surface of Demmel's matrix, with contours cor­
responding to c-pseudospectral boundaries for c = 10- 2 , 10-3 , . . .  , 10- 1 5 . The 
spike at the eigenvalue - 1  is infinite, but the local minimum near z = 0.44 is 
finite. 
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and for IMz- 1 1 < 1 ,  this approximates the Mobius transformation -1/ ( 1 -
M z- l ) . The inner loops to the right of the origin in Figure 49.6 look ap­
proximately like images under this Mobius transformation of circles about 
the origin in the z- l -plane. Quantitative estimates can be obtained with 
the aid of Theorem 7 .2 .  

From Figure 49.6 i t  i s  evident that a perturbation of norm between 
10-7 and 10-6 is enough to make this matrix unstable. The true value is 
about 2 . 84 x 10-7 . By contrast , it would require a perturbation of norm 
smin (A) ::::: 0 .356 to make the matrix singular . 

We now turn to a specific problem in this area that has attracted a 
great deal of attention. Many researchers in control theory, motivated in 
part by the behavior of linear systems under explicit perturbations, have 
been concerned with the problem of distance to instability when only real 
perturbations E are allowed, i .e . , the problem of the real stability radius 
of A, as opposed to the (complex) stability radius we have discussed thus 
far. The real case is harder than the complex one, for the answer is no longer 
given by the norm of the resolvent . Indeed, the problem of real stability 
radii has been a major motivation for the study of ' real pseudospectra' , 
called by Hinrichsen, Kelb, and Pritchard spectral value sets [397, 398, 399] ; 
see §§6 and 50. This problem of computing the real stability radius was 
solved for the 2-norm in a 1995 paper of Qiu, Bernhardsson, Rantzer, 
Davison, Young, and Doyle [616] , confirming a 1992 conjecture by Qiu 
and Davison. The following theorem records this solution together with 
the simpler result for the complex case implicit in our discussion of the last 
few pages , expressed in a form to highlight the analogy between the real 
and complex cases . 

Complex and real stability radii 

Theorem 49. 1  The 2-norm complex stability radius of a matrix A is 
equal to 

( R���O 
S l (R(Z) ))�

l 

where Sl denotes the largest singular value and R(z) = (z - A) - l .  The 
2-norm real stability radius is equal to 

( . f ( [ Re R( z) 
sup m S2 

Re z=O 'YE (O , l ] ,),- 1 ImR(z) 
- 1 -')'Im R(z) ] ) ) 

Re R(z) , 

where S2 denotes the second-largest singular value. The function inside 
the ' inf ' is unimodal, so its local minimum is its global minimum. 

To find stability radii defined by stability regions other than the left half-
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plane, it is enough to modify the condition Rez = 0 in this theorem appro­
priately. 

We would like to finish this section by presenting an example that is 
mathematically elementary yet has surprising implications. 

Given a real dynamical system, x' = Ax for some A E JRN x N, should 
one expect the real stability radius or the complex stability radius to give 
more insight? Many would assume it is the former, since the real stability 
radius determines the robustness of asymptotic stability if A is subject to 
real perturbations . However, even for real dynamical systems, it is the 
complex stability radius that has implications for the behavior of x(t) at 
short time scales . Consider this 2 x 2 example: 

A =  ( - 1  
- 1  

M » l . ( 49.9) 

This matrix has eigenvalues -1 ± iM, so it is stable, but for large values of 
M it is far from normal. Real perturbations smear the eigenvalues along 
the line Rez = -1 ,  but large real perturbations are required to move the 
eigenvalues significantly toward the imaginary axis. Since A + E is real , any 
complex eigenvalues must come as conjugate pairs ; the most efficient way 
to shift a pair to the right is to perturb A by a multiple of the identity. 
An <9 (c:) real perturbation can only shift eigenvalues a distance <9 (c:) to 
the right . Complex perturbations have far more potency: a perturbation 
of size c: can move eigenvalues <9 (Mc:) to the right . For M = 100, the 
complex stability radius is 200/ 10001 :=:::! 0 .019998 (attained at z :=:::! 99.995i , 
not at z = 100i as one might expect ) . The real stability radius , on the 

real perturbations complex perturbations I 
1 02 1 02 

1 00 1 00 

98 98 

-3 -2 -1  o -3 -2 -1 o 

Figure 49 .8 :  Eigenvalues of 1000 random real and complex perturbations of the 
matrix (49 .9) with M = 100. The perturbations are of size c = 400/ 10001 ,  twice 
the complex stability radius . (Only the top half of the spectrum is shown; similar 
perturbed eigenvalues appear near -1 - 100 i . ) Compare Figure 50.3 .  
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Figure 49 .9 :  The norm of the solution of the real dynamical system x' = Ax for 
A of (49.9) with M = 100, where x(O) is a random real unit vector. The lOO-fold 
amplification of the initial vector can be explained by the complex eigenvalue 
perturbations of Figure 49 .8 ,  but not the real ones. 

other hand, is exactly 1 .  Taking M ----* 00 will magnify the difference 
between these two numbers. Figure 49.8 confirms these claims; it shows 
eigenvalues of A perturbed by random real and complex matrices of norm 
c = 400/ 1000 1 .  But is it the real or complex stability radius that gives 
insight into the behavior of the solution of the dynamical system x' = Ax? 
Figure 49.9 shows the norm of a solution x(t) for a random real starting 
vector x(O) . While the asymptotic decay rate is governed by the spectral 
abscissa a(A) = -1 ,  there is immediate growth in I l x(t) 1 1  on the order of 
M = 100. Analysis based on the real stability radius will miss this. 

Once this effect has been noted, it is easy to justify it mathematically. 
The theorems of § 15  relate the norm of the resolvent-not the more com­
plicated quantity that is inverted in the second half of Theorem 49 . 1-to 
the size of I l e tA I I .  For example, applying ( 15 . 1 1 )  of Theorem 15 .4 with 
z = 200 + 100i shows that I l etA l 1 ::::: 32 .3 for this 2 X 2 example for some 
t ::::; 0.03 . Since A is real , the norm I l e tA II must be attained for some 
real starting vector; so complex pseudospectra really do shed light on real 
dynamics . 
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Throughout this book, at least until the last three pages , we have focused 
on the effect of general complex perturbations E E CN x N on the spectrum 
of a matrix A. In many cases , it might seem more natural to tailor E to 
match specific properties of A. For example, perhaps one should perturb a 
real matrix A with a real E, or restrict the nonzero pattern of E to match 
that of a sparse matrix A? Does a Toeplitz A call for a Toeplitz E? In 
situations where one is specifically interested in eigenvalues of perturbed 
matrices , such structured analysis is often appropriate; applications include 
floating-point error analysis and studies where matrix entries suffer from 
experimental uncertainty. In this section, we survey a variety of structured 
perturbation problems , but before delving too deeply, we must reiterate 
a crucial point ,  just illustrated by the example of Figures 49 .8 and 49 .9 .  
We have used perturbed eigenvalues primarily as a means to infer matrix 
behavior. Our analysis of powers , polynomials and exponentials of A relies 
on contour integrals of the resolvent (see (14 .9) ) ,  whose norm is directly 
related, via Theorem 2 . 1 ,  to the eigenvalues that arise from general com­
plex perturbations . By contrast , the eigenvalues that arise from structured 
perturbations do not bear as close a relation to the resolvent norm and 
may not provide much information about matrix behavior. 

We begin with a general definition, then focus on the familiar case of 
real perturbations of real matrices. 

Structured pseudospectra 

Sets of the form U cr(A + E) 
E structured 

I I E I I <E 
are called structured E -pseudospectra of A.  In particular , the real struc­
tured E-pseudospectrum of A E lRN x N is defined as 

cr� (A) = U cr(A + E) .  (50 . 1 )  

The study of real perturbations of real matrices has its roots i n  the 
theory of backward error analysis for numerical linear algebra algorithms, 
the subject of §53 . Indeed, Wilkinson includes a sketch of a real structured 
pseudospectrum in The Algebraic Eigenvalue Problem [827 , p. 454J . In 
recent years, real structured pseudospectra have been studied by the control 
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theory community. Motivated by stability theory for dynamical systems 
under real versus complex perturbations , Hinrichsen and Pritchard were 
among the first to study a:-(A) , which they called a spectral value set [400] . 
Karow's recent dissertation contains Theorem 50 . 1  below, along with many 
additional contributions to the theory of structured pseudospectra [447] . 

To illustrate how real structured pseudospectra can differ from conven­
tional pseudospectra, we begin by considering perturbations of the upper 
triangular matrix ( - 1  

- 1  �� 2� � )  
1 /3 20 

. 

1 

A =  (50 .2 )  

Figure 50. 1  shows the eigenvalues of random complex and real perturba­
tions to A. The complex perturbations produce a cloud of perturbed eigen­
values , familiar from similar plots throughout this book. The eigenvalues 
of the real perturbations , on the other hand, form just a skeleton of the 
complex set , covering a portion of the real axis with narrow curved regions 
extending into the complex plane. (Of course, a:-(A) � ac (A) . ) 

As a rule, it is more difficult to compute structured pseudospectra than 
unstructured ones . While it is simple to compute plots of eigenvalues of 
random real perturbations of A to obtain a 'poor man's structured pseudo­
spectrum' , precise determination of the boundaries of a:-(A) is a greater 
challenge. Hinrichsen and Pritchard derived lower bounds on a:-(A) to 
complement the obvious upper bound of ac (A) [400] , but these need not 
be sharp. Fortunately, the formula derived by Qiu et al. [616] for the real 
stability radius , presented in Theorem 49 . 1 ,  can be readily adapted into 
an algorithm for computing the boundaries of a:-(A) (in the 2-norm) . For 
any z tf. a (A) , denote the resolvent by R(z) = (z - A) - I .  The 2-norm of 
the smallest real matrix E that makes z an eigenvalue of A + E is given by 

o 

-1 

( . ( [  Re R(z) 
gJ(A, z) == mf S2 - I I R( ) 'YE (O , I ]  , m  z 

o 

-1 

-, Im R(z) 
Re R(z) Dr 
+-1-(-

(50 .3) 

-2 -1 0 1 2 - 2  -1 0 1 2 

Figure 50. 1 :  Eigenvalues of 250 complex (left) and real (right) random perturba­
tions E of the matrix A in (50.2) ; in each case I I E I I = 10-4 . 



460 x . FURTHER MATHEMATICAL ISSUES 

where S2 ( · ) denotes the second-largest singular value . (Qiu et al . also pro­
vide a construction for E . )  From this formula follows an equivalent char­
acterization of the real structured pseudospectra. 

Formula for real structured pseudospectra 

Theorem 50. 1  The 2-norm real structured c -pseudospectrum of A E 
lRN x N is given by 

a�(A) = {z  E <C :  iJ(A, z) < c} .  (50.4) 

With this formulation in hand, we can write a MATLAB algorithm for com­
puting real pseudospectra, an analogue of the the 'basic SVD algorithm' 
presented on page 371 for standard pseudospectra. (Undoubtedly this al­
gorithm, like the basic SVD algorithm, could be significantly improved. ) 

for k= l : m ,  for j = l : m  

[ignore , dist] = fminbnd ( ' obj fun ' , le-9 , 1 , [] , A , x (k) + l i *y ( j ) ) ; 

pertdist (j , k) = l /dist ; 

end , end 

contour (x , y , log10 (pertdist ) )  

Here the function obj fun is defined as 
funct ion obj = obj fun (gam , A , z) 

Rz = inv (z*eye ( s ize (A) ) -A) ; 

s ig = svd ( [real (Rz )  -gam*imag (Rz ) ; ( 1 /gam) * imag (Rz )  real (Rz) ] ) ;  

obj = s ig ( 2 ) ; 

As an example of the use of this algorithm, Figure 50. 2 illustrates the 
real structured pseudospectra of the matrix (50 .2 ) . Note that the figure 
confirms that the 'ribs ' extending into the complex plane for the real per­
turbations in Figure 50 . 1  do not simply fall on curves, but rather form thin 
sets of finite width. 

o o 

-1 - 1  

-2 - 1  o 2 -2 -1 o 2 

Figure 50 .2 :  Eigenvalues and pseudospectra of the matrix (50 . 2 ) ,  with CTe (A) 
(left) and CT�(A) (right) for E: = 10-3 , 10-4 , 10-5 • 
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Our second example will give an even greater discrepancy between 
oA A) and O"� (A) . The following matrix is a special case of (49 .7) , designed 
by Demmel to address a question about stability radii [ 196] described in 
the last section: 

- 1  -10  -100 -1000 - 10000 
- 1  - 10 - 100 - 1000 

A = - 1  - 10 - 100 (50 .5) 
- 1  - 1 0  

- 1  

Figure 50.3 illustrates both 0"", (A) and O"�(A) for this matrix, together with 
eigenvalues of both complex and real perturbations of A. As in the previous 
example, the real structured pseudospectra look 'spikier' than their smooth 
complex counterparts . 

We do not wish to give the impression that discrepancies as great as 
those seen as seen in Figure 50.3 are typical . Thus we offer a third exam­
ple, taking A to be a Jordan block of dimension 16 with ones on the first 
superdiagonal and all other entries zero. Figure 50.4 compares O"", (A) and 
O"�(A) ; in this case these sets are quite similar for a wide range of f val­
ues , though the real structured pseudospectra have characteristic rippled 
boundaries . 

Many applications give rise to structured matrices , where certain entries 
must have prescribed values (e.g. , zero or one) and one wishes to investigate 
the effect of perturbations of the other entries . For example, consider the 
companion matrix 

0 1 
0 1 

A =  
0 1 

-co -Cl -CN- l 
whose eigenvalues are zeros of the characteristic polynomial p(z) = Co + 
CI Z + . . .  + CN_ I ZN- 1 + zN . Perturbations of the polynomial coefficients 
correspond to perturbations only of the last row of A. The eigenvalues that 
result from all such structured perturbations form the pseudozero sets, de­
tails and illustrations of which are included in our discussion of polynomial 
zerofinding in §55 .  Perturbations of magnitude f to only the -co entry 
yield the lemniscate Ip(z) 1 = E .  

Matrices with similar companion-like structure arise in population dy­
namics. Simple models divide a population into N age brackets ,  each y 
years long. Assume that a member of the jth bracket will produce fj :::: 0 
offspring over the next y years , and let rj E [0 , 1] denote the probabil­
ity that a member of bracket j will survive the next y years. Then the 
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10 1 0  

5 5 

0 0 

-5 -5 

-1 0 -1 0 

- 15  - 10  -5 0 5 1 0  - 1 5  - 10  -5 

2 2 

2 2 
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- 1  

- 2  -2 

0 5 1 0  

L-__ � ____ � __ �� __ �� 
-3 -2 -1 o -3 -2 -1 o 

Figure 50.3 :  In the top row, pseudospectra O"E (A) (left ) and real structured 
pseudospectra O";rt (A) (right) for the Demmel matrix (50.5 ) with c: = 10-2 , 
10-3 , . . .  , 10- 1° . The second row is a zoom of the one above it, and the bot­
tom row shows eigenvalues of 250 perturbations of norm 10-4 , together with the 
boundary of the 10-4-pseudospectrum. 
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o 

� 0 �1 0 � 0 

Figure 50.4: Pseudospectra O"e (A) (left) and real structured pseudospectra O"� (A) 
(middle) for € = 10-2 , 10-3 , . . .  , 10- 10 for a Jordan block of dimension 16 .  The 
rightmost plot shows eigenvalues of 100 real random perturbations A + E, where 
I IE I I  = 10-2 . 

population after yk years is given by I I Akp lh , where p denotes the initial 
population distribution, and A is the Leslie matrix 

rN-l 
see , e.g. , [ 130) . The population Akp will decay as k ---> 00 provided the 
spectral radius p(A) is less than one. Given the obvious uncertainties 
and simplifications in this model , one wonders how O'(A) and p(A) , in 
particular , change with perturbations to fJ � ° and rj E [0, 1 ) ; we shall 
investigate this question using structured pseudospectra. If one wishes 
to study transient dynamics , an issue of matrix behavior, the standard 
pseudospectra 0' e (A) should be used. 

For example, consider a Leslie matrix A with N = 4, fertility param­
eters II = Is = f4 = 1/ 10 ,  12 = 1/2 ,  and survivability probabilities 
rl = r2 = r3 = 9/10 .  The spectral radius of this matrix is less than one 
(p(A) � 0 .85445) , so the population Akp will decay as k ---> 00. But sup­
pose that both the fertility and survivability parameters could have errors 
as large as ±1/10 .  Is it possible , given this level of uncertainty, that the 
population could instead grow exponentially? We examine eigenvalues of 
structured random perturbations A + E, where A + E is also a valid Leslie 
matrix. Figure 50.5 shows the result : among our random perturbations 
was a matrix E giving p(A + E) � l . 0381 , which implies that exponential 
growth is possible . With this level of uncertainty, we cannot conclude that 
the population will decay. 

For our final example of structured pseudospectra, we take P to be 
the transition matrix for a Markov chain, as described in §56. The entry 
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pertu:'?�_� _sXs.�e.� - - - - -
- - - - - - -

. --+--

-1 -0.5 o 0.5 

k 

Figure 50.5 :  Eigenvalues (gray dots) and perturbed eigenvalues of a stable Leslie 
matrix, where we take 1000 random matrices E such that I IE I I  :::; 10- 1 and A + E  
is also of Leslie form (left) . The plot on the right shows population evolution for 
the original system A and for a matrix A + E with I IE I I  :::; 10- 1 . 

Pjk E [0, 1] denotes the probability of moving from state j to state k in one 
step of the Markov chain; each row of P must sum to 1 to conserve prob­
ability. This conservation condition guarantees that P has an eigenvalue 
A = 1 ,  and the rate of convergence of the Markov chain to its steady state 
distribution is given by the magnitude of the second largest eigenvalue. If 
the probabilities that determine P are estimated from some physical , bio­
logical, or economic model, one might wish to quantify how errors in the 
system affect the convergence behavior of the Markov chain. In this case , 
the perturbed matrix P + E must satisfy the basic properties of a Markov 
chain: All its entries must be in [0, 1 ] ' and each row must sum to one . 

Perturbation theory for Markov chains addresses precisely this situa­
tion; see, e .g. , [148, 149] . Rather than considering these results in detail , 
we shall simply look at perturbed eigenvalues for two small transition ma­
trices: ( 1/2 

PI = 1/� 1/2 
3/4 
1/2 

1/� ) , 
1/2 

( 1 /4 
P2 = 1/4 

1/2 

3/4 
1/4 
1/4 

1 /� ) , 
1/4 

with the (Xl-norm pseudospectra. (In §56 we explain why I I  . 1 1 00 is the 
appropriate norm for this problem. )  Figure 50.6 illustrates eigenvalues of 
Pj + E, where the perturbations E are constructed so that Pj + E is a valid 
Markov chain transition matrix and I I E l l oo :::; 1/4. Compare these per­
turbed eigenvalues to the boundaries of the (Xl-norm 1/4-pseudospectrum, 
also shown in Figure 50.6 . Note that for both PI and P2 , none of the per­
turbation matrices is sufficient to cause the eigenvalues of smaller modulus 
to merge with the eigenvalue A = 1 .  Since Pj + E is a transition matrix, it 
must also have an eigenvalue A = 1 .  
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Figure 50.6 : Boundary of the oo-norm E-pseudospectrum for the Markov chain 
transition matrices PI (left) and P2 (right) for E = 1/4, together with eigenvalues 
of 1000 random perturbations Pj + E such that I IE l l oo ::::: 1/4 and Pj + E remains 
a valid transition matrix. 

In addition to the applications illustrated here , there are many more 
ways in which one can imagine introducing structured perturbations . For 
example, Hinrichsen, Kelb , and Pritchard consider the spectrum of A + 
DIED2 as E varies and Dl and D2 remain fixed ; see, e.g. , [397, 399] . 
Related is the study of dA + tE) for some fixed E E <cN x N and t E 
<c [5 , 133, 692] ; cf. §52 . In other cases, one might study how the spectrum 
of A evolves as changes are made to one particular entry at a time. As 
these changes need not be small in magnitude, they may be called mod­
ifications rather than perturbations [5 10] . (Wilkinson liked to call them 
'blunders ' . ) For results concerning such perturbations of banded Toeplitz 
matrices, see [37, 82 , 8 1 , 5 10] . 
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Similarity transformations are one of the basic tools of linear algebra, and 
they also have generalizations to linear operators in Hilbert and Banach 
spaces . This section mainly reviews the matrix case, with a few comments 
at the end about linear operators . 

From the perspective of theoretical linear algebra, a matrix is only one 
of many possible representations of a linear transformation resulting from 
a particular choice of a coordinate system for a vector space. This view 
affords the theoretician the luxury of choosing the most convenient coordi­
nate system. Given a matrix A E <eN X N, a change of coordinates can be 
performed via a similarity transformation, 

for any invertible S E <eN x N. If (A , v) is an eigenpair of A, then 

AS- I v  = AS- Iv  , (51 . 1 )  

s o  ( A ,  S - Iv) i s  an eigenpair o f  A. Thus similarity transformations leave the 
spectrum of A unchanged, revealing one of the great attractions of eigen­
values : they are properties of the linear transformation, independent of the 
choice of basis . The eigenvectors , however, can be significantly altered by 
such a transformation. 

If A is normal, it has an orthogonal basis of eigenvectors and one can 
write AV = VA, or 

A = V*AV, ( 5 1 . 2) 

for a unitary matrix V and diagonal matrix of eigenvalues, A. This diago­
nalizing similarity performs an orthogonal change of basis . In this section, 
we are particularly interested in two generalizations of this similarity for 
nonnormal matrices : the Jordan canonical form and the Schur factoriza­
tion. To begin with, suppose A is nonnormal but can still be diagonalized, 

A = V-lAY; ( 5 1 .3) 

since A is nonnormal, V cannot be unitary. The eigenvectors of A ,  which 
potentially form an ill-conditioned basis for <eN, are transformed via (5 1 .3) 
into the ideal elementary basis vectors . The condition number of V, t;; (V) = 
I IV I I I IV- I I I , provides a measure of the distortion involved in this transfor­
mation (see §48) . For example, the tridiagonal Toeplitz matrix (3 . 1 )  has 
distinct eigenvalues, which implies it is diagonalizable. However , the condi­
tion number of the diagonalizing transformation grows exponentially with 



5 1 · SIMILARITY TRANSFORMATIONS AND CANONICAL FORMS 467 

the matrix dimension [632] , as seen below for three values of N (accurate 
to the digits listed) . 

N /i(V) 
25 1 .813 x 107 
50 6 . 1 20 X 1014 
100 6.912 X 1029 

The choice of V is not unique , though as noted on page 19 ,  by taking the 
columns of V to have unit length we obtain a value for /i(V) within VN 
of the optimal value, since the eigenvalues of A are distinct . 

Figure 5 1 . 1  shows how the diagonalizing similarity transformation al­
ters the eigenvectors of this nonnormal matrix when N = 25. The top plot 
shows that the eigenvectors form a poor basis for <eN, consistent with the 
large value of /i(V) given above. The bottom plot trivially shows that the 
jth eigenvector of A = V- lAY is equal to the elementary basis vector ej , 
which has one in the jth component and zero elsewhere. These bottom ba­
sis vectors are orthonormal , so if one expands an arbitrary vector with unit 
2-norm as a linear combination of them, none of the expansion coefficients 
can exceed 1 .  Expanding the same vector in the top basis will likely lead to 
much larger coefficients, a consequence of cancellation among the various 
nearly-aligned basis vectors. In applications of nonnormal matrices, such 
cancellation leads to interesting transient effects that would be missed if 

'- '- '- ""- '-

'\ \ \. \. \.. \. \, \, � \r \.-, 'v \r 'Iv- � Y. \tv � 'Iv- 'Iv-

Figure 5 1 . 1 :  Ill-conditioned eigenvectors {Yj }f=l of the tridiagonal Toeplitz ma­
trix (3 . 1 )  for N = 25 (top) compared to the eigenvectors {V- 1Yj }f=1 of the 
diagonalized matrix (bottom) .  Compare Figure 12 .3 .  
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one analyzed the problem in the convenient orthonormal basis . 
When the eigenvectors of A fail to span <eN, the matrix is said to be 

defective or nondiagonalizable, and no similarity transformation will reduce 
A to diagonal form. In this instance, (51 .3 ) generalizes to the Jordan 
canonical form, 

J = V- 1AV, (51 .4) 

where J is a structured bidiagonal matrix. The development of the Jordan 
form is algebraically elegant but intricate; here we describe just those prop­
erties needed for the perturbation theory described in the next section. For 
a complete account , see , e .g . , [414 , 548 , 475] . 

Suppose Aj is an eigenvalue of A with algebraic multiplicity aj (multi­
plicity of Aj as a root of the characteristic polynomial) and geometric mul­
tiplicity 9j (number of linearly independent eigenvectors associated with 
Aj ) .  There exist matrices Vj E <eN x aj and J j E <eaj x aj such that 

(51 .5 )  

where Vj has linearly independent columns and Jj = diag(Jj , l , . . .  , Jj ,gj ) 
with 

£ = 1 , · · · , 9j · (51 .6) 

The dimensions of the J j ,£ depend upon properties of A; they must sum 
to aj . Overall, J j has exactly aj - 9j superdiagonal ones . The columns of 
Vj form a basis for 

known as an invariant subspace of A because A V j <;;; V j . As V j is finite­
dimensional , there must exist some smallest integer kj such that (A -

Aj ) kj y = 0 for all y E Vj . This kj is called the index of Aj ;  it equals 
the largest dimension of all Jordan blocks J j,e associated with Aj , and 
hence kj :S aj . The Jordan form (51 .4) is obtained by assembling V = 
[V1 V2 · · ·  Vm] and J = diag(J 1 , . . .  , Jm ) ,  where m is the number of distinct 
eigenvalues of A .  

The reduction to Jordan form i s  numerically problematic [328] . Dif­
ficulties arise in simply trying to determine aj and 9j . How does one 
discern if two computed eigenvalues are identical in the presence of round­
ing errors? Given a multiple eigenvalue, are the associated eigenvectors 
linearly dependent , or just nearly so? Many authors have suggested more 
numerically-suitable alternatives [34, 195 , 440j . In place of (51 .4) , one can 
seek a well-conditioned similarity transformation that block-diagonalizes 
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A, imposing less restrictive conditions than those required for the Jordan 
form. Eigenvalues should be grouped together based on the angles formed 
between eigenvectors : Small angles are collected in the same block. Since 
the eigenvectors associated with each group form a poor basis for their 
invariant subspace, they are replaced by an orthogonal basis for that sub­
space . This yields the equation 

ASj = SjBj 

of the form (51 .5 ) , but now the columns of Sj are orthogonal. Constructing 
Sj via the Gram-Schmidt process leads to an upper triangular Bj . The 
matrix S is assembled from the rectangular Sj matrices . 

Taking this approach to its logical extreme, all eigenvalues with non­
orthogonal eigenvectors could be grouped together. The resulting similarity 
transformation would then be unitary, but the cost of this perfectly condi­
tioned transformation is that A is only reduced to general triangular form, 
rather than the bidiagonal Jordan form. This is the Schur factorization, 

T = U*AU,  (5 1 .  7 )  

which exists for any matrix A E <eNx N. Like (51 .4) , this form reduces to 
the unitary diagonalization (51 . 2 )  when A is normal. 

We have only addressed the two best-known canonical forms, but other 
options are possible. One of them is the rational canonical form [827J , 
which reduces A to a block diagonal matrix with companion matrix blocks 
(see §55) . For a survey of canonical forms based on unitary similarity 
transformations , see [674J . 

How does a similarity transformation affect pseudospectra? When the 
transformation matrix is i ll-conditioned, as is possible with the Jordan 
form, the change can be significant . On the other hand, 2-norm pseudo­
spectra are invariant under unitary similarities . 

Pseudospectra of similarity transformations 

Theorem 51 . 1  For any invertible S E <eNx N and any c > 0, 

O""/K(s) (S- lAS) � O",, (A) � O""K(s) (S- lAS) ,  

where ",(S)  = I I S I l I I S - 1 1 1 . In particular, when S is unitary and II . I I = 

1 1 · 1 1 2 , O",, (A) = O",, (S- lAS) . 

Proof. Suppose z E O",, (A) . Then 

I I (z - SS- lASS- 1 ) - 1 1 1 
I I S (z - S- lAS) - l S- 1 1 1  ::; ",(S) I I (z - S- lAS) - l l l , 
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implying that Z E (TEI« S) (S- lAS) , and thus giving the second inclusion. 
The first follows similarly. When S is a unitary matrix, the inequality 
becomes an equality due to the unitary invariance of the 2-norm. _ 

Since unitary transformations do not affect the 2-norm pseudospectra, 
(5 1 . 7) implies one could learn all there is to know about those pseudospec­
tra by considering only triangular matrices. 1 Thus, the range of 2-norm 
pseudospectral behavior is controlled by no more than � N (N + 1 )  param­
eters . Jordan matrices , with their 2N - 1 parameters , form only a small 
subset of triangular matrices . In particular , the pseudospectra of the Jor­
dan factor J = V- lAY consist of the union of disks. To see this, note that 
J is the direct sum of matrices of the form (51 .6 ) . If Jo E Ck x k is of the 
form (51 .6) with zero on the main diagonal , then for any e E [0, 2-rr ) ,  the 
diagonal unitary matrix 

rotates Jo without affecting the pseudospectra, SJoS* = eiO Jo . Thus, the 
pseudospectra of a Jordan factor must equal the union of disks, by Theo­
rem 2 .4 ( iii) . The radii of these circles depend upon the dimension of the 
blocks. (The Zabczyk operator discussed in § 19  is built from shifted and 
scaled Jordan blocks . As can be seen in Figure 19 . 1 ,  the pseudospectra of 
this operator consist of the union of the circular pseudospectra associated 
with each Jordan block . )  

Lavah�e, Malyshev, and Sadkane propose a method for computing ap­
proximate pseudospectra based on the principle in Theorem 5 1 . 1  [486] . 
They suggest that one should block-diagonalize A by a well-conditioned 
(but not necessarily unitary) similarity transformation, and then use the 
union of the pseudospectra of the individual diagonal blocks as an ap­
proximation to (T E (A) . The quality of the approximation is controlled by 
the condition of the similarity transformation. To illustrate how this pro­
cedure can be useful for certain nonnormal matrices, we consider an N­
dimensional matrix derived from a stabilized finite element discretization 
of a two-dimensional advection-diffusion equation on a square grid, as de­
scribed in [276] and used as a model problem in §26. For this particular 
example, the eigenvalues of the discretization matrix fall on VN vertical 
lines in the complex plane with VN eigenvalues per line . The eigenvectors 
associated with each line form small angles with one another but are or­
thogonal to the eigenvectors associated with every other line. Thus, there 
is a unitary similarity that reduces A to a block diagonal matrix with VN 
blocks each of size VN. The E-pseudospectrum of the entire matrix is sim­
ply the union of the E-pseudospectra of each individual block. Figure 5 1 . 2  

I This does not seem an efficient program, since s o  much o f  the structure that facili­
tates analysis, e .g. , of Toeplitz matrices , would be lost in the reduction to Schur form. 
See also the comments on p. 367. For computation of pseudospectra, though, the Schur 
form is indispensable, as described in §39. 
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Figure 51 . 2 :  Spectrum and 1O-4-pseudospectrum for an advection-diffusion dis­
cretization matrix of dimension N = 36 [276] . Six eigenvalues fall on each of six 
vertical lines. The figure on the left superimposes the 1O-4-pseudospectra associ­
ated with each of the six different lines (6 x 6  matrices) . The 1O-4-pseudospectrum 
of the entire matrix is the union of these pseudospectra, shown on the right . 

illustrates this for N = 36 and E = 10-4 . Liesen and Strakos use this 
fact to analyze the convergence of the GMRES algorithm for solving linear 
systems involving these matrices [504 J .  

Similarity transformations provide a convenient means for changing 
from the standard Euclidean norm to a weighted norm induced by the 
inner product (X' Y) L == (Lx, Ly) = y*L*Lx for an invertible matrix L: 
from page 379 or (45 . 10) , 

where A = LAL - 1 . Similarly, 

I I ( z  - A) - I l l s = I I L(z - A) - I L - 1 1 1 2 :::; K:(L) I I (z - A) - I I I ,  
suggesting the following analogue to Theorem 5 1 . 1  that bounds how much 
a change of inner product can alter the pseudospectra. 

Theorem 51 .2  For any invertible L E QjN x N and any E > 0 , 

(J'L-norm (A) C (J'2-no" m (A) c - cK(L) . 

Suppose A is diagonalizable, A = V- I AV, where A is diagonal and the 
columns VI , . . .  , V N of V are eigenvectors of A. Even when these columns 
form an ill-conditioned basis , V induces an inner product in which A is 
normal. To see this, note that 

i .e . , the eigenvectors of A are orthogonal in the V- I inner product . Thus 
we have the following elementary observations: Any diagonalizable matrix 
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is normal in some inner product , and in this inner product , the norm of A 
equals its spectral radius , I I A l l v - 1  = p(A) . (When A is nondiagonalizable , 
the fact that for any E > 0 there exists some norm for which I I A I I < p(A) +E 
can be derived from the fact that the superdiagonal ones in the Jordan form 
J can be replaced by an arbitrary nonzero value by adjusting the similarity 
transformation. ) 

We close by outlining how some of the ideas of similarity transforma­
tions for matrices can be generalized to operators in infinite-dimensional 
spaces [184, 323] . If X is a Banach space with norm I I · I I , a basis for X is a 
sequence of vectors Xj E X ,  j = 1 , 2 ,  . . .  , such that any vector in X has a 
unique representation as a series 2:;:1 CjXj that converges in the norm 1 1 · 1 1 ; 
a normalized basis is a basis with I l xj I I = 1 for each j .  An unconditional 
basis is a basis with the property that every permutation of the sequence 
is also a basis. If X is a Hilbert space, a sequence {Xj } is an unconditional 
basis if and only if it has 'finite condition number' in the sense that there 
exists a bounded invertible operator S on X such that {ej == S- lXj } is a 
complete orthonormal set in X .  A basis with this property is also known 
as a Riesz basis. The main results of this section carry over to operators 
in this context . For example, if an operator A in a Hilbert space X has 
eigenvalues >"j and a complete set of associated normalized eigenvectors 
{Vj } that form a Riesz basis for X ,  then with V defined by Vj = Vej for 
some complete orthonormal set {ej } in X ,  we find that A has the 'diag­
onalization' A = V AV- 1 , where A denotes the operator that maps Vj 
to >"jVj for each j .  We define the condition number of V, or of the set of 
eigenvectors {Vj } ,  by K:(V) = K: ( {Vj } )  = I IV I I I I V- 1 1 1 . A part of the spectral 
theorem asserts that if A is a bounded operator on a Hilbert space with 
a complete set of eigenvectors that form a Riesz basis, then A is normal 
( i .e . , AA* = A*A) if and only if these eigenvectors can be chosen to be 
orthonormal , i . e . , K: (V) = L The results in this book involving the condi­
tion number of a matrix of eigenvectors , such as Theorems 2 .2 and 2 .3 and 
equations ( 14 .5 ) , ( 14 .22) , and (48 .2 ) , can be extended to this generalized 
context . 
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Since the eigenvalues of a matrix are continuous functions of the matrix en­
tries , it is natural to ask how the spectrum moves when matrix coefficients 
are altered by small amounts . Classical perturbation theory addresses this 
question. Early in the twentieth century, it was found that when applied 
to the Hermitian and nearly Hermitian operators of quantum mechanics , 
this theory could explain all kinds of phenomena of atomic and molecu­
lar physics , notably the splitting of spectral lines by second-order physical 
effects. Since this time, spectral perturbation theory has been one of the 
central topics of mathematical physics . See, for example, [562 , 629] . 

Our interest here is in more strongly nonnormal finite-dimensional ma­
trices . We shall find that perturbation theory provides a description of the 
€-pseudospectra in the limit € � o . When € is very small, the pseudospec­
tra look like the union of disks whose radii depend upon the conditioning 
and Jordan structure of the individual eigenvalues . 

Given a matrix A E �N X N, we are interested in the evolution of the 
eigenvalues of 

A(t) = A + tE, 

where I I E I I  = 1 and t is a complex variable, usually assumed to be small in 
magnitude. Comprehensive sources for such analysis include the books by 
Baumgartel [33] and Kato [448] . 

To begin with, consider the most straightforward case : Suppose all the 
eigenvalues >'1 ,  . . .  , >w of A are distinct , which implies the existence of a 
full set of left and right eigenvectors determined up to scaling, 

for j = 1 ,  . . .  , N. We focus on the eigenpair (AI , vd of A,  which is per­
turbed to become the eigenpair (Al (t) , Vl (t) ) of A(t) : 

(52 . 1 )  

Since the eigenvalue A l E O" (A) i s  a simple root o f  the characteristic equa­
tion det (A - A) = 0, the eigenvalue Al (t) of A(t) is given by the convergent 
Taylor series 

A l (t) = A l + (Xl t + (X2t2 + . . .  

for sufficiently small I t I and appropriate constants (Xl , (X2 , . . . .  Similarly, 
we can always scale the eigenvector VI (t) to take the form 

n 

Vl (t) = VI + l: (t(3lj + t2(32j + t3(33j + . . . ) Vj . 
j=2 
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Note that ujvk = 0 when j #- k ,  and so premultiplying (52 . 1 )  by ui yields 

ui A(t)vl (t) 
ui Avl (t) + tui Evl (t) 
A1 ui v1 + tui Ev1 (t) . 

Thus the perturbation tE moves the eigenvalue Al by the distance 

(52 .2) 

(52 .3) 

The coefficient of I t I in this final bound is the condition number of AI , 
written K(A1 ) ' For any simple eigenvalue Aj , 

The Cauchy-Schwarz inequality implies that I ujvj l :S I l uj l l l l vj I I ,  so K(Aj )  2 
1 .  The condition number equals 1 when equality holds in the Cauchy­
Schwarz inequality, i .e . , when Uj and Vj are collinear . This is always the 
case when A is a normal matrix, since left and right eigenvectors can be 
taken to be the same; it can also occur for some, though never all , eigen­
values of a nonnormal matrix. An eigenvalue for which K(Aj )  = 1 is called 
a normal eigenvalue. Eigenvalue condition numbers were popularized by 
Wilkinson, whose derivation we have followed above [827, Chap. 2] . 

If we normalize Uj and Vj so that ujvj = I ,  then the matrix 

(52 .4) 

. . t . p2 * * * P Th f P . IS a proJec or, smce j = VjUj VjUj = VjUj = j ' e range 0 j IS 
simply the (right) eigenspace associated with Aj , Ran Pj = span{ Vj } .  Since 
Uj is orthogonal to Vk for k #- j ,  PjVk = 0 for k #- j ,  and therefore the 
projector Pj is said to project along (or parallel to) span{vd ko;ij . Because 
Pj projects onto an eigenspace and along the complementary eigenspaces , 
it is called the spectral projector for Aj . Among its many useful properties , 
notice that APj = Pj A = Aj Pj . Furthermore, 

where we have taken x = uj / l l uj l l in the maximization. Thus the eigen­
value condition number is simply the norm of the spectral projector . The 
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connection between spectral projectors and pseudospectra can be better 
appreciated through the equivalent integral 

P = - (z - A) - dz 1 1 1 
J 27ri r ' (52 .5) 

where r is a contour surrounding Aj but none of the other eigenvalues. 
Taking the union of the asymptotic bounds in (52 .3) over all eigenvalues 

Aj E a(A) and all matrices E with I IE I I  = 1 ,  we deduce the following result . 

Asymptotic pseudospectra inclusion regions 

Theorem 52. 1 Suppose A E <eNx N has N distinct eigenvalues, 
a(A) = {Aj };'=l ' Then as c ----+ 0 ,  

N 
ac: (A) � U (Aj + �C:K(>'j )+() (c:2 ) ) , 

j=l 
where �8 = {z E <e : I z l < 8} . 

As we shall see, the set obtained by neglecting (')(c2 ) effects , 
N 

nco = U (Aj + �C:K(>'j ) ) ' 
j=l 

provides a good indication of the pseudospectra for small values of c . Bauer 
and Fike described similar inclusion regions that are valid for all c > 0 :  
The cost of omitting the (') (c2 ) term is an increase in the radius of the 
inclusion disks by a factor of N [32 , Thm. 4] , [199, §4 .3] . 

Bauer-Fike theorem based on �(Aj )  
Theorem 52.2 Suppose A E <eN xN has N distinct eigenvalues, 
a(A) = {Aj };'=1 ' Then for all c > 0, 

N 
ac: (A) � U (Aj + �c:NK(>'j ) ) ' 

j=l 

Proof. If z E ac: (A) , then there exists a unit vector x E <eN such that 

(A + E)x = zx (52 .6) 

for some E with I IE I I  < c . Since A has N distinct eigenvalues , its spectral 
projectors Pj are defined by (52 .4) . For any fixed j ,  premultiply (52 .6) by 
Pj and rearrange to obtain PjEx = Pj (z - A)x = (z - Aj )PjX. Provided 
Pjx -I- 0, this implies 

I A · _ I = I I PjEx l 1 
J z I IPjx l 1 
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Since 1 = I l x l l  = I I 2:f=l PjX l 1  ::; 2:f=l I I Pjx l l , there must be at least one 
j for which I I Pjx l 1  ::::: liN. For this j ,  I Aj - z l < cN 1 1Pj 1 1  = c NK,(Aj )  as 
required. _ 

The more familiar version of the Bauer-Fike theorem (Theorem 2 .3)  
follows this same pattern but with N K,( Aj ) replaced by the condition num­
ber of the eigenvector matrix, K,(Y) = 1 IV I I I Iy- 1 1 1 , so that the inclusion 
disks for all the eigenvalues have the same radius . Theorem 52 .2 can be 
more descriptive, for example, when there are well-conditioned eigenvalues 
separated from the rest of the spectrum. 

Theorem 52 .2 trades the e:J (c2 ) term of Theorem 52. 1 for a potentially 
much larger constant . To see how these regions compare for a specific 
example, consider 

6 
(52 .7) 

o 

Figure 52 . 1  illustrates O'e (A) along with the region De and the inclusion 
region from Theorem 52 .2 .  As expected, the sets De become increasingly 
descriptive as c gets smaller, though they need never be inclusion sets since 
they neglect e:J (c2 ) terms. For larger matrices the multiplicative factor n 

is more significant , and the bounds of Theorems 52 .1  and 52 .2 differ more 
acutely. 

What if we relax the requirement that A have distinct eigenvalues? 
When A has repeated eigenvalues but remains diagonalizable (i .e . ,  the al­
gebraic multiplicity of each eigenvalue matches the geometric multiplicity) , 
the theory outlined above carries through with only minor modifications . 
For example , in Theorem 52 .2 ,  K,(Aj )  must be replaced by I I Pj l l , where Pj 
is the spectral projector onto the entire eigenspace associated with Aj , and 
the factor N can be replaced by the number of distinct eigenvalues . 

On the other hand, if the algebraic multiplicity aj of Aj exceeds the geo-

c = 0 .05 
5 

-5,--::--��-:--��� -5 0 5 

� .. , .. � ' I  (II) 
) Q  � I V  V I  

-1 o 

Figure 52. 1 :  Comparison of the regions described by Theorems 52 . 1  (excluding 
<'J (c2 ) term) and 52.2 for the matrix (52 .7) . The gray sets are O'£ (A) , the inner 
black lines are the boundaries of fl" and the outer black lines are the boundaries 
of the Bauer-Fike inclusion regions of Theorem 52 .2 .  
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metric multiplicity 9j , then Aj is defective and A is not diagonalizable. This 
significantly changes the asymptotic picture , for now, in contrast to (52 .3 ) , 
Aj can respond to a perturbation in a nonlinear fashion. To describe this 
behavior , we shall use the Jordan structure of the matrix A outlined in 
the last section. There exists some Vj E <cN x aj such that AVj = VjJj as 
in (51 . 5 ) , where Jj is a direct sum of Jordan blocks Jj,l ' Similarly one can 
find a VJo E <cN x aj such that V*A = J ·V* and V*V = I E <caj x aj . The J J J J J 
spectral projector Pj for Aj is then 

Pj = VjVj . 

The contour integral formula (52 .5) also holds in this case. Suppose Aj 
is a defective eigenvalue associated with the Jordan blocks {J j ,d��l ' The 
characteristic polynomial </J(A) = det (A - A) has Aj as a root of multiplic­
ity aj . If there are several Jordan blocks associated with Aj ( i .e . , 9j > 1 ) ,  
each block will potentially split into a separate set of distinct eigenvalues, 
and the manner in which this occurs depends upon the dimension of each 
block . The eigenvalues associated with a block of dimension d can split 
into d distinct but related eigenvalues according to the formula 

\ ( )  \ h l id 2 h 2/d  Aj ,h  t = Aj + al w t + a2w t + . . .  , h = 0 ,  . . .  , d  - 1 ,  (52 .8) 

called a Puiseux series, where wh = e2 hrri/d is a principal dth root of unity; 
see Baumgartel [33 , §A1] or Kato [448, p .  65] . The size of the largest 
Jordan block associated with Aj is called the index of Aj , denoted by kj . 
The formula (52 .8) shows that A + tE  can have a cluster of eigenvalues at 
a distance O ( IW/kj )  from Aj as t -+ 0 ;  compare Theorem 16 .6 .  The role of 
the Jordan block dimension is illustrated in Figures 52 .2 and 52 .3 .  

Elaborate formulas specify the values of the coefficients aq in (52 .8) , 
depending on E, the Jordan structure of A as characterized by J j ,  and the 
matrices Vj and Vj that reveal that structure. This perturbation series was 
studied in the 1960s by Lidskii [502] , whose analysis is elegantly described 

1 N = 4  1 

0 .:. 0 
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-1 0 

N = 16  
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1 N = 64 

o 

-1  

...... . . . . .
. . . . . . . . . . .... 

.. . . . . . . . .
. . . . . . 

-1 0 

Figure 52 .2 :  Eigenvalues of A + tE for three dimensions N, with c = 10-5 and 
E having all its components equal to liN (so that I I E I I  = 1 ) .  A is a degree-N 
Jordan block, zero everywhere except for ones on the first superdiagonal. 
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1 0-50 

t 
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1 0-20 

N = 8  

1 0-10 

1 00 N =  1 

1 0-3 1 0-2 1 0-1 1 00 

max I A  - A(t) 1 

Figure 52 .3 :  Maximum movement of the eigenvalues of A + tE as t varies for 
several values of N. The matrices A and E are the same as in Figure 52 .2 .  The 
unusual orientation of the axes will facilitate comparison with Figure 52 .5 .  

by Moro, Burke ,  and Overton [561 ] . When A has only one Jordan block 
associated with Aj , the first coefficient is 

(Xl = u* k EV ' l  ) , j ) , ' (52 .9) 

where Vj, l and Uj,kj are the first and last columns of Vj and Uj ,  respec­
tively ; i . e . ,  Vj, l and Uj,kj are the right and left eigenvectors of A associated 
with Aj . Compare this expression for (Xl to the coefficient of I t I (52 .2) , 
which equals uiEvl with the analogous normalization UiVl = 1 .  (For 
the examples in Figures 52 .2 and 52 .3 ,  the formula (52 .9 )  implies that 
(Xl = l iN,  since Vj = Uj = I . )  

Random perturbations will normally induce perturbations of (') ( I t l kj ) ,  
but structured perturbations can yield other effects. For example , if ( 0 1 0 ) ( 0 0 1 ) ( 0 0 0 ) ( 0 0 0 ) 
A = 0 0 1 , El = 0 0 0 , E2 = 1 0 0 , E3 = 0 0 0 , 

0 0 0  0 0 0  0 0 0  1 0 0  

then A + tEl has the same eigenvalues as A, A + tE2 has two eigenvalues 
(') ( l t I 2 ) from A = 0, and A + tE3 has all three eigenvalues (') ( l t I 3 ) from A = 0 
as t ---+ O .  

The series (52 .8) indicates that small perturbations can cause Jordan 
blocks to split into clusters , as observed in Figure 52 .2 .  Figure 52 .4 illus­
trates similar splitting, but for a matrix consisting of three different Jordan 
blocks , each associated with a different eigenvalue. The block diagonal ma­
trix A E <e14 X 14 is defined as the direct sum of three Jordan blocks: one of 
dimension 3 with Al = - 1/2 ,  one of dimension 7 with A2 = 0 ,  and one of 
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0.5 * 0.5 

A�� 0 0 

-0.5 -0.5 

-1 
- 1  -0.5 0 0.5 

-1 
-1 -0.5 0 0.5 

Figure 52.4 :  Eigenvalue trajectories of A + tE for two complex random pertur­
bations E to a matrix A with three Jordan blocks of differing dimension. The 
perturbation matrix is scaled so that I IE I I  = 1 ;  t takes real values in [0 , 10- 1 ] .  
The exterior curve denotes the boundary of the 1O- 1-pseudospectrum of A,  a 
boundary for all these perturbed eigenvalues . 

dimension 4 with >'3 = 1/2 .  The figure shows the eigenvalue trajectories for 
A + tE as t varies for two random complex perturbations E. As t grows in 
magnitude, the series (52 .8) becomes less descriptive, and the interactions 
between the individual eigenvalues become apparent . For similar examples , 
see [142, 692] . 

Since infinitesimal perturbations can alter the Jordan structure of a ma­
trix discontinuously, it is not typically feasible to determine this canonical 
form numerically [328] . One approach to finding this structure, suggested 
by Chaitin-Chatelin and her coauthors (see , e.g. , [142] ) ,  involves estimating 
the dimension of the Jordan blocks by examining the eigenvalues of small 
random perturbations in light of the growth dictated by the series (52 .8) . 
In applications , the actual structure of the Jordan form may be less rel­
evant than the behavior of a cluster of eigenvalues , which could consist 
of any combination of simple or repeated eigenvalues. Kato shows that a 
perturbation of norm E moves the arithmetic mean :\ of any given cluster 
according to 

1 :\ - :\(t ) 1 = t 1 1P 1 1  + C9 ( l t I 2 ) ,  

where P is the spectral projector onto the invariant subspace associated 
with the cluster of eigenvalues [448 , §2 . 2] . (This projector P is simply the 
sum of the spectral projectors associated with the individual eigenvalues 
that constitute the cluster . )  Since P is a projector , I I P I I � 1 ,  with equality 
implying that P is an orthogonal projector, i .e . , that taken together , the 
cluster is perfectly conditioned, though individual eigenvalues within it may 
be highly ill-conditioned. Thus I I P I I  is said to be the condition number of 
the cluster of eigenvalues; see [24 , §4 .2] , [442, §II] . (The conditioning of the 
invariant subspace associated with a cluster depends additionally on the 
separation of those eigenvalues from the rest of the spectrum, a separation 
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conventionally measured by a positive real number known as 'sep' . This 
quantity, introduced by Stewart [723 , 724] and studied by Varah [802] , 
takes account of nonnormality. ) 

The formulas described by the expressions (52 .3) and (52 .8) naturally 
have an analogue in terms of the resolvent norm. 

Asymptotic formula for the resolvent norm 

Theorem 52.3 Let Aj E O"(A) be an eigenvalue of index kj .  Then 
there exist constants dj > 0 and Cj > 0 such that 

for all Z satisfying I z - Aj I ::; dj . If Aj is a simple eigenvalue, then the 
infimum of possible values for Cj is K; ( Aj ) .  

Proof. Suppose A E (Cn xn is a matrix with L ::; N distinct eigenvalues , so 
that for each j = 1 ,  . . .  , L, we have 

for VjVj = I and J j in Jordan form as described in §5 1 .  Let 

V = [VI V2 . . .  VL] ,  V = [VI V2 . . .  VL] ,  J = diag(J 1 , J2 , . . .  , JL ) .  

Note that V- I = V* and 

L 
A = VJV- 1  = I.: VjJjVj . 

j=1 

Now consider the resolvent at z (j. O"(A) : 

(z - A)- 1 

L 
V(z - J) - IV-1 = I.: Vj (z - Jj ) - IVj . (52 . 10) 

j=1 

The matrix Jj is block diagonal with submatrices of the form (51 .6) on the 
diagonal , the largest of which has dimension kj . We can write Z - J j = 

(z - Aj ) - Dj , where Dj is a matrix that is zero everywhere except perhaps 
on the first superdiagonal. Expanding (z - J j ) - 1  in a series , we obtain 
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The series terminates since D] = 0 for £ 2': kj . Using this formula for the 
resolvent of Jj ,  we can expand (52 . 10 )  as 

see Kato [448, p. 40] . As z -7 Aj , 

from which the main result follows. When Aj is simple, the only associated 
term in the sum for (z - A)- l is Vj (z - Aj ) - l Uj ,  and I IVj (z - Aj )Uj l l  = 
I IVj Uj l l l z - Aj l = I I Pj l l l z - Aj l = K(Aj ) l z - Aj l · • 

Notice that if J j consists of a single Jordan block (gj = 1 ) ,  then D;j - 1 E 
(JJkj x kj is zero everywhere except in the ( 1 ,  kj )  entry, so that 

where, as before, Vj , l  and Uj,kj are the first and last columns of Vj and 
Uj . Compare this formula for the leading coefficient of series (52 . 1 1 ) with 
the corresponding coefficient 0! 1 = u)* k EY). 1 in the expansion (52.8) for , J ' 
Aj,h (t) . Under the same gj = 1 assumption, 

with equality being attained for E = Uj,kj vj,d l l uj ,kJ l l vj , l l l . 
We now investigate several computational examples , analogues to the 

eigenvalue perturbation experiments earlier in this section. First , consider 
the N-dimensional Jordan block whose perturbed eigenvalues were exam­
ined in Figures 52 .2 and 52 .3 .  As z -7 A = 0, Theorem 52.3 asserts that the 
resolvent norm will grow like I z l -N , which is confirmed in Figure 52 .5 .  Fig­
ure 52 .6 illustrates the pseudospectra of this Jordan block for three values 
of N. Near the eigenvalue, the pseudospectra differ significantly depending 
on the matrix dimension, though far from the eigenvalue they look very 
similar. This emphasizes that the results in this section are asymptotic 
and can potentially be misleading in applications where the behavior is not 
controlled by a single eigenvalue. 

These examples illustrate a somewhat ideal situation, since the matrix 
is already in Jordan form, and thus the matrices Vj and Uj used in the 
analysis above are trivial . Now we complicate the situation by introducing 
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[ z [  
Figure 52 . 5 :  Resolvent norm for a Jordan block as  in  Figures 52 .2-52 .3  as a 
function of the distance from the eigenvalue ).. = 0, for various dimensions N .  
The rate o f  growth o f  the resolvent norm depends on  the block dimension as 
[ z [  --> 0. Note the agreement with Figure 52 .3 .  

a nonzero constant on the second superdiagonal of the matrix, 

A = 

o 1 'Y 

o 1 

o 'Y 

1 
o 

(52 . 12 )  

see Figure 7 .5 .  Even for moderate values of 'Y ,  this matrix differs consid­
erably from the Jordan block studied previously b = 0) . Though the Jor­
dan factor of A is independent of 'Y, the condition number of the similarity 
transformation that brings A into that Jordan form increases exponentially 
with 'Y. Since there is only a single Jordan block, it is easy to compute the 
constants for the leading terms in the expansions for the perturbed eigenval­
ues and the resolvent norm, which, as seen above, are necessarily the same. 
The right and left eigenvectors of A take the form V I , I = ( 1 ,  0, . . . , O)T 
and UI ,N = (0, . . . , 0 , l )T , and thus I l vj , l l l l l uj,k I I  = 1. As I z l --> 0, the 
resolvent norm must behave like that of the Jordan block of the same di­
mension, regardless of 'Y. This fact is observed in Figures 52 .7 and 52 .8 ,  
which also illustrate that asymptotic analysis does not reveal all properties 
of the resolvent norm, even for a matrix with a single eigenvalue. Near 
,\ = 0, the pseudospectra are largely independent of 'Y, while at inter­
mediate distances the influence of 'Y is significant . This distinction has 
important implications for the behavior of matrix functions, such as Ak for 
0 <  k < N, as confirmed by the upper and lower bounds presented in Q16 .  
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Figure 52.6: Spectrum and €-pseudospectra for Jordan blocks as in the previous 
figure, for various N and € = 10-2 , 10- \ 10° , 101 (top) and € = 10-5 ,  10-4 ,  
10-3 , 10-2 (bottom) . For large € ,  the pseudospectra depend only mildly on the 
block dimension, while for small € ,  the block size is crucial . 

5 ')' == 0  5 ')' == 5 5 I' == 25 

0 ® ° ® 0 0 
-5 -5 -5 

-5 0 5 -5 0 5 -5 0 5 
0.01 0.01 0.Q1 ,), == 0  ,), == 5  ')' == 25 

0 ® ° ® 0 ® 
-0 .01 -0.01 -0.01 -0.01 ° 0.01 -0.01 0 0.Q1 -0.01 0 0.01 

Figure 52.7 :  Spectrum and €-pseudospectra for three matrices (52 . 12) of dimen­
sion N = 16 with € = 10-5 , 10-10 , 10- 1 5 ,  10-20 (top) and € = 10-35 ,  10-4° , 
10-45 , 10-50 (bottom) . The pseudospectra on the top vary significantly with 1',  

. whereas they agree more closely for the smaller values of € shown on the bottom. 
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z 
Figure 52 .8 :  Resolvent norm for the matrix (52 . 12) as a function of the distance 
from the eigenvalue A = 0, with N = 16 and various values of "f. As I z l � 0 ,  
the Jordan structure alone determines the leading-order resolvent norm behavior: 
I I ( z  - A) - I I I  � I z l -N for all '"Y. 

Perturbation theory tells us that as E � 0, the E-pseudospectrum looks 
like the union of circular disks . The radii of these disks depend upon the 
conditioning of the eigenvalue problem and the size of the Jordan blocks 
associated with each eigenvalue. While this local information can be infor­
mative in some circumstances , in many applications one is concerned with 
nonnormality manifested at points in the complex plane far from the spec­
trum. In such situations, bounds derived from asymptotic perturbation 
theory can lack sufficient accuracy. 

Throughout this book, we have seen examples of highly nonnormal ma­
trices for which small perturbations to the matrix coefficients significantly 
move the spectrum. The utility of pseudospectra would be seriously com­
promised if they exhibited the same sensitivities . The following simple 
result shows they do not . 

Perturbation of pseudospectra 

Theorem 52.4 For all A, E E <eNx N and E > I I E I I , 

Proof. Suppose Z E O"g_ I IE I I (A) . Then there exists F with I I F I I  < E - I IE I I 
such that z E o- (A + F) = O"( (A + E) + (F - E) ) .  To obtain the first 
inclusion, note that I IF  - E l l  ::; I I F I I  + I I E I I < E. The second inclusion 
follows by swapping the roles of A and A + E in the first . _ 
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In the last section we studied, from a theoretical perspective , the effect of a 
small perturbation on the eigenvalues of a matrix A E <r;N x N. Here we ad­
dress the practical problem of calculating eigenvalues on a computer . Such 
finite precision computations effectively perturb the entries of A, leading to 
a natural connection to pseudospectra. We come to this topic rather late in 
this book, as our emphasis has been on matrix behavior instead of rounding 
errors. However, much of the early research on pseudospectra was driven 
by the goal of understanding the behavior of eigenvalue algorithms for non­
Hermitian matrices , with contributions from Varah, Godunov's group at 
Novosibirsk, and Chaitin-Chatelin and her colleagues, as described in §6 .  

The study of the interaction between linear algebra algorithms and 
finite precision computers began in the 1940s and 1950s with the analysis 
of the stability of Gaussian elimination for solving Ax = b. The iterative 
methods for solving such systems discussed in §§24 and 25 are robust to 
errors in the sense that an arithmetic mistake made by a computer can be 
corrected by additional iterations . How does Gaussian elimination, a one­
pass process , respond to similar errors? The answer to this question applies 
not only to a single procedure for solving linear systems, but throughout 
numerical analysis: there is a critical distinction between the stability of 
an algorithm and the conditioning of the problem the algorithm is asked to 
solve. Some problems are inherently sensitive to small changes in their data, 
and in such cases it is unrealistic to expect any finite precision algorithm, 
be it direct or iterative, to produce accurate answers . On the other hand, 
one can objectively evaluate algorithms based on how they perform when 
applied to insensitive problems. 

One might hope that the computed solution x to the linear system 
Ax = b would yield a small forward error I lx - xi i . For many problems, 
this goal is difficult to attain . A more realistic objective is that x be the 
exact solution to a nearby problem, e .g . , (A + E)x = b, where I I E I I  is small 
relative to I IA I I . The norm of the perturbation E is the backward error, and 
this style of backward error analysis was championed by Wilkinson and is 
a fundamental part of numerical linear algebra. 

An algorithm is said to be backward stable if, for any problem (that 
fits in the computer 's arithmetic) it produces solutions with a backward 
error that is small relative to the size of the data. The forward error, then, 
can be approximated by multiplying the backward error by the condition 
number of the problem, which measures the sensitivity of that problem to 
small changes in the data. Continuing with the linear system Ax = b, 
suppose that (A + 8A) (x + 8x) = b for infinitesimal 8A and 8x, i .e . , that 
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x + 8x is the exact solution to an infinitesimally perturbed problem. By 
combining these equations and discarding second-order terms , one obtains 

1 1 8x l l  < I I A I I I I A- 1 1 1
1 1 8A I I  

I lx l l  - I I A I I ' 

This formula shows that a change in A can alter x by a factor I I A I I I IA- 1 1 1 
times larger . This magnification term is the condition number for the prob­
lem of solving Ax = b, which has appeared in various contexts throughout 
this book. There is an immediate connection to the distance to singularity 
addressed in §49: If A is normalized so that I IA I I  = 1 ,  then the condition 
number is precisely the distance to singularity. The closer a matrix is to 
singular , the greater the forward error we can expect , if the solution is 
computed with a backward stable algorithm. 

Backward error analysis has its roots in the work of Turing [785J , and 
Wilkinson discovered that these ideas apply throughout numerical linear al­
gebra. His work is summarized in the books Rounding Errors in A lgebraic 
Processes [826J and The Algebraic Eigenvalue Problem [827J . For a sur­
vey and historical information, see the survey article [828J and Higham's 
treatise [391J . One fruit of these efforts of Wilkinson and his colleagues 
was a series of Numerische Mathematik articles that provided Algol codes 
and supporting documentation for a wide variety of matrix computations . 
These papers were collected in the Handbook for Automatic Computation 
volume on linear algebra [831 ] , published in 1971 , and led to the landmark 
EISPACK and LINPACK software libraries over the course of the next 
decade. 

Pseudospectra can be used to gain insight into the behavior of nu­
merous finite precision matrix computations . For example, Higham and 
Knight investigate matrix powers ;  see [392, 728J . Here we shall focus 
on the performance of methods for calculating eigenvalues. The method 
of choice for finding all the eigenvalues of a dense , non-Hermitian ma­
trix is the QR algorithm, proposed independently in 1961 by Francis and 
Kublanovskaya [286 , 287, 471J . This method applies a series of unitary 
similarity transformations to reduce A to upper triangular form, effectively 
computing a Schur factorization. The practical QR method does this in 
two steps. First , A is reduced to an upper Hessenberg matrix, which is 
accomplished in O (N3 ) operations . The second phase of the algorithm 
uses further unitary similarity transformations to eliminate the remaining 
subdiagonal entries . (In principle, it is impossible to remove these entries 
entirely, as this would imply the ability to factor degree N polynomials 
exactly. However, they can be made arbitrarily small . )  For a general 
overview, see , e .g . , [ 199, 327, 776J ; some interesting recent developments 
are described in [ 105, 106J . 

To quantify the behavior of this procedure in finite precision arithmetic , 
we must describe the floating-point number system in which the calcula-
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tions are performed. The design of such systems and the accompanying 
basic arithmetic operations is an art . For our purposes we shall assume 
that fundamental properties hold, so that the quality of the floating-point 
system can be quantified by a single number, machine epsilon, written 
Emach , which equals the separation between 1 and the next larger number 
in the floating-point system [39 1 ,  592] . 

Suppose that A has real entries . In general, the entries in A will not 
be exactly represented in the floating-point system, so the matrix A + E is 
actually stored, where l ejk l ::; �Emach lajk l .  Unitary similarity transforma­
tions do little to magnify these errors. Wilkinson demonstrated that the 
first phase of the QR algorithm computes an upper Hessenberg matrix H 
that is exactly unitarily similar to a matrix A = A + E, where 

where Cl is a small constant ; see [533] , [327, §7.4] , [827, §6 .5] . Given an 
upper Hessenberg matrix H, the second phase of the algorithm reduces 
the upper Hessenberg matrix H to a matrix T with ' real Schur form' , 
meaning that T may have 2 x 2 blocks on the main diagonal corresponding 
to complex conjugate eigenvalues . This computed T is exactly unitarily 
similar to a matrix H = H + E, where 

where C2 is a small constant and p is the number of similarity transforma­
tions the QR algorithm required to reach this upper triangular form [532 , 
831] ; typically, p ::;  2N. 

Combining these results , we expect the QR algorithm to return the 
exact eigenvalues of a matrix A + E with I IE I I  of order Emach l lA I I ; i . e . , we 
roughly expect the computed eigenvalues to fall somewhere in O"E (A) for 
E :::::; Emach l lA I I . For this reason, our plots of pseudospectra later in this 
section show levels E/ I IA I I . Some researchers go further , replacing E in our 
definition of pseudospectra with E I IA I I  [317] ,  [133, p. 164] ; see the footnote 
on page 43. 

We now turn to several computational examples . A classic test matrix 
for non-Hermitian eigenvalue algorithms was introduced by Werner Frank 
in 1958 [224, 288, 328, 803] . The Frank matrix is upper Hessenberg with 
sub diagonal entries N - 1 ,  N - 2, . . .  , 1 ; on and above the main diagonal , 
ajk = N - k + 1 .  For example , for N = 5 ,  
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Figure 53 . 1 :  Spectra and c:-pseudospectra for the Frank matrix of dimension N = 
12 ,  with c:j l I A I I  = 10- 1 , 10-2 , 10-3 , 10-4 ( left ) and a closeup with c:j l lA I l = 10-4 , 
10-5 ,  . . .  , 10-8 (right ) . In single precision arithmetic, the computed eigenvalues 
will fall near the innermost contour . 
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Figure 53.2 :  Numerically computed eigenvalues and c:-pseudospectra for the 
Frank matrix of dimension N = 24,  with c:j l IA I I = 10- 2 , 10-4 , . • .  , 10- 10 (left) 
and a closeup with c:j l I A I I  = 10- 10 , 10- 12 , 10-1\ 10- 16 (right) . The eigenvalues 
of smallest magnitude, which should all be real, are not computed accurately in 
double precision arithmetic. These computed values fall within the boundary of 
the c:-pseudospectrum for c: = 1O- 16 1 I A I I . 

The eigenvalues of these matrices are always real and distinct and are 
related to the roots of Hermite polynomials [224, 803] . Hence A is similar 
to a real symmetric matrix, though the condition number of this similarity 
transformation grows exponentially with N. The rightmost eigenvalues 
are well-conditioned, while the leftmost eigenvalues are significantly ill­
conditioned. The Frank matrix of dimension N = 1 2  became a popular test 
problem in the 1960s, because even for that dimension, the ill-conditioning 
of the smallest eigenvalues was enough to cause problems for eigenvalue 
algorithms in single precision arithmetic (cmach ;::::; 10-7 ) .  This is explained 
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by Figure 53. 1 ,  which shows o-c (A) for E = 1O-7 1 IA I I . Though this figure, 
computed in double precision (Emach ;::j 2 · 10- 16 ) ,  shows the eigenvalues 
correct to plotting accuracy, Figure 53 .2 illustrates that by doubling the 
dimension to N = 24, we obtain a problem for which double precision 
computations in MATLAB produce eigenvalues with nonzero imaginary 
parts. Given the splitting of eigenvalues near the origin, one might suspect 
that A has a Jordan block of dimension 10 or 1 1  (cf. Figure 52 .2) , when, 
in fact , this matrix is diagonalizable . Examples like this highlight the 
difficulty of numerically determining the Jordan form [328] . 

Our second example is a 7 x 7 matrix with less apparent structure 
that was introduced by Godunov, again to test algorithms for computing 
eigenvalues ; see, e .g . , [315] : 

289 2064 336 128 80 32 16 
1 152 30 1312 512  288 128 32 
-29 -2000 756 384 1008 224 48 

A = 512 128 640 0 640 512 128 . (53 . 1 )  
1053 2256 -504 -384 -756 800 208 
-287 - 16 1712 - 128 1968 -30 2032 

-2176 -287 - 1565 -512 -541 - 1 152 -289 

A similarity transformation with the matrix 

1 0 0 0 0 0 0 
0 1 0 0 0 0 0 
1 0 1 0 0 0 0 

L = 0 0 0 1 0 0 0 
0 0 1 0 1 0 0 
1 0 0 0 0 1 0 
0 1 1 0 1 0 1 

reduces A to upper triangular form: 

1 2048 256 128 64 32 16  
0 -2 1024 512  256 128 32 
0 0 4 512 1024 256 64 

LAL- 1 = 0 0 0 0 512  512 128 
0 0 0 0 -4 1024 256 
0 0 0 0 0 2 2048 
0 0 0 0 0 0 - 1  

and thus o-(A) = {-4, -2 ,  - 1 , 0 , 1 , 2 , 4 } .  Clearly LAL - 1 must be far 
from normal; since L has a small condition number, ,.,;(L) ;::j 5.9467, The­
orem 51 . 1  ensures that the pseudospectra of A will resemble those of 
L - 1 AL. Figure 53.3 shows o-c (A) and the computed eigenvalues . As 
with the N = 24 Frank matrix, in double precision arithmetic there are 
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Figure 53.3 :  Numerically computed eigenvalues and c-pseudospectra for the Go­
dunov matrix (53. 1 )  with c1 1 1A 1 1  = 10- 16 5 , 10- 1 6 , . . .  , 10- 13 . 5 . The exact eigen­
values are a(A) = {-4, -2 ,  - 1 , 0 , 1 , 2 ,  4 } .  

computed eigenvalues that are far from the real line. The c-pseudospectra 
computed by EigTool do not even include the true eigenvalues for the value 
c = 1O-16 .5 1 IA I I  < cmach l lA I I . 1 

Many large-scale applications require knowledge of only a small subset 
of the spectrum, and for such problems the iterative methods discussed in 
§28 are more suitable than the QR algorithm. Suppose that an iterative 
method like the power or Arnoldi algorithms returns an eigenpair (A, x) . 
What can be said of its accuracy? Define the residual vector r = Ax - >:x. 
Then (>:, x) is an exact eigenpair of A + E for 

since 
(A + E)x = Ax - r = >:x ;  

see [827, 727] . Since I I E I I  = I l r l l , a small residual norm implies a small back­
ward error in the eigenpair . For more sophisticated perturbation analysis 

1 As described in §39, before computing pseudospectra EigTool reduces A to upper 
triangular form, which amounts to performing the QR iteration on A. This process 
introduces the rounding errors seen in Figure 53.3. The second stage of the Core EigTool 
Algorithm is applied not to A, but to this computed upper triangular matrix, which is 
a modest perturbation of A. From Theorem 52 .4 ,  we expect good agreement between 
the pseudospectr'l. of these matrices, up to the level of the perturbation. 
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for invariant subspaces, see [724, 729] . 
Our brief discussion of backward error analysis has omitted many sig­

nificant topics. For example, when A possesses special structure, one may 
wish that the perturbed matrix A + E does , too. Similarly, if the entries 
of A differ significantly in size, it may be appropriate for the entries of E 
to be scaled accordingly. Such situations give rise to the related notions 
of structured and componentwise backward error, which are related to the 
structured pseudospectra discussed in §50. Chaitin-Chatelin and Fraysse 
propose a componentwise f -pseudospectrum [ 133, p. 177] . 

In other cases, A is endowed with structure that can be exploited by 
specialized eigensolvers. Hamiltonian matrices are such an example; they 
arise in many control theory applications and play a critical role in the algo­
rithms for computing pseudospectral abscissae and radii described in §42. 
Define 

A matrix H E <e2Nx 2N is Hamiltonian provided that JH is Hermitian. 
Equivalently, H must have the form 

B = B* , C = C* (53 .2) 

for A, B, C E <eNxN. Hamiltonian matrices have beautiful spectral prop­
erties [483, 593] . If >. E a (H) , then ->. E a (H) , too. Thus the spectrum of 
real Hamiltonian matrices has a four-fold symmetry, as >. E a(H) implies 
{±>., ±:\} � a(H) . When the standard QR algorithm is applied to a Hamil­
tonian matrix, the structure is generally destroyed in the transformation 
to upper Hessenberg form, and the eigenvalues computed by the iterative 
phase of the QR algorithm need not obey the symmetry property. There 
are specialized backward stable algorithms that compute the eigenvalues 
of H while respecting the Hamiltonian structure [52] . 

This section of the book is the only one devoted to rounding errors , 
and the reason for this was mentioned in the Preface: The main effects 
of nonnormality, and the main uses of pseudospectra, have nothing to do 
with rounding errors . Nevertheless , we have been distressed to find over 
the years that many people who hear us talk about pseudospectra get the 
wrong message. Perhaps because we are numerical analysts ,  and numerical 
analysts are known to be experts in computer arithmetic, people all too 
readily assume that if we are advocating a tool that has some connection 
with perturbations , then the essence of the matter must be rounding errors . 
This is a mistake. Most effects associated with nonnormality have nothing 
to do with computer arithmetic, and the useful values of f are typically 
much larger than fmach .  
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The purpose of this section is to describe an analogy between group velocity 
and pseudospectra. Group velocity is an old idea, while pseudospectra are 
more recent , but the two have much in common. Both are tools of linear 
analysis in which the key point is that the 'physics' of a system lies not 
in the individual modes , but in their superposition. In both cases this 
behavior is counterintuitive and requires some getting used to. 

The notion of group velocity belongs to the theory of dispersive waves, 
that is, waves whose speed varies with the wave number [505 , 820] . In 
one dimension, suppose we have a linear PDE or other linear system that 
admits solutions of the form 

u (x,  t )  = e i (wt-kx)
, (54. 1 ) 

for any k E JR, provided that w E JR is related to k by a fixed dispersion 
relation, 

w = w(k) . (54.2 )  

Here k is known as the wave number and w i s  the frequency. From (54 . 1 )  
i t  i s  easily seen that individual wave crests travel at the phase velocity 

w 

c = k '  (54.3) 

However, this is not the velocity of a wave packet constructed from a su­
perposition of wave numbers (Figure 54. 1 ) .  If the packet is composed of 
wave numbers close to k , it travels at the group velocity 

(54.4) 

That is, to find the velocity of propagation we must differentiate the dis­
persion relation with respect to the wave number (Figure 54.2) . 1  

For example , one o f  the simplest o f  dispersive partial differential equa­
tions is the free-space time-dependent Schrodinger equation 

Ut = -iuxx · (54.5) 

Inserting (54. 1 )  in (54.5) gives the dispersion relation iw = ik2 , that is , 

1 In multiple space dimensions , (54 . 1 )-(54.4) generalize to u (x ,  t) = ei(wt-k.x) , w = 
w(k) , c = wk/ l lk l l � ,  C = VkW. 
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Figure 54. 1 :  Individual wave crests travel at the phase velocity c = w/k ,  but a 
wave packet travels at the group velocity 0 = dw/dk . 

w 

/ 
/ 

k 

/ group velocity 
/

/
/ C = dw/dk 

� _ phase velocity 
c = w/k 

Figure 54.2 :  The group velocity for wave number k is obtained by differentiating 
the dispersion relation w = w (k) . This figure corresponds to the Schrodinger 
equation (54.5) , with 10 1  2 l e i . For water waves the dispersion relation curves 
downward and we have 10 1  ::; l e i . 

From (54.3) and (54.4) we conclude that the phase and group velocities for 
the Schrodinger equation are 

c =  k ,  c =  2k .  

There is  a great deal of physics in these expressions , as was appreciated 
by Schrodinger early in 1926. We see that shorter waves (higher k) travel 
faster , and for any k ,  C = 2c. Thus an electron travels at twice the speed 
of the individual wave crests in its quantum state function [107] . 

Another example of a dispersive PDE is the beam equation, 

Utt = -Uxxxx , (54.6) 
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t 

Figure 54 .3 :  Left-going and right-going wave packets for the beam equa­
tion (54.6) . Note that there is a well-defined wave number k at each point in 
space, that higher values of k (shorter wavelengths) move faster, and that each 
packet moves at twice the speed of the individual wave crests it is composed of. 
(Illustration adapted from a code by David Allwright . )  

which governs vibrations in a solid bar . The dispersion relation is w2 
= k4 , 

or 

suggesting that this equation is a kind of product of left-going and right­
going Schrodinger equations ; see Figure 54.3 . This is indeed true, as is 
evident from the factorization aft + a;;xxx = (af + W;x) (  af - W;x ) · 

The first hints of the idea of group velocity appeared in a paper of 
Hamilton in 1839, and the theory was initiated in earnest in the 1870s 
with the work of Stokes, Froude, Reynolds, and especially Rayleigh, whose 
Theory of Sound describes applications of group velocity in optics , fluids , 
and solids [617 ,  618] . Further contributions were made in the following 
decades by Kelvin, Lamb, Green, and others, and when the theory of special 
relativity appeared in 1905, with its absolute limit of the speed of light for 
all kinds of propagation of energy and information, group velocity became 
a subject of urgent interest . Sommerfeld , Brillouin, and others developed 
further necessary distinctions between group, energy, and signal velocities 
for dissipative media (i .e . , media for which w has a positive imaginary 
component when k is real and nonzero) , and it was confirmed that there 
were no contradictions to the theory of relativity. Later , group velocity 
took on a new importance with the explosion of quantum mechanics in 
1926 and the discovery that particles cannot be localized to points, only to 
wave packets .  In the 1930s group velocity was also the focus of attention by 
experimentalists measuring the speed of light , for many such experiments 
depend on propagation of light in air , which is a slightly dispersive medium. 
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In this era, the measurements had begun to be accurate enough that it 
became important to make the corresponding group velocity correction 
amounting to about one part in 105 or 3 km/sec.2 By this time, grou� 
velocity was an established tool of physics and applied mathematics [75 , 
429, 472 , 730] , and when the Institute for Mathematics and Its Applications 
in Britain launched its Journal in 1965 , the first paper in the first issue, by 
Lighthill , was a survey of group velocity [506] . 

Another famous example of dispersive wave propagation concerns waves 
in deep water , such as the waves that form when a stone is thrown into a 
pond. The dispersion relation for such waves turns out to be 

w = ±,;gk, 

where g is the gravitational constant , which implies 

Thus water waves are the opposite of Schrodinger wave packets :  It is now 
the longer waves (lower k) that travel faster , with C = c/2 instead of 
C = 2c. The disturbance spreads outward from the rock at half the speed 
of the individual ripples , a fact that was known to Stokes, Rayleigh, and 
Reynolds. 

The group velocity formula (54.4) can be derived in many ways, some 
with more mathematical power than others . Here are sketches of the four 
most common derivations . Stokes in 1876 noted that if two waves e i k1 X 
and ei k2X are superimposed, the sum is a chain of 'beats ' that moves with 
velocity (W2 - wl ) / (k2 - kd ; in the limit k2 � kl we recover (54.4) (Fig­
ure 54.4) . Rayleigh in 1877 considered perturbing k slightly to a value 
k + 15k with 15k imaginary; the imaginary wave number provides shape in 
the envelope ,  revealing that the propagation speed is 15w/15k, which again 
converges to (54.4) as 15k � 0 (Figure 54 .5) . Kelvin in 1887 introduced the 
method of stationary phase analysis of Fourier integrals : an initial wave 
packet u(x, O) = J�oo w(k) e- ikx dx evolves into 

u(x, t) = I: w(k) eit (w-ik (x/t » dk , 

and the rapidly oscillatory integral converges to zero as t � 00 along all 
lines x/t = constant except if x/t = dw/dk . For dissipative media this 
stationary phase argument generalizes to a steepest descent analysis of a 

2The speed of light in vacuo is 299792 .458 km/sec. In air under typical conditions, 
the phase velocity is 88 km/sec less , whereas the group velocity is 91 km/sec less, and 
it is the latter that is measured in many experiments [55 , 62J . Roughly speaking, the 
accuracy with which the speed of light is known has improved from 1 digit in the 18th 
century, to 3 digits by 1900, to 5 digits by 1930, to 8 digits today. 
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Figure 54.4: Stokes derived the formula for group velocity by considering the 
superposition of two sine waves. This wave train travels at velocity (W2 -Wl ) / (k2 -
kd , and taking the limit k2 --+ kl gives (54.4) . 

�IMIilVWiNVV\ll/'il\f 
Figure 54.5 :  Rayleigh derived the same formula by perturbing k to a value k + 8k 
with 8k small and imaginary. This decaying wave train travels at velocity 8w / 8k, 
and taking the limit 8k --+ 0 gives (54.4) again. 

contour integral . Finally, Havelock in 1914 introduced the idea of viewing 
a dispersive system as a conservation law whose conserved quantity is the 
number of wave crests ;  if we define a local wave number k = k(x ,  t) for a 
smoothly varying solution of a dispersive system, we find that k satisfies 
the hyperbolic PDE 

ak (dW ) ak 
= 

0 
at + dk ax ' 

whose solutions are constant along characteristics propagating at speed 
dw/dk. 

Now then, what does all of this have to do with pseudospectra? 
As stated at the outset , the connection is one of analogy. We shall not 

belabor the many points of contact between group velocity and pseudo­
spectra, but just offer a list of those that we have noticed and leave it to 
the reader to judge the significance of this analogy. 

1 .  Both ideas are linear . 
2 .  Both become important in cases where individual modes have little 

physical meaning, where the physics is in the cancellation of modes . 
3 .  Both are subtler and less obvious than what they replace (namely, 

phase velocity on the one hand, eigenvalues and eigenvectors on the other) . 
4. Though both ideas in principle are generalizations of what they re­

place , in practice, both are needed for just a minority of applications . 
5. Both were sometimes overlooked in the early years . In speed of light 

measurements, Michelson famously neglected the group velocity correction 
in 1927 [62] ; in hydrodynamic stability theory, misconceptions about the 
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significance of eigenvalues were widespread until the 1990s [65 , 669, 780J ; 
see §20. 

6 .  Both can be illustrated by examples involving just two modes . For 
group velocity, consider the beating of two sine waves ; for pseudospectra, 
consider a non-Hermitian 2 x 2 matrix. 

7. Both are equally important in appropriate continuum limits . For 
group velocity, most applications involve a continuum of wave numbers ; for 
pseudospectra, matrices are often more properly replaced by differential or 
integral operators. 

8 . Rigorous analysis of both ideas makes use of contour integrals in the 
complex plane . For group velocity, we have stationary phase and steepest 
descent integrals ; for pseudospectra, it is the matrix or operator Cauchy 
integral . 

9. In both contexts ,  small perturbations may reveal truth about the un­
perturbed system . Thus we can discern the energy propagation velocity for 
a pure sine wave by measuring how the phase velocity changes when the 
wave number is perturbed, as in Figure 54. 5 ;  and we can learn about an 
evolution process governed by a highly non normal matrix by seeing how 
the eigenvalues change when the entries are perturbed. 

10. Both notions are more robust, more physical than what they replace . 
Indeed, group velocity may be well-defined when phase velocity is not , 
for example on a discrete space-time finite difference lattice [767] ; and 
eigenvalues may be nonexistent for an operator whose pseudospectra are 
entirely meaningful, such as the Hille-Phillips operator of Figure 19 .3 .  

Of course , any analogy has its points of difference too, and here are 
some of them. 

1. Group velocity is specific to the subject of dispersive wave propa­
gation, whereas pseudospectra are applicable to all kinds of questions of 
behavior of matrices and operators . 

2. When phase velocity fails , group velocity is indispensable and gives 
an exact answer. When eigenvalues fail, pseudospectra rarely give exact 
answers, and it is not clear that they are indispensable . 

3. Quantum mechanics helped make the idea of group velocity famous . 
By contrast , quantum mechanics helped keep the idea of pseudospectra hid­
den, for quantum mechanical operators are Hermitian, and their Hermitian 
behavior shaped scientists ' conceptions of eigenvalues and eigenvectors for 
generations . 
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55 . Companion matrices and zeros of polynomials _ 

A companion matrix has the special form 

o 

A = 

1 
o 1 

o 1 

or its transpose. The characteristic polynomial of A is 

p(z) = Co + C1 Z + . . .  + CN_ 1 ZN- 1 + ZN , 

(55 . 1  ) 

(55 .2) 

as can be verified in many ways. For example, we may note that for any 
>. E ([j,  the vector 

v = ( 1 ,  >. ,  >.2 , . . .  , >. N - 1 ) T 

is mapped by A to the vector 

This implies that if p(>.) = 0, then v is an eigenvector of A with eigenvalue 
>., which establishes that p is the characteristic polynomial of A in the case 
where p has distinct zeros . Another approach is to expand det (>. - A) by 
cofactors with respect to the bottom row. 

It is also easily verified that A is nonderogatory, that is, there is a 
single Jordan block associated with each eigenvalue, or equivalently, the 
characteristic polynomial is the same as the minimal polynomial . To see 
this, note that for any >. ,  removing the first column and last row from >. - A 
leaves a triangular matrix with 1 on the diagonal , so that >. - A has rank 
at least N - 1 .  We summarize using the words of Horn and Johnson [414, 
Thm. 3 .3 . 14] : 

Theorem 55 .1  Every monic polynomial is both the minimal polyno­
mial and the characteristic polynomial of its companion matrix. 

More generally, an arbitrary matrix A is similar to a block diagonal matrix 
with a companion matrix in each block; this is the rational canonical form 
mentioned on page 469 [414, 827] . 

Companion matrices are obviously non-Hermitian, so it is natural to in­
vestigate their pseudospectra. Let us consider as an example the companion 
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matrix A corresponding to the monic polynomial with roots 1 , 2 ,  . . .  , 12 ,  
namely, 

p(z ) = 479001600 - 1486442880z + 1931559552z2 - 1414014888z3 

+ 657206836z4 - 206070150z5 + 44990231z6 - 6926634z7 

+ 749463z8 - 55770z9 + 2717z10 - 78z1 1 + z12 . 

One notes immediately that the coefficients are very large; for the poly­
nomial with roots 1 , 2 ,  . . .  , N, the largest will be somewhat bigger than 
N! .  With entries of order 1010 but eigenvalues of order 101 , it is clear 
that this matrix must be far from normal by any measure . For example, 
the 2-norm condition number of its matrix of normalized eigenvectors is 
K(V) � 2 . 1 7  X 1014 . It is hardly surprising that in the left half of figure 
Figure 55. 1 ,  we see that the pseudospectra lie far from the eigenvalues . 

The eigenvalues of A are distinct , and thus A is similar to any other 
matrix with the same distinct eigenvalues . For example, it is similar to 
diag ( l ,  2, . . . , 12) . But there is a more interesting similarity transforma­
tion for companion matrices . A standard tool in the field of the numerical 
solution of matrix eigenvalue problems is the procedure of balancing a ma­
trix by a similarity transformation involving a permutation of a diagonal 

8 

50 

4 

a a • • • •  �. :.� 
-50 

a 50 
-8 L-____ � ____ � ____ � ____ � 

1 00 a 4 8 1 2  1 6  

Figure 55 . 1 :  On  the left, eigenvalues and c:-pseudospectra o f  the companion ma­
trix A with eigenvalues 1 , 2 ,  . . .  , 1 2 ,  for c: = 10-4 , 10-5 , . . .  , 10-8 . Because of 
the large scale , the eigenvalues are nearly indistinguishable , appearing like the 
line segment [ 1 , 1 2] .  (The c: = 10-4 and 10- 5 pseudospectral boundaries are the 
small loops to the left of the origin, signaling a region where the resolvent norm 
achieves a local minimum; cf. Figure 49 .7 .  The corresponding pseudospectra con­
tain the whole square region shown except for the area enclosed by those loops. ) 
On the right , the same, but for the matrix B obtained from A by Parlett-Reinsch 
balancing. 
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matrix, A = DAD-I . This technique was introduced in 1969 by Par­
lett and Reinsch [602] and is implemented in the subroutines BALANC 
in EISPACK and xGEBAL in LAPACK [6 , 700] . In MATLAB, it can be 
achieved by the command balance, and this is done by default in MAT­
LAB eigenvalue computations unless the flag ' nobalance ' is specified. In 
Parlett-Reinsch balancing, the entries of D are chosen so that for each j ,  
the jth row and the jth column of A have approximately equal sums of 
magnitudes . At the same time, to avoid introducing rounding errors , each 
nonzero djk is taken as a power of 2. Years of experience have shown that 
balancing a matrix before computing its eigenvalues usually leads to more 
accurate results. 

When our 12  x 12  companion matrix is balanced , it changes greatly. 
Instead of -479001600, 1486442880, . . .  , the entries of the last row become 
approximately 

-0 .89, 1 .4 ,  - 1 .8 ,  2 .6 ,  -2 .4 ,  3 . 1 ,  -2 .7, 3 .3 ,  -5 .7 ,  13 .6 ,  -42 .4 ,  78, 

and instead of all ones , the superdiagonal entries become 

1/2 ,  1 ,  2, 2, 4, 4, 8, 16 ,  32, 64, 64. 

(A matrix like this with companion structure but nonconstant positive 
entries on the superdiagonal is sometimes known as a Leslie matrix [ 130] . )  
The condition number o f  the matrix o f  normalized eigenvectors shrinks to 
�(V) � 5 .99 X 108 , indicating that in this measure at least , the balanced 
matrix is six orders of magnitude 'closer to normal ' than the unbalanced 
one. The right half of Figure 55 . 1  shows that there is a pronounced change 
in the pseudospectra. 

What makes the difference between the two images of Figure 55. 1 so 
interesting is their connection with the problem of computing zeros of poly­
nomials . Suppose we are given the coefficients of a monic polynomial p.  
Determining the roots of p is a notoriously ill-conditioned problem in gen­
eral, and it was Wilkinson who made this fact famous in the 1950s and 
1960s [609 , 826, 829] . Suppose that a polynomial zerofinding algorithm is 
implemented in floating-point arithmetic on a computer. Then according 
to Wilkinson's principle of backward error analysis (§53) , the best one can 
normally hope for is that the zeros obtained computationally are equal to 
the exact zeros of a perturbed polynomial p with coefficients Cj = cj ( l +cj ) ,  
with ICj l  = C9 (Cmach ) '  where Cmach is the machine precision [592] . Now in 
Figure 55 .2 ,  we see the results of perturbing the coefficients of p in just this 
fashion. Suppose we define a polynomial p by coefficients Cj = cj ( l  + Cj ) ,  
where each Cj is a normally distributed complex number with mean zero 
and standard deviation c. The figure shows the superimposed results of 
fifty such perturbations with C = 10-5 and 10-8 . The approximate agree­
ment with the C = 10-5 and 10-8 pseudospectral boundaries in the right 
plot of Figure 55 . 1 is striking. 
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Figure 55 . 2 :  Pseudozeros o f  the monic polynomial p with roots 1 , 2 ,  . . .  , 12 .  On 
the left, superimposed zeros of 50 polynomials p obtained by random coefficient 
perturbations of relative magnitude 10-5 and 10-8 . On the right , pseudozero 
sets Z, (p) for relative coefficient perturbations as defined by Theorem 55 .2  with 
c = 10-4 , 10- 5 , . . .  , 10-8 . 

The left half of Figure 55 .2  suggests that just as we speak of pseudo­
eigenvalues of matrices , it may be useful to consider pseudozeros of poly­
nomials .  This idea was put forward by Mosier in 1986 [566] , who wrote 
of ' root neighborhoods of a polynomial' , plotted examples , and presented 
theorems. Concerning earlier work of a similar flavor , Mosier recommends 
the book by Ostrowski [591 ] . 

Given a polynomial p of degree N, Mosier defines Zc (p) to be the set of 
all roots of all polynomials p with d(p, p) ::::: c ,  where the metric d is defined 
by 

I c  - c i 
d(p , p) = max J J . mj 

Here {Cj }  and {Cj }  are the coefficients of p and p, and the numbers mj 
are prescribed weights. By choosing mj = h I we get the case of relative 
perturbations . Mosier shows that Zc (p) can he characterized as follows. 

Theorem 55 .2  The c-pseudozero set Zc (p) for the degree-N polyno­
mial p with respect to weights mj is the set of numbers z E <c satisfying 

I p(z) 1 < 
mo + ml l z l  + .

. . + mN l z l N - c .  

The second image of  Figure 55 . 2  shows boundaries o f  Zc (p) for our degree-
12 example p with mj = ! cj I and, as in Figure 55. 1 ,  c = 10-4 , 10-5 , • • •  , 10-8 .  
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Note how these curves resemble those in the second half of Figure 55 . I .  
We have just seen evidence of approximate agreement between the 

pseudospectra of a balanced companion matrix and the pseudozero sets 
for componentwise relative perturbations of the associated monic polyno­
mial. Toh and Trefethen [760] showed that while this association need not 
hold for all polynomials (as further demonstrated by Edelman and Mu­
rakami [228] ) ,  it is quite common. Figure 55 .3 illustrates the agreement 
for three polynomials chosen somewhat arbitrarily. An explanation of this 
phenomenon is as follows. To a reasonable approximation, the operation of 
balancing renders the nonzero entries of a companion matrix of similar mag­
nitudes . If its eigenvalues could be computed in a manner that delivered 
exact results for a matrix slightly perturbed in only the nonzero positions 
(cf. §50) , then this would be tantamount to computing pseudozeros . In 
fact , a matrix eigenvalue algorithm will effectively perturb other entries 
too; but evidently this does not usually change the result too much. For a 
discussion of the relationship between Zc (p) and the c-pseudospectrum of 
the associated companion matrix in the d-metric , see [760] . 

In concluding this section we comment on the curious situation of al­
gorithms for computing zeros of polynomials , which must in principle be 
no more difficult than computing eigenvalues of general matrices since it 
is a special case . The polynomial zerofinding problem is one of the oldest 
problems of mathematics, associated with names stretching back half a mil­
lennium such as Khayyam, Tartaglia, Ferrari , Cardano, Newton, Bernoulli , 
Abel, and Galois . Since the invention of computers, algorithms for finding 
zeros of polynomials have been considered endlessly at all levels of sophis­
tication. For example, McNamee has compiled a bibliography of several 
thousand papers in this area [540] . Virtually all of the vast number of al­
gorithms that have been developed for these problems are designed to take 
advantage of the special structure of the zerofinding problem, aiming for 
solutions in close to O (N2 ) time with O (N) storage. The idea of setting 
up a companion matrix and finding its eigenvalues, which requires O(N3 ) 
time and O (N2 ) storage at least by standard methods, has never seemed a 
glamorous alternative and does not have much of a published literature. 

Yet companion matrix eigenvalues often seem to provide the best poly­
nomial roots after all ! This was the conclusion of a strongly worded article 
by Goedecker , whose tests suggested that in practice the companion ma­
trix approach is more accurate and often faster than standard codes such 
as ZPORC in the IMSL Library and C02AGF in the NAG Library [320] . 
It was also the conclusion of Toh and Trefethen, who compared compan­
ion matrices with CPOLY in the IMSL Library and PA16 in the Har­
well library [760] ; and companion matrices are the choice made by MAT­
LAB [554] . Some underlying theory of backward error analysis for polyno­
mials is presented in [228, 793] . What is going on here? Our presumption 
is that in principle , there is no reason why the matrix eigenvalue approach 
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Figure 55 . 3 :  Pseudospectra of balanced companion matrices (left) and pseudozero 
sets for componentwise relative perturbations (right )  for three polynomials p 
whose roots are plotted as dots . In each case c: = 10-5 , 10-6 , . . .  , 10- 13 . 
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should be superior ; after all , specialized zerofinding algorithms may take 
advantage of the mathematics of companion matrices without destroying 
their sparse structure as a general matrix eigenvalue solver will inevitably 
do. (The appendix of [760] shows how the Jenkins-Traub zerofinding algo­
rithm [430] can be interpreted as a specialized sparsity-preserving Rayleigh 
quotient iteration on a companion matrix. ) Rather, we suspect that de­
spite widespread attention to polynomial zeros over the years, it is matrix 
eigenvalues that have benefitted most from the concentrated attention of 
numerical analysts obsessed with numerical stability. For forty years, no 
numerical problem has been studied more intensively by experts than ma­
trix eigenvalues . The result has been computer programs exemplified by 
EISPACK and LAPACK that attain the very highest level in scientific soft­
ware. For all its easy appeal, polynomial zerofinding is less important in 
applications and has been less carefully scrutinized by experts ;  as a result , 
it would seem that the standard software in the field is less robust . 



56 . Markov chains and the cutoff phenomenon __ 

The method of Markov chains reduces almost any discrete time dynamical 
process , linear or nonlinear , to the powers of a so-called transition matrix. 1 
Thus it is no surprise that eigenvalues and eigenvectors have been a central 
tool in this field from the beginning. Yet many Markov chains exhibit 
significant transient phenomena, and in fact , it is sometimes the transient 
that is of greatest interest for applications . In such cases , the transition 
matrix is necessarily far from normal-or rather, since 1 1 · 1 1 1 rather than 1 1 · 1 1 2 
is the right norm for these applications , the transition matrix necessarily 
fails to have a well-conditioned set of eigenvectors in the I-norm. 

A basic Markov chain describes a time-invariant , discrete time proba­
bilistic process involving a finite set of states. This seemingly restrictive 
formulation has proved useful in innumerable applications. Among many 
other examples , Markov chains have been used to model magnetic phase 
transitions, mixing of fluids, population dynamics, satisfiability of boolean 
expressions , extinction of human languages, the theory of war, financial 
markets, queueing theory, and the 'small world' phenomenon. In this book 
we shall rather arbitrarily concentrate on two further applications: random 
walks (this section) and card shufHing (the next) .  We shall focus especially 
on the effect known as the 'cutoff phenomenon' , which was made famous 
in the 1980s and 1990s by Diaconis and his coauthors [35 , 206] . 

First , a warning! In the Markov chain literature, the state vector u is 
a row vector rather than a column vector, and a matrix P acts on it from 
the right rather than the left .  In this and the next section we follow this 
convention, though it runs counter to our notation in the rest of the book. 
In these two sections, the I-norm of a matrix is accordingly defined by a 
maximum absolute row sum, not a column sum: 

I l uP lh . I I P lh = max 
-1 1-1 1-

= max I I P (J , : ) 1 1 1 ,  u#O u 1 J 

To define a Markov chain, we begin with a finite state space with N 
states . A probability distribution for this space is a row vector u E JR:IV 
satisfying 

(56 . 1 ) 

where Uj represents the probability that the system is in state j .  At each 
step of the chain, the probabilities evolve according to multiplication by an 
N x N transition matrix P: 

lThis section and the following one are adapted from [435J . 
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The entry Pij is the probability that if the chain is currently in state i ,  it 
moves to state j at the next step, and thus we have 0 ::; Pij ::; 1 for each i 
and j .  Repeated steps of the chain are governed by powers of P :  

Since probability i s  conserved, each row sum of  P i s  equal to  1 ,  and in 
particular, I IP I I I = 1 .  

A stationary probability distribution is a row vector (T E lR N such that 

lim upk = (T k-+oo (56.2) 

for any starting vector u satisfying (56. 1 ) .  It is easily seen that (T is a 
stationary probability distribution if and only if poo = lim pk exists and 
is the N x N matrix whose rows are all equal to (T :  

k-+oo 

(56.3) 

This limiting behavior is guaranteed to occur under the conditions that P 
is irreducible and aperiodic, conditions defined in standard references on 
Markov chains [273 , 582, 746] . For information about Markov chains more 
closely tied to the present discussion, see [205] and [644] . 

If a stationary probability distribution (T exists ,  then it satisfies (T P = (T 
and is thus a left eigenvector of P for the eigenvalue 1 .  Since the row sums of 
P are 1 ,  a corresponding right eigenvector is N-I ( I ,  1 ,  . . .  , l )T . From (56 .2) 
it follows that (T is the only normalized left eigenvector of P corresponding 
to the eigenvalue 1 ,  and all other eigenvalues are smaller in absolute value. 
In particular , if A2 denotes the second largest eigenvalue in absolute value 
(not necessarily unique) , then I A2 1 < 1 .  (The terms upk in (56.2) can 
be thought of as iterates of the power method, which computes dominant 
eigenpairs; see §28 . )  

Here i s  an example with N = 3 .  Consider a random walk on the vertices 
of a triangle in which at each step, a particle moves with probability 1/2 
to each of the adjacent vertices . We have 

indicating, for example , that a particle at vertex 1 has probability 1/2 of 
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being at the same vertex again after two steps. In the limit we get 

poe _ ( t - 3 
1 3 

1 
3 
1 
3 
1 
3 

with each row equal to the vector u = ( � ,  � ,  � ) ,  indicating that the prob­
ability is uniformly distributed on the vertices . Thus we see that for this 
matrix P, the principal left and right eigenvectors are identical ; this is ex­
pected, since the matrix is symmetric . (For nonsymmetric P, left and right 
eigenvectors can differ , and hence u need not be a uniform vector . )  

The powers pk satisfy I I pk l 1 1 = 1 for all k ,  which does not tell us much. 
More interesting are the norms I l pk - Poe 1 1 1 . Let us define A == P _ poe . 
This matrix, which we shall call the decay matrix, represents the action of 
the Markov chain on the space spanned by the nondominant eigenvectors. 
(Here and throughout , it is not necessary for our matrices to be diago­
nalizable , but our discussion assumes diagonalizability for simplicity. ) By 
induction it is readily shown that Ak = pk - poe for each k � 1 .  Our 
interest is thus in the behavior of the norms I IAk 1 1 1 as a function of k. For 
k � I ,  I IAk 1 1 1 is equal to twice what probabilists call the total variation 
( TV) norm for this Markov chain. 

For the example of a random walk on a triangle, we find 

c: 1 J ) A' � ( - : 1 

= ,: ) 6" - 12 
A = 1 1 - 3 1 2 6" 1 2 

1 1 1 1 6" - 12 - 12 6" 

and in general, Ak = (- � ) k- 1 A for each k � I ,  implying that Ak decreases 
steadily to 0 at the rate determined by the second eigenvalue 1 -\2 1 = 1/2 . 
Thus there are no transient effects for the random walk on a triangle, and 
the same is true for the random walk on an n-gon [206] . 

Let us turn to an example where transient effects are pronounced. A 
random walk on the n-dimensional hypercube is defined as follows (Fig­
ure 56 . 1 ) . At each step, a particle located at a particular vertex either 
moves to one of the n adjacent vertices or remains where it is. Each event 
occurs with probability 1/(n + I ) ,  and the steps are independent . On 
page 515 ,  we shall see that this example is equivalent to another one , that 
of Ehrenfest urns . 

The state space for this Markov chain is of dimension N = 2n . The 
N x N transition matrix P is symmetric and sparse , with only n+ 1 nonzero 
entries in each row. To specify the matrix explicitly, one would have to pick 
an ordering of the vertices , but we need not do this, as our observations all 
pertain to the I-norm or the 2-norm, which are ordering-independent . 
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Figure 56. 1 :  Schematic illustration of the hypercube of dimension n .  At each 
step of the random walk, a particle at a vertex moves to one of the adjacent 
vertices or stays fixed, each with probability Ij (n + 1 ) .  

It is easy t o  see i n  a rough way what happens with this example. Sup­
pose the particle begins at a particular vertex, corresponding to an initial 
probability distribution u(O) with the value 1 in one position and 0 else­
where. At each step of the walk, the probability then diffuses around the 
hypercube . Obviously, n - 1 steps are needed before it is even possible to 
get to the diagonally opposite vertex, and it is plausible that many more 
steps than this will be needed before a uniform distribution of probability 
on the vertices is approached. 

In fact , in log n steps are needed, as was proved by Diaconis , Graham, 
and Morrison [207] : 

kcutoff = i n log n (hypercube /Ehrenfest) . (56 .4) 

This result is illustrated in Figure 56 .2 ,  where I I Ak 1 1 1 is plotted as a function 
of k for n = 8, 64, and 512 .  For the two larger values of n ,  the curve shows a 
plateau of norms almost exactly equal to 2 for a long range of early values of 
k. For example, I I N5 1 1 1 � 1 .999976 for n = 64. Then , around the dashed 
line , the values fall off exponentially to O. Diaconis et al . proved that for 
k = a n  log n (more precisely, take k to be the nearest integer to a n  log n) , 

I I Ak l l 1 converges to 2 from below as n --> 00 for each fixed a < 1/4 ,  and 
decays to 0 as n --> 00 for any fixed a >  1/4 . In other words, as n increases, 
the curves of Figure 56 .2 steepen to a step function. 

For this example A is normal , implying I I Ak 1 1 2 = I I A I I � for all k � O . 
Thus the cutoff behavior that is so pronounced in the I-norm must be 
absent in the 2-norm. Figure 56.3 emphasizes this norm dependence by 
plotting I I Ak 1 1 1 and I I Ak 1 1 2 schematically on a log scale. Eventually, both 
Curves are straight . but for the I-norm, there is a long fiat section before 
the curve turns downward. Readers used to assuming that all norms are 
equivalent for practical purposes should bear in mind that the 1- and 2-
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kcutoff = i n log n 
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Figure 56 .2 :  Illustration of the cutoff phenomenon for the random walk on the 
n-cube. These curves , including the chatter in the middle plot , are correct to 
plotting accuracy. The same curves also describe the problem of Ehrenfest urns. 
As n ---+ 00, they steepen to a step at kcutoff = i n log n. Compare Figure 12 . 2 .  

fo :  
kcutoff = i n log n 

100--------.:.:,- - - - - - - - - - - - - - - - - - - - - - - - - k 

Figure 56 .3 :  Schematic representation on a log scale of the cutoff phenomenon 
for the random walk on the n-cube. In the 2-norm, there is no cutoff, and the 
same will be true for any symmetric transition matrix. 
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norms of an N x N matrix may differ by as much as a factor of VN, and 
if N = 2512 , this is a lot of room for maneuver! 

How were the data for Figure 56.2 computed, if N is so large? The 
answer is that we reduced the N x N matrix problem to an equivalent 
problem involving the matrix (56.6) of dimension n + 1 ,  to be explained in 
a moment . 

Even without numerical computation, the eigenvalues and eigenvectors 
for the random walk on the n-cube can be determined by the methods 
of Fourier analysis on groups [207] . The eigenvalues of P are the evenly 
spaced real numbers 

2j 
1 - --

n + l 
(O "S j "S n) , (56 .5) 

with the jth distinct eigenvalue having multiplicity G) . The eigenvalues 
of A are the same, except that the eigenvalue 1 corresponding to j = 0 
is replaced by O .  Thus the asymptotic decay constant 1 >-2 1 in Figures 56 .2 
and 56.3 is 1 - 2/ (n + 1 ) .  

I n  the 2-norm, we have seen that the random walk on the hypercube 
has no transient effects . The left half of Figure 56.4 shows 2-norm pseudo­
spectra for this problem with n = 39. Since the matrix is normal, ac (A) 
is equal to the set of points at distance < E from a(A) . The right half 
of Figure 56.4, on the other hand, shows that the I-norm pseudospectra 
bulge well away from the spectrum, an effect that grows more pronounced 

, 
I 

, 

, 

/ 
, 

, \ 
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, 

Il'! • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  ,: 

, 
, 

2-norm I-norm 

Figure 56.4 : Pseudospectra a€ (A) for the random walk on the n-cube with n = 39 
(c: = 10- 1 , 10- 1 . 5 , . . .  , 10-4 ) ; the dashed curve is the unit circle . The matrix A 
is normal, so in the 2-norm, on the left, the boundary of o'c(A) is just the set 
of points at a distance c from the spectrum. This image has little relevance 
to applications . In the I-norm, on the right , the pseudospectra lie far from 
the eigenvalues; the I-norm condition number of one matrix of eigenvectors is 
K;l (V) = I IV lh  I IV- l i l l >=:j 106 , a figure that grows exponentially with n. This 
I-norm image applies without change to the Ehrenfest urns problem. 
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1 
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o 

1 

Figure 56 . 5 :  Compression of the n-cube , with state space of dimension 2n , to a 
problem of dimension n + 1 .  The numbers mark values of the new state variable, 
j ,  the distance along the graph from vertex O .  

as n increases . Note that the curves displayed correspond to values of c as 
low as 10-4 , i .e . , resolvent norms as great as 104 . 

The random walk on a hypercube, with state space of dimension 2n , is 
equivalent to a different problem whose dimension is only n + 1 .  Suppose 
that instead of taking the state variable to be the vertex, we take it to be 
just the distance from a distinguished vertex called vertex 0, as indicated 
in Figure 56.5 .  Since all the vertices lie at a distance from vertex 0 in the 
range from 0 to n, the new state space has dimension n + 1 .  

The transition rule for the new chain i s  as follows. A vertex o f  the 
n-cube at a distance j from 0 has n neighbors , j of which are one step 
closer than it to 0 and n - j of which are one step further away. Thus with 
probability j / (n + 1 ) ,  a particle at this vertex will move closer to 0 at the 
next step, with probability (n - j ) / (n + 1 ) ,  it will move further away, and 
with probability l/ (n + 1 ) ,  it will remain at the same distance. It follows 
that the Markov process on the n-cube induces a Markov process on the 
state variable j ,  and if we order the states from 0 to n, the transition matrix 
takes the form 

1 n 
n+1 n+1 

1 1 n-1  
n+1 n+1 n+1 

2 1 n-2 
p n+1 n+1  n+1 (56.6) 

n- 1  1 1 
n+ l  n+l n+l 

n 1 
n+l n+l 
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Urn 0 Urn 1 

00 0 
Figure 56 .6 :  Ehrenfest urns containing n balls . At each step, a ball is selected at 
random and moved to the other urn. This corresponds to changing one coordinate 
of a particle at a vertex of the n-cube,  thereby moving it to an adjacent vertex. 

This is a tridiagonal , non-Hermitian matrix of dimension n + 1 .  Its eigen­
values are the same as in (56 .5 ) ,  but now, each only has multiplicity 1 .  The 
corresponding decay matrix A is dense, with the same eigenvalues except 
with 1 replaced by O. Most importantly, by combining all vertices with the 
same j into a single state, we have conserved probability, and the I-norms 
I I Ak l l 1 and I I (z - A) - I l l l are the same for this matrix as for the hyper­
cube. (We used this fact to compute Figure 56.4 . ) The 2-norms are not 
conserved, but 2-norms are of little importance for Markov chains , and we 
shall not discuss them further . In the terminology of Part II of this book, 
(56 .6) is a twisted Toeplitz matrix, or more precisely, an asymptotically 
twisted Toeplitz matrix, with symbol f(x ,  B) = e- ili (x/21f) + e ili ( 1 - (x/21f) ) ;  
its 2-norm pseudospectra were presented in Figure 9 . 1 .  

Where in this discussion are the Ehrenfest urns? The answer comes 
from noting that our new Markov chain can be interpreted as follows (Fig­
ure 56.6) . Consider n indistinguishable balls , each located in one of two 
urns, Urn 0 or Urn 1. At each step of a random process , a ball is selected 
at random and moved to the other urn (and with probability l/ (n + 1 ) ,  
the ball i s  not moved) . The state variable i s  j ,  the number of balls in 
Urn 1, taking values from 0 to n . Paul and Tatiana Ehrenfest considered 
this problem in 1907 [230] . (The physical motivation is very interesting, 
but we shall not discuss it [439] . )  This problem is the same as before, with 
each ball representing one coordinate in the hypercube, and changing its 
urn corresponds to changing that coordinate from 0 to 1 or from 1 to O . 

We can now explain where the cutoff phenomenon comes from for the 
hypercube/Ehrenfest example. Figure 56. 7  shows the probability distri­
bution as a function of step number k, assuming there are n = 100 balls 
and they begin in Urn 0 at step 0 . 2 At step 0, the distribution is a Kro­
necker delta function of height 1 at position j = O. At step 1 ,  most of 

2Plots of this kind were first produced by Yohan Kim at Cornell University [435] . 
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1 00 

Figure 56.7 :  Evolution of the probability density function for the hyper­
cube/Ehren fest problem with n = 100. (The k axis here is undersampled for 
plotting purposes , so only every fourth step is visible. ) The cutoff phenomenon 
results from the fact that the early and final states have exponentially small 
overlap . For this value of n, kcutoff = in log n � 1 15 .  Compare Figure 12 . 1 .  

the probability, though not quite all , has moved to  position j = 1 .  With 
further steps the distribution moves to the right and diffuses into approx­
imately the shape of a Gaussian, and after 200 steps it is close to its final 
position centered at j = 50. The stationary distribution (T -the dominant 
left eigenvector of the matrix P-can be derived from a simple probability 
argument : There are 2n distinct ways to split n balls between the two urns, 
and (j) distinct ways to put j balls in Urn 1 .  Thus, the entries in (T are 
given by a binomial distribution [207] : 

17 '  = 2-n (n) 
J . , 

J 
o ::; j ::; n. 

To explain the cutoff, the crucial point is that the location of the ini­
tial distribution along the j axis is different from that of the stationary 
distribution. Evidently this particular Markov chain can be interpreted as 
involving not just diffusion but also advection of probability. Consequently, 
until the moving pulse gets near the middle of the interval, it has exponen­
tially small overlap with its final position, and the I-norm of the difference 
between the current and the asymptotic state is exponentially close to the 
sum of the I-norms of those two states: 

(56 . 7) 
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The trajectory that the wave in Figure 56 .7 approximates is given by the 
formula 

(56.8) 

One way to derive this formula is to show by induction that the mean of the 
probability distribution at step k-that is, the expected number of balls in 
Urn I-is exactly 

or equivalently, 
1 fJk _ 1 (n - l )k 

2 - -;:- - 2 n + l ' 

(56 .9) 

which is consistent with the result 1 )..2 1 = 1 - 2/(n + 1 )  of (56 .5) . With 
x = fJk ln and t = kin, (56 .9) reduces to (56 .8) in the limit n --+ 00. 

The careful reader may be puzzled at this point . The arguments above, 
as well as Figure 56.7 , suggest that the behavior of the hypercube/Ehrenfest 
problem scales in proportion to n .  If  there is  a cutoff, i t  seems that it 
should occur at some step k = (') (n) . In fact , however , the formula (56.4) 
is kcutoff = in log n. Where does the factor log n come from? The answer 
is that as n --+ 00, the width of the stat ionary probability distribution 
shrinks relative to n. For I l u(k ) - u(OO) 1 1 1 to be small, the location of u(k) 
must be close to that of u(oo) not in an absolute sense, but relative to their 
widths . In other words, the convergence criterion that defines the cutoff 
grows stricter as n --+ 00 .  The cutoff condition implied by (56 .8) is 

(56 . 10) 

that is , -2t = - � log n ,  hence t '" i log n, hence k '" in log n .  
We have shown that for the Ehrenfest urns problem, hence also fror the 

random walk on a hypercube, the large-time asymptotic behavior is essen­
tially a process of one Gaussian sliding along the x axis until it coincides 
with another . The Gaussian is the dominant left eigenvector of P, and the 
error for large time, which is the second eigenvector of P or the dominant 
eigenvector of A, must look like the difference of two nearby Gaussians , 
as suggested in Figure 56 .8 ,  with the shape of a tilted S .  As more steps 
are taken, the two Gaussians align more closely and the amplitude of the 
S decays , but its width does not change. 

This analysis makes clear the 'physical ' significance of eigenvectors for 
this transient-dominated Markov chain. We have seen that the eigenvector 
whose decay governs the asymptotic behavior is an S curve located at the 
center of the interval. For small time, the probability distribution has 
nothing to do with this S curve. Nor does it have anything to do with the 
other eigenvectors , which are higher frequency oscillations (higher order 
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Figure 56.8: The difference of two nearby Gaussians is an S curve (heavy line) , 
whose amplitude decays as the Gaussians slide on top of each other. This process 
describes the long-time convergence in the hypercube/Ehrenfest problem. The S 
curve is the dominant eigenvector of A, which determines the long-time shape of 
the distribution, but it has nothing to do with the behavior for short time. 

differences of Gaussians) that are also exponentially localized in the middle 
of the interval . In short , just as we found for advection-diffusion operators 
in § 12 ,  the eigenvectors of this problem bear no relationship to the behavior 
of the system for short times . 



57 · Card shuffl ing -------------

One example of the Markov chain cutoff phenomenon has become particu­
larly famous : the riffle shuffle of a deck of cards . This problem was widely 
discussed in the popular press around the time of the publication of a beau­
tiful paper by Bayer and Diaconis in 1992 [35 , 458] ' which built upon earlier 
work by Aldous and others . Bayer and Diaconis proved that asymptoti­
cally as n ----> 00, it takes exactly � log2 n riffle shuffles to randomize a deck 
of n cards [35] . At 1 .4 log2 n shuffles, they showed, the deck is nowhere 
near random (for large enough n) . 

Bayer and Diaconis analyzed a precisely defined Markov chain, proposed 
independently by Gilbert and Shannon (1955) and Reeds ( 198 1 ) ,  that has 
been widely accepted as a reasonable model of how humans actually shuffle. 
They describe the process as follows [35] : 

A deck of n cards is cut into two portions according to a binomial 
distribution; thus the chance that k cards are cut off is G) /2n for 
o ::::; k ::::; n. The two packets are then riffled together in such a 
way that cards drop from the left or right heaps with probability 
proportional to the number of cards in each heap. 

These words define a Markov chain on the state space of permutations of the 
set { I , . . . , n } ,  which has dimension N = n! . (For n = 52, N � 8 . 1  x 1067 . )  
The associated transition and decay matrices P and A are of  dimensions 
n! x n! and non-Hermitian. (We continue with the terminology and notatIon 
of the last section. )  Bayer and Diaconis proved there is a cutoff at 

kcutoff = � log2 n (riffle shuffle) (57. 1 )  

in the same sense as the cutoff at in log n in  the last section, namely, as 
measured via norms I IAk I 1 1 . 

Just as with the hypercube/Ehrenfest problem of the last section, this 
Markov chain can be compressed to a problem of small dimension. There , 
we introduced as a state variable the distance j from a distinguished vertex. 
Here , our new state variable will be r , the number of rising sequences. Once 
more we take the definition from [35] : 

A rising sequence is a maximal subset of an arrangement of cards , 
consisting of successive face values displayed in order. Rising se­
quences do not intersect , so each arrangement of a deck of cards is 
uniquely the union of its rising sequences . For example, the arrange­
ment A,5 ,2 ,3 ,6 ,7 ,4 consists of the two rising sequences A,2 ,3 ,4 and 
5,6 ,7 ,  interleaved together. 
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Suppose we start with a deck ordered from 1 to n, i .e . , with one rising 
sequence. The first riffle shuffle will split that rising sequence into two 
(with an exceptionally small probability of keeping the deck in the same 
order) . The second shuffle will most likely break two rising sequences into 
four , though with low probability it could yield only one , two, or three 
such sequences. While the early shuffles usually double the number of 
rising sequences , this trend cannot dominate indefinitely, as a deck with n 
rising sequences is just as far from random as a deck with only one. Bayer 
and Diaconis showed that the probability of having r rising sequences after 
k shuffles depends only on r; this probability is ek +;:-r) /2 kn . Moreover , 
the riffle shuffle induces a Markov chain on the space of numbers of rising 
sequences , that is, numbers r in the range 1 :::; r :::; n. The dimension of 
the compressed Markov chain is thus N = n. Bayer and Diaconis did not 
give a formula for the entries of the reduced n x n transition matrix P ,  but 
the entries have been determined in unpublished work by Gessel (personal 
communication, August 1997; see also [35] ) and again in [435] . The formula 
is 

Pij = 2-n (
2
n
. + 1.) aj , 

Z - J ai (57 .2) 

where aj denotes the number of permutations of {I ,  . . . , n} that have j 
rising sequences . These numbers aj are known as Eulerian numbers and 
are given by the triangular recurrence 

Ar ,k = kAr- l , k + (r - k + l ) Ar- l ,k- l (57 .3) 

with AI , I = 1 ,  AI ,k = 0 for k -=1 1 , and ar = An,r [334, 457] . The stationary 
distribution for this Markov chain is 

(57.4) 

which gives us poo by (56 .3) and thence A = P _ poo.  
By assembling these formulas , we can compute the matrices P and A 

easily and investigate their properties . These matrices seem exception­
ally interesting; they combine a nontrivial application with strong non­
eigenvalue effects .  For the sake of readers who may wish to explore these 
matrices themselves , we present in Figure 57. 1 a brief MATLAB program 
for computing them. This program is adapted from [435] , where further 
details are given and an analogy is presented between the compression from 
n! to n and the coarse-grid approximations utilized in multigrid methods 
in numerical analysis . 

The first thing we naturally choose to investigate are the powers I IAk l h ·  
Figure 57 .2 shows these norms for decks of size n = 52, 208 , and 832. The 
cutoff phenomenon is pronounced, sharper than observed for the hyper­
cubejEhrenfest problem. 
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function [A , P] ; riffle (n) 

% riffle . m  - compute the n x n decay and transition matrices 
% A and P for the riffle shuffle of a deck of n cards . 
% Gudbj orn Jonsson and Nick Trefethen , Cornell U . , 1997 . 

% Logarithms of Eulerian numbers : 
a ;  zeros ( l , n) ; anew ; zeros ( l , n) ; 
for j ; 2 : n  

anew (2 : j - l )  log ( (2 : j - l ) . *exp (a (2 : j - l ) -a ( 1 : j -2) ) 
+ ( j - l : - l : 2 ) ) +a ( 1 : j -2) ; 

a ::;: anew ; 
end 

% Logarithms of binomial coeff icients : 
b ; zeros ( 1 , n+2) ; bnew ; zeros ( 1 , n+2) ; 
for j ; 2 : n+2 

bnew (2 : j - l )  ; log (exp (b (2 : j - l ) -b ( 1 : j -2) ) + 1 ) +b ( 1 : j -2) ; 
b ; bnew ; 

end 

% Transition matrix P :  
b ; b-n*log (2) ; 
r ; [b ( l )  -Inf*ones ( l , n- l ) ] ; 
c ; [b -Inf*ones ( 1 , n-2) ] ' ;  
T toeplitz ( c , r) ; 
P ; T (2 : 2 : 2*n , : ) ;  
p ;  exp (P-a ' *ones ( l , n) +ones (n , l ) *a) ; 

% Stationary distribution and decay matrix A :  
v ;  eye ( l , n) ; vnew ; eye ( l , n) ; 
for j ; 2 : n  

vnew ( 1 )  ; v ( 1 ) ; 
vnew (2 : j )  ; ( 2 : j )  . *v (2 : j ) + ( j - l : - l : l ) . *v ( 1 : j - l ) ; 
v ;  vnew/j ; 

end 
Pinf ; ones (n , l ) *v ;  
A ; P - Pinf ; 

521  

Figure 57. 1 :  MATLAB program from [435] for building riffle shuffle matrices . 

Next , we look at I-norm pseudospectra of A. Figure 57.3 shows that 
for n = 52, they once again bulge outside the unit circle near z = l . 
Figure 57.4 shows closeups for various values of n. 

The eigenvalues of P are known to be exactly 2-j for 0 ::; j ::; n - 1 ,  
and A has the same spectrum but with the eigenvalue 1 replaced by O. 
The eigenvalues and eigenvectors , however, are highly ill-conditioned. Ta­
ble 57. 1 shows I-norm eigenvalue condition numbers for various dimensions . 
The condition number of the jth eigenvalue 2-j (see §52) is well approxi­
mated by the formula 

(57 .5) 

Figure 57.5 is an analogue of Figure 56 .7 .  This figure reveals a strik­
ing similarity between the hypercube/Ehrenfest and riffle shuffle problems . 
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kcutoff = � log2 n 

I IA' r r ' J . .  · · · . :sr

.
. 

�� 208 1  
o 4 8 1 2  1 6  20 k 

Figure 57.2 : Like Figure 56 .2 , but for the riffle shuffle of a deck of n cards . 

I 
I 

- - - - --- -------. 

-- - - - - - -

Figure 57 .3 :  One-norm pseudospectra as in Figure 56.4, but for the riffle shuffle 
matrix with n = 52 (c: = 10-\ 10- 1 . 5 ,  10-2 , . . .  , 10-4 ) .  The condition number 
of one matrix of eigenvectors is �l (V) == I IV I I I I IV- 1 1 1 1 � 1060 . 
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Figure 57.4: Close ups for n = 13, 26, 52, 104 and E = 10- 1 , 10-2 , . . .  , 10-6 . 

Table 57. 1 :  One-norm eigenvalue condition numbers for the first three eigenvalues 
of A for decks of size n = 13 , 26, . . .  , 832 .  

n >.. = 1/2 >.. = 1/4 >.. = 1/8 

13 lOA 7 .91 x 10 1 4 .61  X 102 

26 31 . 8  6 . 5 1  x 102 1 .32 X 104 

52 88 . 1  5 .76 x 103 3 . 10  x 105 

104 246 .8 4 .57 x 104 7.20 X 106 

208 69404 3 .64 x 105 1 .63 X 108 

416 1959. 2.91 x 106 3 .69 X 109 

832 5534. 2 .32 x 107 8.35 X 1010 

The major difference is that whereas for the hypercube/Ehrenfest problem 
the wave propagates smoothly from one value of j to the next , for the riffle 
shuffle the value of r approximately doubles at each of the early steps . This 
is why there is no factor O (n) in the formula for kcutoff . 

What does the trajectory of Figure 57.5 approach as n --+ oo ?  Here 
we get a surprise. The limit is not a smooth curve but a sharp step from 
r/n � 0 to r/n � 1/2 at k � log2 n. As with the hypercube/Ehrenfest 
problem, the first phase (log2 n steps) is needed to move the pulse of prob­
ability roughly to the middle of the axis representing the number of ris­
ing sequences . The second phase ( � log2 n more steps) is then needed to 
align it closely with the target , whose width shrinks with n. The formula 
kcutoff = � log2 n can be derived by following the same pattern of argument 
used for the hypercube/Ehrenfest problem. First , the reason why � log2 n 
steps are needed to achieve r = O (n) is that r approximately doubles at 
each step initially until it becomes of size 0 (n) . Second, from this point on, 
with I)d = 1/2 and the Gaussian pulse again of relative width <9 (n- 1/2 ) ,  
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52 

Figure 57.5 :  Like Figure 56.7 ,  but for the riffle shuffle with n = 52. (There is no 
undersampling in this plot . ) For this value of n, kcutoff = � log2 n :::::: 8 .55 .  

the convergence is governed by the analogue of (56 . 1 0) ,  

(57 .6) 

that is, -k = - � log2 n. Thus we need k = � log2 n additional steps for 
norm convergence, bringing the total to � log2 n .  

Here is  a summary of the observations made in this and the last section 
concerning Markov chains and the cutoff phenomenon: 

• The hypercube/Ehrenfest and riffle shuffle cutoff phenomena share 
an elementary explanation: A probability wave must propagate from 
one place to another before convergence can occur . Eigenvalues and 
eigenvectors are irrelevant during this transient phase . 

• These problems are appropriately analyzed with 1- ,  not 2-norms. 

• Once the transient phase is past , the eigenvectors that govern the 
asymptotic convergence describe a process of alignment of Gaussians . 

• For the hypercube/Ehrenfest problem, the probability wave reaches 
approximately the right position in () (n) steps , and "-' �n log n steps 
are needed for norm convergence. 

• For the riffle shuffle problem, the probability wave reaches approxi­
mately the right position in "-' log2 n steps , and "-' � log2 n steps are 
needed for norm convergence . 
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a The transient effect has nothing to do with multiple or near-multiple 
eigenvalues . Indeed, for both problems in their compressed formula­
tions , the eigenvalues are simple . 

These are fascinating problems , in which all the interesting 'physics ' 
seems to consist of transient behavior . Yet we note that other points of view 
can also be taken from which the physics would look rather different . In 
particular , one can analyze the8e randomization proce8ses using technique8 
of information theory. For Ehrenfest urns , say, we begin with complete 
information that all the balls are in Urn 0; or for a deck of card8 , we 
begin with the complete information that the cards are ordered from 1 
to n. We then take steps of the Markov chain and analyze the rate of 
decay of this information to zero as randomization is approached. Such 
an analysis revea18 no cutoff effect . Information is lost steadily from the 
very first step; each time you shuffle, the deck does indeed become more 
random! The absence of the cutoff phenomenon in this information theory 
analysis of Markov chains has been pointed out by Peter Doyle (personal 
communication, 1996) and is investigated in print in [718 ,  781] . 

We close with a question. Figures 57.3 and 57.4 show pseudospectra 
that contain points much further from the origin than the eigenvalues , 
implying that there mU8t be some transient effects in these Markov chains . 
But this qualitative conclusion is a long way from the very precise actual 
situation, which is that I IAk l l l remains almost identically equal to 2 for 
small values of k. Theorems 16 .4 and 16 .5 do not get us very far. Can more 
precise information about I IAk 1 1 1 be inferred from these pseudospectra? 



58 . Population ecology ___________ _ 

Since the growth of a population over time is a dynamic process , it is no 
surprise that eigenvalues arise in the study of the stability and growth 
rates of communities . The models describing such processes typically in­
volve nonnormal matrices , a fact with interesting biological implications . 
Discrete time single-species population models form one notable class of 
nonnormal examples [130, 455] . Here, though, we focus on multispecies 
systems described by continuous time differential equations . 

Community models in population ecology predict the dynamic interac­
tion of various competing and cooperating species in a restricted environ­
ment . The mathematical formulation addresses the question, Given initial 
population densities for all the species in this community, what will the 
populations be at some future time? The Lotka- Volterra predator-prey 
equations are the most celebrated model of this form. Suppose Yl and Y2 
denote the densities of two species , the first the prey (gazelles , say) , and 
the second the predator (lions) . Then these equations take the basic form 

Yl ( 1  - Y2 ) , 
Y2 (YI - 1 ) ,  

(58. 1 ) 
(58.2) 

where the primes denote derivatives with respect to time [568 , Chap. 3] . 
Since population densities cannot be negative, Yl , Y2 ;:::: 0, this model implies 
that the lions prosper when the gazelle density exceeds 1 ,  while the gazelles 
increase when the lion density drops below 1 .  The result is a cycle of growth 
and predation, a familiar early example in dynamical systems classes . 

From the outset , one realizes that such models will at best provide a 
rough approximation of reality. This is an autonomous system of differ­
ential equations : time does not appear on the right-hand side . Thus, the 
model necessarily cannot account for temporal variation, such as seasonal 
changes . Furthermore , it only includes two species . What food source 
sustains the gazelles? What happens if this resource is depleted? 

To allow for larger communities , potentially involving multiple levels of 
a food chain, one can generalize (58. 1 )  to N different species, each with 
population density Yj described by the system of differential equations 

N 
yj = Sj Yj + L ajk YjYk , (58.3) 

k=l 
where the Sj and ajk are community-specific constants. The coefficient ajk 
describes the amount that species j benefits or suffers from the presence of 
species k in the community. 
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This model can be analyzed by making the common, if not univer­
sally accepted, assumption that naturally occurring populations described 
by (58 .3) will typically be in stable equilibrium. 1 Having made this as­
sumption, one can follow the standard approach for analyzing stability of 
nonlinear systems , as sketched in Figure 33.3 .  At equilibrium, the popula­
tion densities {Yj }f=l do not change with time, i .e . , vj = 0 for j = 1 ,  . . . , N, 
and thus the equations (58 .3) imply 

-8 = Ay, (58.4) 

where y is the vector of population densities . To evaluate stability, con­
sider the Jacobian matrix D for the equations (58.3) , built up from partial 
derivatives of the form 

For y at equilibrium, (58 .3) and (58.4) imply that 

j i= k ,  

j = k .  

for all j, k ,  and thus the Jacobian matrix D i s  defined entrywise by djk = 
ajkYk . If an equilibrium point y is subjected to the small perturbation 
p = p(O) at time t = 0, then this perturbation will develop according to 

(58 .5) 

The asymptotic rate at which generic perturbations grow or decay is gov­
erned by the spectral abscissa of the Jacobian, a(D) = sUP.\Ea(D) Re A. 
For the equilibrium point y to be stable, all perturbations must eventually 
decay, and thus a(D) < O. Provided this is the case, a(D) is a measure 
of how rapidly the perturbed system returns the equilibrium system, and 
thus -a(D) is known as the resilience of the community (see [574] and ref­
erences therein) . 2 The more negative the spectrum of D,  the more quickly 
perturbations are damped out , and thus the more resilient the community 
is to small changes. From this perspective ,  robust communities are those 
that have their eigenvalues well to the left of the imaginary axis. 

1This assumption arises from the premise that unstable communities would collapse 
under small perturbations to the environment , which inevitably occur, for example, from 
extreme weather or from interaction with species omitted from the model . Unstable 
communities are thus expected to be short lived and rarely observed. For an empirical 
investigation of this assumption, see Yodzis [844] . 

2Note that for the two-species model (58 . 1 )-(58 . 2 ) ,  the Jacobian D at the stable 
point y = ( 1 ,  l )T has a(D) = 0, so the system is only neutrally stable. 
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As seen throughout this book, conclusions based on the eigenvalues of 
D alone can be misleading when D is non normal . In the population ecol­
ogy context , Neubert and Caswell have discussed this point in detail [574] , 
suggesting alternative measures of robustness to perturbations that incor­
porate nonnormal effects. A related notion of robust stability in a non­
ecological context is considered in [ l l 5] .  General techniques for analyzing 
linearized differential equations discussed in § § 15  and 33 are appropriate. 

Even when models of the type described here are applied to communities 
with a handful of species , the numerous constants in equation (58.3) may 
be difficult to estimate accurately. (For example , for the simplified four­
species lake community model considered in [160, §4 .3] , it is even difficult 
to ascertain which entries in A should be nonzero. ) Because of this uncer­
tainty, many ecologists concede that (58 .3) may not be useful for making 
quantitative predictions for specific communities , though perhaps general 
properties of communities can be deduced by understanding the qualita­
tive behavior of (58.3) over different ensembles of parameters . Two land­
mark studies in this vein were conducted by Gardner and Ashby [301] and 
May [538] , who constructed D to have negative elements on the main diag­
onal and random nonzero elements in some proportion of the off-diagonal 
elements. They were then interested in how various parameters , such as 
the proportion of nonzero entries ( connectance ) , the system dimension, and 
the magnitude of these entries , affected the probability that such a system 
was stable. 

A drawback of this approach is that such random distributions take no 
account of community structure ; for example, they can potentially include 
unnatural cycles within a food web . As an alternative, Cohen et al. [ 160] 
have suggested the 'Lotka-Volterra cascade model ' ,  which imposes basic 
restrictions on the coefficients aj k in (58 .3) . The entries in the system are 
ordered so that species j never preys upon species k when j < k ;  one says 
that the species are labeled according to ascending trophic levels . For any 
j < k, this model only allows four possibilities : 

• aj k = 0 and akj > 0 ,  a 'donor-controlled' link; 

• aj k < 0 and akj = 0, a 'recipient-controlled' link; 

• aj k < 0 and akj > 0 ,  the classic 'consumer-victim' link; 

• aj k = 0 and akj = 0 ,  no dynamic interaction. 

These requirements imply that all entries above the main diagonal are non­
positive, while all below are nonnegative . The entries of the main diagona.l 
itself are always negative , ajj < o . 

Let us consider a particular example from a food web for part of the 
river Thames shown in Figure 58 . 1 ,  based on data from [158 , p. 250] . The 
links in the web specify those pairs potentially corresponding to nonzero 
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ALGAE \-------------' 

Figure 58 . 1 :  Food web for a section of the river Thames , adapted from a table in 
Cohen, Briand , and Newman [158] . The arrows indicate the direction of energy 
flow through the web. 

entries in the matrix A.  Given these relationships , one must still determine 
the nature of each link, and indeed the magnitude of the nonzero coeffi­
cients. Rather than trying to apply ecological intuition to determine these 
parameters , we consider three extreme situations : 

• all links are donor-controlled (lower triangular A) ; 

• all links are recipient-controlled (upper triangular A) ; 

• all links are consumer-victim. 

Perhaps reality occurs somewhere between these extremes . In each case , 
we construct the matrix A to have the nonzero pattern suggested by Fig­
ure 58 . 1  and the sign pattern determined by the link type. Nonzero entries 
are assigned magnitudes randomly drawn from the uniform distribution 
on [0, 1 ] . The entries of the stable point y are random numbers drawn 
uniformly from [0, 1] . In Figure 58 .2 ,  we show the pseudospectra for these 
three realizations of D based on a random choice of the parameters that 
yields somewhat more nonnormality than is typical . The first two matrices 
are particularly far from normal , as reflected in the plot of I letD I I  in Fig­
ure 58 .3 .  In the case of the donor-controlled links , perturbations can be 
amplified to more than 100 times their initial size . The consumer-victim 
model , though less resilient than the others , damps the perturbation out 
more quickly. (The oscillations seen in the consumer-victim curve could 
not occur if D were a normal matrix. ) Far more extensive randomly gen­
erated experiments are detailed by Chen and Cohen [143] . 
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Figure 58 .2 :  Spectra and E-pseudospectra for three community matrices derived 
from the Thames food web. In the left and middle plots, E = 10- 1 , 10-2 , 10-3 ; 
on the right , E = 10- 1 , 10-2 . The dashed line in each plot is the imaginary axis . 

1 03 .-----.-----.-----.-----.---�.---�,----, 

t 
Figure 58 .3 :  Transient growth, followed by asymptotic decay, for the Thames food 
web. Pseudospectra for the corresponding matrices are illustrated in Figure 58.2 . 

Here is a more extreme example of nonnormality in community matrix 
models . Consider an N-species community that is completely connected, 
reflecting interaction between all species, and again suppose the links are 
either all donor-controlled, all recipient-controlled, or all consumer-victim. 
Assume further that the nonzero entries of D all have magnitude 1 ,  so that 
these three matrices take the general form 



� ) , 
- 1  

donor-controlled 
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(- 1  -1  - 1 ) 
DR = 0 - 1  - 1  , 

o 0 - 1 

recipient-controlled 

531 

Dev = 
(- �  =� = � ) . 

1 1 - 1 

consumer-victim 

While this example is admittedly distant from nature's reality, it illustrates 
the potential for nonnormality contained in this class of models and high­
lights differences between the various types of links in the food web. 

Any potential distinction between these types of links is hidden from 
standard eigenvalue analysis . It is clear that a(DD ) = a(DR) = - 1  since 
these two matrices are triangular. Note that Dcv + I is skew-symmetric 
and thus has purely imaginary eigenvalues. It follows that all eigenvalues of 
Dcv have real part equal to - 1 , so we also have a(Dcv) = -1 .  All three 
systems thus appear considerably more resilient than the Thames examples 
studied earlier . From the perspective of eigenvalue analysis alone, that is 
all there is to say. 

From the perspective of nonnormality, however, these three matrices 
could hardly be more different , as is illustrated by pseudospectral plots in 
Figure 58.4 for N = 20. First note that Dcv is a normal matrix since 
it is a shift of a skew-symmetric matrix. On the other hand, DD and 
DR are both nondiagonalizable . In both cases, we can look to the corner 
entries of the resolvent to understand the extent of the nonnormality, a 
common approach for analyzing triangular matrices ; see §§36-38. (For 
symbol analysis of these Toeplitz matrices , see the discussion of (49 .2 )  on 
p. 449 . )  For DD we have 

- 1 (z + 2 )N-2 
[ (z - DD) J N1 = (z + l )N (N :::: 2) , 

whose modulus goes to infinity with N whenever Re z :::: - 3/2 . Thus for 
any E > 0, in the large N limit , any point in the right half-plane is an 

donor-controlled recipient-controlled 

; 
2 4 

consumer-victim 

Figure 58 .4 :  Spectra and c:-pseudospectra (c: = 10- 1 , . . .  , 10-8 ) for extreme com­
munity matrices. In all three examples , there are links between all N = 20 species 
in this fictitious web. On the left , the links are donor-controlled; in the middle, 
they are recipient-controlled; on the right , they are consumer-victim (some eigen­
values are off scale in this case) . For all three examples, a(D) = - 1 .  
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c -pseudoeigenvalue of DD . One can similarly compute that - 1 ( _z )N-2 

[ (z - DR)  l IN = 
( -z _ l ) N (N � 2) . 

This case is closely related, but now this corner entry, and thus the resolvent 
norm, blows up whenever Re z ::::: - 1/2 .  For points z with Re z > -1/2, 
one can show that 

- 1 1 ( 1 ) I I ( z - DR) I I ::::: I Z + 1 1 
1 +

l z + 1 1 - l z l  

independently o f  N, implying the loose bound 

Thus, even when the dimension of the matrix is large, the resolvent norm 
on the imaginary axis is never big. The differing effects of non normality 
are evident from the plots of I l etD I I  in Figure 58 .5 .  There is large transient 
growth for DD , which becomes more acute for larger dimensions . For DR, 
the slope of the curve is approximately - 1/2 ,  only half as negative as one 
would expect based on eigenvalue analysis . (It must eventually reduce to 
- 1  for this finite-dimensional example, but this is not observed on the 
scale shown here . )  Finally, Dcv behaves as expected for a normal matrix, 
yielding a slope equal to a(Dcv) = -1  from the start . 

We can summarize the effects of nonnormality in population ecology 
models as follows (see also [574] ) .  

1 O-1 0 �  __ ---L ___ �----»-__ -='-:-___ -:-:-_-">-� 
o 1 0 20 30 40 50 

t 

Figure 58 .5 :  Matrix exponentials for the three extreme 20-species community 
matrices of Figure 58.4 .  
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• Perturbations to stable equilibria can grow before they decay, leading 
to longer lasting effects than might be expected from the resilience 
alone . 

• Such perturbations could potentially grow to an extent that makes 
the linearization inappropriate. 

• Small errors in the community matrix, as would be expected in prac­
tice , can significantly change the stability properties . 

• Judging community resilience based on eigenvalues alone can be mis­
leading. 



59 . The Papkovich-Fadle operator ______ _ 

The Papkovich-Fadle problem, studied since 1940 in both solid and fluid 
mechanics , concerns the biharmonic operator on a semi-infinite strip . l This 
is an example where the degree of nonnormality is mild ---algebraic rather 
than exponential .  Eigenfunction expansions turn out to be a reasonable 
tool for solving it , provided that one manipulates them in a way that does 
not depend on an implicit assumption of normality. Thus the Papkovich­
Fadle problem is a case study in how to deal properly with expansions in 
nonorthogonal functions . 

To set the stage, let us first consider an analogous but normal problem 
involving the Laplace operator . Let S be the semi-infinite strip x > 0 ,  
- 1  < y < 1 (Figure 59. 1 ) .  We seek a function u(x ,  y) satisfying 

,6.u(x, y) = 0, (x , y) E S, (59 . 1 )  

with boundary conditions 
u(x,  ±1 )  = ° (59 .2) 

and 
u(O ,  y) = f(y) . (59 .3) 

Here ,6. is the Laplacian ,6. = [j2 /8x2 + 82/ 8y2 , and to make the problem 
well-posed we add the condition limx�oo u(x,  y) = 0. One can interpret 
u(x,  y) as the shape taken by an infinite membrane with height f(y) at the 
left end of the strip . 

A natural way to solve for u(x,  y) is by separation of variables . For 
simplicity we shall only consider boundary functions f(y) that are even, 
which by symmetry guarantees solutions that are even with respect to y .  
(There is  an analogous family of odd solutions , and a general solution 
for any f can be constructed as a superposition of an even and an odd 
component . Alternatively, the problem could have been posed on the half­
strip x >  0, 0 <  y < 1 with the Neumann boundary condition 'uy (x, 0) = 0 . )  
The solutions to (59 . 1 )-(59.3) of  the form u(x ,  y) = X(x)Y(y) are the 
functions 

k = 1 , 3 , 5 ,  . . .  , (59 .4) 

and an arbitrary solution can be expanded as a series 

u(x, y) = 2..= ak¢dx, y) , (59 .5) 
kEIK 

I This section originated in joint work with J .  A.  C. Weideman. summarized briefly 
in [773] . 
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u (x,  1) = 0 

«(0, y) = I(y) 1L--_______ �_u_=_O 
_

_______ s 

u (x,  - 1 )  = 0 

Figure 59 . 1 :  The Laplace evolution problem in a semi-infinite strip. The variable 
x plays the role of time, and f defines the initial data. 
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Figure 59 .2 :  Spectrum of the Laplace evolution operator L for solutions even 
with respect to y . This operator is normal. 

1 0° 
l I exL l 1  
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x 
Figure 59.3 :  I l exL I I  as a function of x. The slope of the line is determined by the 
spectral abscissa, cx (L) = -1['/2.  
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where II( denotes the set of positive odd integers . Since the functions 
¢k (O , y) = cos( � k1ry) are orthonormal in L2 [- 1 ,  1 ] , the coefficients ak are 
given simply by the Fourier integrals 

(59 .6) 

We can think of (59. 1 )-(59.3) as an evolution problem with respect to 
the 'time' variable x . If u(x , · )  denotes a function of y at fixed x , i .e . , 
u(x , . ) (y) == u(x , y) , then the evolution problem can be written 

d 
dx u(x , · )  = Lu(x , . ) ,  u(O , · ) = f, (59 .7) 

where L is a linear operator that we can define by means of (59.4)-(59.6) . 
The following formula computes the Fourier coefficients of u( x , . ) (y) , inserts 
these in the series solution, and differentiates with respect to the space 
variable: 

Lu(x , . ) (y) = ! ( L  e- ! k7r'; cos ( �k7ry) ill u(x , S) cos( � k7rs) ds) 1 
kEIK ';=0 

= L - � k7r COS ( � k7rY)J l u(x, s) cos( �k7rs) ds. 
kEIK - 1 

(59 .8) 

We see readily that L is a self-adjoint operator on L2 [- 1 ,  1 ] whose spectrum 
consists of eigenvalues - � k1r with corresponding eigenfunctions cos( � k1ry) 
(Figure 59.2) . (If the factor k in (59 .8) were changed to k2 , L would 
become an evolution operator for heat conduction . )  The solution to (59 .7) 
is u(x , · ) = exL f, and since L is self-adjoint , the norms of the solution 
operators are determined by the eigenvalue with largest real part , I l exL I I = 
e- ! 7rX , as shown in Figure 59 .3 .  

To solve (59 . 1 )-(59.3) on a computer, it would be natural to use the 
eigenfunction expansion . To make the problem finite , one could consider a 
finite set of eigenfunctions ¢l ' . . . ' ¢N and a corresponding approximation 

fey) � L ak cos ( �k1ry) . (59 .9) 
kEIK 

Since the functions cos( � k1ry) are orthogonal , the choice of coefficients 
ak = ak leads to an optimal approximation with respect to the 2-norm 1 1 · 1 1 · 
In other words, simply truncating the infinite series {ad is a reasonable 
procedure . 

This is all there is to say about the Laplace evolution problem, except for 
the mention of one subtlety. Though one could hardly imagine a problem 
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that seems better suited to the use of eigenfunction expansions , the fact 
is that these expansions are inefficient for some purposes . For example, 
suppose f(y) is the function f (y) = e - ey2

. Then the series coefficients 
decay at the rate ak = () (k-3 ) ,  and to achieve I l f  - fN 1 1  < 10-6 , where fN 
is the partial sum (59 .9) with ak = ak , one needs N >:::; 600. By contrast , 
in an expansion of f(y) in Chebyshev polynomials the coefficients decrease 
geometrically and one achieves I l f  - fN 1 1 < 10-6 with N = 13 .  What 
causes such a dramatic difference? The answer is that the difficult part of 
the problem asymptotically is in the corners x = 0, y = ±1 ,  where there is a 
singularity that can be represented only inefficiently by the eigenfunctions .2 
The observation that eigenfunction expansions may be inefficient was made 
famous by Orszag in the early 1970s [588] and is the foundation of the field 
of spectral methods for the numerical solution of PDEs ( § §30, 43) . For 
the present problem eigenfunctions are entirely suitable if the goal is the 
solution at some distance down the strip , but some other method is needed 
if one wants an accurate solution near the corners. 

Now we turn to the Papkovich-Fadle problem. On the same semi­
infinite strip S (Figure 59.4) , we seek a function u(x , y) satisfying 

,6.2 u(x, y) = 0 ,  (x , y) E S, 

with boundary conditions 

u(x , ±1 )  = uy (x , ±1 )  = 0 

and 
uy (O , y) = f(y) , ux (O ,  y) = g(y) . 

(59 . 10) 

(59 . 1 1 )  

Here b,2 is the biharmonic operator b, 2 = 84/ 8x4 + 284/ 8x2 8y2 + 84/ 8y4 , 
and for well-posedness we again add the condition limx�oo u(x , y) = O .  
Note that specifying uy (O , y) i s  equivalent to specifying u(O , y) ; we assume 
that u is continuous on the boundary of S and thus that the compatibility 
condition J� l f (y) dy = 0 is satisfied . 

In solid mechanics , u(x , y) can be interpreted as the shape of a semi­
infinite clamped plate. In fluid mechanics , it is the stream function of an 
incompressible fluid flow at zero Reynolds number (Stokes flow) . The orig­
inal papers in this field are those of Papkovich [600] and Fadle [254] , and 
subsequent contributors include Smith [703] , Benthem [53] , Gaydon and 
Shepherd [303] , Buchwald [ 1 12] , Johnson and Little [434] ' Gupta [353] , 
Bogy [66] , Joseph and Sturges [437, 438] ' Gregory [345 , 346 , 347] , and 
Spence [71 1 ,  712 ,  713] . (As discussed in several of these references , the 

2Because of the periodicity of the cosine, the eigenfunctions are odd functions with 
respect to the points y = 1 and y = - 1 ,  whereas fey) = e - ey

2 
does not have this 

property; in effect , we are trying to approximate a function with a discontinuous second 
derivative by cosines . 
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u(x, 1 )  = uy (x, 1) = 0 

t::,2 U  = 0 s 
Uy (O, y) = 

f

(y) 1 Ux (O , y) = g(y) 
�------------------------------------------

U(x, - 1 )  = uy (x, - 1) = 0 

Figure 59.4 :  The Papkovich-Fadle evolution problem . 

2 • • • • 
• 

o 
• 

• • 
• • -2 

-5lt -4lt -3lt -2lt -It o 

Figure 59.5 :  Spectrum of the Papkovich-Fadle operator L for solutions even with 
respect to y. 
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x 

Figure 59 .6 :  I l exL II as a function of x . The dashed line corresponds to the spectral 
abscissa, a(L) � - 2 . 1062 . 
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above assumptions and boundary conditions are not the only physically rea­
sonable ones . For example, many authors take data Uyy (O , y) and uxx (O , y) 
instead of uy (O , y) and ux (O , y) . These variations do not affect our main 
points . )  

For an interesting generalization o f  Papkovich-Fadle ideas t o  three­
dimensional flow in a cylindrical container with a rotating end wall, see [396] . 

Like the Laplace problem, the Papkovich-Fadle problem can be solved 
by separation of variables . Restricting attention as before to solutions even 
in y, we find that the solutions to (59 . 10) of the form u(x, y) = X(x)Y(y) 
are the functions 

k = ±1 , ±2, . . .  , 

where 
(59 . 12) 

and P'k } are the roots in the open left half-plane of the equation Ak + 
sin(Ak ) COS(Ak ) = O . The solutions to this equation come in complex con­
jugate pairs, which we denote by A±l ' A±2 , . . .  in order of decreasing real 
part , with ImAk > 0 for k > 0 and ImAk < 0 for k < O. See Figure 59. 5 .  

The eigenfunctions (59 . 12)  are not orthogonal, and thus the Papkovich­
Fadle operator is nonnormal . But we must be precise about what we mean 
by 'the Papkovich-Fadle operator ' , which we shall now denote by L. In 
keeping with the choice of first derivatives for the initial data in (59. 1 1 ) ,  it 
is natural to define L via the equation 

with solution 

� ( Uy (X , . ) ) 
dx ux (x, ' ) L ( Uy (x , . ) ) , ux (x, . ) 

( UY (X , . ) ) = exL ( 1 ) . 
ux (x, · ) 9 

Thus the data in the evolution problem are block 2-vectors and the solution 
operator is a block 2 x 2 operator matrix whose form we do not explicitly 
write out . (It would not do to let (U, ux )T be the evolution variable in­
stead of (uy , ux ) T , because u and Ux are dimensionally different and the 
associated inner product would not make physical sense . )  The equation 
analogous to (59 .5 )  is 

(59 . 13) 

Figure 59 .6 plots [ [ exL [ [ against x .  The fact that the curve is not straight 
reveals the nonnormality. Physically, the regular oscillations in this curve 
are easy to interpret . If S is a semi-infinite channel of fluid, they correspond 
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Figure 59.7 :  c:-pseudospectra of the Papkovich-Fadle evolution operator L for 
c: = 10-0 . 6 , 10-0 . 8 , • • . , 10-2 .0 . 

to an infinite succession of counter-rotating 'Moffatt vortices ' . (Since the 
amplitudes decay exponentially, only the first three or four of these can be 
observed in the laboratory. ) If S is an infinite solid plate, they correspond 
to the back-and-forth pattern of bending one can induce in the plate (again 
with exponentially decaying amplitude) by clamping it at the end. For 
beautiful high-accuracy computations of these oscillations on finite square 
domains, see [64] . 

Figure 59 .7 plots 1O-pseudospectra of L. The degree of nonnormality is 
mild , so the values of 10 chosen for the plot are large: 10 = 10-0 .6 , 10-0 .8 , 
. . .  , 10-2 .0 . It is evident that the nonnormality becomes more pronounced 
as one moves into the left half-plane. This corresponds to the singularity in 
this problem at the corners of the strip, a phenomenon of small space scales 
that can only be resolved by the higher eigenfunctions . This singularity is 
well understood and is discussed, for example, in [29, §4.8] . 

We come now to the computational question, How can the Papkovich­
Fadle eigenfunctions be used for computing solutions to (59 . 1 O)- (59. 1 1 )? 
(And how were Figures 59 .6 and 59 .7 produced? ) Much of the literature 
cited above is devoted to this matter. One problem considered in a number 
of these papers is under what circumstances the series (59 . 1 3) converges . 
Another is the convergence of the analogous series in which the coefficients 
ak , I k l  = 1, . . .  , N  /2 ,  are replaced by approximations obtained by colloca­
tion in N points or by other analogous methods. Such a process can be 
interpreted as truncation of an infinite system of equations; in general it 
fails, and various acceleration and improvement devices have been proposed 
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to remedy the situation [71 1 ,  713] . 
Alternatively, we can recognize from the start that if we are to use an 

expansion in N eigenfunctions , we must begin by solving an approximation 
problem [303] ( f (Y) ) � � � ( ((h )y ) 

g (y) 
� 

I k l = l 
ak (¢k ) x 

. 

This problem is the Papkovich-Fadle analogue of (59 .9) , but now, since 
the eigenfunctions are no longer orthogonal , there is no reason to choose 
ak = ak · Instead the obvious procedure is to take coefficients ak corre­
sponding to a least-squares fit . Equivalently, we can speak of a projection 
of the data (f (y) , g(y) ) T onto the space spanned by the finite collection of 
eigenfunctions ; such projections are the standard tool of spectral methods . 

The mechanics of the projection process are a matter of straightforward 
numerical linear algebra. First we discretize the y variable by a number of 
points M -not equal to N as in most of the theoretical papers, but greater. 
(For example, we can take M = 2N. The linear algebra described here is 
equally valid if we leave the y variable continuous, i .e . , M = 00 [30] . )  Then, 
with L denoting the discrete analogue of L, our aim is to project L onto the 
column space of an M x N matrix V whose columns are selected eigenvec­
tors of L ,  and hence satisfy LV = VD for some N x N diagonal eigenvalue 
matrix D .  Let V = QR be a QR (Gram-Schmidt) decomposition of V,  
with Q of dimension M x N and R of dimension N x N, so that we have 
Q*V = R and Q = VR-1 (cf. §40) . Then the upper triangular matrix 

Q*LQ = Q*LVR- 1  = Q*VDR- 1 = RDR-1 

is the representation of the desired projection with respect to the orthogonal 
basis of columns of Q. Figures 59 .6 and 59 .7 were computed with matrices 
RDR-1 corresponding to parameters N = 20, M = 40. 

These calculations are easily implemented in practice , for example , in 
MATLAB. The condition numbers of the finite bases of eigenfunctions are 
of modest size (e.g. , K (V) � 6 .52 ,  16 .3 ,  44 . 5 ,  132 for N = 4, 8, 16 ,  32) , 
so numerical stability is not much of a concern. If high accuracy very 
near the corners is required, spectral methods will be superior , but for 
most purposes , eigenfunction expansions are an excellent way to solve the 
Papkovich-Fadle problem. 
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Lasers , among the great technological discoveries of the twentieth century, 
are a fine illustration of the importance of eigenmodes of normal and near­
normal systems . There are also some lasers , involving what are known as 
unstable resonators , that are mathematically far from normal . It was partly 
in connection with such problems that H. J. Landau of Bell Laboratories 
invented pseudospectra in the 1970s (see §6 ) , and on the more physical side , 
the nonnormal aspects of this class of lasers have been emphasized since the 
1980s by the well-known laser expert and textbook author A. E. Siegman. 

A laser is an appealing system to the eigenvalue aficionado, for its oper­
ation depends on the interplay of two distinct eigenvalue problems . One of 
these , Hermitian, is governed by the Schrodinger operator that determines 
the energy states of the excited atoms or molecules in the lasing medium. 
If the laser emits light at a frequency corresponding to the gap between 
two states of a neon atom, for example, the frequency is mathematically 
the difference of two eigenvalues . The other eigenvalue problem involves 
the cavity in which light energy at this frequency accumulates , which is 
usually tuned to resonate very precisely so the output becomes a coherent 
beam. For most lasers this problem is close to normal , though it cannot 
be exactly normal since the mirror at one end of the cavity must reflect 
imperfectly to allow some light to leak out . 

.. 

z 

Figure 60. 1 :  A laser cavity consists of a space between two mirrors , which may be 
flat or curved; one of the mirrors is often partially reflective to allow some light 
to escape. The cavity is filled with a solid , liquid, or gas populated by atoms or 
molecules in excited energy states. 

Figure 60 . 1 suggests a typical laser cavity bounded by two mirrors sep­
arated by a distance L in the z direction, typically equal to thousands of 
wavelengths of light at the frequency of interest . For simplicity we take 
the configuration to be two-dimensional , with x as the transverse variable . 
(In the laboratory such a geometry could be realized by a wide cavity with 
mirrors in the shape of strips. ) Let us imagine for a moment that the space 
between the mirrors is a vacuum. The governing equations are the free­
space Maxwell equations , which reduce to the second-order wave equation 
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for any of the vector components E = E(x, z) of the electric field ' ! By 
confining our attention to the frequency w = ck corresponding to a fixed 
wave number k, where c is the speed of light , we obtain the Helmholtz or 
reduced wave equation 

where the double subscripts denote second partial derivatives with respect 
to the indicated variables. Since we are concerned with propagation ap­
proximately in the z direction, we now replace E by the new variable u 
defined by E(x, z) = e-ikzu(x, z) . (As is customary with linear equations , 
we formulate the problem in complex variables ; physical quantities are ob­
tained at the end by taking real parts . )  The differential equation becomes 

uxx + Uzz - 2ikuz = 0, 

and if the wave propagation is approximately longitudinal , u will vary 
slowly with respect to z. For most lasers it is accordingly appropriate to 
make the paraxial approximation,2 deleting the Uzz term to obtain 

i 
Uz = - 2k Uxx · (60 . 1 )  

We may regard this paraxial equation as an evolution equation with re­
spect to the 'time' variable z for functions u defined on IlL In the usual 
L2 inner product the operator u f---+ (- i/2k)uxx is normal and purely dis­
persive ; its spectrum is the nonnegative imaginary axis (or the nonpositive 
imaginary axis if k < 0) . This operator has no eigenfunctions ,3 since 
the eigenfunctions 'ought ' to be complex exponentials, which have infinite 
norm. Combining these not-quite eigenfunctions in a Fourier integral yields 
a Huygens-Fresnel integral representing the solution at position z in terms 
of the solution at z = 0 :  

u(x , z) = J ik 100 
e- ik (x - s ) 2 /2Zu (s , O) ds . 

27fZ -00 (60.2) 

This integral operator mapping u(x, 0) to u(x, z) is unitary and hence nor­
mal and energy-conserving; its spectrum is the unit circle .4 

I The classic text on the science of optics is the monograph by Born and Wolf [75] . 
Our treatment here is adapted from Chapter 16 et seq. of Siegman's book Lasers [685] . 
There are also many other good books on laser physics and applications. 

2Equivalently, one can formulate the wave propagation problem in terms of Huygens's 
principle of spherical waves and then make the Fresnel approximation to these waves, 
again based on the assumption that the propagation is predominantly longitudinal . 

3 In lieu of eigenfunctions, it is often convenient to express solutions in terms of 
'Gaussian beams' ,  functions whose x dependence is given by Hermite polynomials times 
Gaussians and which evolve in z according to a simple formula. 

4By deleting factors of i in (60 . 1 )  and (60 .2) , i .e . , replacing dispersion by dissipa­
tion, we obtain the familiar representation of solutions of the heat equation in terms of 
convolution with a Gaussian kernel .  
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The most interesting physics-and the nonnormality--come when we 
introduce boundary conditions . Consider the simplest possible situation 
suggested by Figure 60. 1 ,  in which a two dimensional cavity of length L 
is open on the sides and bounded at the ends by two flat mirrors , which 
we take to have endpoints x = ±1 .  Imagine a packet of light at the left 
mirror as it begins to propagate to the right , with cross-sectional electric 
field given by Uo = uo (x) . The light propagates rightward to the second 
mirror, and there, the portion of it with I x l  ::; 1 reflects, while the portion 
with I x l > 1 radiates to infinity and is lost . With repeated reflections this 
process of trimming energy with I x l > 1 takes place repeatedly, yielding a 
dynamical system that can be thought of as evolving in discrete time on 
the domain - 1  ::; x ::; 1 ,  with each time unit corresponding to the time 
L / c that it takes for light to propagate from one mirror to the other . In 
one such transit , the signal evolves according to the following truncation 
of (60 .2) : 

u(x) = Auo (x) = /iF/I e- iF(x-s) 2 uo (s) ds , V -:; - 1 
(60.3) 

where the Fresnel number is defined by F = k/2L. Mathematically speak­
ing, this is a compact integral operator on L2 [- 1 ,  1 ] , implying that it is 
bounded and has a countably infinite set of singular values decreasing to 
zero. 

And so it is that the science of lasers is heavily concerned with the 
behavior of linear integral operators defined by kernels that are complex 
symmetric but non-Hermitian. This kind of analysis was introduced by 
Fox and Li in the early 1960s [284, 285, 690] . Whatever the geometry may 
be, the Fox and Li approach considers the operator A that describes the 
change of shape that takes place due to dispersion and diffraction at the 
edges as a wave of given frequency makes one transit across the cavity, 
or one round-trip . By taking powers Ak , one models repeated reflections , 
and after many reflections , the signal will be dominated by the eigenmode 
whose eigenvalue has modulus 1 >' 1 closest to 1 .  Of course , if A captured 
all of the physics of the system, the light would attenuate after repeated 
bounces and a laser cavity would be no more interesting than a pair of 
mirrors in a clothing store . In actuality, the space between the mirrors 
is filled with a medium that has been excited so that high energy levels 
are more highly populated than low ones . Consequently, by the process 
known as stimulated emission, the light as it passes through releases more 
light . Amplification takes place , bringing the total round trip amplification 
factor above 1 .  If all eigenmodes are equally amplified, the eigenmode of A 
with 1 >' 1  closest to 1 will be the one that attains the highest amplification 
factor . A coherent oscillation quickly builds up to an amplitude where the 
excited atoms are sufficiently depleted to bring the amplification and decay 
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F = 87r F = 167r 

F = 327r 

Figure 60 . 2 :  Eigenvalues and E-pseudospectra of the operator (60.3) for F = 
87r, 167r , 327r , 647r , with E = 10- 1 , 10- 1 . 5 , . . .  , 10-3 in each case; the dashed curve 
is the unit circle. The operator is nonnormal , but only mildly so; the dominant 
outer modes are nearly orthogonal . 

into balance ; and out comer:> an almost perfectly focused and coherent laser 
beam, locked into that dominant eigenmode of the resonant cavity. 5 

Figure 60 .2 ,  computed by a high-accuracy spectral discretization , shows 

5More precisely, a laser mode is not just a bouncing wave packet but also extends 
through the z dimension as a standing wave. This means it must have a fixed phase at 
each point in space, which might seem to suggest that only eigenvalues A of A with zero 
argument could be relevant. Fortunately, it is not u but E that must have a fixed phase, 
and the e- ikz factor connecting the two oscillates so fast than any phase of A will do; 
the value of k adjusts very slightly so that the e- ikz  factor compensates for any nonzero 
phase in A.  
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n = 1 I An l  = 0 .99988 arg(An ) = 0.0029401 I\;(An ) = 1 .0010 

n = 2  I An l = 0 .99953 arg(An ) = 0 .0 1 1776 

n = 10  I An I = 0.98771 arg(An) = 0 .29419 

n = 20 I An l = 0 .95133 arg(An ) = 1 . 1821 

Figure 60.3: Eigenmodes 1 ,  2 ,  3 ,  10 ,  20 (absolute values) associated with the laser 
operator (60.3 ) with F = 647[. The horizontal axis is the interval - 1  � x � 1 ,  
and the eigenvalues A n  and their condition numbers are listed . The small-scale 
wiggles are not numerical artifacts but genuine. Laser engineers would generally 
plot the squares of these curves, since l u (x) 1 2 represents power density. 

the spectrum of the operator A of (60 .3) for four values of F. One sees that 
the eigenvalues begin near 1 and wind in along elegant spirals toward the 
origin. Details of this behavior were worked out in the 1960s and 1970s by 
Valnshteln, Hochstadt , and Cochran and Hinds , among others [157 , 404, 
787] . Some corresponding eigenmodes, approximately orthogonal but not 
exactly so, are shown in Figure 60.3 . The dominant modes do not oscillate 
much in x, and by (60. 1 ) ,  this implies that they do not disperse rapidly, 
so that not much energy reaches the edges after one transit . Higher modes 
have more oscillations and faster dispersion, so that more energy is lost at 
the edges , making their values of I A I smaller . In Figure 60.2 we also see 
that as F increases , the eigenvalues hew closer to the unit circle and wind 
toward the origin more gradually. Again the explanation is in (60 . 1 ) ,  which 
implies that as k increases , the dispersion diminishes so that again there is 
less loss at the edges . 

Figure 60 .2 shows pseudospectra as well as eigenvalues , and this is a 
set of plots of special importance in the history of our subject , for it was 
partly in connection with this operator and its unstable variant , which we 
shall introduce in a moment , that H. J. Landau invented pseudospectra of 
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Figure 60.4: Transient behavior of the laser operator (60.3) for F 
Some of the numbers are listed in Table 60. 1 .  

Table 60. 1 :  Norms o f  powers o f  the laser operator (60 .3) . 

k I IAk l l , F = 811" I IAk l l , F = 647r 

0 1 1 
5 0 .99999982 0 .9999999999 . . .  
10  0 .99914 0 .9999999999 . . .  
20 0 .973 0 .9999999999 . . .  
40 0 .91 1 0 .99999970 
80 0.827 0 .99940 
160 0 .681 0 .987 
320 0 .460 0 .964 
640 0 . 2 1 1  0 .928 

1 50 200 

k 

87r, 647r. 

nonnormal operators in the mid- 1970s [479, 480] . 6 As described in §6 ,  the 
only previous invention of this idea that we know of, in Varah's 1967 Ph.D. 
thesis , was motivated by purely numerical considerations. Thus Landau's 
analysis of (60 .3) and related problems seems to have been the first occasion 
on which pseudospectra were recommended as a way of understanding the 
physical behavior of a particular operator . Now in fact , the pseudospec­
trally trained eye sees immediately from Figure 60 .2 that in this problem, 
the nonnormality is quite mild . For the outer eigenvalues particularly, the 
ones that matter for laser physics , one cannot expect to encounter non­
normal effects of great magnitude .? Nevertheless , there is an interesting 
nonnormal effect here of small magnitude, and this is that as k increases , 

6Images like this were first produced by Andrew Spratley (unpublished) at Oxford in 
1998 and appeared in print for the first time in [774] and also on the cover of that Acta 
Numerica volume. 

7Thus (60 .3) is akin to the Gauss-Seidel iteration matrix for the classic discretization 
of the Laplace operator (§24) : It is nonnormal, but the nonnormality is concentrated in 
the inner eigenvalues that do not matter for applications. 
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the value of I IAk I I  remains almost exactly equal to 1 for a while before even­
tually beginning its slow exponential descent (Figure 60.4 and Table 60. 1 ) .  
This behavior can be  easily explained. A narrow beam aligned with the 
mirrors may bounce back and forth several times with exponentially little 
leakage at the edges , slowly widening due to dispersion. Only when it has 
widened to the spatial scale of the mirror width does the loss at the edges 
become significant . The parameter F determines the lower limit , caused 
by diffraction, on how narrow this initial beam can be and thus how long 
its eventual widening can be deferred. 

Meanwhile, however , there is another class of laser problems for which 
the governing operators are more strongly nonnormal , as has been em­
phasized by A. E. Siegman in a succession of publications [459 , 684, 686, 
687, 688, 685] . These are the high-power lasers associated with what are 
known as 'unstable resonators ' , a topic Landau studied in one of his papers 
concerning lasers and pseudospectra in the 1970s [479] . 

---. 
.. I 

stable 

unstable 

Figure 60 .5 :  In a practical laser , typically one or both mirrors is curved . A 
stable resonator is one in which rays tend to remain aligned, whereas an unstable 
resonator is one where they tend to diverge , giving magnification M > 1 .  

The distinction between stable and unstable resonators is purely geo­
metric (Figure 60 . 5 ) .  Imagine that instead of the fiat mirrors of Figure 60. 1 ,  
we have curved mirrors at one or both ends of the cavity. Depending on 
the curvatures , an image as it passes through the system may remain of 
fixed size (apart from dispersion) or it may be magnified. The former case 
is called stable and the latter is unstable. For many purposes , stable laser 
cavities are preferred because they can support narrowly focused modes 
with sharp resolution and minimal losses . For high-power lasers , however, 
narrowly focused modes are disadvantageous because they do not extract 
energy from a large volume of the cavity. For this and other reasons , since 
the 1960s, some lasers have been based on unstable cavities [683] . 

For a wide class of unstable resonators , the Fox and Li style of analysis 
requires just a simple modification of (60.3) : The Huygens-Fresnel operator 
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I I I '"  

F = 81f 

F = 321f 

, 
I 

F = 161f 

F = 641f 

Figure 60.6 :  Repetition of Figure 60 .2 for the unstable resonator (60.4) with M = 

2. The eigenvalues are much smaller , but the operator is strongly nonnormal. 

is now defined by 

A11.o (x) = jTf-l11 e- iFM(x/M-s) 2 11.o (s )  ds, (60.4) 

where M 2:: 1 is the magnification. This formula essentially goes back 
to the papers [98 , 285] and is derived , for example , in [685 , Chap. 22] . 
Figure 60.6 shows spectra and pseudospectra for this operator with M = 2 
and F = 81f, 161f, 327r, 647r . vVe see that the eigenvalues are much smaller 
than in Figure 60 .2 ,  but the nonnormality is now pronounced. Figure 60 .7  
shows some eigenmodes , revealing that they wiggle more than those in 
Figure 60 .3 .  The irregular structure of eigenmodes of unstable resonators 
has been recognized for many years, and indeed, it has been shown that 
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n = 1  

n = 2  

n = 3  
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l .An I = 0 .69501 arg(.An ) = 0 .034505 

l .An l = 0 .58186 arg(.An ) = 6 . 1 532 

l .An l = 0 .54058 arg(.An ) = 6 .0771 

n = 10 l .An I = 0 .48200 arg(.An ) = 1 . 8980 

n = 20 l .An l = 0 . 12 148 arg(.An ) = 2.9918 

Figure 60.7: Repetition of Figure 60 .3  for the unstable resonator (60.4) with 
F = 641T" and M = 2.  Now the modes are smooth approximations of fractals . 
Again, engineers would generally plot the squares of these curves , which would 
look still more irregular . 

these modes are smoothed approximations of fractals and become true 
fractals in the zero-dispersion limit , F ---> 00 [446] . In fact , one can create 
a fractal pattern by essentially the same mechanism by pointing a video 
camera at a television screen [169] . 

Unlike the pseudospectra of Figure 60 .2 ,  those of Figure 60 .6 suggest 
that the operator of (60.4) will exhibit significant transient behavior . Fig­
ure 60.8 and Table 60 .2 confirm this prediction. As before, the initial norms 
J JAk J J  are exponentially close to 1 ,  but now the cutoff is sharper and gets 
stronger rather than weaker as F ---> 00. A difference is that the transient 
lasts for fewer steps since now a narrow beam must double in width with 
each passage through the cavity rather than just widening algebraically. 
This figure is very similar to our portrayal of the 'cutoff phenomenon' in 
the riffle shuffling of decks of cards (Figure 57.2) ; the associated pseudo­
spectra of Figure 60.6 are also much like their riffle shuffle counterparts 
(Figure 57 .3 ) . In both cases the transient effect corresponds to a wave 
whose coordinate doubles at each step before eventually coming near its 
final position (a beam of light for lasers , a wave of probability of rising 
sequence numbers for shuffling) , and it is this doubling that makes the 
length of the transient grow logarithmically with the problem parameter 
(Fresnel number F for lasers , number of cards n for shuffling) . Other sys­
tems in this book in which the norms of an evolution operator stay very 
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Figure 60 .8 :  Repetition of Figure 60.4 for the unstable resonator operator (60.4) 
with M = 2. 

Table 60 . 2 :  Norms of powers of the laser operator (60.4) with M = 2. 

k I IAk l l ,  F = 87r I IAk l l , F = 647r 

0 1 1 
2 0 .9999999999 . . .  0 .9999999999 . . .  
4 0 .99947 0 .9999999999 . . .  
6 0 .809 0 .999999933 
8 0 .430 0 .965 
10 0 .219 0 .601 

close to 1 for a time before eventually decreasing include weakly dissipa­
tive convection-diffusion operators ( § 12) and Gauss-Seidel sweeps in the 
'upwind' direction ( §25) . In all of these problems , the initial behavior of 
the system is controlled by advection but the asymptote is controlled by 
diffusion or leakage out of a boundary. 

These nonnormal effects have a big impact on the physics of lasers based 
on unstable resonators. One's first thought in looking at Figure 60.8 might 
be that because of the transient , these lasers would have difficulty settling 
into dominant modes, and indeed, this prediction was made by Landau in 
his papers . However , this is not observed in practice . The speed of light is 
so great that any initial effects of this kind vanish almost instantly. 

The actual physical consequence of nonnormality in unstable laser cav­
ities is more subtle, having to do with the noise that is observed when 
they operate. The idea is as follows. Ideally, one would like a laser to 
emit a perfectly coherent beam. However, even if the cavity is a perfect 
resonator, this will not be possible because some photons will be emitted 
spontaneously by the lasing medium with the correct frequency but with a 
random phase, causing the phase of the overall signal to drift slightly. As a 
consequence, one never observes a frequency sharper than a certain minimal 
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linewidth given by a formula devised by two of the Nobel Prize--winning 
laser pioneers, the Schawlow- Townes formula [665] . 

Now in a laser based on an unstable resonator , just as in the stable case , 
photons will be emitted spontaneously at the correct frequency but with 
random phases . The effect of such a photon, however, may now be much 
enhanced if it is emitted in a form that excites transient behavior as in 
Figure 60 .8 ,  for then it may linger a long time before decaying, stimulating 
emission of additional photons that further distort the phase .8 Speaking 
for simplicity (and omitting rigor) as if A is a matrix diagonalizable in the 
form A = V A V- I ,  with the dominant eigenmode being the first column Vl 
of V, suppose the spontaneously emitted photon corresponds to a vector 
x with I l x l l  = 1 .  Then c = V- Ix is the vector of coefficients of x in a 
(nonorthogonal) expansion in the columns of V, i .e . , the eigenvectors of 
A. In particular , the coefficient C1 associated with VI is w{x, where w{ 
is the first row of V-I , and we can maximize this coefficient by taking 
x = wd l lwI i l , which gives 

(60 .5 )  

This is a familiar phenomenon in nonnormal dynamics : One gets the great­
est response by choosing inputs based not on the eigenvectors of the system 
itself, but on the eigenvectors of the adjoint . 

From mathematics like this comes a fundamental result for laser physics : 
In an unstable resonator, the Schawlow -Townes linewidth must be in­
creased by a factor known as the Petermann excess noise factor K, which 
in the notation above takes the form 

(60 .6) 

This conclusion has been established both theoretically [57 ,  577, 608 ,  686, 
687] and experimentally [145, 798] . In practice , K may be as large as 
hundreds or thousands. We recognize I lwI 1 1  as the condition number ,.. (A I ) 
of the eigenvalue Al of A (§52) . Thus an equivalent statement is that the 
excess noise factor is the square of the condition number : 

(60. 7) 

In the system of Figure 60 .3 ,  for example, the Petermann excess noise 
factor will be K � (25 .00) 2 = 625. Perhaps (60 .7) suggests a new in­
terpretation of the notion of excess noise , for a quantity appears in the 
original Schawlow-Townes formula that is interpreted as the square of the 
bandwidth of the oscillation frequency in the laser cavity. Multiplying that 
quantity by K could be interpreted as incorporating the algebraic sensitiv­
ity of the eigenvalues directly into the Schawlow-Townes formula. 

8Related mathematics of stochastically forced nonnormal systems has been investi­
gated in [25, 262, 263J . 
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In this section we have discussed nonnormality introduced in optical 
systems by boundary conditions , but just as in other parts of this book, 
such as §§8 ,  1 1 ,  and 22, it is equally possible to find such effects caused by 
variable coefficients rather than boundaries . Petermann's original discus­
sion of the excess noise factor was in a context of this kind (a gain-guided 
duct) , and Siegman emphasizes that other variable coefficient optical sys­
tems also have analogous nonnormal effects, such as those associated with 
the notion of 'optical twist ' [689] . 
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closed operator, 5 ,  27, 148 

invertibility and perturbation of, 
28 

cochlea, 7, 98 
commutator condition , 103, 129 
companion matrix, 306, 461 ,  469, 

501-507 
complementing conditions, 90 
complex cubic oscillator , 107-108, 

1 1 1  
condition number 

of basis or matrix of eigenvectors, 
9 ,  19 ,  135n1 ,  135n2 , 138, 143, 
22 1 ,  248, 444 , 466-467, 471 , 
474, 476, 502, 508, 513 ,  522, 
540, 541 

of cluster of eigenvalues, 386n, 479 
of eigenvalue, 18-19 ,  71 ,  1 19 ,  219 ,  

234-235 ,  240 , 252 ,  264, 267, 
270 ,  273-275, 337, 446 , 473-474 , 
480, 488, 52 1 ,  523, 546 , 550, 552 

of infinite set of eigenfunctions , 
1 17, 1 19 , 1 2 1 , 138, 472 

of invariant subspace, 264, 
385-386 

of matrix or system of equations , 
56, 269, 338, 359-360, 367, 390, 
426, 444 , 448 

of problem, 485-486 
of roots of polynomial, 503 
of similarity transformation , 58, 

1 18n, 339 , 468-470, 482, 
488-489 

conjugate gradient iteration, 244 
containment gap, 274-275 , 277 
continuation, 374-377 
contraction or contractivity, 39, 140n, 

141 ,  147-148, 150, 167-168, 170 ,  
175, 310 ,  320-321 

control theory, xvi ,  3, 8, 12 ,  44, 155 ,  
157, 227, 320, 435 ,  45 1 ,  455, 
458, 491 

convective stability, 123 ,  136 
convolution operator, 87 
Cossu-Chomaz operator, 123-124, 

136 
Couette flow, plane , 197-206 , 

212-214, 222 ,  224, 226 
criss-cross algorithms, 397-404 
curve-tracing, 43, 391 ,  394-397 
cutoff phenomenon, 136, 508-525, 550 

Davies , E. B . ,  xv, xvii ,  13n1 ,  34, 87, 
93, 95-96, 98, 103, 105-107, 
1 1 1 , 1 17, 122-123 , 140, 144, 
1 5 1 ,  408-409 

Dean flow, 225 
decay matrix, 285, 510 
defective eigenvalue, 234 ,  270 , 274, 

477 
defective matrix, 468 
deformation angle, 443 
delocalization, 340, 348-350, 357 
delta function, 87 
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Demmel, James W. ,  xviii , 44--46, 448, 
452 

Demmel matrix, 45, 452-454 , 
46 1-462 

departure from normality, 359, 
442-446 

diagonalizable matrix, 4 
diagonalization, xvi ,  4, 7, 10 ,  33, 

317-318 
dichotomy, exponential, 98 ,  1 1 3  
differential-algebraic equation, xvi , 

423 
differentiation matrix, see spectral 

differentiation matrix 
differentiation operator, 35-39, 291 
direct resonance, 202 
Discrete Fourier Transform (DFT) , 

80n, 406 
discretization of operators , xviii , 5 ,  

l IOn, 379, 405-415 
dispersion, 1 23n, 492 , 494, 543 
dispersion relation, 325, 492-493 
dissipativity, 39, 168, 320, 328-329, 

412, 494-495, 550 
distance 

to instability, 44, 397, 399, 
451-457 

to normality, 333, 442-446 
to singularity, 431 ,  447-451 ,  486 
to uncontrollability, 435 

dual vector, 1 72-173 
dumbbell matrix, 82-83 
Dunford-Taylor integral , 139,  249, 

437; see also Cauchy integral of 
resolvent 

dynamo, xvi , 227-228 

earthquakes, 3 ,  7 
ecology, 3, 1 2  
economics , 3 
Ehrenfest matrix, 75-76 
Ehrenfest urns , 510-525 
eigenfunction, 6 
eigenfunction expansion , 534, 536 
eigenmode, 6 
eigenvalue, 3, 29 
eigenvalue decomposition, 4 ,  1 39 
eigenvalues 

computation of, 228, 263-277 
failure of, 8-1 1 ,  2 17  
history of, 6 ,  236 
misleading, 135-136, 232 
uses of, 3-1 1  

eigenvector , definition of, 3 ,  29 
EigTool, xvi-xviii , 2 1 ,  136, 140, 144, 

155, 1 57, 160, 1 72 ,  371 , 375 , 
377n3, 378, 389-391 , 393, 397, 
401 ,  407, 409 , 4 1 1 ,  414 ,  
416-420, 430, 434-435, 490 

Enestrom-Kakeya theorem, 260 
error , backward and forward, 485 ; see 

also backward error analysis 
ev (abbreviation) , 2 1  
ew (abbreviation) , 2 1  
exponential o f  matrix o r  operator, 3 ,  

148-157, 437 
exponential type, 185 

Faber polynomial, 255-256 
Farrell, Brian, xv, xviii , 202, 218 ,  

225, 227 
Fast Fourier Transform, 290n2 
Fibonacci sequence, random, 354, 390 
field of values, see numerical range 
floating-point arithmetic, 4 1 ,  44-45, 

165 ,  401 ,  458, 486-487, 503; see 
also rounding errors 

fluid dynamics, xviii , 3, 8-9 ,  136, 
1 93-228, 321 ,  537 

Fokker-Planck equation, 1 15 
food web, xv, 136,  528-530 
Fourier transform, 37, 5 1 ,  80n, 89, 

127-128, 155 ,  188,  206, 2 15 ,  
298 , 303 , 415 , 495 , 5 13 , 536 , 543 

fractional differentiation or 
integration , 188-190 

Frank matrix, 487-489 
Fredholm alternative, 6 1 ,  127 
freezing of coefficients, 70 ,  3 17-318  
Fresnel number, 372 , 413 ,  544 , 550 
Frobenius norm, 440 , 442, 445 
function of matrix or operator , xvi , 5 ,  

19 ,  129 ,  135nl ,  231 ,  285, 
348-349, 432, 437-439, 444 ; see 
also Cauchy integral of 
resolvent 
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game theory, 435 
gap, see containment gap 
gauge transformation, 1 18 ,  341 
Gauss quadrature, 4 1 1-415 
Gauss-Seidel 

iteration , 1 1 7n 1 ,  136, 231-236, 
264, 550 

iteration matrix, 233, 238, 547n 
Gaussian elimination, 231 ,  448-449 ,  

485 
stability of, 367 

Gateway, Pseudospectra, xvi 
Gearhart-Pruss theorem, 33, 137; see 

also growth bound theorem 
generalized eigenvalue problem, 

416-420 , 423-429 
generalized SVD , 426 
geometric probability, see integral 

geometry 
Gerschgorin disk, 173,  260 
ghost solution, 98-99, 1 1 3  
Ginzburg-Landau equation, 1 1 5  
GKS-stability, 136 ,  322-329 
GMRES , 244-253 

convergence of, 471 
hybrid, 256, 258, 260-262 
polynomial , 261n,  262 
restarted, 262 

Godunov, S. K . ,  xv, 42-43 , 46, 485, 
489 

Godunov matrix, 489-490 
Golub , Gene H . ,  xviii ,  261 
Gi:irtler flow, 225 
Grear matrix, 58-59, 247, 281-282 ,  

385, 404, 433-434, 443 
Green's function , 35 , 1 2 1-122, 349 
group velocity, 1 18 ,  322 , 324 , 492-497 
growth bound, 137, 185 ,  190 
growth bound theorem, 185-191  

Hagen-Poiseuille flow, see  pipe flow 
Hahn-Banach theorem 16 ,  28 
Hamiltonian matrix, 399-402 , 491 
harmonic oscillator 

complex, xvii ,  34, 105-106 , 
408-409 

variable coefficient , see 
Cossu-Chomaz operator 

Hatano-Nelson matrix, 339-350, 355, 
357, 392 

heat flow, 6-8 ,  1 16 ,  296n, 380, 536, 
543n4 

helioseismology, 3 
Henrici number , 444-445 
Hermite polynomial , 123 ,  488 , 543n3 
Hessenberg reduction , 336, 365, 386, 

420, 434, 487 
Higham, Nicholas .1 . ,  xvii , 371 ,  380, 

392 , 424, 435, 486 
Hilbert space, 6 ,  9 ,  17, 33, 135n2, 

137-138, 140, 143 , 148 ,  155 ,  
166 , 1 73 , 187, 190-19 1 , 380, 
405 , 415 ,  416 ,  438, 466 , 472 

Hille-Phillips operator, 185, 188-190, 
497 

Hille-Yosida theorem, 39, 138 ,  167, 
170, 1 75 

Hinrichsen, D . ,  xv, xviii , 44, 46, 451 ,  
455, 459, 465 

Huang's Theorem, see growth bound 
theorem 

Huygens-Fresnel operator, 543-544, 
548 

hybrid GMRES iteration, 256, 258, 
260-262 

hybrid matrix iteration, 136, 254.,..262 
hydrodynamic stability, 8 ,  12 ,  98, 

1 13 ,  193-228, 415 ,  496 

ideal Arnoldi polynomial , 269, 278 
ideal GMRES polynomial , 248, 285n 
ill-conditioned , see condition number 
ill-posed problem, 1 13 ,  136 
index of eigenvalue, 477 
instability, 136 ,  224, 295-301 
integral geometry, 183 
integral operator, 372, 405 , 544 
integration matrix, 250 
invariant subspace, 234, 263-264, 

274, 382, 468 
inverse iteration, 372-373 
inverse Lanczos iteration, 372-377, 

391-392, 418-419 
inverse of  closed operator , 28  
iteration matrix, 231 ,  238 
iteration polynomial , 257, 259 
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Jacobi 
eigenvalue algorithm, 442 
iteration, 23 1-232,  238-239, 241 

Jacobi-Davidson iteration, 264, 381 ,  
390, 392, 419 

Jacobian, 318-319 ,  32 1 ,  367, 527 
Jenkins-Traub algorithm, 507 
Jordan block, 45, 57, 164-165, 1 79,  

185 ,  202,  234 , 239, 250-251 ,  
3 1 1 ,  327, 403, 440-443, 46 1 ,  
463, 470, 477-484, 489, 501 

infinite, 30, 54 
Jordan canonical form, 44, 139, 164, 

466 , 468-469 , 472-473, 477 
computation of, 468 , 479 ,  489 

k-capacity, 282 
Kahan matrix, 450-451 
Karman vortex street , 196 
Kato, Tosio, 27-28, 41n ,  46, 1 1 7n2, 

120,  473, 477, 479 ,  481 
Kelvin-Helmholtz instability, 196 
Kreiss, Heinz-Otto, 46 , 158 ,  1 76 ,  301 , 

310 ,  322, 328-329 
Kreiss constant 

for a convex set , 170 
for a disk, 143, 145 ,  158 ,  160, 163, 

1 76 
for a half-plane, 138, 142, 1 5 1 ,  

1 54 ,  1 70 
for a stability region, 310 

Kreiss Matrix Theorem, 138-139, 
144, 158, 176-184, 298, 309, 
3 1 1 ,  329 

Krylov subspace, 244, 254-255, 263, 
268, 271-274 ,  277, 382, 386-390 

laminar flow, 195, 207 
Lanczos iteration, 263, 278, 374-377, 

392, 435 
Landau, H .  J . ,  42, 46, 546-548 , 551 
LAPACK ,  371 , 503, 507 
Laplace transform, 149, 183, 188 
lasers ,  xviii ,  12, 42, 225n, 264, 

542-553 
integral operator, 372, 383, 387 , 

395-396 ,  4 13-4 1 4  

Laurent operator, 49 , 51-52, 87 

Laurent polynomial, 50 
Lax Equivalence Theorem, 307, 3 1 1 ,  

323 
Lax-stability, 292 
Legendre grid , 293, 298 
Leja ordering, 257 
lemniscate, 257-260, 262, 28 1-284 , 

348 
Leslie matrix, 463-464, 503 
Lewy, Hans , 126 
Lewy-Hormander nonexistence, xv, 

98 , 1 1 2-113 ,  126-131 ,  136 
lift-up, 201 
lima<;on matrix, 57, 59 
linear stability analysis ,  201-202 
linearization, 195, 3 17-318 ,  427 
localization, 49, 66-67, 339-350 
logarithm of operator, 189-190 
logarithmic norm, 138, 168, 1 70-171 , 

175 , 320 
Lopatinsky-Shapiro conditions , 90 
Lotka-Volterra equations , 526 
lower bound of matrix or operator, 

137n4 
LU factorization , 6 1 ,  367, 372-373 , 

391 ,  419 ,  448 
Lumer-Phillips theorem, 138,  167, 

170 , 175 
Lyapunov 

constant , 343 , 355, 359, 390 
equation, 147 
exponent , 227 

M-numerical range, 310 ,  321 
machine epsilon, 43n, 165, 294, 487 
magnetohydrodynamics , 3, 12 ,  

227-228 
Markov chain, 3 ,  8 ,  12, 136, 264, 267, 

463-464, 508-525 
mass matrix, 423 
MATLAB, xv , 57, 217n ,  290, 

371-372 , 405, 460, 489, 503 , 
505, 521 ,  541 

notation, 439n 
matrices 

commuting, 18 ,  266 
simultaneously diagonalizable, 

18n, 19  
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matrix 
behavior of, 437-441 ,  458 
bull 's head, 58-59 
butterfly, 58, 60 
circulant , 49, 63, 87 
companion, 461 ,  469 , 501-507 
decay, 285, 510 
defective, 468 
Demmel, 452-454, 461-462 
diagonalizable , 4 
dumbbell , 82-83 
Ehrenfest , 75-76 
of eigenvectors , 4, 19 
Frank, 487-488 
Godunov, 489-490 
Grear , 58-59, 247, 281-282, 385, 

404, 433-434, 443 
Hamiltonian, 399-402 
Hatano-Nelson, 339-350, 355, 357, 

392 
infinite, 49, 185 
integration, 250 
iteration, 231 ,  238 
iterations, xv , 3 ,  8 ,  12, 122 ,  

229-286 , 485 
Kahan, 450-451 
Leslie, 463-464, 503 
lima<;on, 57, 59 
mass, 423 
nilpotent , 39, 145, 155 ,  164-165, 

290 
nondefective, 4 
nonderogatory, 441 ,  501 
non normal , 9 ,  1 1  
normal, 9 ,  18-19,  442 
numerically singular, 448 
Olmstead, 270 
orthogonal , 9 
periodic , 64 
personality of, 8, 1 1  
power of, 3 ,  25-26, 158-165, 

231-232 ,  438 , 446 , 486 
random, see random matrix 
rectangular , 416 ,  420, 430-436 
scimitar , 82-83 
Scottish flag, 80-8 1 ,  283, 433-434 
self-adjoint ,  3 
semi banded, 54, 56 

singular, 12 
stable, 167, 270, 451 
stiffness, 423 
target , 72-73 , 81 
Toeplitz, xvi , xvii , 22, 47-61 ,  63, 

87, 93-94, l IOn, 145-146, 164, 
232-233, 237, 442, 452, 458 

transition, 508 
triangle , 58, 60 
triangular, 448-449 
twisted Toeplitz, 62-83, 5 15  
two ellipses, 77-78 
unitary, 9 
volcano, 67-68, 72 
whale , 58, 60 
Wilkinson, 71-72 , 458, 465, 486 

MatrixMarket , 392 
maximum principle , 2 1 ,  29-30, 432 
method of lines, 302-313  
microlocal analysis ,  67 ,  78, 102-103 
Mizohata equation, 126, 131  
Moler , Cleve B . ,  xviii 
music, physics of, 3 , 5, 8 

Navier-Stokes equations, 1 1 5 ,  197, 
203, 226 

nearness problems, 447-457; see also 
distance 

nilpotent matrix or operator, 39, 145, 
155 ,  164-165, 290 

nondefective eigenvalue, 176 
nondefective matrix, 4 
nonderogatory matrix, 441 , 501 
nonlinear stability, 167, 321 
nonlinearity, 1 13 ,  135,  201 ,  206-207, 

228 
nonnormality, xv, 13n2 , 17 ,  2 1 ,  

40-41 ,  1 1 5 ,  135,  197, 446 
norm, 12 

1- or  00 ,  380, 415-416 ,  508 
behavior, 437 
energy, 216 ,  426-427 
weighted, 17 , 379 , 417 , 425, 471 

normal eigenvalue, 474 
normal matrix, 9 ,  18-19 , 442, 471 
numerical abscissa, 33, 135 ,  138, 154,  

166-175 , 190 
computation of, 172n3 
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numerical linear algebra, xvii-xviii, 

43, 231, 236, 458, 485-486 

numerical radius, 135, 168 

computation of, 172n3 

numerical range, 33, 120, 166-175, 

377, 446 

in Banach space, 172-175 

computation of, 172 

estimation of, 256 

and pseudospectra, 168-169 

numerically singular matrix, 448-450 

Olmstead matrix, 270 

one-sided Lipschitz constant, 168, 320 

operator 

adjoint, 32, 127-129 

advection-diffusion, 107-109, 

115-125, 136,237,251-252,321, 

410-411 

Airy, 107, 221-223 

Benilov-O'Brien-Sazonov, 124, 

136, 406-407 

Berezin-Toeplitz, 64 

biharmonic, 534 

closed,27 

convolution, 87 

Cossu-Chomaz, 123-124, 136 

densely defined, 27, 29 

differential, 33 

differentiation, 35-39, 291 

domain of, 27, 36 

Hille-Phillips, 185, 188-190, 497 

Huygens-Fresnel, 543-544, 548 

integral, 372, 405, 544 

Laurent, 49, 87 

logarithm of, 189-190 

nilpotent, 39, 145, 155, 164-165, 

290 

Orr-Sommerfeld, 107, 136, 142, 

199, 215-223, 228, 382-383, 

387-388, 393-394, 426 

power of, 3, 25-26, 158-165, 

231-232, 438 

pseudodifferential, xvi, 114, 129, 
406 

Schriidinger, 34, 98 
sectorial, 149n 
self-adjoint, 89 

shift, 29, 54 

stochastic Laurent or Toeplitz, 

346,358 

theory, 12 

Toeplitz operator, 49, 87 

translation, 29, 148-149 

unbounded, 136, 175,387 

Wiener-Hopf, 87 

Zabczy k, 185-187 

optimal perturbations, 214, 227 

Orr-Sommerfeld equation, 199, 

215-216 

Orr-Sommerfeld operator, 107, 136, 

142, 199, 215-223, 228, 382-383, 

387-388, 393-394, 426 

Overton, Michael, xvii, 155, 157, 394, 

397-404, 433, 435, 478 

Paley-Wiener theorem, 39, 155 

Papkovich-Fadle operator, 534-541 

parallel computing, 254, 378, 392, 396 

Peclet number, 115 

pencil, 423-429 

rectangular, 420, 429, 436 

singular, 428 

periodic matrix, 64 

perturbation 

effect on eigenvalues of, xv, 15, 

23-24, 202, 207, 226 

effect on pseudospectra of, 79, 81, 

111, 484 

theory, 13, 429, 473--484 

Petermann excess noise factor, 136, 

552 

phase velocity, 492-493, 496 

Phragmen-Lindelof theorem, 155 

pipe flow, 204-205, 207, 213--214 

plasma physics, xvi, 123, 227-228 

Poincare's formula, 182-183 

Poiseuille flow, pipe, see pipe flow 

Poiseuille flow, plane, 197, 202-204, 

213-214, 215 

Poisson bracket, 103, 114 

polynomial 
approximation, 255, 438 

characteristic, 316, 461, 477, 501 

interpolant, 410 
minimal, 244, 274, 279, 501 
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polynomial (cant. ) 
numerical hull, 284-285 
preconditioning, 255 
pseudo zeros of, 461 ,  504-506 
zeros of, 501-507 

poor man's pseudospectrum, 
378-379 , 459 

population dynamics , 461 ,  508 , 
526-533 

potential theory, 344 , 346 
power of matrix or operator, 3, 25-26, 

158-165, 231-232, 438 , 446 , 486 
power method, 136, 264-267, 372, 509 
power-bounded matrices, 25, 176 ,  404 
preconditioning, xvi , 253, 264 

right vs . left ,  253 
Pritchard, A .  J . ,  xv, 44, 46, 451 ,  455 , 

459, 465 
projection, 381-390 , 419 
pseudodifferential operator, xvi, 1 14 ,  

1 29 ,  406 
pseudo eigenfunction, xvi, 16 ,  3 1 ,  36, 

92, 98, 99n, 102, 1 20 ,  122 ,  
128-129,  408 ; see  also 
pseudomode 

pseudoeigenmode, see pseudomode 
pseudoeigenvalue, 16 ,  23, 3 1-33, 

41-42 , 46, 70 , 76, 104, 246, 309 
pseudoeigenvector, 16, 2 1 ,  3 1-33 , 4 1 ,  

49 ,  55-56, 6 2 ,  69 ,  1 12 ,  299, 406 ; 
see also pseudomode 

pseudoinverse, 430, 432 
pseudomode, xvii , 16, 3 1 ,  36, 40, 4 1 ,  

67, 75-77, 8 2 ,  9 2 ,  103, 1 05 ,  1 1 2 ,  
201 ,  222 

pseudoresonance , 10 ,  1 13, 1 2 1 ,  135n1 , 
202, 438 

pseudospectra 
computation of, xviii , 369-420 
connected components of, 433 
definition of, 13-17, 3 1  
history of, 41-46 
jumping, 33 
monotonicity of, 431 
perturbation of, 484 
properties of, 20, 3 1  
structural stability of, 75 ,  1 10 
structured, 44n, 458-465 

Pseudospectra Gateway, xvi 
pseudospectral 

abscissa, 97, 120, 135 ,  1 5 1 ,  
1 70-171 ,  190, 397-404 

mapping theorem, 20-21 
methods , 289n 
radius, 26, 135 ,  240 , 397-404 

pseudozeros of polynomial , 461 ,  
504-506 

Puiseux series, 477 

quadratic systems, 426 
quadrature , 408 , 41 1-415 
quantum mechanics, 3 ,  6 ,  8-9 , 102n5, 

195 , 339 , 473, 493-494 , 496 
non-Hermitian, xv , 12 ,  98, 107, 339 

quarter-circle law, 334 
quasimodes, 4 1 ,  98, 102n5 
QZ factorization, 418-420, 434 

radio waves, 7 ,  228 
random matrix, xviii, 331-367 

bidiagonal, 344-350 
dense , 333-338 , 434 
eigenvectors of, 337, 340 
Fibonnaci , 35 1-358 
products, 355 
sign model, 357 
triangular , 359-367 
tridiagonal, 341-344 

random recurrence relation, 354, 359 
random walk, 508-518 
rank determination , 448 
rank- 1 perturbation, 378 
rank-revealing factorization, 448 
rational canonical form, 469, 50 1 
rational Krylov iteration, 381 ,  390 
Rayleigh quotient iteration, 507 
real vs . complex perturbations , 

455-456, 458 
receptivity, 10, 202, 224-225 
rectangular matrix , 416 ,  420, 430-436 
residual , 244 
residual polynomial , 244 
resilience, 527 
resolvent , 3 ,  1 2-13,  28 

norm of, 30 
resolvent set , 28 
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resonance, 7, 10, 438 
resonators , see lasers 
Reynolds number, 197, 2 15  
Richardson iteration , 256 ,  261 
Riesz basis, 1 17, 138, 472 
Ritz values , 166n2 , 245 -246 , 268-272, 

386 , 435 
harmonic, 246-247, 251 

Ritz vector , 269 
robust control, 451 
rounding errors , xv, xviii, 12, 165, 

290n, 293-294, 468, 485-491 
Runge-Kutta methods, 167, 302-313  

scalar measures of  nonnormality, 147, 
442-446 

scaling of columns, 9, 19n1 ,  444 
Schawlow-Townes formula, 551-552 
Schmidt-Mirsky theorem, 431 
Schrodinger operator , 34, 98, 

492-493, 542 
Schur decomposition , 373-375 , 378 , 

38 1 ,  384-385, 418-419 ,  466, 469 , 
486 

scimitar matrix, 82-83 
Scottish flag matrix, 80-8 1 ,  283, 

433-434 
second-order systems, 426 
sectorial operator, 149n 
self-adjoint matrix, 3 
self-adjoint operator , 89 
semi banded Toeplitz matrix, 54, 56 
semiboundedness, 168 
semiclassical mechanics , 99, 102n2, 

122 
semidefinite programming, 280 
semi discretization, s e e  method of lines 
semigroup, xviii ,  38, 96--97, 137, 148, 

175,  185 
analytic , 149n 
infinitesimal generator of, 38, 148, 

185 
sep, 4 1 ,  479-480 
separation of variables , 7, 534, 539 
shift operator, 29, 54 
shift-and-invert iteration, 263, 277, 390 
shuffling of cards, xviii , 1 17 ,  136, 

285-286, 519-525, 550 

similarity transformation, 253 , 373 , 
466-472, 489, 502 

singular value , 3 ,  17n, 33 
decomposition (SVD ) , 17 ,  201 ,  

373 , 448 
solvability, see Lewy--Hormander 

nonexistence 
SOR iteration, 232, 237-243 
sparse linear algebra, 39 1 ,  416 ,  419 
sparsity, 458 
spectral 

abscissa, 135 ,  150, 412  
accuracy, 291 ,  407 
bound, 137 
differentiation matrix, 15 ,  165 ,  

289-294 , 406 
mapping theorem, 186 
methods, 10, 93, 95, 1 10 ,  217, 289, 

405-415 ,  537 
portrait , 43, 46, 392 
projector, 266, 432, 474 
radius , 25 ,  135 ,  231 ,  336, 446 
set , 441 
value set , 44, 46, 455, 459 

spectroscopy, 3 
spectrum, 3, 5 ,  29 

continuous , 6 
estimation of, 254, 256-259 
of a family, 42, 310  
upper-semicontinuity of, 30  

Spijker 's lemma, 179-181 
Squire equations , 219  
Squire's theorem, 199-201 ,  219 
stability, 7-8 , 38 1 ,  438 

of algorithm, 485 
of discretization, xv, xviii ,  295-301 
radius, 45 1 ,  455-456 
region, 302-313 

Stable Manifold Theorem, 67 ,  103 
stable matrix, 167 ,  270 ,  451 
stiffness, 136, 314-321  

matrix , 423 
stochastic 

differential equation, 345n 
forcing, 552n8 
Laurent or Toeplitz operator, 346 , 

358 
Strang, Gilbert , xviii , 177, 180, 328 
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streamwise streaks and vortices , 
200-202, 224 

structural analysis, 3 ,  195, 426 
structured pseudospectra, 44n, 

458-465 
subharmonic function, 20, 30, 393 
successive overrelaxation , see SOR 

iteration 
symbol, 22 ,  49-50 , 65 ,  88, 101 , 

238-241 
discontinuous , 77 
double-crossing, 80-81 
radius, 240 
smooth, 82 

symbol curve, 5 1-52 ,  55 ,  89, 101, 104 
symmetrizability, 1 1 8  

Tacoma Narrows bridge, 7 
target matrix, 72-73, 81  
Taylor-Couette flow, 198 ,  225 
time scales, 214n, 2 17, 314, 321 
time-step restriction , 122  
Toeplitz matrix, xvi , xvii ,  22 ,  47-61 ,  

63, 87, 93-94, l IOn, 145-146, 
164, 232-233, 237, 442 , 452, 458 

symbol of, 22 ,  49-50 
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