Convex optimization

Tutorial 11

Problem 1. Let us have a random vector $\mathbf{x}=\left(x_{1}, x_{2}\right)$, with a priori probability distribution density $p(x)=C e^{-\left(x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}\right)}(C>0$ is the normalizing constant). We measured (without any error/noise) $x_{1}+2 x_{2}=10$.

Formulate a convex problem to estimate \mathbf{x} using the maximum a posteriori probability method (MAP).
Problem 2. Formulate a convex problem that corresponds to the maximum likelihood estimate for the following situation:

Our goal is to estimate $\mathbf{x} \in \mathbb{R}^{n}$. We measured $A \mathbf{x}+\mathbf{v} \in \mathbb{R}^{m}$, where we know the matrix A and we know that the noise vector \mathbf{v} has independent identically distributed components with probability density

$$
p(z)= \begin{cases}1 /(2|a|) & \text { if }|z| \leq a \\ 0 & \text { else }\end{cases}
$$

We do not know the parameter $a>0$, though, so $p_{\mathbf{x}, a}(\mathbf{y})$ depends on \mathbf{x} as well as on a. Estimate \mathbf{x} by estimating a together with \mathbf{x}.
Problem 3. Assume we have $\mathbf{y}=A \mathbf{x}+\mathbf{v}$ where we know A and the entries of \mathbf{v} are all independent identically distributed with mean 0 and variance 1.

We can propose any function $\hat{\mathbf{x}}=f(\mathbf{y})$ as an estimator of \mathbf{x}. One important property of an estimator is its bias. An estimator is unbiased if for any $\mathbf{x}_{\text {true }}$ the expected value of $\hat{\mathbf{x}}$ is $\mathbf{x}_{\text {true }}$ when we draw \mathbf{y} from the distribution $p_{\mathbf{x}_{\text {true }}}$.

1. Show that the least squares estimator is unbiased as long as the mean of \mathbf{v} is $\mathbf{0}$. You can assume that $A^{T} A$ is regular.
2. Show that minimizing $\|\mathbf{y}-A \mathbf{x}\|_{1}$ can give a biased estimator.

Hint: It is enough to find one A, one $\mathbf{x}_{\text {true }}$, and one distribution for \mathbf{v} where the expected value of $\hat{\mathbf{x}}$ is not $\mathbf{x}_{\text {true }}$; choose something that is easy to analyze.
Problem 4 (Relevant for the future study of ellipsoids). In this problem, we will show that for $X, Y \in S_{++}^{n}$ we have $X \succeq Y$ if and only if $X^{-1} \preceq Y^{-1}$.

1. Prove that $X \succeq Y$ if and only if $E \succeq X^{-1 / 2} Y X^{-1 / 2}$ (E is the unit matrix).
2. Prove that if $Z \succ 0$ is an $n \times n$ matrix then $E \succeq Z$ if and only if $E \preceq Z^{-1}$.
3. Use the previous two points to prove that $X \succeq Y$ if and only if $E \preceq$ $X^{1 / 2} Y^{-1} X^{1 / 2}$.
4. Use the previous point to show that $X \succeq Y$ if and only if $X^{-1} \preceq Y^{-1}$.

Recall from Linear algebra that for X symmetric matrix the matrix $X^{1 / 2}$ is the symmetrical matrix for which we have $X=X^{1 / 2} X^{1 / 2} ; X^{-1 / 2}$ is the inverse matrix to $X^{1 / 2}$.

