Convex optimization

Tutorial 11

Problem 1. Let us have a random vector $\mathbf{x} = (x_1, x_2)$, with a priori probability distribution density $p(x) = Ce^{-(x_1^2 + x_2^2 - x_1x_2)}$ (C > 0 is the normalizing constant). We measured (without any error/noise) $x_1 + 2x_2 = 10$.

Formulate a convex problem to estimate \mathbf{x} using the maximum a posteriori probability method (MAP).

Problem 2. Formulate a convex problem that corresponds to the maximum likelihood estimate for the following situation:

Our goal is to estimate $\mathbf{x} \in \mathbb{R}^n$. We measured $A\mathbf{x} + \mathbf{v} \in \mathbb{R}^m$, where we know the matrix A and we know that the noise vector \mathbf{v} has independent identically distributed components with probability density

$$p(z) = \begin{cases} 1/(2|a|) & \text{if } |z| \le a, \\ 0 & \text{else.} \end{cases}$$

We do not know the parameter a > 0, though, so $p_{\mathbf{x},a}(\mathbf{y})$ depends on \mathbf{x} as well as on a. Estimate \mathbf{x} by estimating a together with \mathbf{x} .

Problem 3. Assume we have $\mathbf{y} = A\mathbf{x} + \mathbf{v}$ where we know A and the entries of \mathbf{v} are all independent identically distributed with mean 0 and variance 1.

We can propose any function $\hat{\mathbf{x}} = f(\mathbf{y})$ as an estimator of \mathbf{x} . One important property of an estimator is its bias. An estimator is *unbiased* if for any \mathbf{x}_{true} the expected value of $\hat{\mathbf{x}}$ is \mathbf{x}_{true} when we draw \mathbf{y} from the distribution $p_{\mathbf{x}_{true}}$.

- 1. Show that the least squares estimator is unbiased as long as the mean of **v** is **0**. You can assume that $A^T A$ is regular.
- 2. Show that minimizing $\|\mathbf{y} A\mathbf{x}\|_1$ can give a biased estimator.

Hint: It is enough to find one A, one \mathbf{x}_{true} , and one distribution for \mathbf{v} where the expected value of $\hat{\mathbf{x}}$ is not \mathbf{x}_{true} ; choose something that is easy to analyze.

Problem 4 (Relevant for the future study of ellipsoids). In this problem, we will show that for $X, Y \in S_{++}^n$ we have $X \succeq Y$ if and only if $X^{-1} \preceq Y^{-1}$.

- 1. Prove that $X \succeq Y$ if and only if $E \succeq X^{-1/2}YX^{-1/2}$ (*E* is the unit matrix).
- 2. Prove that if $Z \succ 0$ is an $n \times n$ matrix then $E \succeq Z$ if and only if $E \preceq Z^{-1}$.
- 3. Use the previous two points to prove that $X \succeq Y$ if and only if $E \preceq X^{1/2}Y^{-1}X^{1/2}$.
- 4. Use the previous point to show that $X \succeq Y$ if and only if $X^{-1} \preceq Y^{-1}$.

Recall from Linear algebra that for X symmetric matrix the matrix $X^{1/2}$ is the symmetrical matrix for which we have $X = X^{1/2}X^{1/2}$; $X^{-1/2}$ is the inverse matrix to $X^{1/2}$.