Tutorial 12

Problem 1 (hypothesis testing for y continuous). We want to guess unknown $x \in\{0,1\}$. Let Y be a normally distributed random variable with variance 1 and mean x.

Find some nontrivial Pareto optimal detector for x when you observe Y. What kind of detector do we get from the maximum likelihood method?

Note: The density of normal distribution with variance 1 and mean x is

$$
\rho(z)=\frac{1}{\sqrt{2 \pi}} e^{-(z-x)^{2} / 2} .
$$

Problem 2. Find all Pareto optimal detectors for the Santa detection problem from the quiz.

Problem 3. Is the ellipsoid $\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}+x_{1} x_{2} \leq 1\right\}$ contained in the ellipsoid $\left\{\mathbf{x} \in \mathbb{R}^{2}: 3 x_{1}^{2}+2 x_{2}^{2} \leq 1\right\}$? How about the other way around?

Problem 4. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a bijective affine mapping and let $\mathcal{E} \subset \mathbb{R}^{n}$ be an ellipsoid. Prove that $h(\mathcal{E})$ is also an ellipsoid.

Problem 5. Let $\mathcal{E}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{T} Q x \leq 1\right\}$ be an ellipsoid for some $Q \in S_{++}^{n}$. Prove that there is a constant c_{n} that depends only on n (not on Q) such that the volume of \mathcal{E} is $c_{n} \sqrt{\operatorname{det} Q^{-1}}$.

Problem 6. Let $K \subset \mathbb{R}^{m}$ be a proper convex cone and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be K-convex. We take an $n \times k$ matrix A and some $\mathbf{b} \in \mathbb{R}^{n}$. Show that the function $x \mapsto f(A \mathbf{x}+\mathbf{b})$ is also K-convex.

