Konvexní optimalizace

Tutorial 13

Problem 1. Let T be

a) an equilateral triangle

b) a rectangle

in \mathbb{R}^2 . How does the Löwner-John elipsoid pro T look like?

Problem 2 (Exact line search by halving intervals). Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function that is defined and differentiable on [0, 1]. Let $p^* = \inf\{f(x): x \in [0, 1]\}$. Prove that the following algorithm always returns a point x such that $f(x) - p^* \leq \epsilon$:

Data: $f, \epsilon > 0, L$ such that for any $x \in [0, 1]$ we have |f'(x)| < L **Result:** $x \in [0, 1]$ if $f'(0) \ge 0$ then return 0; if $f'(1) \le 0$ then return 1; l := 0, u := 1, x := 1/2;while $u - l > \epsilon/L$ do if f'(x) > 0 then u := x;else l := x; x = (l + u)/2;end return x

Note: After you solve the problem, it might help to look at it as a problem of solving f'(x) = 0.

Problem 3 (BLS works). Let us have some $\alpha \in (0, 1/2)$ and $\beta \in (0, 1)$. Suppose f is a convex, differentiable function with open domain and $\mathbf{x} \in \text{dom } f$, $\Delta \mathbf{x} \in \mathbb{R}^n$ are such that $\nabla f(\mathbf{x})^T \Delta \mathbf{x} < 0$. Prove that then the backtracking line search with input $f, \mathbf{x}, \Delta \mathbf{x}, \alpha, \beta$ will

- a) terminate, and
- b) return a t such that $f(\mathbf{x} + t\mathbf{\Delta x}) < f(\mathbf{x})$.

A descent method is affine invariant if when the sequence of points for a function f and a starting point $\mathbf{x}^{(0)}$ is $\mathbf{x}^{(k)}$ and $h: \mathbb{R}^n \to \mathbb{R}^n$ is a bijective affine mapping, then the method for function $f \circ h^{-1}$ and the starting point $h(\mathbf{x}^{(0)})$ produces the sequence of points $h(\mathbf{x}^{(k)})$.

Problem 4. Prove that gradient descent is not affine invariant.

Problem 5. Prove that the Newton's method (with exact line search, say) is affine invariant.