
Konvexńı optimalizace

Tutorial 13
Problem 1. Let T be

a) an equilateral triangle

b) a rectangle

in R2. How does the Löwner-John elipsoid pro T look like?

Problem 2 (Exact line search by halving intervals). Let f : R→ R be a convex
function that is defined and differentiable on [0, 1]. Let p? = inf{f(x) : x ∈
[0, 1]}. Prove that the following algorithm always returns a point x such that
f(x)− p? ≤ ε:

Data: f , ε > 0, L such that for any x ∈ [0, 1] we have |f ′(x)| < L
Result: x ∈ [0, 1]
if f ′(0) ≥ 0 then return 0;
if f ′(1) ≤ 0 then return 1;
l := 0, u := 1, x := 1/2;
while u− l > ε/L do

if f ′(x) > 0 then u := x;
else l := x;
x = (l + u)/2;

end
return x

Note: After you solve the problem, it might help to look at it as a problem
of solving f ′(x) = 0.

Problem 3 (BLS works). Let us have some α ∈ (0, 1/2) and β ∈ (0, 1). Suppose
f is a convex, differentiable function with open domain and x ∈ dom f , ∆x ∈ Rn

are such that∇ f(x)T∆x < 0. Prove that then the backtracking line search with
input f,x,∆x, α, β will

a) terminate, and

b) return a t such that f(x + t∆x) < f(x).

A descent method is affine invariant if when the sequence of points for a
function f and a starting point x(0) is x(k) and h : Rn → Rn is a bijective affine
mapping, then the method for function f ◦ h−1 and the starting point h(x(0))
produces the sequence of points h(x(k)).

Problem 4. Prove that gradient descent is not affine invariant.

Problem 5. Prove that the Newton’s method (with exact line search, say) is
affine invariant.
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