Convex optimization

Tutorial 2

Problem 1. Is the set $\left\{\mathbf{x} \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}<x_{3}^{2}\right\}$ a cone? If so, is it a proper cone?

Problem 2. Let $\mathbf{a} \neq \mathbf{0}$ be an n-dimensional vector and $b \in \mathbb{R}$. Prove that the half-space $\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}$ is convex.

Problem 3. Prove that if $X \subset \mathbb{R}^{n}$ is closed under convex combinations of pairs of points, then X is closed under general convex combinations.

Problem 4. In the gas problem from last time, we needed to express a piecewise linear function in a linear program. We will try it again today. Figure out how to rewrite the following program as a linear programming program by adding one new variable and some constraints:

$$
\begin{aligned}
\operatorname{minimize} & \max
\end{aligned} \begin{aligned}
&\{0,3 x-y\} \\
& \text { subject to } x, y \leq 3 \\
& x, y \geq 0
\end{aligned}
$$

Problem 5. A function $\mathbb{R}^{n} \rightarrow \mathbb{R}$ is a norm if:

1. $\|\mathbf{x}\| \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$ with equality if and only if $\mathbf{x}=\mathbf{0}$,
2. for all $t \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^{n}$ we have $\|t \mathbf{x}\|=|t|\|\mathbf{x}\|$, and
3. for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ we have $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$.

Prove that any norm is a convex function.
Problem 6. Let $K \subset \mathbb{R}^{n}$ be a proper cone. Show that the generalized inequality \preceq_{K} satisfies for each $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and each $t \geq 0$

1. $\mathbf{x} \preceq_{K} \mathbf{x}$,
2. $\mathbf{x} \preceq_{K} \mathbf{y}$ and $\mathbf{y} \preceq_{K} \mathbf{z}$ implies $\mathbf{x} \preceq_{K} \mathbf{z}$,
3. if $\mathbf{x} \preceq_{K} y$ then $t \mathbf{x} \preceq_{K} t \mathbf{y}$, and
4. if $\mathbf{x}, \mathbf{y} \preceq_{K} \mathbf{0}$ then $\mathbf{x}+\mathbf{y} \preceq \mathbf{0}$.

Hint: If you are confused, try it for $K=\mathbb{R}_{+}^{n}$ first.
Bonus: Show that there is no \mathbf{x} such that $\mathbf{x} \prec_{K} \mathbf{x}$.
Problem 7. Let $X \subset \mathbb{R}^{n}$ be a (convex) cone that is closed. Prove that if X contains the line $\{t \mathbf{a}+\mathbf{c}: t \in \mathbb{R}\}$, then X contains the line $\{t \mathbf{a}: t \in \mathbb{R}\}$.

