Convex optimization

Tutorial 2

Problem 1. Is the set $\{\mathbf{x} \in \mathbb{R}^3 : x_1^2 + x_2^2 < x_3^2\}$ a cone? If so, is it a proper cone?

Problem 2. Let $\mathbf{a} \neq \mathbf{0}$ be an *n*-dimensional vector and $b \in \mathbb{R}$. Prove that the half-space $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \leq b\}$ is convex.

Problem 3. Prove that if $X \subset \mathbb{R}^n$ is closed under convex combinations of pairs of points, then X is closed under general convex combinations.

Problem 4. In the gas problem from last time, we needed to express a piecewise linear function in a linear program. We will try it again today. Figure out how to rewrite the following program as a linear programming program by adding one new variable and some constraints:

minimize $\max\{0, 3x - y\}$ subject to $x, y \le 3$ $x, y \ge 0$

Problem 5. A function $\mathbb{R}^n \to \mathbb{R}$ is a *norm* if:

- 1. $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$ with equality if and only if $\mathbf{x} = \mathbf{0}$,
- 2. for all $t \in \mathbb{R}$ and all $\mathbf{x} \in \mathbb{R}^n$ we have $||t\mathbf{x}|| = |t|||\mathbf{x}||$, and
- 3. for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ we have $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.

Prove that any norm is a convex function.

Problem 6. Let $K \subset \mathbb{R}^n$ be a proper cone. Show that the generalized inequality \preceq_K satisfies for each $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ and each $t \ge 0$

- 1. $\mathbf{x} \preceq_K \mathbf{x}$,
- 2. $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$ implies $\mathbf{x} \leq_K \mathbf{z}$,
- 3. if $\mathbf{x} \leq_K y$ then $t\mathbf{x} \leq_K t\mathbf{y}$, and
- 4. if $\mathbf{x}, \mathbf{y} \preceq_K \mathbf{0}$ then $\mathbf{x} + \mathbf{y} \preceq \mathbf{0}$.

Hint: If you are confused, try it for $K = \mathbb{R}^n_+$ first. Bonus: Show that there is no **x** such that $\mathbf{x} \prec_K \mathbf{x}$.

Problem 7. Let $X \subset \mathbb{R}^n$ be a (convex) cone that is closed. Prove that if X contains the line $\{t\mathbf{a} + \mathbf{c} : t \in \mathbb{R}\}$, then X contains the line $\{t\mathbf{a} : t \in \mathbb{R}\}$.