Tutorial 4

Problem 1. Show that the function $P(x, t)=x / t$ with domain $\{(x, t): x \in$ $\left.\mathbb{R}, t \in \mathbb{R}_{++}\right\}$is quasiconvex, but not convex.

Can you find for any $\alpha \in \mathbb{R}$ a nice convex function Ψ_{α} so that the α-sublevel set of P is $\left\{(x, t): \Psi_{\alpha}(x, t) \leq 0\right\}$?

Problem 2. You have the problem (P)

$$
\begin{gathered}
\operatorname{minimize} f_{0}(\mathbf{x}) \\
\text { subject to } g(\mathbf{x}) \leq 0
\end{gathered}
$$

where g is a convex function and f_{0} is quasiconvex. Moreover assume that for every $\alpha \in \mathbb{R}$ you have efficient access to a convex function Ψ_{α} such that the α sublevel set of f_{0} is $\left\{(x): \Psi_{\alpha}(x) \leq 0\right\}$. For simplicity assume that the optimum value of (P) is known to exist and to lie in the interval $\left[-10^{10}, 10^{10}\right]$.

Assume that you have an oracle (black box) that finds optimal solution to any convex optimization problem. Propose an algorithm that for any $\epsilon>0$ finds an \mathbf{x} that is a feasible solution of (P) and $f_{0}(\mathbf{x})$ is at most ϵ worse than the optimal value of (P).

Problem 3. Let C be a convex subset of \mathbb{R}^{n}. Prove that the distance function $d(\mathbf{x})=\inf \left\{\|\mathbf{x}-\mathbf{y}\|_{2}: \mathbf{y} \in C\right\}$ is convex. Find a non-convex C for which d is not a convex function.

Problem 4. Let us have k types of stocks that we can invest in. The i-th type of stock has price c_{i} today; the price of the i-th stock in a year is a a random variable for which we know its expectation h_{i} and variance σ_{i}^{2}. We will (naively) assume that stock prices are independent random variables.

How to invest a fixed amount of money (say, 1000 Kč) so that the expected value of our stocks in a year is at least $1200 \mathrm{Kč}$ and the variance of the value of our stocks in a year is minimal? State this problem as a (non-linear) convex optimization problem.

Problem 5. Find a convex non-decreasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a convex function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \circ g$ is not convex.

Problem 6 (hard). Let $n \in \mathbb{N}$. Prove that the function $f: S_{++}^{n} \rightarrow \mathbb{R}$ defined as $f(X)=\log \operatorname{det} X$ is concave.

To see how hard this is, try the case $n=2$.

