Convex optimization

Tutorial 4

Problem 1. Show that the function P(x,t) = x/t with domain $\{(x,t): x \in \mathbb{R}, t \in \mathbb{R}_{++}\}$ is quasiconvex, but not convex.

Can you find for any $\alpha \in \mathbb{R}$ a nice convex function Ψ_{α} so that the α -sublevel set of P is $\{(x,t): \Psi_{\alpha}(x,t) \leq 0\}$?

Problem 2. You have the problem (P)

minimize $f_0(\mathbf{x})$ subject to $g(\mathbf{x}) \leq 0$,

where g is a convex function and f_0 is quasiconvex. Moreover assume that for every $\alpha \in \mathbb{R}$ you have efficient access to a convex function Ψ_{α} such that the α sublevel set of f_0 is $\{(x): \Psi_{\alpha}(x) \leq 0\}$. For simplicity assume that the optimum value of (P) is known to exist and to lie in the interval $[-10^{10}, 10^{10}]$.

Assume that you have an oracle (black box) that finds optimal solution to any convex optimization problem. Propose an algorithm that for any $\epsilon > 0$ finds an **x** that is a feasible solution of (P) and $f_0(\mathbf{x})$ is at most ϵ worse than the optimal value of (P).

Problem 3. Let *C* be a convex subset of \mathbb{R}^n . Prove that the distance function $d(\mathbf{x}) = \inf\{\|\mathbf{x} - \mathbf{y}\|_2 : \mathbf{y} \in C\}$ is convex. Find a non-convex *C* for which *d* is not a convex function.

Problem 4. Let us have k types of stocks that we can invest in. The *i*-th type of stock has price c_i today; the price of the *i*-th stock in a year is a random variable for which we know its expectation h_i and variance σ_i^2 . We will (naively) assume that stock prices are independent random variables.

How to invest a fixed amount of money (say, 1000 Kč) so that the expected value of our stocks in a year is at least 1 200 Kč and the variance of the value of our stocks in a year is minimal? State this problem as a (non-linear) convex optimization problem.

Problem 5. Find a convex non-decreasing function $f \colon \mathbb{R} \to \mathbb{R}$ and a convex function $g \colon \mathbb{R} \to \mathbb{R}$ such that $f \circ g$ is *not* convex.

Problem 6 (hard). Let $n \in \mathbb{N}$. Prove that the function $f: S_{++}^n \to \mathbb{R}$ defined as $f(X) = \log \det X$ is *concave*.

To see how hard this is, try the case n = 2.