Convex optimization

Tutorial 5

Problem 1. Show that the monomial (in convex optimization sense) f(x, y) = xy with domain x, y > 0 is not a quasiconvex function.

Problem 2 (transforming FLPs to LPs). Consider an FLP P

min.
$$\frac{\mathbf{a}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f}$$
s.t. $G \mathbf{x} \leq \mathbf{h}$.

with the implicit constraint $\mathbf{e}^T \mathbf{x} + f > 0$). Consider the almost-LP Q:

min.
$$\mathbf{a}^T \mathbf{y} + dz$$

s.t. $G \mathbf{y} \leq \mathbf{h} z$
 $\mathbf{e}^T \mathbf{y} + f z = z > 0.$

1

- a) Prove that P and Q are equivalent (=figure out how to nicely map feasible/optimal solutions of P to Q and vice versa.)
- b) The sharp inequality in Q is a nuisance. Let Q' be the LP we get from Q by replacing "z > 0" by " $z \ge 0$ ".

If Q' has an optimal solution with z > 0, all is good. Assume that Q' has an optimal solution (y^*, z^*) with $z^* = 0$ while P has at least one feasible solution x. Show how to construct for every $\epsilon > 0$ a feasible solution of Pwhose objective function value is ϵ -close to the optimal value of Q'.

Problem 3. Let *C* be a convex subset of \mathbb{R}^n . Prove that the distance function $d(\mathbf{x}) = \inf\{\|\mathbf{x} - \mathbf{y}\|_2 : \mathbf{y} \in C\}$ is convex. Find a non-convex *C* for which *d* is not a convex function.

Problem 4. Let us have k types of stocks that we can invest in. The *i*-th type of stock has price c_i today; the price of the *i*-th stock in a year is a random variable for which we know its expectation h_i and variance σ_i^2 . We will (naively) assume that stock prices are independent random variables.

How to invest a fixed amount of money (say, 1000 Kč) so that the expected value of our stocks in a year is at least 1 200 Kč and the variance of the value of our stocks in a year is minimal? State this problem as a QP.

Problem 5 (connected to GP; corrected). Let A be a matrix with nonnegative entries and $\lambda \in \mathbb{R}_{++}$ its eigenvalue such that $\lambda \geq |\tau|$ for any eigenvalue τ of A and λ has an eigenvector in \mathbb{R}^n_{++} . Prove that then

$$\lambda = \min\{\tau \in \mathbb{R}_{++} \colon \exists v \in \mathbb{R}_{++}^n, \, Av \preceq \tau v\}.$$