Convex optimization

Tutorial 5

Problem 1. Show that the monomial (in convex optimization sense) $f(x, y)=$ $x y$ with domain $x, y>0$ is not a quasiconvex function.

Problem 2 (transforming FLPs to LPs). Consider an FLP P

$$
\begin{array}{r}
\min . \\
\frac{\mathbf{a}^{T} \mathbf{x}+d}{\mathbf{e}^{T} \mathbf{x}+f} \\
\text { s.t. } G \mathbf{x} \preceq \mathbf{h} .
\end{array}
$$

with the implicit constrainte ${ }^{T} \mathbf{x}+f>0$).
Consider the almost-LP Q :

$$
\begin{gathered}
\min . \\
\text { s.t. } \\
\text { a } \\
\text { } \mathbf{y} \preceq \mathbf{y} z \\
\\
\mathbf{e}^{T} \mathbf{y}+f z=1 \\
\\
z>0
\end{gathered}
$$

a) Prove that P and Q are equivalent (=figure out how to nicely map feasible/optimal solutions of P to Q and vice versa.)
b) The sharp inequality in Q is a nuisance. Let Q^{\prime} be the LP we get from Q by replacing " $z>0$ " by " $z \geq 0$ ".
If Q^{\prime} has an optimal solution with $z>0$, all is good. Assume that Q^{\prime} has an optimal solution $\left(y^{\star}, z^{\star}\right)$ with $z^{\star}=0$ while P has at least one feasible solution x. Show how to construct for every $\epsilon>0$ a feasible solution of P whose objective function value is ϵ-close to the optimal value of Q^{\prime}.
Problem 3. Let C be a convex subset of \mathbb{R}^{n}. Prove that the distance function $d(\mathbf{x})=\inf \left\{\|\mathbf{x}-\mathbf{y}\|_{2}: \mathbf{y} \in C\right\}$ is convex. Find a non-convex C for which d is not a convex function.

Problem 4. Let us have k types of stocks that we can invest in. The i-th type of stock has price c_{i} today; the price of the i-th stock in a year is a a random variable for which we know its expectation h_{i} and variance σ_{i}^{2}. We will (naively) assume that stock prices are independent random variables.

How to invest a fixed amount of money (say, 1000 Kč) so that the expected value of our stocks in a year is at least $1200 \mathrm{Kč}$ and the variance of the value of our stocks in a year is minimal? State this problem as a QP.
Problem 5 (connected to GP; corrected). Let A be a matrix with nonnegative entries and $\lambda \in \mathbb{R}_{++}$its eigenvalue such that $\lambda \geq|\tau|$ for any eigenvalue τ of A and λ has an eigenvector in \mathbb{R}_{++}^{n}. Prove that then

$$
\lambda=\min \left\{\tau \in \mathbb{R}_{++}: \exists v \in \mathbb{R}_{++}^{n}, A v \preceq \tau v\right\}
$$

