Convex optimization

Tutorial 6

Problem 1. Rewrite the LP

$$
\begin{aligned}
& \quad \operatorname{minimize} x_{1}-x_{2}+2 x_{3} \\
& \text { subject to } x_{1}+x_{2}+x_{3} \leq 10 \\
& \quad x_{1} \geq 0 \\
& x_{2}-x_{3}=1
\end{aligned}
$$

To an equivalent problem in the standard form:

$$
\begin{gathered}
\text { minimize } \mathbf{c}^{T} \mathbf{y} \\
\text { subject to } \mathbf{y} \succeq 0, \\
A \mathbf{y}=\mathbf{b} .
\end{gathered}
$$

Problem 2. Let P be an LP in the standard form (see above). How would you construct an SDP (in any of the three forms we had) that is equivalent to P ?

Problem 3 (Robust LP). Suppose that in the ice cream problem from before we do not quite know what the demand will be each month. Instead, we have a vector $\mathbf{b} \in \mathbb{R}^{12}$ and a matrix $A \in S_{++}^{12}$ such that with 95% probability the ice cream demand vector in different months, $\mathbf{z} \in \mathbb{R}^{12}$, satisfies $(\mathbf{z}-\mathbf{b})^{T} A(\mathbf{z}-\mathbf{b}) \leq 1$.

Formulate an SOCP for the problem "plan production amounts p_{1}, \ldots, p_{12} to satisfy all demand with probability 95% with minimal cost" (recall that we pay $c>0$ for storing 1 unit of ice cream 1 month and $s>0$ for a month-to-month change of production).

Problem 4. Let X, Y be symmetric $n \times n$ matrices. Prove that $X \succeq Y$ if and only if for all vectors $\mathbf{x} \in \mathbb{R}^{n}$ we have $\mathbf{x}^{T} X \mathbf{x} \geq \mathbf{x}^{T} Y \mathbf{x}$.

Problem 5. Let $n \in \mathbb{N}$. Prove that the interior of S_{+}^{n} (in the space of symmetric matrices) is exactly S_{++}^{n}.

