Tutorial 7

Problem 1. Prove that the system of inequalities below has no solution

$$
\begin{aligned}
-x_{1}-x_{2} & \geq-1 \\
x_{1} & \geq 1 \\
x_{2} & \geq 1
\end{aligned}
$$

How is this related to duality for LPs?
Problem 2. State the dual problem to the LP

$$
\begin{gathered}
\operatorname{minimize} x_{1}-x_{2}+2 x_{3} \\
\text { subject to } \\
x_{1}+x_{2}+x_{3}-10 \leq 0 \\
\\
-x_{1} \leq 0 \\
\\
x_{2}-x_{3}=1
\end{gathered}
$$

Problem 3. Let (P) be a problem without (explicitly given) constraints "minimize $f(A \mathbf{x}+\mathbf{b})$ ". The function f is convex, and defined on a convex (yet compicated) set \mathcal{D}, A is a matrix, and b a vector. How does a dual problem to (P) look like? How does a dual problem to (P^{\prime}) look like, where (P^{\prime}) is defined as follows:

$$
\begin{aligned}
& \operatorname{minimize} f(\mathbf{y}) \\
& \text { subject to } \mathbf{y}=A \mathbf{x}+\mathbf{b}
\end{aligned}
$$

Which dual problem looks more useful?
Problem 4. Let $n \in \mathbb{N}$. Let P be the (minimization version of) the entropy maximization problem

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i=1}^{n} x_{i} \ln x_{i} \\
\text { subject to } & a_{1} x_{1}+\cdots+a_{n} x_{n}=b \\
& x_{1}+x_{2}+\cdots+x_{n}=1
\end{aligned}
$$

State the dual problem to P and think about how to solve it analytically.
Problem 5 (complementarity). Prove, that if for all $i=1, \ldots, m$ is $\lambda_{i} \geq 0$, $f_{i}\left(\mathbf{x}^{\star}\right) \leq 0$ and

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}\left(\mathbf{x}^{\star}\right)=0
$$

then $\lambda_{i}>0$ implies $f_{i}\left(\mathbf{x}^{\star}\right)=0$, and $f_{i}\left(\mathbf{x}^{\star}\right)<0$ implies $\lambda_{i}=0$. Does $f_{i}\left(\mathbf{x}^{\star}\right)=0$ imply $\lambda_{i}>0$?

