Convex optimization

Tutorial 7

Problem 1. Prove that the system of inequalities below has no solution

 $-x_1 - x_2 \ge -1$ $x_1 \ge 1$ $x_2 \ge 1.$

How is this related to duality for LPs?

Problem 2. State the dual problem to the LP

minimize
$$x_1 - x_2 + 2x_3$$

subject to $x_1 + x_2 + x_3 - 10 \le 0$
 $-x_1 \le 0$
 $x_2 - x_3 = 1.$

Problem 3. Let (P) be a problem without (explicitly given) constraints "minimize $f(A\mathbf{x} + \mathbf{b})$ ". The function f is convex, and defined on a convex (yet compicated) set \mathcal{D} , A is a matrix, and b a vector. How does a dual problem to (P) look like? How does a dual problem to (P') look like, where (P') is defined as follows:

minimize $f(\mathbf{y})$ subject to $\mathbf{y} = A\mathbf{x} + \mathbf{b}$

Which dual problem looks more useful?

Problem 4. Let $n \in \mathbb{N}$. Let P be the (minimization version of) the entropy maximization problem

minimize
$$\sum_{i=1}^{n} x_i \ln x_i$$

subject to $a_1 x_1 + \dots + a_n x_n = b$
 $x_1 + x_2 + \dots + x_n = 1.$

State the dual problem to P and think about how to solve it analytically.

Problem 5 (complementarity). Prove, that if for all i = 1, ..., m is $\lambda_i \ge 0$, $f_i(\mathbf{x}^*) \le 0$ and

$$\sum_{i=1}^{m} \lambda_i f_i(\mathbf{x}^\star) = 0,$$

then $\lambda_i > 0$ implies $f_i(\mathbf{x}^*) = 0$, and $f_i(\mathbf{x}^*) < 0$ implies $\lambda_i = 0$. Does $f_i(\mathbf{x}^*) = 0$ imply $\lambda_i > 0$?