Convex optimization

Tutorial 8

Problem 1. Let $n \in \mathbb{N}$. Let P be the (minimization version of) the entropy maximization problem

minimize
$$\sum_{i=1}^{n} x_i \ln x_i$$

subject to $a_1 x_1 + \dots + a_n x_n = b$
 $x_1 + x_2 + \dots + x_n = 1.$

State the dual problem to P and think about how to solve it analytically.

Problem 2. How does the dual problem to the quadratic program

minimize
$$x_1^2 + x_2^2 + x_3^2 - x_1 - x_2 - 2x_3$$

subject to $x_1 + x_2 + x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

look like?

Problem 3. Duality works for cone programming, too. Follow the recipe of Lagrangian \rightarrow Lagrange dual function to state the dual to the SDP in the standard form with one equality condition:

minimize
$$\operatorname{Tr}(CX)$$

subject to $X \succeq 0$
 $\operatorname{Tr}(AX) = b,$

where C, A, b are fixed.

Problem 4 (duality in game theory). Consider the following game of rock-paper-partial scissors:

Player 1 can play rock, paper, or scissors, while player 2 can only play rock and scissors. Both players reveal their choices at the same time. Whoever wins gains 1 point, the loser loses 1 point (a tie is worth 0 points).

A strategy for player 1 is a probability distribution over the 3 choices of moves; for player 2 it is a probability distribution over the 2 possible moves. Let L(p,q) be the expected value of points gained by player 1 given player 1 strategy p and player 2 strategy q. A strategy p is worst case optimal for player 1 if $\inf_q L(p,q)$ is maximal possible (similarly for player 2).

Find a worst case optimal strategy for both players for this game.