Convex optimization

Tutorial 9

Problem 1. Consider the LP (P)

$$
\begin{array}{cc}
\text { minimize } & -x_{1}+x_{2} \\
\text { subject to } & x_{1}-2 \leq 0 \\
-x_{1}-x_{2}+2 \leq 0 \\
-x_{1}+x_{2}-3 \leq 0
\end{array}
$$

The optimal solution of the dual of (P) is $\lambda^{\star}=(2,1,0)$. Use complementary slackness to calculate the optimal solution of (P).

Problem 2. How does the solution of Problem 1 change if we consider the problem $\left(P^{\prime}\right)$ from Quiz 8 instead? The dual optimal solution stays the same.

Problem 3. Solve the following problem (which you saw in Tutorial 1) using KKT conditions:

$$
\begin{aligned}
\text { minimize } & 4 x+5 y+3 z \\
\text { subject to } & x^{2}+2 y^{2}+z^{2} \leq 4
\end{aligned}
$$

Compare what you did with the method of Lagrange multipliers from Analysis.
Problem 4. Consider the following game of rock-paper-partial scissors:
Player 1 can play rock, paper, or scissors, while player 2 can only play rock or scissors. Both players reveal their choices at the same time. Whoever wins (usual rules apply) gains 1 point, the loser loses 1 point (a tie is worth 0 points).

Find a worst case optimal strategy for both players for this game. What is the value of this game?

Problem 5. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function, we define the conjugate function to f as a function $f^{\star}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with values

$$
f^{\star}(\mathbf{y})=\sup \left\{\mathbf{y}^{T} \mathbf{x}-f(\mathbf{x}) \mid \mathbf{x} \in \operatorname{dom} f\right\}
$$

Conjugate functions are important in convex analysis. Prove that the Lagrange dual function to the problem

$$
\begin{array}{rr}
\operatorname{minimize} & f(x) \\
\text { subject to } & A \mathbf{x}-\mathbf{b} \preceq \mathbf{0} \\
& C \mathbf{x}-\mathbf{d}=\mathbf{0}
\end{array}
$$

is $g(\lambda, \nu)=-f^{\star}\left(-A^{T} \lambda-C^{T} \nu\right)-\lambda^{T} \mathbf{b}-\nu^{T} \mathbf{d}$.

