Homework set 4

Date due: November 6 2019, 17:21

Explain your reasoning in all the problems.

Problem	Pts max	Pts
1	2	
2	2	
3	2	
4	4	
Σ	10	

Problem 1. Prove that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f\left(x_{1}, x_{2}\right)=-57 \log \left(3 x_{1}+7 x_{2}-10\right)+x_{2}^{2}-x_{1} x_{2}+5 x_{1}^{2}+\text { max. eigenvalue of }\left(\begin{array}{cc}
x_{1} & x_{2} \\
x_{2} & x_{1}+x_{2}
\end{array}\right)
$$ is convex.

Problem 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called log-concave if $f(x)>0$ for all $x \in \operatorname{dom} f$ and $\log f(x)$ is concave. Prove that the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(1-e^{-x_{1}}\right)\left(1-e^{-2 x_{2}}\right)\left(1-e^{-5 x_{3}}\right)
$$

with domain \mathbb{R}_{++}^{3} is log-concave.

Problem 3. Prove by induction on n that the function

$$
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\ln \left(\exp \left(x_{1}\right)+\exp \left(x_{2}\right)+\cdots+\exp \left(x_{n}\right)\right)
$$

is convex for any $n \in \mathbb{N}$. You can use without proof that f_{2} is convex (this was a problem in the previous homework set). This problem can also be solved by examining the Hessian of f_{n}, but we ask you not to do that (it is tedious, anyway).

Hint: Try to express f_{n} as a composition of several f_{k} 's for $k<n$.

Problem 4. We are competing in rocket slalom on a 2 D plane. At time t, our rocket has the x coordinate equal to t; we only control the rocket's velocity in the y direction by firing side thrusters.

We will discretize time in $1 / 10$ of a second increments, only considering the situation in $t=0,0.1,0.2, \ldots, 9.9,10$. The trajectory of our rocket is described by 101 triples $\left(x_{t}, y_{t}, v_{t}\right)$ for $t \in\{0,0.1, \ldots, 10\}$. At the beginning, we have $x_{0}=y_{0}=v_{0}=0$.

The motion equations for our rocket are

$$
\begin{aligned}
x_{t} & =t \\
y_{t+0.1} & =y_{t}+\frac{1}{10} v_{t} \\
v_{t+0.1} & =v_{t}+\Delta_{t}
\end{aligned}
$$

where Δ_{t} is the impulse gained by burning fuel at time t - this is what we control. The impulse can be positive or negative ("up" or "down"). An impulse of Δ_{t} costs us Δ_{t}^{2} fuel.
The slalom racetrack consists of a series of 10 barriers in the y direction at x positions $1,2, \ldots, 10$ (see the sketch to the right). To complete the race without crashing, we need to make sure that for each $t=1, \ldots, 10$ we have $y_{t} \in\left[a_{t}, b_{t}\right]$, where a_{t}, b_{t} are the y coordinates of the ends of the openings in the barriers. We
 know a_{t}, b_{t} in advance; they are constant.
a) State the problem "Given a_{t}, b_{t} 's for $t \in\{1, \ldots, 10\}$, find a sequence of Δ_{t} 's that allows us to complete the race while minimizing fuel usage" as a quadratic programming problem here on paper. Explain how exactly your model works.
b) Implement your model in CVXOPT/CVXPY. You do not have to send us the program, but you will need the program for the next step.
c) Optimizing purely for fuel consumption leads to dangerous trajectories. Find some values of a_{i}, b_{i} such that for all $i=1, \ldots, 10$ we have $\left|b_{i}-a_{i}\right| \geq 1$, yet the trajectory given by minimizing fuel comes closer than 10^{-3} to one of the barriers for at least one t. Explain how you got your a_{i}, b_{i} 's. Either write the values a_{i}, b_{i} and summarize the trajectory x_{t} here (if your solution is human-readable), or send the numbers to Jiří by e-mail.
d) Propose how to modify the optimization problem from a) to make the path of the rocket safer (it is OK to burn some extra fuel to do that). Discuss the drawbacks of your proposed change.

You can consult with your friends when solving the homework, but you have to write your solutions (including Python code) on your own and do not show your fininished solutions to your peers before the due date.

