
Constraint Satisfaction Problem – Lecture Notes

Alexandr Kazda, Miklós Maróti

June 20, 2017

2

Chapter 1

Preface

This is the collection of notes on the Constraint Satisfaction Problem as it
was taught at MFF UK in Autumn 2007 by Miklós Maróti. It is still work in
progress. The authors would be grateful for any pointers regarding the origins
of various theorems and lemmas.

While the constraint satisfaction problem (CSP) can be stated entirely in
the language of graph theory, it turns out that algebraic approach has numer-
ous advantages. The goal of these notes is to present the basics of the algebraic
view of CSP, enabling the reader to understand modern articles on CSP and
independently work in this area of mathematics. However, the ideas and con-
structions presented here can be useful even if the reader does not intend to
become a CSP specialist: CSP brings together graph theory, complexity theory
and universal algebra and can be used as a good motivation for study of either
of these disciplines.

We assume that the reader has a general mathematical background, but
there are no explicit prerequisites, as the text aims at self-containment. We
will often be using algebraic tools and objects, mostly from universal algebra.
Previous knowledge of this subject is beneficial, although not necessary.

1.1 Basics of complexity theory

In this section we shall formally define what a problem is, introduce the P and
NP classes of problems and give examples of NP-complete problems.

Our universe shall be the set I of all binary words {0, 1}∗ =
⋃∞
n=0{0, 1}n.

For our purposes will be sufficient to use the intuitive meaning of the word
“algorithm”1.

Definition 1.1.1. A function f : I → I is computable in polynomial time (we
say that f is in the class P) if there exists an algorithm A and constants c and

1If we wanted to be precise we can say that an algorithm is a computer program (that can
use infinite amount of memory) or a Turing machine, but any reasonable formal definition
will do.

3

4 CHAPTER 1. PREFACE

d such that for any x ∈ I the algorithm A stops in at most |x|d + c steps and
computes f(x).

There are many ways how to encode various objects or finite tuples of ob-
jects as words from {0, 1}∗. As a most obvious example, we can use binary
representation to encode numbers.

Remark 1.1.2. Thanks to the polynomial boundary, we don’t have to concern
ourselves with the details about encodings – even suboptimal encodings are fine,
as long as they run in polynomial time.

Examples 1.1.3. The following functions and algorithms are in P:

• Basic arithmetic functions

• Euclid’s algorithm

• Primality testing (algorithm known since 2004)

• Factoring polynomials in Q[x]

• Hereditary graph properties (i.e. the ones closed under vertex removal
and edge contraction)

In a classification problem C we are given an object x and are to decide
whether x ∈ C. Here C ⊂ I describes the problem. In complexity theory, our
aim is to measure the complexity of the characteristic function of the set C for
various C’s. Obviously, the set of all classification problems is P (I) = 2I .

Definition 1.1.4. A set C ⊂ I of objects is in P if its characteristic function
is in P.

Definition 1.1.5. A set C ⊂ I is in NP (i.e. decidable in nondeterministic
polynomial time) if there exists a function f in P and a constants k, l such that:

• If x ∈ C then there exits a y ∈ I, |y| ≤ |x|k + l such that f(x, y) = 1.

• If x 6∈ C then ∀y ∈ I it is f(x, y) = 0.

Here y is called a short proof and f is the verifier.

This definition says that C is in NP if for any x ∈ C there is a witness for a
short proof of x ∈ C and that such witness never lies. Obviously, P ⊂ NP .

Examples 1.1.6. The following problems belong to NP (along with a great
number of others):

• Composite number test (also in P because primality testing is in P).

• Solving Ax2 +By+C = 0 in N. (This equation has a solution iff it has a
solution whose length is small in the lengths of A,B and C.)

• 3-colourability of a given graph.

1.1. BASICS OF COMPLEXITY THEORY 5

• Graph isomorphism problem: are two given graphs isomorphic?

• The set of all theorems whose proofs (in an appropriate formal notation)
are at most ten thousand times as long as the theorem itself.

The following conjecture corresponds to experience of several generations
of computer scientists and makes study of the relationship between P and NP
classes meaningful. However, no proof of this statement has been found yet.

Conjecture 1.1.7. It is P 6= NP .

Definition 1.1.8. Let C,D ⊂ I. Then C is poly-time reducible to D (denoted
by C ≤ D) iff there exists a poly-time computable function f : I → I such that
x ∈ C ⇐⇒ f(x) ∈ D. Two problems C,D are poly-time equivalent (denoted
by C ≡ D) if C ≤ D,D ≤ C.

Proposition 1.1.9. The relation ≤ is a quasi-order on P (I). It is transitive
and reflexive but it is possible that C ≤ D,D ≤ C and C 6= D.

Example 1.1.10. In P there are three classes of poly-time equivalent problems
∅, I and P \ {∅, I}.

Definition 1.1.11. Let C ⊂ P (I) be a class of problems and D ⊂ I a problem.
Then D is C-hard if ∀C ∈ C C ≤ D.

Obviously, if D is C-hard, then D is at least as hard as any problem in C.
We say that a problem D is NP-complete if it is NP-hard and in NP. There
exist numerous NP-complete problems, we present here the famous SAT.

Definition 1.1.12. The SAT problem consists of all satisfiable Boolean formu-
las (i.e. formulas using the language ∧,∨,¬ and variable symbols).

Theorem 1.1.13 (Cook, Levin 1971–73). SAT is NP-complete.

Proof. (sketch of) In the proof we will have to use the Turing machine model
of computation. Turing machine is an automaton with finitely many internal
states that is equipped with a head. This head can read and write numbers
on an (infinite) input tape. In each step a Turing machine reads the symbol
under its head and then decides what to write on the tape, into which internal
state to change and whether it should move the head to the left or right. While
this model might seem simple, it is powerful enough to emulate any computer
program.

Let C ∈ NP , let f be its verifier and x be an object. We want some g such
that g(x) ∈ SAT iff x ∈ C. When f(x, y) is computed, the Turing machine M
for f(x, y) stops in less than |x|k + l steps, where l, k depend only on f . Thus
we can assume that there are at most m = |x|k + l states of the system “M plus
tape”. We can encode these states by binary words s1, . . . , sm.

Now si+1 clearly depends only on si and x, y. If we encode states in a
suitable way then there exists a (poly-length) Boolean formula g(z) that, given
z encoding of y (where |y| ≤ m) and s1, . . . , sm, checks whether s1, . . . , sm is

6 CHAPTER 1. PREFACE

a valid computation and f(x, y) = 1 was reached. Thus g(z) is satisfiable iff
there exists y such that f(x, y) = 1 for some |y| ≤ m. But this is precisely the
condition for x ∈ C and the reduction is complete.

Examples 1.1.14. Other NP-complete problems.

• 3-SAT the set of all satisfiable formulas of the form
∧k
i=1 Ci where Ci

is a disjunction of three variables or negations of variables (e.g. Ci =
¬xα ∨ xβ ∨ ¬xγ).

• The set of all 3-colourable graphs.

Definition 1.1.15. SysEq(L) is the class of systems of equations over some
fixed language L that are simultaneously satisfied.

Proposition 1.1.16. Every SysEq(L) is poly-time equivalent to a SysEq(L′)
in which every equation contains exactly one operation symbol.

Proof. Let us first provide an example showing the idea of the proof.

Example 1.1.17. Consider the equation (x∧ y)∨ z = u. Putting x∧ y = t, we
can rewrite the equation as:

x ∧ y = t

t ∨ z = u.

In the general case, each equation is of the form l = r where l, r are terms
– expressions formed by applying (finitely many times) operation symbols from
L on some set of variables. For example x, ¬x, (y ∧ x) ∨ ¬z are terms in the
language of Boolean algebras.

The equation l = r can be rewritten as a system of two equations l = y, r = y,
where y is a new variable. We can thus assume that the equation system contains
only equations of the form l = y where l is a term and y a variable.

For each equation, we use induction to simplify the term. If l itself is an
operation or a variable then we are done. Otherwise, l = t(s1, . . . , sm) where t
is an m-ary operation and s1, . . . , sm are terms. But then we can rewrite our
equation as

l = t(x1, . . . , xm)

x1 = s1

x2 = s2
...

xm = sm,

where xi’s are new variables. We can now simplify the terms s1, . . . , sm in
the same way and because each term consists of only finitely many operation
symbols, we will end up with a system of equations that each contain at most
one operation symbol.

1.1. BASICS OF COMPLEXITY THEORY 7

. . .

x1 x2 xn−1 xn

¬x1 ¬x2 ¬xn−1 ¬xn

0 1

2

Figure 1.1: Step 1 of the reduction to 3-colouring

As a corollary, we get that SAT can be reduced to a system of equations
of the form x ∨ y = z or x ∧ y = z resp. ¬x = y. The first equation can be
represented by a set of disjunctions

x ∨ y ∨ ¬z
¬x ∨ z

¬y ∨ z,

the second one by

¬x ∨ ¬y ∨ z

x ∨ ¬z
y ∨ ¬z

and the third one as

x ∨ y

¬x ∨ ¬y.

We obtain that SAT can be reduced (in polynomial time, as the algorithms used
are quite fast) to 3-SAT2 and 3-SAT is thus NP-complete.

Theorem 1.1.18. 3-colourability of graphs is NP-complete.

Proof. We reduce 3-SAT to 3-colouring of a suitable graph. Let us have a 3-SAT
formula with variables x1, . . . , xn. First draw the graph in Figure 1.1: Now for
each x ∨ y ∨ z glue to our graph the graph of the “gadget” seen in Figure 1.1:
Here the inner five vertices are new and we glue the vertices marked x, y, z, 0 to
the vertices x, y, z, 0 of the original graph (notice that it can be x = ¬xi). If we
do this for every x∨ y∨ z, we obtain a graph that is 3-colourable iff our formula
is satisfiable.

2To satisfy the formal requirement, we can rewrite two variable disjunction to three vari-
ables as for example x ∨ x ∨ y.

8 CHAPTER 1. PREFACE

x

y

z

0

0

Figure 1.2: Step 2 of the reduction to 3-colouring

Exercise 1.1.19. Verify the last sentence of the above proof.

Theorem 1.1.20 (Ladner, 1975). If P 6= NP then the NP problem class factored
by poly-time equivalence has infinitely many blocks between P and NP.

1.2 CSP for relational structures

A relation R on the set A is a subset R ⊂ An. We call n the arity of R.

Definition 1.2.1. Let R be a finite set of relation symbols with associated
arities of these symbols. Then call R a similarity type and A = (A;R) is a
relational structure of type R if A is a set and for each R ∈ R symbol of arity
n ∈ N there exists an associated relation RA ⊆ An. We shall sometimes use the
notation A = (A;RA) to avoid confusion as to which relations are we talking
about.

Examples 1.2.2. • Directed graphs (V ;E) with E ⊆ V × V .

• 4-coloured set (A;B, Y) with B, Y ⊆ A.

Definition 1.2.3. Two relational structures A,B are similar if they have the
same set of symbols and arities (ie. the same type). If A,B are similar relational
structures then f : A→ B is a homomorphism if ∀R ∈ R, (a1, . . . , an) ∈ RA ⇒
(f(a1), . . . , f(an)) ∈ RB.

If A = (A,RA) is a relational structure, then B = (B,RB) is called a sub-
structure of A if B ⊆ A and the inclusion mapping B → A is a homomorphism.
If for all k-ary R’s it is RB = RA ∩ Bk then we call B the substructure of A
induced by the set B. In the case of graphs, we obtain the familiar notions of
subgraph and subgraph induced by a set of vertices.

Definition 1.2.4. A homomorphism f : A→ B is called

• isomorphism if there exists an inverse homomorphism B→ A

1.2. CSP FOR RELATIONAL STRUCTURES 9

• endomorphism if A = B

• automorphism if it is an endomorphism and isomorphism.

Definition 1.2.5. Let B = (B,R) be a relational structure. Then define the
constraint satisfaction problem of B as the set of relational structures

CSP(B) = {A|A is similar to B and there exists a homomorphism f : A→ B}.

In usual encodings, it is easy to check whether given string encodes a re-
lational structure similar to B. The hard question is whether there exists a
homomorphism A→ B.

Proposition 1.2.6. CSP(B) is in NP for all B.

Proof. Any mapping A → B can be encoded by a string whose length is linear
in |A| and verifying that given f : A → B is a homomorphism can be done in
polynomial time. Thus CSP(B) is in NP.

One of main topics of this course will be various approaches used to prove
(or disprove) the following conjecture about dichotomy of CSP:

Conjecture 1.2.7 (Feder, Vardi, 1998). For every B relational structure, the
problem CSP(B) either lies in P or is NP-complete.

Example 1.2.8. CSP(B) for B being a triangle (B = {1, 2, 3}, E = B2 \{(i, i) :
i ∈ V }) is precisely the 3-colouring problem and thus is NP-complete.

Example 1.2.9. The 3-SAT can be refolmulated in the language of CSP, just
let B = {0, 1} and R = {Sαβγ |α, β, γ ∈ {0, 1}} where Sαβγ = {0, 1}3 \ {α, β, γ}.
Definition 1.2.10. Define a partial ordering “→” on the class of all similar
relational structures by A→ B iff there exists a homomorphism from A to B.

Obviously, “→” induces an equivalence on the set of all relational structures.
Denote this equivalence by ↔.

Theorem 1.2.11. Let C,D be similar relational structures and C ↔ D. Then
CSP(C) = CSP(D). Moreover B1 = (A, full relations) is the maximal and B0 =
(A, ∅) is the minimal element in this ordering (see Figure 1.2).

Proof. If we have a homomorphism A → C then we can compose it with a
homomorphism C→ D to obtain a homomorphism A→ D and vice versa.

The second part of the theorem is an easy exercise.

Remark 1.2.12. If there is a homomorphism f : B → C such that C ⊂ B
(we call such C a retract of B) then CSP(B) = CSP(C). This follows from the
previous theorem because inclusion is a homomorphism.

It is natural to ask what is the smallest substructure of B that still has
interesting CSP. In the following, we introduce the notion of a core that is
precisely such structure.

10 CHAPTER 1. PREFACE

C
D

B1 = ({1}, full relations)

B0 = ({1}, empty relations)

Figure 1.3: A sketch of the lattice of relational structures on 0 and 1

1.2. CSP FOR RELATIONAL STRUCTURES 11

Definition 1.2.13. A relational structure B is a core if all of is endomorphisms
are automorphisms.

Theorem 1.2.14. Every ↔ block in the set F of all finite structures of the
same similarity type contains (up to isomorphism) a uniquely determined core.

Proof. Take a structure B in F of minimal |B| = |B|. We claim that B is a
core. Let f : B → B be an endomorphism, denote by B′ the image f(B) of B.
Because B′ ⊂ B, we have B ↔ B′ as in the above remark and so B′ ∈ F . Thus
|B′| = |B| and f must be both injective and surjective. As we have only a finite
number of tuples (b1, b2, . . . , bn) and f induces a bijection of tuples, f−1 must
be a homomorphism and so f is an isomorphism.

If now B,B′ are both cores, then obviously |B| = |B′| are minimal. And thus
any f : B → B′ is a bijection. By the same argument as above, f must be also
an isomorphism.

1.2.1 Basic constructions

Lemma 1.2.15. Let A be a finite set. Then there exists a k ∈ N such that for
all f mappings A→ A it is f2k = fk.

Proof. Fix x ∈ A. Then the elements of the sequence x, f(x), f2(x), . . . will
eventually start to repeat themselves: It is f t(x) = fs(x) for some 0 ≤ t < s ≤
|A| and thus f t+v(x) = fs+v(x) for all v ∈ N. Denote by p the period s− t and
by q the preperiod t. Notice that it is 0 ≤ p, q ≤ |A|.

Let now k = |A|!. Obviously, k ≥ q and p|k. Putting l = k
p we can write

f2k(x) = fk+k(x) = fk+lp(x) = fk(x),

proving the lemma.

Theorem 1.2.16 (“We can add equalities.”). Let B = (B,R) and B′ = (B;R∪
{=B}) where =B is the relation {(b, b)|b ∈ B}. Then CSP(B) and CSP(B′) are
poly-time equivalent.

Proof. We need to find two reductions. The easy one is CSP(B) to CSP(B′):
Given A similar to B, we produce A′ = (A;RA ∪ {=A}) where =A is empty.
Then A→ B iff A′ → B′ and so we have a reduction.

The other direction takes a little bit of effort: Take A′ = (A′,RA ∪ =A′)
where =A′ is any binary relation on A′ (it need not be an equivalence). Let
S be the equivalence relation generated by =A′ (the transitive, reflexive and
symmetric closure of =A′).

For each equivalence class [c] of S take one representative element c and let
A ⊆ A′ be the set of these representative elements. Put (c1, . . . , cn) ∈ RA iff
there exists (a1, . . . , an) ∈ RA′

such that ∀i, ai ∈ [ci]. We claim that then there
exists a homomorphism f : A′ → B′ iff there exists a homomorphism g : A→ B.
We prove both implications separately:

12 CHAPTER 1. PREFACE

• ”“⇒”” It is easy to see that if ai ∈ [ci] then (f(ai), f(ci)) ∈ =B and
so f(ai) = f(ci). So the set f([c]) has one element and it makes sense
to let g(c) = f([c]). If now (a1, . . . , an) ∈ RA′

then (f(c1), . . . , f(cn)) =
(f(a1), . . . , f(an)) ∈ RB′

= RB and so g is a homomorphism A→ B.

• ”“⇐”” If there exists a g : A→ B homomorphism we can extend g to A′

as f(a) = g(c) for all a ∈ [c]. If (a1, . . . , an) ∈ RA then (c1, . . . , cn) ∈ RA′

and so (f(a1), . . . , f(an)) = (g(c1), . . . , g(cn)) ∈ RB.

In the following we will use the notion of primitive positive formula. Given
a class Ω of formulas we can produce a formula ∃α1 . . . ∃αn, φ1(∗, . . . , ∗)∧ . . .∧
φn(∗, . . . , ∗) where the stars are either free variables (say, x1, . . . , xm) or the
variables α1, . . . , αn. The formulas φi all belong to the class Ω.

Example 1.2.17. An example of a primitive positive formula using Ω = {<}
is the formula ψ(y, z) = ∃x, x < y ∧ z < x.

Motivation 1.2.18. When reducing SAT to 3-colourability we have used a
certain subgraph as a tool for expressing logical statements in terms of colours.
In that case, we have used the relation “u and v have different colours” to
produce more complicated relations, such as x∨y∨z. We shall now use primitive
positive formulas to perform similar feats with general relational structures.

Definition 1.2.19. For a set Γ of finitary3 relations on a set A, define 〈Γ〉 as
the set of all relations that can be expressed by primitive positive formulas using
only Γ and “=”. We say that Γ is a relational clone if Γ = 〈Γ〉.

Given a set X, a closure operator on X is a mapping c : 2X → 2X such that:

• Y ⊂ c(Y) for all Y ⊂ X.

• c2 = c.

• Y ⊂ Z ⇒ c(Y) ⊂ c(Z) for all Y, Z ⊂ X.

A set Y such that Y = c(Y) is called closed.
A lattice is any partially ordered set L such that for each x, y ∈ L there

exists x ∧ y infimum and x ∨ y supremum of the pair. A lattice is complete if
every set of its elements has both the supremum and the infimum.

Exercise 1.2.20. Let X be a set and c a closure operator on X. Then the set
of closed subsets of X ordered by inclusion is a complete lattice. The supremum
of a set Y can be computed as c(

⋃
Y ∈Y Y) and the infimum as

⋂
Y ∈Y c(Y).

Proposition 1.2.21. 〈·〉 is a closure operator on the set of sets of relations.
Thus the set of relational clones is a complete lattice (with ordering given by
inclusion).

3A relation is finitary if it has finite arity.

1.2. CSP FOR RELATIONAL STRUCTURES 13

Proof. It is an easy exercise to check that the conditions (i)–(iii) all hold for
〈·〉.

The following theorem allows us to easily find reductions between many
kinds ofproblems.

Theorem 1.2.22. If 〈R1〉 ⊂ 〈R2〉 then CSP(B,R1) is poly-time reducible to
CSP(B,R2).

Proof. All we actually need is that R1 ⊂ 〈R2〉. That means that for every
R ∈ R1 we have a primitive positive formula ψR using R2 equivalent to R.
Each ψR can be written in the form:

ψR(x1, . . . , xn) = ∃u1, . . . uk, S1(xπ1,1
, . . . , xπ1,n1

, uρ1,1 , . . . , uρ1,k1
)∧S2(· · ·)∧. . .∧Sm(· · ·)

for some Si ∈ R2 and ni ≤ n, ki ≤ k (this models the fact that all variables need
not be present in all relations) and a suitable set of numbers πi,j ∈ {1, . . . , n}.
Do not fear triple indices; they are here only to show how we choose of variables
from the set {x1, . . . , xn}. Assume for now that all Si’s are mutually different.

Consider the relational structure G of signature R with the underlying set
G = {a1, . . . , an, b1, . . . , bk}. The relations of G are trivial iff they are not one
of Si’s, otherwise it is SG

i = {(aπi,1 , . . . , aπi,ni
, bρi,1 , . . . , bρi,ki

)}.
Observe now that any mapping f : G→ B maps (a1, . . . , an) to an element

in R iff f : G → (B,R2) is a homomorphism: The right side is true iff for
all i = 1, . . . ,m it is (f(aπi,1

), . . . , f(aπi,ni
), f(bρi,1), . . . , f(bρi,ni

)) ∈ Si which is
precisely the condition ψR(f(a1), . . . , f(an)).

Now return to our assumption that Si’s are mutually different. If this is not
true, we can recover by taking SG

i as the set of all tuples (aπj,1
, . . . , aπj,nj

, bρj,1 , . . . , bρj,kj
)

for j such that Sj = Si. Now again f will be a homomorphism iff (f(a1), . . . , f(an)) ∈
R.

For all R ∈ R1 we construct such structures GR. While such construction
might in general take a long time, this time is not dependant upon the size of
the input and thus adds only a constant to the time complexity of the algorithm.

Let us now have an instance A = (A,RA
1) of CSP(B,R1). We want to

produce a reduction to an instance A′ of CSP(B,R2).
The underlying set of A′ will be A ∪B where B is the set of additional ele-

ments. For every (a1, . . . , an) ∈ RA ∈ RA
1 , we add the corresponding b1, . . . , bk

and use the elements {a1, . . . , an, b1, . . . , bk} to embed a copy of GR into A′.
While elemnts of A might be shared among differenct GR’s, each time we find a
new tuple (a1, . . . , an) ∈ RA, we add brand new b1, . . . , bk. All this can be done
in polynomial time, as we have only polynomially many n-tuples (and finitely
many relations in R1).

It remains to observe that f : A′ → (B,R2) iff f restricted to each copy of GR
is a homomorphism iff ∀RA ∈ RA

1 ,∀(a1, . . . , an) ∈ R it is (f(a1), . . . , f(an)) ∈ R
iff f restricted to A is a homomorphism A→ (B,R1).

Example 1.2.23. We shall clarify the main points of the above construction
by performing it for one concrete case. Consider two structures on B = {1, 2, 3}

14 CHAPTER 1. PREFACE

a1 a3 a2

b1 b2

Figure 1.4: Gadget for R

α γ β

b1 b2

ε δ

b′1 b′2

Figure 1.5: Instance of CSP(B,R2)

given by R1 = {R} and R2 = {6=} with R = {(x, y, z) : x = y ⇒ z = x}.
Obviously, CSP(B,R2) is the problem of existence of a graph homomorphism
to K3. We want to show that CSP(B,R1) is poly-time reducible to CSP(B,R2).
First notice that R can be rewritten as ψR(x, y, z) = ∃u, v, x 6= u ∧ u 6= v ∧ y 6=
v∧z 6= u∧z 6= v which is in 〈6=〉. So, by the above theorem, there is a reduction.
The graph GR from the proof is depicted in Figure 1.2.23.

To show how the reduction works, we shall transform the instance A =
({α, β, γ, δ, ε}, {(α, β, γ), (γ, δ, ε)}) of CSP(B,R1) to an instance of CSP(B,R2).
Consider the graph created by joining together two copies of GR shown in Fig-
ure 1.2.23. It is not hard to see that homomorphisms from this graph to K3

correspond to homomorphisms A→ (B,R1) so we have the desired reduction.

Problem 1.2.24. Given two finite sets R1,R2, is it decidable whether 〈R1〉 ⊂
〈R2〉?

It is obviously enough to decide for all R ∈ R1 whether R belongs to R2.
Let n be the arity of R. We shall show that R ∈ R1 can checked in finite
(albeit long) time by checking all the primitive positive formulas from R2 that
contain at most An new variables. Before we do that, however, let us dwelve a
bit deeper into universal algebra.

Definition 1.2.25. Let R be a k-ary relation on the set A and f an n-ary

1.2. CSP FOR RELATIONAL STRUCTURES 15

operation on A. We say that R is an invariant relation under f or that f is
a polymorphism of R if for every n-tuple of k-tuples {r1, . . . , rn} (where ri =
(a1i, . . . , aki)) ∈ R we have

(f(a11, . . . , an1), . . . , f(ak1, . . . , akn)) ∈ R.

In the above situation, we will often use shorthand notation:

(f(r1), . . . , f(rn)) = (f(a11, . . . , an1), . . . , f(ak1, . . . , akn))

While this notation might be slightly unclear at first, it helps us avoid drowning
in variables and indices. We will also sometimes write the above condition in
the form of a table such a this one:

(a11, . . . , a1k) ∈ R
...

...
...

(an1, . . . , ank) ∈ R

(f(a11, . . . , an1), . . . ,f(ak1, . . . , akn))∈ R
Remember that in universal algebra, an algebra consists of the nonempty

support set A together with a set F of finitary (ie. of finite arity) operations
on A. We say that an algebra is nontrivial if |A| ≥ 2. Groups, fields, boolean
algebras and lattices are all examples of algebras. The k-th power of algebra
A (denoted by An) is an algebra with the support set Ak and all operations
retained from A, only acting coordinatewise.

Observation 1.2.26. The k-ary relation R is a subalgebra of (A, f)k iff f is a
polymorphism of R.

Exercise 1.2.27. Show that any unary mapping f is a polymorphism of (A,R)
iff it is an endomorphism of (A,R).

Exercise 1.2.28. What are the polymorphisms of the structure ({1, 2, 3}, {6=})?
Definition 1.2.29. Let Γ be a set of relations on A, let

Pol(Γ) = {f : An → A|f is a polymorphism of all R ∈ Γ}.

Definition 1.2.30. If Φ is a set of operations on A, let

Inv(Φ) = {R ∈ An|R is invariant under all operations f ∈ Φ}.

Remark 1.2.31. We know that an n-ary relation R is an invariant relation of
an algebra A iff R is a subalgebra of An. Using a notation common in universal
algebra tools, we can write Inv(A) = S Pfin A where the operator S stands
for “subalgebras” and Pfin for “finite powers” of the given algebra or a set of
algebras.

The operations Inv,Pol provide a connection between the lattice of sets of
relations on A and the lattice of sets of finitary functions from A to A. The
following observation formalises this notion of connection.

16 CHAPTER 1. PREFACE

∅ only projections

all functions
∞⋃

n=1

P (An)

Γ

Inv (Pol(Γ))

Pol(Γ)

Figure 1.6: Galois correspondence

Observation 1.2.32. The operations Pol, Inv form a Galois connection, that
is:

(i) Γ ⊂ Γ′ ⇒ Pol(Γ′) ⊂ Pol(Γ)

(ii) Φ ⊂ Φ′ ⇒ Inv(Φ′) ⊂ Inv(Φ)

(iii) Γ ⊂ Inv(Pol(Γ))

(iv) Φ ⊂ Pol(Inv(Φ))

Exercise 1.2.33. Prove using (i)–(iv) that Pol(Γ) = Pol(Inv(Pol(Γ))) and
Inv(Φ) = Inv(Pol(Inv(Φ))).

Definition 1.2.34. A mapping f : An → A is a projection if ∃i such that
f(a1, . . . , an) = ai for all tuples (a1, . . . , an) ∈ An.

Definition 1.2.35. A set Φ of finitary operations on A is a functional clone
iff it is closed under composition of operations and contains all projections π :
An → A. Any function formed by composing operations from Φ is called a term.

Theorem 1.2.36. Let A,Γ be finite. Then Pol(Γ) is always a functional clone
and Inv(Φ) is always a relational clone. Moreover, InvPol(Γ) is exactly the set
of relations pp-defined from Γ and Pol(Inv(Φ)) is exactly the clone of operations
of Φ.

Proof. It is easy to verify that Pol(Γ) is a functional clone. It is elemen-
tary to show that Inv(Φ) is closed under pp-definitions, but we will skip this
part and prove directly that Inv(Pol(Γ)) = 〈Γ〉. This means that Inv(Φ) =
Inv(Pol(Inv(Φ))) = 〈Inv(Φ)〉, proving our proposition.

1.2. CSP FOR RELATIONAL STRUCTURES 17

First notice that Pol(Γ) = Pol(〈Γ〉). The ⊇ inclusion is obvious. To prove ⊆,
consider f ∈ Pol(Γ) and a relation ψ(a1, . . . , ak) = ∃b1, . . . ,∃bm, φ(a1, a2, . . . , ak, b1, . . . , bm)
where φ is a conjuction of relations from Γ. If now r1, . . . , rn are k-tuples such
that ψ(ri) holds for each i then there exist s1, . . . , sn m-tuples such that φ(ri, si)
holds for each i. But because φ is a simple conjunction of relations from Γ and
f is a polymorphism in Γ, we see that φ(f(r1, . . . , rn), f(s1, . . . , sn)) holds. But
then also ψ(f(r1, . . . , rn)) and so f is a polymorphism in 〈Γ〉. This means that
Inv(Pol(Γ)) = Inv(Pol(〈Γ〉) ⊇ 〈Γ〉

Using the fact that |A| is finite we prove that Inv(Pol(Γ)) ⊂ 〈Γ〉.
Consider Fn the set of functions {f(π1, . . . , πn) : f polymorphism of Γ}.

Here πi are projections An → A to the i-th element. Universal algebra students
notice that this is the n-generated free algebra in the variety generated by A,
although we will not need this fact in our proof. Obviously, Fn ⊂ AA

n

so we
can fix the order of elements in An and understand Fn as an |A|n-ary relation.
It is (x1, . . . , x|A|n) ∈ Fn iff there exists f ∈ Fn such that xi is the i-th value of
f . We will now prove that in this sense it is Fn ∈ 〈Γ〉.

The condition “f is an n-ary polymorphism of Γ” can be rewritten as: “For
all R ∈ Γ k-ary relations and for all M ∈ An×k with rows in R it is f(M) ∈ R.”
(Notice the abuse of notation.) When A,Γ are finite, there exists a finite prim-
itive positive formula that checks whether the function given by (x1, . . . , x|A|n)
is a polymorphism: If n-tuples number i1, i2, . . . , ik form a matrix M from the
above condition, we ask whether f(M) = (xi1 , . . . , xik) ∈ R. There are only
finitely many such relations and sets of n-tuples so we can conjunct all these
conditions into a primitve positive formula ψ(x1, . . . , x|A|n).

Let now R ∈ Inv(Pol(Γ)) be a k-ary relation. Then we can write R =
{r1, r2, . . . , rm} where ri are k-tuples. We now claim that R is basically just Fm
restricted to certain coordinates.

Let us now for each i write ri = (ri,1, . . . , ri,k) and let j1, j2, . . . , jk be indices
such that for each f = (x1, . . . , x|A|m) it is f(r1,l, . . . , rm,l) = xjl . Then it is
also f(r1, . . . , rm) = (xj1 , xj2 , . . . , xjk). Observe that for f = πi this means
(xj1 , . . . , xjk) = ri. If now f = (x1, . . . , x|A|m) ∈ Fm then because f is an R-
polymorphism it is (xj1 , xj2 , . . . , xjk) = f(r1, . . . , rm) ∈ R. We conclude that
the set of homomorphisms Fm limited to coordinates j1, . . . , jk is precisely R
(because limited Fm contains all the elements ri and nothing else). We can easily
describe the coordinate limitation using a primitve positive formula: Let ψ be
a formula for Fm. For the sake of readability (and without loss of generality)
let jl = l for l = 1, 2, . . . , k. Then the formula for R will be

φ(a1, . . . , ak) = ∃u1, . . . ,∃um−kψ(a1, . . . , ak, u1, . . . , um−k).

This means that R ∈ 〈Γ〉 and so the proof is complete. See Figure 1.2.1 for an
illustration of the last step of the proof.

Finally, to show that Pol(Inv(Φ)) is exactly the clone of operations of Φ,
note that Inv(Φ) contains for each k the |A|k-ary relation

Fk = {(t(a))a∈Ak : t is in the clone of Φ}.

18 CHAPTER 1. PREFACE

π1 πm. . .

r1 rm

j1

jk

Nothing new here, just
f(r1, . . . , rm).

Figure 1.7: The main trick in describing the Galois correspondence Inv-Pol

1.2. CSP FOR RELATIONAL STRUCTURES 19

Therefore, each k-ary member f of Pol(Inv(Φ)) preserves Fk. Now it is an easy
exercise that the |A|k tuple corresponding to f(π1, π2, . . . , πk) lies in Fk and
describes f (here πi is the |A|k-tuple that encodes the i-th projection).

Remark 1.2.37. The proof of the previous theorem also shows that we need
at most |A|m new variables to rewrite a k-ary relation satisfied by m tuples.

Theorem 1.2.38 (“We can add constants.”). Let B = (B,R) be a core. Then
CSP(B) is polynomial-time equivalent to CSP(B,RB ∪ {const(b)B : b ∈ B})
where “const(b)B” is the unary relation {(b)}.
Proof. Call the second relational structure B′. We need reductions CSP(B) →
CSP(B′) and CSP(B′)→ CSP(B).

The first reduction is easy: We just need to add empty relations, turning
A = (A,RA) into A′ = (A,RA ∪{const(b)A : b ∈ B}) where const(b)A = ∅. Now
any homomorphism A′ → B′ need only satisfy the relations from R and thus
exists iff exists a homomorphism A→ B.

The other reduction is slightly more difficult. Let B = {b1, . . . , bn} and
let R = {(f(b1), . . . , f(bn))|f : B → B is an automorphism of B}. Then R ∈
〈R〉 because we can check whether (f(b1), . . . , f(bn)) is a set of values of an
automorphism using a finite set of conditions like in the proof of Theorem 1.2.36.
For example, if S is a binary relation and (b1, b2) ∈ S then we add the condition
(f(b1), f(b2)) ∈ S into the description of R. Denote B′′ = (B,R∪ {R,=}). We
know that R ∈ 〈R〉 and so, using theorems 1.2.16 and 1.2.22 we can reduce
CSP(B,R∪{R,=}} to CSP(B,R) and to complete the proof we only need the
reduction of CSP(B′) to CSP(B′′).

Given an input A = (A,R∪{const(b)A : b ∈ B}), consider A′ = (A∪̇{b1, . . . , bn},
R ∪ {R,=A′}) where ∪̇ denotes disjoint union. For all s ∈ R we let sA

′
= sA.

We define the equivalence relation =A′ so that =A′ is identity relation on A and
for b ∈ B, a ∈ A it is b=A’ a iff a ∈ const(b).

We want to show that this is a reduction from CSP(B′) to CSP(B′′). If there
exists a homomorphism f : A→ B′ then we obtain a homomorphism g : A′ → B′′
by letting g|A = f and g(bi) = bi for i = 1, . . . , n. On the other hand, if
g : A′ → B′′ is a homomorphism then h = g|B : B → B is an automorphism of
B′′ because (g(b1), . . . , g(bn)) ∈ R. Then f = h−1g is a homomorphism A′ → B′′
such that f(bi) = bi and f|A is the needed homomorphism A→ B′.

Theorem 1.2.39. If CSP(B) is in P then there exists a polynomial algoritm
that, for a given A, finds a homomorphism f : A → B or proves that no such
homomorphism exists.

Proof. The idea of the proof is quite simple: We keep adding constraints and use
our poly-time oracle (CSP algorithm) to check that these constraints still allow
a homomorphism to exist. In the end, we either run out of possibilities or our
constraints specify an unique homomorphism. The following proof formalises
this idea.

First of all, we show that it is enough to prove the theorem for cores with
constants. Let B be a general relational structure. Because the size of B is not

20 CHAPTER 1. PREFACE

a part of the input, we can find the core C = (C,R) of B in constant time. Let
D = (C,R∪{const(c) : c ∈ C}) be the core with constants, const(c) = {(c)} for
all c ∈ C.

We know that CSP(B) is poly-time equivalent to CSP(D). Because CSP(B)
is in P, there is a polynomial time algorithm p deciding whether a given A is
in CSP(D). Moreover, if f : A → D is a homomorphism and we let A′ be A
stripped of all const(c) relations then f is also a homomorphism from A′ to B.

Take now any instance A = (A,R∪{constA(c) : c ∈ C}) of CSP(D). (If A is
similar to B, we can let constA(c) be empty for all c.) Let A = {a1, a2, . . . , an}.
If p(A) outputs that A 6∈ CSP(D) we are done and answer in negative. We
shall define by induction a sequence f(a1), f(a2), . . . , f(an) ∈ B describing a
homomorphism f : A→ D.

Start with i = 1. Assume that f(a1), . . . , f(ai−1) are defined already and
that they are the values of some homomorphism f : A→ D. First, we guess the
value of f(ai) (there are only |C| possibilities). Then define Ai as a relational
structure similar to A such that RAi = RA for all R ∈ R and constAi(c) =
constA ∪ {(aj) : j ≤ i, f(aj) = c}. Notice that in this notation it is A0 = A
and that homomorphisms g : Ai → D are precisely the homomorphisms A→ D
that satisfy g(aj) = f(aj) for j = 1, 2, . . . , i. In particular, our hypothetical
homomorphism f is also a homomorphism Ai → D.

There are |C| possible values of f(ai) and thus |C| possible candidates for
the structure Ai. By running the algorithm p on each of these candidates, we
obtain some c ∈ C such that there exists a homomorphism A → D with first
i values f(a1), . . . , f(ai−1), c. But that is precisely what we want, so we fix
these values, increase i by one and continue. In the end, we obtain a complete
homomorphism f(a1), . . . , f(an). Notice that f is the unique homomorphism
An → D.

1.2.2 Binary relational structures

In this section we shall discuss the case where the relational structure B is
binary, i.e. |B| = 2. In the binary case, we not only have dichotomy, but we
can actually decide whether CSP(B) is NP-complete or in P by looking at the
set Pol(B).

Let B = {0, 1}. We begin by defining the following operations on B:

• Unary 0 and 1 constant operations given by ∀x, 0(x) = 0, 1(x) = 1.

• Unary negation defined as ¬x = x+ 1 (mod 2).

• Binary and defined by x ∧ y = 1 iff x = y = 1.

• Binary or defined as x ∨ y = 1 iff x = 1 or y = 1.

• The plus operation p(x, y, z) = x+ y + z (mod 2).

• The majority operation m(x, y, z) = 1 iff at least two of the numbers x, y, z
are 1.

1.2. CSP FOR RELATIONAL STRUCTURES 21

Definition 1.2.40. An operation f : An → A is idempotent if f(a, a, . . . , a) = a
for all a ∈ A.

Definition 1.2.41. An operation f : An → A is a projection (to the i-th coordi-
nate) if there exists an i such that for all a1, . . . , an ∈ A it is f(a1, . . . , an) = ai.
When A = {0, 1}, we say that an operation f negates projection if there exists
i such that f(a1, . . . , an) = ¬ai.

Definition 1.2.42. An operation f : An → A is a near unanimity (often
abbreviated as “nu”) if

f(x, . . . , x, x, y) = f(x, . . . , x, y, x) = f(x, . . . , y, x, x) = · · · = f(y, x, . . . , x) = x.

Theorem 1.2.43. Let B = ({0, 1},R). Then either B admits at least one of
the polymorphisms 0, 1,∧,∨,p,m or all polymorphisms of B are projections or
negate projections.

Proof. If B is not a core then it admits by definition an unary polymorphism
0 or 1. Assume that B is a core. Then each unary polymorphism of B is an
automorphism and the group of automorphisms of B is a subgroup of S2.

For f ∈ PolB, define σ(x) = f(x, . . . , x). It must be σ2 = id because
σ is either the identity or the negation. We claim that σ ◦ f is idempotent.
This means precisely that σ ◦ f(x, x, . . . , x) = x and we have just shown that
x = σ2(x) = σ(f(x, . . . , x)). This construction gives us a tool to turn any
polymorphism f into an idempotent polymorphism σ ◦ f . Notice that σ ◦ f = f
or σ ◦ f = ¬f .

It is therefore sufficient to prove that if a core B does not admit ∧,∨,p and
m then any idempotent polymorphism f of B is a projection. We shall prove
this by an unusual induction on the arity q of f idempotent polymorphism of
B – there will be several first induction steps, as we have to do the the first few
values of q by hand, getting some elbow room to handle the general case.

• ”q = 1” This case is trivial, as f = id.

• ”q = 2” Write the values of f into a table:

f 0 1
0 0 ?
1 ? 1

There are only four possible ways of writing 0 or 1 in place of the question
marks, and the four resulting maps are the projection to first or second
coordinate, ∨ and ∧, respectively. We conclude that the theorem holds
for q = 2.

• ”q = 3” First notice that f(¬x,¬y,¬z) = ¬f(x, y, z). We can see this by
noticing that at least two of the variables x, y, z must be equal, without
loss of generality let x = y. Then g(x, z) = f(x, x, z) is, by induction
assumption, a projection and so f(¬x,¬x,¬y) = ¬f(x, x, y).

22 CHAPTER 1. PREFACE

Because we know that f(0, 0, 0) = 0, f(1, 1, 1) = 1, all we need to de-
termine f is to know the values of f(0, 0, 1) = a, f(0, 1, 0) = b and
f(1, 0, 0) = c. If a = b = c = 1 resp. a = b = c = 0 we get f = p
resp. f = m. There are only two more cases left (up to permutation of
variables):

– Let a = 1, b = c = 0. Here, it is f(x, y, z) = x and f is a projection.

– Let a = b = 1, c = 0. In this case, let t(x, y, z) = f(x, y, f(x, y, z)).
Then t is also an idempotent polymorphism and t(¬x,¬y,¬z) =
¬t(x, y, z). Directly calculating the values, we see that it is t(1, 0, 0) =
t(0, 1, 0) = t(0, 0, 1) = 0 and so t = m.

• ”q ≥ 4” We shall first prove that if f is not a projection then it is a near
unanimity (nu) operation.

Assume that f(0, 0, . . . , 0, 1) = 1. Then, by induction assumption, we have
a set of projections: π1 = f(x, x, x3, x4, . . . , xq), π2 = f(x, x3, x, x4, . . . , xk),
π3 = f(x3, x, x, x4, . . . , xq). We know that these are projections on the last
coordinate because f(0, . . . , 0, 1) = 1. Again, in the general case at least
two of the first three variables must be equal, so it is f(x1, . . . , xq) = xq,
a projection. By a similar argument, it must be f(1, . . . , 1, 0) = 1 and by
premuting the variables, we get that f(x, . . . , x, y, x, . . . , x) = x.

The nu property is quite powerful and quickly brings us to a contradiction.
We know that it is f(0, 1, . . . , 1) = 1, so f(0, x2, . . . , xq) is, by the induction
hypothesis, a projection to the i-th coordinate for some i ∈ {2, . . . , q}. But
then it would be f(0, . . . , 0, 1, 0, . . . , 0) = 1 (with one in the i-th place),
contradicting the nu property.

Let us visualise the previous theorem: We have proven that anything strictly
above 〈¬〉 in the (functional) clone lattice of {0, 1} is also above at least one of
〈0〉, 〈1〉, 〈∧〉, 〈∨〉, 〈p〉, 〈m〉. The lattice of functional clones is sometimes called
the Post’s lattice of clones.

Let us say a few words about the properties of this lattice. First of all, notice
that all the above clones are atomic, ie. there is no nontrivial element of the
Post’s lattice below, say 〈0〉. In case of 〈0〉, it is an easy observation that 〈0〉 is
the set of all projections and all the maps f(x1, . . . , xn) = 0 (n-ary zeroes) and
any n-ary zero generates the unary zero, so any subclone of 〈0〉 is either trivial
or 〈0〉.
Exercise 1.2.44. Prove that 〈1〉, 〈∧〉, 〈∨〉, 〈p〉, 〈m〉 and 〈¬〉 are also atomic
clones.

From the Theorem 1.2.43 we obtain that any functional clone that does not
contain any of the clones 〈0〉, 〈1〉, 〈∧〉, 〈∨〉, 〈m〉, 〈p〉 must be contained in 〈¬〉.

Our goal now is to prove that CSP(B) is in P iff B admits at least one of the
operations 0, 1, ∧, ∨, p, m and is NP-complete otherwise. The original proof of
this result is due to Shaefer from 1978.

1.2. CSP FOR RELATIONAL STRUCTURES 23

〈0〉〈1〉〈¬〉 〈m〉〈p〉〈∨〉〈∧〉

Figure 1.8: The bottom of Post’s lattice

For A general algebra, f is a permutation of a projection if f(x1, . . . , xn) =
σ(xi) for a fixed i and σ ∈ Aut(B). For example, if B is a binary algebra
admitting the automorphism ¬ then negation of a projection is a permutation
of a projection.

Lemma 1.2.45. Let A = (A,R) be a relational structure such that |A| ≥ 2 and
all polymorphisms of A are projections or permutations of projections. Then
CSP(A) is NP-complete.

Proof. First notice that because all unary polymorphisms of A are automor-
phisms, A is a core. Using Theorem 1.2.38 we obtain that CSP(A,R) is poly-
time equivalent with CSP(A,R ∪ {const(a)|a ∈ A}) = CSP(C) where const(a)
are the unary constants. Obviously, Aut(C) is trivial, as every automorphism
has to preserve unary constants. Thus C has only projections as its polymor-
phism. Intuitively, this means that the set of relations of C is very rich.

We shall now reduce 3-SAT to CSP(C). Begin by choosing two distinct
elements of A and labeling them 0 and 1. Recall that the relations in 3-SAT
can be written as Sαβγ = {0, 1}3 \ {(α, β, γ)} where α, β, γ are one or zero.
But because Pol(C) is the smallest possible functional clone, using the Galois
correspondence we obtain that 〈RC〉 = Inv(Pol(C)) = 2A and so Sαβγ ∈ 〈RC〉.
Due to Theorem 1.2.22 we have that 3-SAT can be poly-time reduced to CSP(C),
concluding our proof.

Remark 1.2.46. The previous theorem implies that if B does not admit 0, 1,
∧, ∨, p, m then CSP(B) is NP-complete.

24 CHAPTER 1. PREFACE

Remark 1.2.47. Notice that the above theorem does not requie that B be
binary, it works for every nontrivial relational structure.

Lemma 1.2.48. If B admits a constant polymorphism (i.e. 0 or 1) then CSP(B)
is in P.

Proof. In this case, B is very simple indeed. Denote by B0 the image of B under
0. Then B0 is a retract of B and so CSP(B0) = CSP(B). Now if C is a relational
structure, there is only one candidate for a homomorphism; namely the map
f(c) = 0 for each c ∈ C which is a homomorphism iff RB = ∅ ⇒ RC = ∅.

Lemma 1.2.49. If B admits ∧ or ∨ then CSP(B) is in P.

Proof. First note that by switching one and zero, we interchange ∧ with ∨, as
it is ¬(¬x ∧ ¬y) = x ∨ y. Thus it is enough to prove that whenever B admits ∧
then B is in P.

Without loss of generality assume that B is a core (if not, we use the previous
lemma). Obviously, CSP(B,R) can be reduced to CSP(C) = CSP(B,R ∪
const(1)) where const(1) = {(1)} is the unary constant 1. In the following, the
letter R can stand for any relation R ∈ RC with the exception of const(1).

Let now A be a relational structure similar to C. First note that by slightly
abusing notation, we can consider const(1)A to be identical with the set {a ∈ A :
(a) ∈ const(1)A}. We want to iteratively construct a homomorphism f : A→ C.
Obviously, if x ∈ const(1)A then f(x) = 1. This statement defines a map
f1 : const(1)A → C. If this is not a homomorphism then there obviously can be
no f : A→ C and so we are done. Assume thus that f1 is a homomorphism from
the substructure of A induced by the set const(1)A. Such mappings are called
partial homomorphisms and will play an important role later in the bounded
width theory. If const(1) = A then we are done, otherwise we want to extend
f1.

This extension has two steps. In the first step, we transform the problem
so that there is no (a1, . . . , ak) ∈ RA such that for some i it is f1(ai) = 1.
Assume that a1, . . . , al ∈ const(1)A for 0 < l < k (we can permute rela-
tions). The condition is (1, . . . , 1, f(al+1), . . . , f(ak)) ∈ RC. Consider the re-
lation RC

l+1,...,k = {(cl+1, . . . , ck) : (1, . . . , 1, cl+1, . . . , ck) ∈ RC} Our condition

is equivalent with (f(al+1), . . . , f(ak)) ∈ RC
l+1,...,k. Therefore, we can remove

(a1, . . . , ak) from RA and add to the signature a new relation Rl+1,...,k defined
in A as RA

l+1,...,k = {(al, . . . , ak)} and in C as the above RC
l+1,...,k. We can do

this for every tuple (a1, . . . , ak) ∈ RA, finally obtaining (in polynomial time) a
situation where no (a1, . . . , ak) ∈ RA contains ai, f1(ai) = 1. We have modified
both structures A,C but it is easy to see that these changes can not turn a
non-homomorphism f : A→ C to a homomorphism or vice versa.

In the second step of our extension procedure, we eliminate all nonempty
RC such that (0, . . . , 0) 6∈ RC. Let us have one such RC. Then we take r =∧
RC = r1 ∧ r2 ∧ · · · ∧ rm where {r1, . . . , rm} = RC. Because RC is ∧-invariant

(and ∧ is associative), we know that r ∈ RC. As r 6= (0, . . . , 0), it is for some
index i true that (s1, . . . , sk) ∈ RC ⇒ si = 1. Observe now that R-satisfaction

1.2. CSP FOR RELATIONAL STRUCTURES 25

can be emulated by putting all s ∈ A such that Ai−1×{s}×Ak−i∩RA 6= ∅ into
const(1)A, replacing RC with RC

1,...,i−1,i+1,...,k, and replacing the relation RA

with {(s1, . . . , si−1, si+1, . . . , sk) : (s1, . . . , sk) ∈ RA}. Thus we have enlarged
the set const(1)A and obtained a mapping f2 : const(1)A → C. After checking
that f2 is indeed a partial homomorphism, we can again extend const(1)A,
obtaining f3, and so on.

Assuming that f1, f2, . . . are all partial homomorphisms, when can we no
longer extend const(1)A? This only happens if for all nonemptyRC it is (0, . . . , 0) ∈
RC. But thanks to the first step we can assume that (a1, . . . , ak) ∈ RA ⇒
a1, . . . , ak 6∈ const(1)A. Thus we can define f : A → B as f(x) = 1 for
x ∈ const(1)A and f(x) = 0 otherwise. Because for all nonempty RC it is
(0, . . . , 0) ∈ RC, f is a homomorphism iff for all R it is RC = ∅ ⇒ RA = ∅. But
that is a necessary condition for the existence of any homomoprhim A→ B. So
A ∈ CSP(B) iff f is a homomorphism and the problem is solved.

We shall leave to the reader to verify that the running time of all extension
procedures can be limited by some polynomial of |A|. Because we have done at
most |A| extensions, the whole algorithm is polynomial-time.

Remark 1.2.50. The preceding proof might seem too complicated to the
reader. This is because we wanted to make sure that we know what is go-
ing on when solving CSP(B). As we shall see, there is also a more general proof
of this lemma stemming from the bounded width theory. This later proof will
have the advantage of being less technical while using the same intuitive ideas.

Lemma 1.2.51. If B admits p then CSP(B) is in P.

Proof. Here, each nonempty R is an affine space over Z2. To see this, take a
nonempty R and fix r ∈ R. Then for any s, t ∈ R it is r + s+ t = p(r, s, t) ∈ R
where the addition is the addition in Zk2 . Because we are operating over a field
of characteristic two, we have

r + (s− r) + (t− r) = r + s+ t ∈ R,

so R− r = {s− r : s ∈ R} is a subspace of Zk2 . This subspace can be described
using standard linear algebra methods: There exists a set of vectors u1, . . . , um
(basis of the space perpendicular to R− r) such that for x ∈ Zk2 it is x ∈ R− r
iff the product 〈x, ui〉 is zero for all i.

Now all homomorphisms f : A→ B have to satisfy the condition (a1, . . . , ak) ∈
RA ⇒ (f(a1), . . . , f(ak)) ∈ RB. Every tuple (a1, . . . , ak) ∈ RA then, by the
above paragraph, translates into a set of linear equations (over Z2) of the form
〈(f(a1), . . . , f(ak)) − r, ui〉 = 0. The CSP problem is then equivalent to solv-
ing a set of linear equations given by all such tuples (a1, . . . , ak) ∈ RA for all
R. There are numerous methods (most basic being the Gauss elimination) for
solving such a set in polynomial time.

We will solve the case when B admits a majority operation by building the
general theory of bounded width. For now, we just claim that if B admits m
then indeed CSP(B) is in P, finishing the dichotomy proof.

26 CHAPTER 1. PREFACE

Theorem 1.2.52. If B is a binary relational structure then CSP(B) is either
NP-complete or in P.

1.3 Bounded width theory

The basic idea of the bounded width theory is to transform CSP(B) into a
simpler question: Instead of one complete homomorphism we want a nice set
of partial homomorphisms, called a (j, k)-strategy. If A ∈ CSP(B) then there
always exists a (j, k)-strategy, but the converse implication is not true in general.
However, for some B’s, these partial homomorphisms are all that is needed to
produce a full homomorphism.

Recall from the previous section that for A,B relational structures and C ⊂
A, f : C → B is a partial homomorphism if it is a homomorphism C → B
where C is the substructure of A induced by the set C. If f, g are partial
homomorphisms then we say that g is an extension of f and f is a subfunction
of g, writing f ⊂ g, if domf ⊂ domg and g|domf = f . We shall also often use
the notation R|K , where R is an n-ary relation and K ⊂ {1, 2, . . . , n}, |K| = k

to mean the relation R|K = {(ri1 , ri2 , . . . , rik)|(r1, . . . , rn) ∈ R} ⊂ Ak, where
i1 < i2 < · · · < ik are the elements of K. This is consistent with treating tuples
as functions {1, . . . , n} → A.

Definition 1.3.1. Let A,B be similar relational structures, 0 ≤ j < k integers.
A nonempty set H of partial homomorphisms A→ B is a (j, k)-strategy if:

• H is closed under taking subfunctions

• H has the (j, k)-forth property, that is ∀f ∈ H such that |dom(f)| ≤ j
and for all K ⊂ A such that dom(f) ⊂ K and |K| ≤ k there exists
g ∈ H,dom(g) = K, f ⊂ g. That is, all “small” f ’s in H can be extended
to g, |dom(g)| ≤ k.

Observation 1.3.2. If A ∈ CSP(B) then for any j, k there exists a (j, k) strat-
egy for A and B.

Proof. Let f : A → B be a homomorphism. Then all we have to do is take
H = {f|K |K ⊂ A} and verify that (i) and (ii) hold.

Definition 1.3.3. We say that B has relational width (j, k) if

CSP(B) = {A|There exists a (j, k)-strategy for A and B.}.

Remark 1.3.4. If B has relational width (j, k) and k is smaller than the arity
of the relation R ∈ RB, then we can effectively ignore this relation when making
an (j, k) strategy. This means that R is not very important (for example, it can
be the full relation), because the condition A ∈ CSP(B) does not depend on
what RA looks like.

1.3. BOUNDED WIDTH THEORY 27

Definition 1.3.5. B has relational width j if ∃k such that B has relational
width (as defined above) (j, k). We say that B has bounded width if there exists
a finite j such that B has relational width j.

The above definition introduces a slight inconsistency in terminology because
we now have two meanings for the term relational width. Fortunately, the two
are usually easy to tell apart.

Algorithm 1.3.6 (Local Consistency). For any A, B relational structures and
0 ≤ j < k integers we can in polynomial time (measured in the size of A, we
consider j, k,B fixed) construct a (j, k)-strategy or show that no such strategy
exists (i.e. A 6∈ CSP(B)).

Proof. Let H = {f : A → B|f partial homomorphism, |dom(f)| ≤ k}. This set
can be constructed by brute-force methods, as it has cardinality polynomial in
the size of A (an easy upper bound would be |A|k+1|B|k+1). It is easy to see
that this H must contain a (j, k)-strategy, if such a thing exists.

We shall now remove homomorphisms from H until it becomes a (j, k)-
strategy or there is nothing left: We search through H and for each f ∈ H
check whether H satisfies first and second condition for (j, k)-strategy when
checked at f . If not then we remove this f and start searching anew.

The maximum run-time of all such checks can be bounded by a polynomial
and as we run at most polynomially many checks, the whole algorithm is poly-
nomial. If at the end it is H = ∅ then the program has shown that there can
not be any (j, k)-strategy (If S ⊂ H is a (j, k) strategy, then our program will
never delete any member of S.), otherwise H is a valid (j, k)-strategy.

Remark 1.3.7. The existence of the above algorithm implies that if B has
bounded width, then CSP(B) is in P, because we just have to check for (j, k)
strategies for some j, k.

Having established the general theory, let us look at the case when B admits
a near-unanimity operation. We want to show that then B has bounded width.

Lemma 1.3.8. Let R be an n-ary relation invariant under a k-ary near-unanimity
operation t. Then for all r ∈ An we have r ∈ R iff for all |K| < k,K ⊂
{1, 2, . . . , n}, it is r|K ∈ R|K .

Proof. Thorough the proof we will assume that K ⊂ {1, 2, . . . , n}. We shall
proceed by induction and show that if for a given r and for all |K| < l it is
r|K ∈ R|K then ∀|K| ≤ l it is r|K ∈ R|K , starting with l = k. When l = n, we
will be done.

Assume that we have r such that ∀|K| < l, r|K ∈ R|K , let (without loss
of generality) K = {1, 2, . . . , l}. We need to show that r|K ∈ R|K . Be-
cause r|{2,...,l} ∈ R|{2,...,l}, we know that there exists s1 ∈ R such that s1 =
(?, r2, r3, . . . , rl, ?, ?, . . . , ?) ∈ R. Here the question marks denote unknown ele-
ments ofA. In general, there exists si = (r1, . . . , ri−1, ?, ri+1, . . . , rl, ?, ?, . . . , ?) ∈
R for each i ≤ k. Let us take t(s1, . . . , sk):

28 CHAPTER 1. PREFACE

(?, r2,r3,. . . ,rl,?, ?, . . . , ?)∈ R
(r1, ?, r3,. . . ,rl,?, ?, . . . , ?)∈ R

...
...

...
(r1,r2,r3,. . . , ?, ?, ?, . . . , ?)∈ R

(r1,r2,r3,. . . ,rl,?, ?, . . . , ?)∈ R

Notice that t(s1, . . . , sk)|K = r|K and so r|K ∈ R|K , concluding our proof.

Corollary 1.3.9. Let Γ be a relational clone admitting a k-ary near-unanimity
polymorphism. Then Γ = 〈Γ|<k〉, where Γ|<k consist of all relations of Γ whose
arity is less than k.

Proof. One inclusion is obvious. To see that Γ ⊂ 〈Γ|<k〉, use the previous
lemma. First of all, for any n-ary relation R ∈ Γ we can rewrite the relation
(a1, . . . , ak−1) ∈ R|{1,...,k−1} using a primitive positive formula as ∃ak, . . . , an, (a1, . . . , an) ∈
R and the same can be done for any R|K . Thus RK ∈ Γ|<k for all |K| < k.
We also have that (a1, . . . , an) ∈ R iff for all |K| < k it is (a1, . . . , an)|K ∈ R|K ,
that there are only finitely many such K’s and that R|K are in 〈Γ|<k〉. Thus R
is a conjunction of finitely many terms from 〈Γ|<k〉 and so R ∈ 〈Γ|<k〉.

Lemma 1.3.10. Let B be a relational structure with an r-ary near-unanimity
polymorphism t. Then B has relational width r − 1.

Proof. We want to proceed by induction, producing a (j+1, j+2)-strategy from
(j, j + 1)-strategy. At the beginning, let j = r − 1 and let H be a (j, j + 1)-
strategy.

We shall now make two observations. First, we can assume that RB is a
relational clone and so, thanks to the above corollary, RB = 〈RB

|<r〉. Thus all
we have to worry about are relations of arity less than r.

Our second observation is that instead of H we can take a closure H of H
under t. Formally, we define H as the union of all sets Hi such that H0 = H
and

Hi = {t(f1, . . . , fr)|∀i, fi ∈ H,∀i, j, dom(fi) = dom(fj)}.
By idempotency of t, we get H0 ⊆ H1 ⊆ H2 ⊆ . . .

Because t is a near-unanimity polymorphism, H ⊂ H and H is a set of
partial homomorphisms. It is also a (j, k)-strategy: If for all i it is gi ⊂ fi and
dom(gi) = I, dom(fi) = J then t(g1, . . . , gr) ⊂ t(f1, . . . , fr) and the domain of
the first function is I and domain of the second is J . This means that we can
take subfunctions. Similarly, to get an extension, it is enough to extend each of
the functions gi. Notice that this construction can be generalised: If we wished,
we could construct the closure of H under all polymorphisms of B in similar
fashion.

For each f ∈ H and each aj+2 such that aj+2 6∈ domf = {a1, . . . , aj+1} we
want to add to H a function h ⊃ f such that domh = {a1, . . . , aj+2}. Denote

1.3. BOUNDED WIDTH THEORY 29

f(ai) = bi. From the (j, j + 1)-forth property, we know that in H are also the
following functions (the “–” symbol means “undefined” and ci’s are unknown
values):

f : b1 b2 . . . br . . . bj+1 –
g1 : – b2 . . . br . . . bj+1 c1
g2 : b1 – . . . br . . . bj+1 c2

...
...

gr : b1 b2 . . . – . . . bj+1 cr

Let now h be a mapping defined on {a1, . . . , aj+2} by h(ai) = bi for i ≤ j+1
and h(aj+2) = t(c1, . . . , cr). Obviously, f ⊂ h. We claim that all subfunctions
of h are in H and that h is a partial homomorphism. It is h|{a1,...,aj+1} = f
so the interesting case is removing ai, i ≤ j + 1. Without loss of generality,
let i = 1. From each gi we can obtain a function g′i by removing a1 from the
domain and replacing it with ai using the (j, j + 1)-forth property. We then
have the following functions in H:

g1 : – b2 . . . br . . . bj+1 c1
g′2 : – ? . . . br . . . bj+1 c2

...
g′r : – b2 . . . ? . . . bj+1 cr

t(g1, g
′
2, . . . , g

′
r) : – b2 . . . br . . . bj+1 t(c1, . . . , cr)

Again, we don’t have to care about the question marks because t is a near
unanimity operation. We see that t(g1, g

′
2, . . . , g

′
r) = h|{a2,...,aj+2} and because

H is closed under t we have h|{a2,...,aj+2} ∈ H.
Why is h a homomorphism? As we wrote above, it is enough to check

relations of arity at most r−1 ≤ j. Then h is a partial homomorphism iff all its
restrictions to r − 1 elements are partial homomorphisms. But |domh| = j + 2
and all its restrictions are in H, so h must be a homomorphism.

After adding h’s for all f ∈ H such that |dom(f)| = j+1 we obtain a set H ′

of partial homomorphisms that is a (j+ 1, j+ 2)-strategy. We can close this H ′

under t to obtain H ′ and continue. In the end, we get a (|A| − 1, |A|)-strategy
that contains a full homomorphism A→ B.

Let us now return to the case of B binary relational structure. Obviously, m
is a near-unanimity operation and so B admitting m has width 2 and CSP(B)
is in P. We can also again consider the case of binary ∧ and provide a more
compact proof of the fact that CSP(B) is in P.

Theorem 1.3.11. (Binary ∧ revisited) If B is a binary relational structure that
admits the polymorphism ∧ then B has relational width 1.

Proof. Let k be the maximum arity of RB or 2, whichever is greater. Let H be
a (1, k)-strategy. As before, we can assume that H is closed under ∧. Denote
H{a} = {f ∈ H : dom(f) = {a}} where a ∈ A. Now let f(a) =

∧
H{a} for each

a. We claim that f is a homomorphism.

30 CHAPTER 1. PREFACE

Figure 1.9: Oriented path

LetR be an n-ary relation. When (a1, . . . , an) ∈ RA we want (f(a1), . . . , f(an)) ∈
RB. Obviously, the map defined only on {ai} as f(ai) is in H. Thus, using the
(1, k)-forth property, we can for each i find the following set of maps (as usual,
question marks are unknown elements):

value at a1 a2 . . . an−1 an
g1 : f(a1) ? . . . ? ?
g2 : ? f(a2) . . . ? ?
gn : ? ? . . . ? f(an)

n∧

i=1

gi : f(a1) f(a2) . . . f(an−1) f(an)

Here we have used the fact that gi’s restrictions are all in Haj and f(a) =

∧
Hi{a}. BecauseH is closed under ∧, we have

n∧

i=1

gi ∈ H and so (f(a1), . . . , f(an)) ∈

RB, concluding the proof.

As a side note, it is not known whether there is a structure with relational
width strictly 3.

Exercise 1.3.12. Show that any binary B admitting one of 0, 1,∨ has bounded
width.

Exercise 1.3.13. Show that there is a binary B that admits p yet does not
have bounded width.

Exercise 1.3.14. Show that oriented paths (graphs as in Figure 1.3) have
bounded width 1.

Exercise 1.3.15. Show that directed cycles (see Figure 1.3) have bounded
width strictly 2.

1.4 CSP for algebras

In this section, we shall generalise the CSP, our goal is to strenghten the con-
nection with universal algebra. Let us begin be giving another definition of an
instance of CSP. Our new definiton shows where the name “constraint satisfac-
tion” came from:

Definition 1.4.1. An instance of CSP is a triple (V,A, C), where:

1.4. CSP FOR ALGEBRAS 31

Figure 1.10: Directed cycle

• V is the set of variables

• A is the domain set

• C is the set of constraints: Each C ∈ C is a pair C = (S,R) such that
S ⊂ V is the scope of C and R ⊂ AS is the constrain relation.

We also demand that all sets are finite. The solution of an instance of CSP
is a map f : V → A such that ∀(S,R) ∈ C, f|S ∈ R.

As we shall see, we can straightforwardly translate this definition into the
language of relational structures and back. We shall give the precise proof in
a moment, for now just notice that the constraints correspond to tuples than
must be mapped in a suitable relation.

This definition opens the way for another approach to CSP: Let Γ be a set of
relations on the set A. Then an instance of CSP(Γ) is any instance of CSP (from
the above definition) such that for all (S,R) ∈ C it is R ∈ Γ after a suitable
ordering of elements of S (ordering defines a bijection RS → R|S|). The ordering
part can be confusing, but it is merely a technical problem. We usually demand
that Γ be finitely defined, otherwise CSP(Γ) is a relative decision problem, that
is, we must trust that the input is acutally a valid instance of CSP(Γ).

Proposition 1.4.2. If Γ is a finite set of relations on the set A then CSP(Γ)
is poly-time equivalent to CSP((A,Γ)), the latter being a CSP problem for rela-
tional structures.

Proof. Let A = (A,Γ). We show how translate instance of one problem to an
instance of another in polynomial time to the size of the instance.

Let us have an instance (V,A, C) of CSP(Γ). We want to find the corre-
sponding instance of CSP((A,Γ)). Let in the beginning B = (V,Γ), and all the
relations in ΓB be empty relations. Notice that every scope S of a constraint
(S,R) has by definition an ordering (such that after this ordering it is R ∈ Γ)

32 CHAPTER 1. PREFACE

u

v

w
H G

Figure 1.11: Going from one CSP to another

associated to it and we can view the ordered set S ⊂ V as a tuple. For every
(S,R) ∈ C we add this tuple S into RB.

After we add all the constraints, we obtain some B such that f : B → A is
a homomorphism iff for every S scope of (S,R) it is f(S) ∈ R (we again view
S as a tuple and R as a subset of A|S|). This condition is precisely the same as
f|S ∈ R, so we have a polynomial-time reduction of CSP(Γ) to CSP((A,Γ)).

On the other hand, if B = (B,ΓB) is a relational structure, then for every
(b1, . . . , bk) ∈ RB we create a new constraint ({b1, . . . , bk}, R) where R is the
subset of A{b1,...,bk} corresponding in the natural way to RA ⊂ Ak. It is easy to
see that the resulting instance (V,A, C) has a solution iff B ∈ CSP((A,Γ)).

To make the above proof a bit easier to swallow, we now present an example
of turning an instance of CSP((A,Γ)) to an instance of CSP(Γ)

Example 1.4.3. Let Γ contain only one relation: the set EG of all edges of a
graph G on the vertex set A. Then G = (A,Γ) is a relational structure. Given
a graph H = (V,EH), we produce for each (u, v) ∈ EH the new constraint
Cuv with scope Suv = {u, v} and the constraint relation (f(u), f(v)) ∈ EG,
obtaining an instance of CSP (V,A, C).

We will now define CSP for a finite algebra A in two ways: For relational
structures and for CSP(Γ). Both notions are quite similar, only the language is
different. Also, the first set of definitions is more elementary and thus perhaps
easier to understand..

Definition 1.4.4. Let A = (A,F) be an algebra. We say that a relational
structure (A,R) is compatible with A if it is R ⊂ Inv(F), i.e. F ⊂ Pol(R).

Definition 1.4.5. Let A be an algebra. Then

CSP(A) = {(A,B)|B is compatible with A and A ∈ CSP(B)}.
We say that A is globally tractable if CSP(A) is in P and that A is locally

tractable if for every B compatible with A, CSP(B) is in P. It is not known
whether there is an algebra that is locally tractable but not globally tractable.

1.4. CSP FOR ALGEBRAS 33

We now give the second definition of CSP for algebras. Strictly speaking,
this problem is different from the CSP(A) given above (it is not a subset of pairs
of relational structures), but both notions are poly-time equivalent and we shall
use them interchangingly.

Definition 1.4.6. If A is an algebra then CSP(A) = CSP(Inv(A)).

If Γ is a set of relations then we say that Γ is globally tractable if CSP(Γ) is
in P. We say that Γ is locally tractable if for every finite Γ0 ⊂ Γ, CSP(Γ0) is in P.
An algebra A is globally resp. locally tractable iff Inv(A) is globally resp. locally
tractable. Thanks to Proposition 1.4.2 we have the following observation:

Observation 1.4.7. An algebra A is locally resp. globally tractable according to
the first definition iff it is locally resp. globally tractable according to the second
definition.

We shall often reduce CSP of one algebra to CSP of another algebra. It is
important to notice that there are actually two kinds of reductions:

Definition 1.4.8. If for every A compatible with an algebra A exists a B com-
patible with an algebra B such that CSP(A) is poly-time reducible to CSP(B),
then we say that CSP(A) is locally reducible to CSP(B).

Notice that the reducing algorithm need not be the same for each CSP(A).

Definition 1.4.9. If there exists a polynomial algorithm that for every instance
of CSP(A) produces an instance of CSP(B) such that the first instance has a
solution iff the other has a solution, then we say that CSP(A) is globally reducible
to CSP(B).

We shall use local reduction in situations where the globall reduction al-
gorithm provides us with a suitable B for any A but it is not polynomial.
Notice that if there is A compatible with A such that CSP(A) is hard (say,
NP-complete) and A is locally reducible to B then there is a B compatible with
B then CSP(B) is also hard and so CSP(B) is at least as hard as CSP(A).

Lemma 1.4.10. Let B = (B,R) be a relational structure, B = (B,Pol(R)) its
algebra. Then whenever A is compatible with B, CSP(A) is poly-time reducible
to CSP(B).

Proof. Let A = (B,S). We know that S ⊂ Inv(Pol(R)) = 〈R〉. Thus 〈S〉 ⊂ 〈R〉
and the result follows from Theorem 1.2.22.

One advantage of considering CSP for algebras is that it goes well together
with our previous results about structures admiting certain operations. For
example, if A has a k-ary near unanimity operation then for all A compatible
with A, CSP(A) has width k − 1 (due to Lemma 1.3.10) and so A is locally
tractable.

We are going to generalise the theory of bounded width for algebras and also
show that some algebras’ CSP is NP-complete. We shall also show that A from
the above paragraph is even globally tractable.

34 CHAPTER 1. PREFACE

Definition 1.4.11. An instance (V,A, C) is k-minimal if

• ∀K ⊂ V, |K| ≤ k ⇒ ∃(S,R) ∈ C such that K ⊂ S.

• ∀(S1, R1), (S2, R2) ∈ C,K ⊂ S1 ∩ S2, |K| ≤ k ⇒ R1|K = R2|K .

The notion of k-minimal instance, while slightly more complicated, is quite
similar to the notion of (j; k)-strategy.

Definition 1.4.12. An algebra A has relational width k if every k-minimal
instance of A in which all constraint relations are non-empty has a solution.

Algorithm 1.4.13 (Local Consistency). Every instance of CSP can be reduced
to a k-minimal instance in polynomial time (for k fixed, i.e. not part of the
input) so that the original has a solution iff the reduced instance has a solution.
Also, if our original instance’s relations were in Inv(A) for some algebra A then
so are the relations of the produced k-minimal instance.

Proof. First, for every K ⊂ V, |K| = k take (K,Ak) as new constraints. This
is an easy way to ensure that the first condition is met without changing the
solution. Now we must remove tuples from constraint relation so that we sat-
isfy the second condition – we do this by brute force checking all the pos-
sible (S1, R1), (S2, R2),K and removing from R1 all the tuples r such that
r|K ∈ R1|K \R2|K . The number of checks necessary is polynomial in the size of
(V,A, C).

Observe that the added constraints do not limit the solution in any way and
that when we remove a tuple from a constraint relation then the tuple can not
be used by a solution anyway. So our new instance has a solution iff the original
instance has a solution.

It remains to see that the new relations are all in Inv(A). The newly added
constraints (K,Ak) are certainly A-invariant, so it remains to check that we
did not break anything by removing tuples. Assume that l-th removal of tuples
has violated the A-invariance and that l is the smallest such number. Let, as
above, (S1, R1), (S2, R2), K be the witness for the removal. Then for some
r1, . . . , rn ∈ R1 and some n-ary operation f of the algebra we have removed r =
f(r1, . . . , rn) and kept ri’s. But that can only happen if r|K is superfluous (i.e.
r|K 6∈ R2|K) and ri|K ’s are not. But this means that ri|K ∈ R2|K and because
of f -invariance of R2, it is r|K = f(r1|K , . . . , rn|K) ∈ R2|K , a contradiction.

Corollary 1.4.14. If A has relational width k then A is globally tractable
(CSP(A) is in P).

The above algorithm has strong similarity to the local consistency algorithm
from previous section, the one that produced a (j, k)-strategy for a given rela-
tional structure. For example, in the proof of the next theorem we will produce a
(j−1, j)-strategy using a j-minimal presentation. However, the precise relation
between the relational width of structures and algebras is as yet unclear:

Open problem 1.4.15. Let A be a finite algebra such that every A compatible
with A has relational width k. Does it follow that A has relational width k?

1.4. CSP FOR ALGEBRAS 35

Theorem 1.4.16. If A admits r-ary local unanimity operation t then A has
relational width r.

Proof. Due to proof of Lemma 1.3.10 it is enough to show that any r-minimal
nonempty instance of CSP(A) admits a (r − 1, r)-strategy. But that is easy:
Take the set

⋃{R|K |K ⊂ S, (S,R) ∈ C, |K| ≤ r}. It is easy to verify that this is
a (r− 1, r)-strategy which can be, using the method from the proof of Theorem
1.3.10, extended to a (|V | − 1, |V |)-strategy.

Remark 1.4.17. Inspired by the case of relational width for relational struc-
tures, one might hope to prove that A from the above theorem has relational
width r−1. That is, however, not true: Consider the algebra A = {a, b, c, d, e, f}
with R1 = {(a, b)(c, d)}, R2 = {(e, b), (f, d)} and R3 = {(f, a), (e, c)}. These re-
lations are invariant under any t(x, y, z) near-unanimity. Taking V = {1, 2, 3}
and constraints ((2, 3), R1), ((1, 3), R2), ((1, 2), R3), we have a nonempty 2-minimal
instance that does not have a solution.

Our previous theorems about binary relational structures can be extended
to binary algebras as well:

Theorem 1.4.18. Let A be an algebra, |A| = 2. Then CSP(A) is NP-complete
iff all terms of A are projections or permutations of projections and CSP(A) is
in P (globally tractable) otherwise.

Proof. The first case is a direct consequence of Lemma 1.2.45. We also know
that in the other case CSP(A) is globally tractable: Depending on which of the
terms 0, 1,∨,∧,p,m are contained in A, we just run the correct (polynomial-
time) algorithm to solve all the instances of CSP(A). [something is missing
here]

Recall that in universal algebra, if C is a class of algebras then SC is the class
of all subalgebras of algebras of C, PC the class of all the powers of algebras of C,
PfinC the class of all the finite powers of algebras of C and HC is the class of all
homomorphic images of algebras of C. Then the variety of C is the class HSPC. It
is the smallest class of algebras containing C closed under homomorphic images,
subalgebras and powers. This is a very important construction in universal
algebra.[something is missing here]A variety is called locally finite if every its
finitely generated algebra is finite.[something is missing here]

Now we want to show that if B is an algebra and A ∈ HB ∪ SB ∪ PfinB
then CSP(A) is locally reducible to CSP(B). This will mean that CSP of all the
algebras in HSPfinB is locally reducible to CSP of B. We shall do so in three
lemmas, some of which offer even a global reduction.

Lemma 1.4.19. If A is a subalgebra of B then CSP(A) is globally poly-time
reducible to CSP(B).

Proof. Let us have A = (A,RA) compatible with A. By adding more elements
to A, we obtain the structure B = (B,RA). We claim that C ∈ CSP(A) iff
C ∈ CSP(B).

36 CHAPTER 1. PREFACE

Let f : C → A be a homomorphism. Then by extending the range set
we obtain a homomorphism C → B. If, on the other hand, f : C → B is a
homomorphism and f(c) ∈ B \ A then c can not lie in any relation (because
f(c) does not lie in any relation). Choose an element a ∈ A (remember that
algebra can not be empty) and consider g : C → A defined as g(c) = f(c)
for f(c) ∈ A and g(c) = a otherwise. Then g is a homomorphism and we are
done.

Lemma 1.4.20. For any n ∈ N, CSP(An) is globally poly-time reducible to
CSP(A)

Proof. Let us have I = (V,An, C) instance of CSP(An). Take any (S,R) ∈
C. For each n, we have an isomorphism (An)S ' A[n]×S where [n] is the set
{1, 2, . . . , n}; instead of r(s) = (r1(s), . . . , rn(s)) we can take r′(i, s) = ri(s). For
each R ⊂ (An)S , let R′ denote the image of R under this isomorphism. Consider
the set C′ = {([n]×S,R′)|(S,R) ∈ C} and the instance I ′ = ([n]×V,A, C′). This
is an instance of CSP(A), because if R is An-invariant then R′ is A-invariant.

It remains to show that I has a solution iff I ′ has a solution. But that is easy:
A function f ∈ (An)V is a solution of the first problem iff the corresponding
function f ′ ∈ A[n]×V is a solution of the second problem.

Before stating the third lemma, let us remember that B is a homomorphic
image of A iff B ' A/θ where θ is a congruence on A, that is a relation invariant
under all the operations of A. (We could also write θ ∈ Inv(A) but the term
congruence is used much more often in this context.)

Lemma 1.4.21. Let A be an algebra, θ a congruence on A. Then CSP(A/θ)
is locally reducible to CSP(A)

Proof. Here, the degree of the polynomial bounding the run-time of the reduc-
tion will depend on the arity of the relations involved, so we do not construct a
global reduction.

Let A = (A/θ,RA) be a relational structure compatible with A/θ. We shall
define A′ = (A,RA′

) in the following way: For each n-ary R ∈ R let

RA′
=
⋃{

a1/θ × · · · × an/θ|(a1/θ, . . . , an/θ) ∈ RA} .

Note that we understand a/θ as a set here, so RA′
is an n-ary relation on A.

This is a set of “θ-blocks” (see figure). Because RA was invariant under A/θ,
each RA′

is a subalgebra of An.
We now claim that C ∈ CSP(A) iff C ∈ CSP(A′). Let first f : C → A be a

homomorphism. Then we take a representative for each θ-block and construct a
mapping g : C→ A′ such that g(c) = a iff f(c) = a/θ. This is a homomorphism
because when (c1, . . . , cn) ∈ RC then (f(c1), . . . , f(cn)) = ([a1], . . . , [an]) ∈ RA

and so (a1, . . . , an) ∈ RA′
. On the other hand, if g : C→ A′ is a homomorphism

then for each (c1, . . . , cn) ∈ RC we have ([g(c1)], . . . , [g(cn)]) ∈ RA, so f(c) =
[g(c)] defines a homomorphism f : C→ A and the proof is complete.

1.4. CSP FOR ALGEBRAS 37

A

A

R′

Figure 1.12: Blocks of θ

Notice that this correspondence is only local because “unpacking” of the
θ-blocks has time complexity O(|A|n) (where n is the maximum arity of R) in
the worst case.

Exercise 1.4.22. Prove in detail that RA′
are A-invariant.

We now mention one more lemma here, because it is of a kind similar to the
three previous ones. An unary polynomial of an algebra A is any map f : A→ A
such that there exists t in the functional clone 〈A〉 of A (i.e. t is a composi-
tion of projections and operations from A) such that p(x) = t(x, a1, . . . , an)
for some constants a1, . . . , an ∈ A. We can then define the algebra p(A) as
(p(A), {p(f(x1, . . . , xn))|f ∈ 〈A〉}) and the following lemma gives us a tool how
to go down from A to p(A) and still maintain an upper bound on complexity.

Lemma 1.4.23. CSP(p(A)) is locally poly-time reducible to CSP(A)

Proof. Let us take an instance I = (V, C) of CSP(p(A)). We want to produce
an instance I ′ = (V, C′) of CSP(A).

For each C = (S,R) ∈ C we define C ′ = (S,R′) where R′ is the subalgebra
generated by R in AS (this is the place where a global reduction would fail,
however if the arity of all R’s is bounded, this step still has polynomial time
complexity). Obviously, R ⊂ R′. We claim that p(R′) ⊂ R. Let r ∈ R′.
Then r = t(s1, . . . , sk) where t is an A-term and si belong to R. But then
p(r) = p(t(s1, . . . , sk)). We know that p◦ t is a term from p(A) and so p(r) ∈ R.

Now we want to show that I has a solution iff I ′ has a solution. Assume we
have a solution of I. Then because R ⊂ R′ it is also a solution of I ′. If now f

38 CHAPTER 1. PREFACE

is a solution of I ′, we take p ◦ f and claim that this is a solution of I. When
C = (S,R) is a constraint in I then f|S ∈ R′ and so p◦f|S ∈ p(R′) ⊂ R meaning
that we indeed have a solution.

If we are given a relational structure A = (p(A), RA) compatible with p(A)
then we obtain a reducion by taking A′ = (A, {R′|R ∈ RA}).

Recall that idempotent operations helped us to solve the case of binary
relational structures. We say that an algebra is idempotent if all its operations
are idempotent. We shall now use theorems from universal algebra to find a
class of idempotent algebras whose CSP is NP-complete.

Theorem 1.4.24. If every term of the nontrivial algebra A is a projection then
there exists A compatible with A such that CSP(A) is NP-complete.

Proof. We are more or less proving Lemma 1.2.45 again (under slightly different
conditions): A allows many relations so we can construct A so that CSP(A) is
one of known NP-complete problems.

Assume first that |A| = 2. Then we produce A such that CSP(A) is exactly
3-SAT, that is A = (A,R) where R consists of all the binary relations of arity
three.

If now |A| ≥ 3 then we produce A = (A,R) with R containing only one
relation R = {(a, b)|a, b ∈ A, a 6= b}, giving us the |A|-coloring problem which
is also NP-complete.

Definition 1.4.25. We say that t(x1, . . . , xn) is a weak near-unanimity opera-
tion if:

• n ≥ 2

• t(x, . . . , x) = x

• t(y, x, . . . , x) = t(x, y, x, . . . , x) = · · · = t(x, . . . , x, y)

Observe that every near-unanimity operation is also a weak near-unanimity
operation but the converse need not be true.

We shall now without proof introduce and use two universal algebra theo-
rems.

We say that a variety µ has a term t of certain properties (for example, a
weak near-unanimity term) iff every algebra A ∈ µ has such a term. For the
purposes of this lecture, Taylor term will be a little black box that either is
present in a variety or not. A type 1 will be a different kind of black box.

Theorem 1.4.26. If µ is an idempotent locally finite variety without a Taylor
term, then ∃A ∈ µ nontrivial algebra such that every term operation of A is a
projection.

Theorem 1.4.27. Let µ be a locally finite variety. Then the following are
equivalent:

• µ has a Taylor term.

1.5. FURTHER TOPICS 39

• µ has a weak near-unanimity operation.

• µ omits type 1.

Putting theorems 1.4.26 and 1.4.27 together we obtain the following theorem
whose formulation does not requie any universal algebra at all:

Theorem 1.4.28. If A is an idempotent algebra that has no weak near-unanimity
term then there exists A compatible with A such that CSP(A) is NP-complete.

Proof. If A has no weak near-unanimity term then A generates a locally finite
idepotent variety µ = HSPfin(A) that has no weak near-unanimity term. Now
Theorem 1.4.27 gives us that µ has no Taylor term and using Theorem 1.4.26 we
see that in µ there exists a nontrivial algebra B such that every term operation
of B is a projection. Using Theorem 1.4.24 we get that there exists B compatible
with B such that CSP(B) is NP-complete. Now we use the fact that CSP(B) is
locally reducible to CSP(A) to see that there exists A compatible with A such
that CSP(A) is NP-complete and the proof is done.

Note that it is not enough to demand that A does not contain a weak near-
unanimity operation, because operations can be composed to form a term.

The following conjecture would give us dichotomy for all algebras. Unfortu-
nately, the proof is unknown.

Conjecture 1.4.29. If the algebra A is not idempotent or it contains a weak
near-unanimity term then CSP(A) is in P.

1.5 Further topics

In this section we shall mention some more advanced results about CSP. It will
be mostly an overview with pointers to articles that dissect various problems in
more detail. Most of these articles are freely available online.

1.5.1 Mal’tsev term

Definition 1.5.1. We say that p(x, y, z) is a Mal’tsev term if

• p(x, x, y) = y

• p(x, y, y) = x.

An example of a Mal’tsev term would be the p operation on binary algebras,
in a general group we could take p(x, y, z) = xy−1z.

Theorem 1.5.2. If A has a Mal’tsev term then CSP(A) is in P.

The construction of an algorithm that solves such CSP(A) can be found in
the article [3]. The main ingredient there is the use of compact representation
of a relation – instead of full R, we consider only its subset that in a certain
sense generates R.

40 CHAPTER 1. PREFACE

1.5.2 Congruence distributivity

A lattice is distributive if for all x, y, z ∈ L it is x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Exercise 1.5.3. Show that a lattice is distributive iff ∀x, y, z ∈ L, x∨ (y∧ z) =
(x ∨ y) ∧ (x ∨ z).

We say that a variety µ is congruence distributive if for each A ∈ µ the lattice
of congruences on A is distributive. Notice that for congruences α, β, it is α∧β =
α∩β and (x, y) ∈ α∨β if there exists a chain of pairs (x, z1), (z1, z2), . . . , (zn−1, y)
such that each pair is in α or β. This observation allows us to prove another
characterisation of congruence distributive varieties.

Theorem 1.5.4 (Jónsson). A variety µ is congurence distributive iff there exist
ternary terms p0, p1, . . . , pn, so-called Jónsson terms, satisfying the identities:

• p0(x, y, z) = x

• pi(x, y, x) = x for all i.

• pi(x, x, y) = pi+1(x, x, y) for i even

• pi(x, y, y) = pi+1(x, y, y) for i odd

• pn(x, y, z) = z.

Proof. Assume first that µ is congruence distributive. Let A be the 3-generated
free algebra in µ. That is, the set of all terms using three variables (say, x, y, z)
such that the only identities in A are the ones that hold in the whole variety µ.

We now define three congruences α = Cg(x, y), β = Cg(y, z), γ = Cg(x, z)
as the congruences defined by identifying the respective pairs of variables. For
example, Cg(x, y) is the congruence obtained by assuming x = y. From the
congruence distributivity condition, we obtain that

(α ∨ β) ∧ γ = (α ∧ γ) ∨ (β ∧ γ)

Because (x, z) ∈ γ and (x, z) ∈ α∨β (because from x = y and y = z follows that
x = z), we have that (x, z) ∈ (α ∧ γ) ∨ (β ∧ γ). This means that there exists a
chain of pairs (x, p1), (p1, p2), . . . , (pn−1, z) such that without loss of generality
(p2i, p2i+1) ∈ α ∧ γ and (p2i+1, p2i+2) ∈ β ∧ γ, see figure.

As noted above, the elements of A are actually terms on three variables,
so we can write each pi(x, z, y) as a composition of operations in µ. Note
that pi is not yet a function, just a sequence of operation symbols. How-
ever, we claim that for each B ∈ µ and each choice of x, y, z ∈ B, the terms
x, p1(x, y, z), . . . , pn−1(x, y, z), z as evaluated in B are Jónsson. (Note that we
can identify x with the projection p0(x, y, z) = x.)

At this point, we should note that by selecting x, y, z ∈ B, we obtain the
obvious homomorphism A → B, where every p(x, y, z) ∈ A gets mapped to its
evaluation in B. This means that all the identities in A are true in B and,

1.5. FURTHER TOPICS 41

...

x

z

p1(x, y, z)

p2(x, y, z)

pn−1(x, y, z)

pn−2(x, y, z)

α ∧ γ
β ∧ γ

p3(x, y, z)
α ∧ γ

Figure 1.13: Chain of relations

moreover, if x = y and (p, q) ∈ Cg(x, y), it is p(x, y, z) = q(x, y, z) in B. Details
of this construction can be found in [1].

Conditions (i) and (v) are trivial. Also, all the pairs (pi, pi+1) are in the
congruence γ and so, by transitivity, for each i it is (pi, x) ∈ γ, meaning that
after identifying x and z it is pi(x, y, x) = x, giving us (ii). When i is even, it
is (pi, pi+1) ∈ α and so pi(x, x, z) = pi+1(x, x, z), giving us (iii). Equality (iv)
follows in similar way from (pi, pi+1) ∈ β for i odd.

Conversely, let µ contain Jónsson terms p0, p1, . . . , pn for some n. Assume
that we have congruences τ, κ, σ on algebra A. We want to prove that then

(τ ∨ κ) ∧ σ = (τ ∧ σ) ∨ (κ ∧ σ).

We shall prove two inclusions, one of which is an easy exercise: Whenever
(a, b) ∈ (τ ∧ σ) ∨ (κ ∧ σ), it is (a, b) ∈ σ and (a, b) ∈ τ ∨ κ, meaning that
(a, b) ∈ (τ ∨ κ) ∧ σ.

The other inclusion is more difficult. First, we will prove a lemma:

Lemma 1.5.5. (τ ◦κ)∧σ ⊂ (τ ∧σ)∨ (κ∧σ), where τ ◦κ is the relation defined
by (x, y) ∈ τ ◦ κ iff ∃z, (x, z) ∈ τ, (z, y) ∈ κ.

Proof. Let (a, c) ∈ σ and let there exist b such that (a, b) ∈ τ, (b, c) ∈ κ. Be-
cause σ is pi-invariant relation and (a, a), (b, b), (a, c) ∈ σ, for each i we have
(pi(a, b, a), pi(a, b, c)) ∈ σ. But due to (ii), it is pi(a, b, a) = a, so (a, pi(a, b, c)) ∈
σ. Because σ is a congruence, it is symmetric and transitive and so (pi(a, b, c), pi+1(a, b, c)) ∈
σ. Similarly, for all i it is (pi(a, b, c), pi+1(a, a, c)) ∈ θ and (pi(a, b, c), pi+1(a, c, c)) ∈
κ.

If i is odd, it is pi(a, c, c) = pi+1(a, c, c) and so from transitivity we obtain
that (pi(a, b, c), pi+1(a, b, c)) ∈ κ. Similarly, for i even, it is (pi(a, b, c), pi+1(a, b, c)) ∈
θ. All in all, we have a chain of elements pi(a, b, c) from a to pn(a, b, c) = c (see
figure), proving that (a, c) ∈ (τ ∧ σ) ∨ (κ ∧ σ).

42 CHAPTER 1. PREFACE

τ

κ

σ

a

c

b

pi(a, b, c)

pi+1(a, b, c)

pi(a, c, c) = pi+1(a, c, c)

σ

κ ∩ σ

κ ∩ σ

σ

σ

Figure 1.14: Congruences

Observe now that

τ ∨ κ = τ ◦ κ ∪ τ ◦ κ ◦ τ ◦ κ ∪ . . .

and so it is enough to show that for each n it is (τ ◦ κ)n ∧ σ ⊂ (τ ∧ σ)∨ (κ∧ σ).
We will prove this by induction on n.

Let for ωn denote the relation ω ◦ · · · ◦ ω, where the number of ω’s is n. To
prove the theorem, we need to show that for each n positive integer it is

(κ ◦ τ)n ∧ σ ⊂ (κ ◦ τ) ∧ σ ⊂ (τ ∧ σ) ∨ (κ ∧ σ).

Notice that the second inclusion is precisely Lemma 1.5.5, so we only have to
prove the first inclusion.

The statement clearly holds for n = 1. Assume that it holds for some n.
Then for n+ 1 it is:

(κ◦τ)n+1∧σ = ((κ◦τ)n ◦ (κ◦τ))∧σ ⊂ ((κ◦τ)n∧σ)∨ ((κ◦τ)∧σ) ⊂ (κ◦τ)∧σ,

where the first inclusion follows from Lemma 1.5.5 and the second one follows
from the induction assumption.

Exercise 1.5.6. Prove in detail that for each τ, κ congruences it is

τ ∨ κ = τ ◦ κ ∪ τ ◦ κ ◦ τ ◦ κ ∪ . . .

1.5. FURTHER TOPICS 43

Theorem 1.5.4 allows us to say that a variety is CD(n) if it is congruence
distributive and the n is the minimum number of Jónsson terms from the above
theorem.

Exercise 1.5.7. We say that a variety µ is congruence permutive if for all
algebras A ∈ µ and all α, β congruences on A it is α ◦ β = β ◦ α. Prove that A
is congruence permutive iff A contains a Mal’tsev term.

Observation 1.5.8. If µ has a near-unanimity term then µ is congruence dis-
tributive.

Proof. Let t be a near unanimity term of algebra A ∈ µ. Let

p0(x, y, z) = t(z, x, x, x, . . . , x) = x

p1(x, y, z) = t(z, y, x, x, . . . , x)

p2(x, y, z) = t(z, z, x, x, . . . , x)

p3(x, y, z) = t(z, z, y, x, . . . , x)

...

pn(x, y, z) = z.

We claim that this is a set of Jónsson terms. It is obvious that (i), (ii) and
(v) hold. Furthermore, it is

p2i(x, x, y) = t(y, . . . , y, x, . . . , x) = p2i+1(x, x, y),

proving (iii), and

p2i+1(x, y, y) = t(y, . . . , y, x, . . . , x) = p2i+2(x, y, y),

proving (iv). The reader can easily verify that the number of x and y variables
is indeed the same on both sides.

Theorem 1.5.9. If B is an algebra in a CD(4) variety then every B compatible
with B has relational width at most the maximum arity of B.

For proof of this theorem, see article [2].

1.5.3 CSP for graphs

The graph homomorphism problem is for some time a point of interest of com-
binatorians. For an overview of combinatorial results about graph homomor-
phisms and their properties, see [4].

It turns out that there is not much more to CSP than graph homomorphisms,
as the following theorem shows:

Theorem 1.5.10. Balanced digraph homomorphism problem is poly-time equiv-
alent to CSP.

44 CHAPTER 1. PREFACE

For proof, see [something is missing here]
For some classes of graphs, we know precisely which CSP problems are in P

and which are NP-complete.

Theorem 1.5.11 (Nešetřil, Hell, 1990). For G symmetric graph, it is CSP(G)
in P iff G is bipartite. Otherwise, CSP(G) is NP-complete.

For proof, see [something is missing here]. Note that the original proof of
this theorem uses the combinatorial approach to CSP.

Theorem 1.5.12 (Bang-Jensen,1990). If G is an oriented graph without sources
and sinks then CSP(G) is in P iff G retracts to a disjoint union of directed cycles.
Otherwise, CSP(G) is NP-complete.

For proof, see [something is missing here]. This theorem was proved using
algebraic methods.

