Absorbing sets and where to find them

Alexandr Kazda

Department of Algebra Charles University, Prague

June 2nd, 2012

What is absorption

Definition (Libor Barto, Marcin Kozik)

Let $B \le A$ be algebras. We say that B absorbs A if there exists a term t in A such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, \dots, a) = a$$
$$t(a, b_2, b_3, \dots, b_n) \in B$$
$$t(b_1, a, b_3, \dots, b_n) \in B$$
$$\vdots$$
$$t(b_1, b_2, \dots, b_{n-1}, a) \in B$$

□→ < □→</p>

Ok, but what *is* absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

Ok, but what *is* absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

Ok, but what *is* absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

(日本)

Ok, but what *is* absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

▲ □ ▶ ▲ □ ▶ ▲

Ok, but what *is* absorption?

- If 0 is the minimal element of a finite semilattice (L, \wedge) then $\{0\}$ absorbs L; absorption term is $t(x_1, x_2) = x_1 \wedge x_2$.
- If A is an algebra with a majority term m then every singleton is an absorbing subalgebra; absorption term is m.
- If A is an algebra then always $A \leq A$.
- If A is an abelian group then A has no proper absorbing subalgebra.

< 🗇 > < 🖃 >

How to use it

- Absorption is useful for induction-style arguments (see Libor Barto and Marcin Kozik's CSP results).
- If we can absorb, we can often make counterexamples smaller.
- Example: Let P be a connected poset, let $Q \leq P$. Then Q is also a connected poset.

< 🗇 > < 🖃 >

How to use it

- Absorption is useful for induction-style arguments (see Libor Barto and Marcin Kozik's CSP results).
- If we can absorb, we can often make counterexamples smaller.
- Example: Let P be a connected poset, let $Q \leq P$. Then Q is also a connected poset.

・ 同 ト く 三 ト く

How to use it

- Absorption is useful for induction-style arguments (see Libor Barto and Marcin Kozik's CSP results).
- If we can absorb, we can often make counterexamples smaller.
- Example: Let P be a connected poset, let $Q \leq P$. Then Q is also a connected poset.

- 4 同 2 4 日 2 4 日 2

How to use it

- Absorption is useful for induction-style arguments (see Libor Barto and Marcin Kozik's CSP results).
- If we can absorb, we can often make counterexamples smaller.
- Example: Let P be a connected poset, let $Q \leq P$. Then Q is also a connected poset.

Image: A image: A

Where to find it

• People have been using absorption under different names:

- B. Larose, C. Loten, C. Tardif: A finite relational structure A has first order definable CSP iff R ≤ A^k for every k-ary R relation of A.
- M. Maróti, L. Zádori: The proof that CM implies CD for reflexive digraphs.

< 🗇 > < 🖃 >

Where to find it

- People have been using absorption under different names:
- B. Larose, C. Loten, C. Tardif: A finite relational structure A has first order definable CSP iff R ≤ A^k for every k-ary R relation of A.
- M. Maróti, L. Zádori: The proof that CM implies CD for reflexive digraphs.

Where to find it

- People have been using absorption under different names:
- B. Larose, C. Loten, C. Tardif: A finite relational structure A has first order definable CSP iff R ≤ A^k for every k-ary R relation of A.
- M. Maróti, L. Zádori: The proof that CM implies CD for reflexive digraphs.

・ 同・ ・ ヨ・

Thanks for your attention.

*ロ * * @ * * 注 * * 注 *

æ