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Where are we going

A finite relational structure A is conservative if it contains all
possible unary relations.

Denote A the algebra of idempotent polymorphisms of A.

We show: If A contains a Taylor operation then A generates a
congruence meet semidistributive variety.

CSP translation: If CSP(A) is not obviously NP-complete,
then local consistency checking solves CSP(A).
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Shoulders of giants

A. Bulatov: dichotomy for general conservative CSP

L. Barto: proof of dichotomy using absorption

P. Hell, A. Rafiey: combinatorial characterization of tractable
conservative digraphs which implies our result
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Polymorphisms on pairs

If A is conservative and a, b ∈ A then A contains some
polymorphism f such that f is semilattice, majority or
minority on a, b . . .

. . . otherwise all operations on {a, b} are projections. . .

. . . and so A has no Taylor operation.
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Colors

We color a pair a, b ∈ A:

red if it admits a semilattice, else. . .

. . . yellow if it admits the majority operation, else. . .

. . . we color the pair blue if it admits a minority.
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Colors

Theorem (Bulatov, shortened)

There are polymorphisms f (x , y), g(x , y , z), h(x , y , z) ∈ Pol(A)
such that for every two-element subset B ⊂ A:

f|B is a semilattice operation whenever B is red, and
f|B(x , y) = x otherwise,

g|B is a majority operation if B is yellow and g|B(x , y , z) = x
if B is blue

h|B is a minority operation if B is blue.
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Blue is bad

If we had no blue vertices, we could use the previous theorem
to define 3ary and 4ary WNUs:

u(x , y , z) = g(f (f (x , y), z), f (f (y , z), x), f (f (z , x), y))

v(x , y , z , t) = g(f (f (f (x , y), z), t), f (f (f (y , z), x), t)),

f (f (f (z , x), y), t))

Then A generates an SD(∧) variety and CSP(A) is easy (see
Barto, Kozik).
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There is no blue pair

Assume {a, b} is a blue pair. We can now pp-define the
relation

R = {(a, a, b), (a, b, a), (b, a, a), (b, b, b)}.

This will lead us to a contradiction. . .
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Combinatorics on potatoes

Assume A has a blue pair and I is the smallest constraint network
for R. Then:

Each potato contains two or three vertices.

Each potato contains only blue pairs.

There is no potato with three vertices.

There are no interesting relations left and we win.
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Thanks for your attention.
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