Dichotomy for conservative digraphs

Alexandr Kazda

Department of Algebra Charles University, Prague

June 9th, 2012

▲ 同 ▶ → 三 ▶

Where are we going

- A finite relational structure A is conservative if it contains all possible unary relations.
- Denote **A** the algebra of idempotent polymorphisms of A.
- We show: If **A** contains a Taylor operation then **A** generates a congruence meet semidistributive variety.
- CSP translation: If CSP(A) is not obviously NP-complete, then local consistency checking solves CSP(A).

- ∢ ≣ ▶

Where are we going

- A finite relational structure A is conservative if it contains all possible unary relations.
- Denote **A** the algebra of idempotent polymorphisms of **A**.
- We show: If **A** contains a Taylor operation then **A** generates a congruence meet semidistributive variety.
- CSP translation: If CSP(A) is not obviously NP-complete, then local consistency checking solves CSP(A).

- A 🗄 🕨

Where are we going

- A finite relational structure A is conservative if it contains all possible unary relations.
- Denote **A** the algebra of idempotent polymorphisms of A.
- We show: If **A** contains a Taylor operation then **A** generates a congruence meet semidistributive variety.
- CSP translation: If CSP(A) is not obviously NP-complete, then local consistency checking solves CSP(A).

- ∢ ≣ ▶

Where are we going

- A finite relational structure A is conservative if it contains all possible unary relations.
- Denote **A** the algebra of idempotent polymorphisms of A.
- We show: If **A** contains a Taylor operation then **A** generates a congruence meet semidistributive variety.
- CSP translation: If CSP(A) is not obviously NP-complete, then local consistency checking solves CSP(A).

< 🗇 > < 🖃 >

Where are we going

- A finite relational structure A is conservative if it contains all possible unary relations.
- Denote **A** the algebra of idempotent polymorphisms of A.
- We show: If **A** contains a Taylor operation then **A** generates a congruence meet semidistributive variety.
- CSP translation: If CSP(A) is not obviously NP-complete, then local consistency checking solves CSP(A).

< 🗇 > < 🖃 >

Shoulders of giants

- A. Bulatov: dichotomy for general conservative CSP
- L. Barto: proof of dichotomy using absorption
- P. Hell, A. Rafiey: combinatorial characterization of tractable conservative digraphs which implies our result

A D

Shoulders of giants

• A. Bulatov: dichotomy for general conservative CSP

- L. Barto: proof of dichotomy using absorption
- P. Hell, A. Rafiey: combinatorial characterization of tractable conservative digraphs which implies our result

□→ < □→</p>

Shoulders of giants

- A. Bulatov: dichotomy for general conservative CSP
- L. Barto: proof of dichotomy using absorption
- P. Hell, A. Rafiey: combinatorial characterization of tractable conservative digraphs which implies our result

▲ 同 ▶ → 三 ▶

Shoulders of giants

- A. Bulatov: dichotomy for general conservative CSP
- L. Barto: proof of dichotomy using absorption
- P. Hell, A. Rafiey: combinatorial characterization of tractable conservative digraphs which implies our result

・ 同・ ・ ヨ・

Polymorphisms on pairs

- If A is conservative and a, b ∈ A then A contains some polymorphism f such that f is semilattice, majority or minority on a, b ...
- ... otherwise all operations on {a, b} are projections...
- ... and so A has no Taylor operation.

- ₹ 🖬 🕨

Polymorphisms on pairs

- If A is conservative and a, b ∈ A then A contains some polymorphism f such that f is semilattice, majority or minority on a, b ...
- ... otherwise all operations on $\{a, b\}$ are projections...
- ... and so **A** has no Taylor operation.

Polymorphisms on pairs

- If A is conservative and a, b ∈ A then A contains some polymorphism f such that f is semilattice, majority or minority on a, b ...
- ... otherwise all operations on $\{a, b\}$ are projections...
- ... and so **A** has no Taylor operation.

・ 同・ ・ ヨ・

Polymorphisms on pairs

- If A is conservative and a, b ∈ A then A contains some polymorphism f such that f is semilattice, majority or minority on a, b...
- ... otherwise all operations on $\{a, b\}$ are projections...
- ... and so **A** has no Taylor operation.

- A 3 N

Colors

We color a pair $a, b \in A$:

- red if it admits a semilattice, else...
- yellow if it admits the majority operation, else. . .
- ... we color the pair blue if it admits a minority.

▲ 同 ▶ → ● 三

We color a pair $a, b \in A$:

- red if it admits a semilattice, else...
- ... yellow if it admits the majority operation, else...
- ... we color the pair blue if it admits a minority.

▲ 同 ▶ → ● 三

We color a pair $a, b \in A$:

- red if it admits a semilattice, else...
- ... yellow if it admits the majority operation, else...
- ... we color the pair blue if it admits a minority.

▲ 同 ▶ → ● 三

We color a pair $a, b \in A$:

- red if it admits a semilattice, else...
- ... yellow if it admits the majority operation, else...
- ... we color the pair blue if it admits a minority.

▲ 同 ▶ → 三 ▶

Colors

Theorem (Bulatov, shortened)

There are polymorphisms $f(x, y), g(x, y, z), h(x, y, z) \in Pol(\mathbb{A})$ such that for every two-element subset $B \subset A$:

- $f_{|B}$ is a semilattice operation whenever B is red, and $f_{|B}(x, y) = x$ otherwise,
- g_{|B} is a majority operation if B is yellow and g_{|B}(x, y, z) = x if B is blue
- $h_{|B}$ is a minority operation if B is blue.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Bulatov, shortened)

There are polymorphisms $f(x, y), g(x, y, z), h(x, y, z) \in Pol(\mathbb{A})$ such that for every two-element subset $B \subset A$:

- $f_{|B}$ is a semilattice operation whenever B is red, and $f_{|B}(x, y) = x$ otherwise,
- g_{|B} is a majority operation if B is yellow and g_{|B}(x, y, z) = x if B is blue
- $h_{|B}$ is a minority operation if B is blue.

Theorem (Bulatov, shortened)

There are polymorphisms $f(x, y), g(x, y, z), h(x, y, z) \in Pol(\mathbb{A})$ such that for every two-element subset $B \subset A$:

- $f_{|B}$ is a semilattice operation whenever B is red, and $f_{|B}(x, y) = x$ otherwise,
- $g_{|B}$ is a majority operation if B is yellow and $g_{|B}(x, y, z) = x$ if B is blue
- $h_{|B}$ is a minority operation if B is blue.

Theorem (Bulatov, shortened)

There are polymorphisms $f(x, y), g(x, y, z), h(x, y, z) \in Pol(\mathbb{A})$ such that for every two-element subset $B \subset A$:

- $f_{|B}$ is a semilattice operation whenever B is red, and $f_{|B}(x, y) = x$ otherwise,
- $g_{|B}$ is a majority operation if B is yellow and $g_{|B}(x, y, z) = x$ if B is blue
- $h_{|B}$ is a minority operation if B is blue.

Blue is bad

• If we had no blue vertices, we could use the previous theorem to define 3ary and 4ary WNUs:

$$u(x, y, z) = g(f(f(x, y), z), f(f(y, z), x), f(f(z, x), y))$$

$$v(x, y, z, t) = g(f(f(f(x, y), z), t), f(f(f(y, z), x), t)),$$

$$f(f(f(z, x), y), t))$$

 Then A generates an SD(∧) variety and CSP(A) is easy (see Barto, Kozik).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Blue is bad

• If we had no blue vertices, we could use the previous theorem to define 3ary and 4ary WNUs:

$$u(x, y, z) = g(f(f(x, y), z), f(f(y, z), x), f(f(z, x), y))$$

$$v(x, y, z, t) = g(f(f(f(x, y), z), t), f(f(f(y, z), x), t)),$$

$$f(f(f(z, x), y), t))$$

 Then A generates an SD(∧) variety and CSP(A) is easy (see Barto, Kozik).

- 4 同 2 4 日 2 4 日 2

Blue is bad

• If we had no blue vertices, we could use the previous theorem to define 3ary and 4ary WNUs:

$$u(x, y, z) = g(f(f(x, y), z), f(f(y, z), x), f(f(z, x), y))$$

$$v(x, y, z, t) = g(f(f(f(x, y), z), t), f(f(f(y, z), x), t)),$$

$$f(f(f(z, x), y), t))$$

 Then A generates an SD(∧) variety and CSP(A) is easy (see Barto, Kozik).

▲□ ► < □ ► </p>

There is no blue pair

• Assume {*a*, *b*} is a blue pair. We can now pp-define the relation

$$R = \{(a, a, b), (a, b, a), (b, a, a), (b, b, b)\}.$$

• This will lead us to a contradiction...

・ 同 ト ・ ヨ ト ・ ヨ

There is no blue pair

• Assume {a, b} is a blue pair. We can now pp-define the relation

$$R = \{(a, a, b), (a, b, a), (b, a, a), (b, b, b)\}.$$

• This will lead us to a contradiction...

< 🗇 > < 🖃 >

There is no blue pair

• Assume {a, b} is a blue pair. We can now pp-define the relation

$$R = \{(a, a, b), (a, b, a), (b, a, a), (b, b, b)\}.$$

• This will lead us to a contradiction...

Combinatorics on potatoes

- Each potato contains two or three vertices.
- Each potato contains only blue pairs.
- There is no potato with three vertices.
- There are no interesting relations left and we win.

Combinatorics on potatoes

- Each potato contains two or three vertices.
- Each potato contains only blue pairs.
- There is no potato with three vertices.
- There are no interesting relations left and we win.

Combinatorics on potatoes

- Each potato contains two or three vertices.
- Each potato contains only blue pairs.
- There is no potato with three vertices.
- There are no interesting relations left and we win.

Combinatorics on potatoes

- Each potato contains two or three vertices.
- Each potato contains only blue pairs.
- There is no potato with three vertices.
- There are no interesting relations left and we win.

Combinatorics on potatoes

- Each potato contains two or three vertices.
- Each potato contains only blue pairs.
- There is no potato with three vertices.
- There are no interesting relations left and we win.

Thanks for your attention.

æ