Mébius

number

systems
Alexandr

Kazda, Petr
Kiirka

Mobius number systems

Alexandr Kazda, Petr Kirka

Charles University, Prague

Numeration
Marseille, March 23-27, 2009



Mébius
number
systems

Alexandr
Kazda, Petr
Kiirka

Mobius trans-

formations
Convergence
Mébius
number
systems

Examples

Existence
theorem

Conclusions

Outline

@ Mobius transformations
@® Convergence

© Mobius number systems
@ Examples

@ Existence theorem

@ Conclusions



Mébius
number
systems

Alexandr
Kazda, Petr
Kiirka

e Our goal: To use sequences of Mobius transformations to
Vot ) _ ~ .
poole trans represent points on R = RU {oo} or the unit circle T.



Mébius
number
systems

Alexandr
Kazda, Petr
Kiirka

e Our goal: To use sequences of Mobius transformations to
Vot ) X = .
poole trans represent points on R = RU {oo} or the unit circle T.

e A Mobius tranformation (MT) is any nonconstant function
M :CU {oo} — CU {00} of the form

az+b

M(z) = cz+d




Mébius
number
systems

Alexandr
Kazda, Petr
Kiirka

e Our goal: To use sequences of Mobius transformations to
Vot ) X = .
poole trans represent points on R = RU {oo} or the unit circle T.

e A Mobius tranformation (MT) is any nonconstant function
M :CU {oo} — CU {00} of the form

az+b

M(z) = cz+d

e We will consider MTs that preserve the upper half-plane



Mébius
number
systems

Alexandr
Kazda, Petr
Kiirka

Mobius trans-
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Our goal: To use sequences of Mobius transformations to
represent points on R = R U {oo} or the unit circle T.

A Mobius tranformation (MT) is any nonconstant function
M :CU {oo} — CU {00} of the form

az+ b

M(z) = cz+d

We will consider MTs that preserve the upper half-plane
or the unit disc .
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Mébius

number —
e R versus T
Alexandr = 8
Kazda, Petr
Kirka @ V(b
Mobius trans- q’
formations
1
2
., J/
\
/b\ &: A \)\Z/&P <3
q,\A/\\' © >

e Using the stereometric projection, we have a one-to-one
correspondence between the upper half-plane and unit

disc.
e This projection is itself an MT.



Mébius
number

systems R VerSUS T

Alexandr = 8
Kazda, Petr
Kirka 3l Yo,
Mobius trans- q’
formations
1
2
., J/
/b\’\' ’ \Z <3
\&'/\: o \)//03
3} A\ >

e Using the stereometric projection, we have a one-to-one
correspondence between the upper half-plane and unit
disc.

e This projection is itself an MT.

e Therefore we can translate MTs that represent T to the
ones that represent R.



Mébius
number
systems

R versus T
Alexandr

Kazda, Petr
Kiirka

Mobius trans-
formations

e We will be mostly talking about representing the unit
circle.



Mébius
number
systems

R versus T
Alexandr

Kazda, Petr
Kiirka

Mobius trans-
formations

e We will be mostly talking about representing the unit
circle.

e However, the example number systems represent R.



Mébius
number
systems

R versus T
Alexandr

Kazda, Petr
Kiirka

Mobius trans-
formations

e We will be mostly talking about representing the unit
circle.

e However, the example number systems represent R.

e How to tell them apart: half-plane-preserving MTs have a
hat, disc-preserving MTs don't.
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A direct calculation shows that all MTs that preserve D
must look like this:

Mz = S22

where || < |a| are complex numbers.

Examples follow.
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Convergence
e A sequence My, My, ... represents the number x € T if

M,(0) — x for n — .

e Isn't it a bit arbitrary?
e No. This definition is quite natural.
e For example, if My, M,, ... represents x then

Mp(K) — {x} for any K C D° compact.
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umber o Let A be finite alphabet. Then AT is the set of all finite
s nonempty words over A, A¥ the set of all one-sided infinite
words.

e Recall that ¥ C A% is a subshift if £ can be defined by a
set of forbidden (finite) words.

e For v= v ...v, a word, denote by F, the
transformation F,, 0 F,, 0---0 F,.
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Mebius Let us have a system of MTs {F, : a € A}. A subshift ¥ C A¥
Sy is a Mobius number system if:

e For every w € ¥, the sequence {Fuyw,...w, }°2, represents
some point ®(w) € T.

e The function ® : ¥ — T is continuous and surjective.
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Getting the idea: Binary system

Take transformations Fo(x) = x/2 and Fi(x) = (x 4+ 1)/2.
Take the full shift ¥ = {0, 1}~.

The function ® maps ¥ to an interval on T corresponding
to [0, 1].

Essentialy, it is the ordinary binary system; ®(w)
corresponds to 0.w.

Note that this is not a Mobius number system vyet, as it is
not surjective. . .

... we will fix that soon.
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e The question: Given a system of MTs {F, : a € A}, does
there exist a Mobius number system?

Existence
theorem

e The answer: It depends on whether {V,: a € A} cover T
in a certain way.
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Intervals of contraction and
expansion

N A

U, = {zeT: |Fi(2)] <1},
V, = {z€T: ](Fu_l)'(z)\ > 1}
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theorem

Theorem
Let {F,:ac A} be MTs.

@ If|J{V,:ue AT} #T, then there does not exist any
Mobius number system.

@ If there exists a finite B C AT such that {V, : u € B}
cover T, then there exists a Mobius number system.

Note that there can still be some situation in between (1) and

(2).
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e Sequences of MTs can represent numbers.

e We have some sufficient and some necessary conditions for
a Mobius number system to exist.

e Continued fractions are a special case of a Mobius number
system.

Conclusions
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