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• Our goal: To use sequences of Möbius transformations to
represent points on R = R ∪ {∞} or the unit circle T.

• A Möbius tranformation (MT) is any nonconstant function
M : C ∪ {∞} → C ∪ {∞} of the form

M(z) =
az + b

cz + d

• We will consider MTs that preserve the upper half-plane

• or the unit disc D.
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Möbius trans-
formations

Convergence
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R versus T
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• Using the stereometric projection, we have a one-to-one
correspondence between the upper half-plane and unit
disc.

• This projection is itself an MT.
• Therefore we can translate MTs that represent T to the

ones that represent R.
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R versus T

• We will be mostly talking about representing the unit
circle.

• However, the example number systems represent R.

• How to tell them apart: half-plane-preserving MTs have a
hat, disc-preserving MTs don’t.
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Disc Möbius transformations
M : D→ D

• A direct calculation shows that all MTs that preserve D
must look like this:

•
M(z) =

αz + β

βz + α
,

• where |β| < |α| are complex numbers.

• Examples follow.
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Examples of Möbius
transformations
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M0(z) = 3z−i
iz−3

M̂0(x) = x/2

hyperbolic

M1(z) = (2i+1)z+1
2i−1

M̂1(x) = x + 1

parabolic

M2(z) = (7+2i)z+i
−iz+(7−2i)

M̂2(x) = 4x+1
3−x

elliptic
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Möbius
number
systems

Examples

Existence
theorem

Conclusions

Defining convergence

• A sequence M1,M2, . . . represents the number x ∈ T if
Mn(0)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x then
Mn(K )→ {x} for any K ⊂ Do compact.
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Preliminaries from Symbolic
dynamics

• Let A be finite alphabet. Then A+ is the set of all finite
nonempty words over A, Aω the set of all one-sided infinite
words.

• Recall that Σ ⊂ Aω is a subshift if Σ can be defined by a
set of forbidden (finite) words.

• For v = v0v1 . . . vn a word, denote by Fv the
transformation Fv0 ◦ Fv1 ◦ · · · ◦ Fvn .
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Möbius
number
systems

Alexandr
Kazda, Petr
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What is a Möbius number system?

Let us have a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω

is a Möbius number system if:

• For every w ∈ Σ, the sequence {Fw0w1...wn}∞n=0 represents
some point Φ(w) ∈ T.

• The function Φ : Σ→ T is continuous and surjective.
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Getting the idea: Binary system

• Take transformations F̂0(x) = x/2 and F̂1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on T corresponding
to [0, 1].

• Essentialy, it is the ordinary binary system; Φ(w)
corresponds to 0.w .

• Note that this is not a Möbius number system yet, as it is
not surjective. . .

• . . . we will fix that soon.
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Binary signed system
A = {1, 0, 1, 2}
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F̂1(x) = (x − 1)/2 (1)

F̂0(x) = x/2 (2)

F̂1(x) = (x + 1)/2 (3)

F̂2(x) = 2x (4)

Forbidden words:
20, 02, 12, 12, 11, 11



Möbius
number
systems

Alexandr
Kazda, Petr
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Regular continued fractions
A = {1, 0, 1}
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F̂1(x) = −1 + x (5)

F̂0(x) = −1/x (6)

F̂1(x) = 1 + x (7)

Forbidden words:
00, 11, 11, 101, 101
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Existence problem

• The question: Given a system of MTs {Fa : a ∈ A}, does
there exist a Möbius number system?

• The answer: It depends on whether {Va : a ∈ A} cover T
in a certain way.
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Möbius trans-
formations

Convergence
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Intervals of contraction and
expansion

UV U

V

Uu = {z ∈ T : |F ′u(z)| < 1},
Vu = {z ∈ T : |(F−1

u )′(z)| > 1}
Fu(Uu) = Vu, u ∈ A+
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Theorem
Let {Fa : a ∈ A} be MTs.

1 If
⋃
{Vu : u ∈ A+} 6= T, then there does not exist any

Möbius number system.

2 If there exists a finite B ⊂ A+ such that {V u : u ∈ B}
cover T, then there exists a Möbius number system.

Note that there can still be some situation in between (1) and
(2).
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Conclusions

• Sequences of MTs can represent numbers.

• We have some sufficient and some necessary conditions for
a Möbius number system to exist.

• Continued fractions are a special case of a Möbius number
system.
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Möbius
number
systems

Examples

Existence
theorem

Conclusions

Conclusions

• Sequences of MTs can represent numbers.

• We have some sufficient and some necessary conditions for
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Thanks for your attention.
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