Minority is the join of two varieties defined by linear equations

Alexandr Kazda, Matt Moore, Jakub Opršal, and Matt Valeriote

IST Austria (AK), McMaster University (MM, MV), and TU Dresden (JO)

February 10, 2017

Image by Cary Bass - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=834203

• A strong Maltsev condition is a system of equalities for some operations and variables, eg.

 $p(p(x, y), r(y)) \approx x.$

- An algebra \mathbf{A} satisfies M if some terms of \mathbf{A} do.
- Linear conditions: No nested operations.
- Example (the Maltsev operation):

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y.$

• A strong Maltsev condition is a system of equalities for some operations and variables, eg.

 $p(p(x, y), r(y)) \approx x.$

• An algebra **A** satisfies *M* if some terms of **A** do.

- Linear conditions: No nested operations.
- Example (the Maltsev operation):

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y.$

• A strong Maltsev condition is a system of equalities for some operations and variables, eg.

 $p(p(x,y),r(y))\approx x.$

- An algebra **A** satisfies *M* if some terms of **A** do.
- Linear conditions: No nested operations.
- Example (the Maltsev operation):

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y.$

• A strong Maltsev condition is a system of equalities for some operations and variables, eg.

 $p(p(x,y),r(y))\approx x.$

- An algebra **A** satisfies *M* if some terms of **A** do.
- Linear conditions: No nested operations.
- Example (the Maltsev operation):

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y.$

• A strong Maltsev condition is a system of equalities for some operations and variables, eg.

 $p(p(x,y),r(y)) \approx x.$

- An algebra \mathbf{A} satisfies M if some terms of \mathbf{A} do.
- Linear conditions: No nested operations.
- Example (the Maltsev operation):

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y.$

- Let *M* be a fixed strong Maltsev condition.
- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does A satisfy M?
- Lies in EXPTIME.
- Conjecture: For any *M*, this problem is in *P*.

• Let *M* be a fixed strong Maltsev condition.

- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does A satisfy M?
- Lies in EXPTIME.
- Conjecture: For any *M*, this problem is in *P*.

- Let *M* be a fixed strong Maltsev condition.
- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does **A** satisfy *M*?
- Lies in EXPTIME.
- Conjecture: For any *M*, this problem is in *P*.

- Let *M* be a fixed strong Maltsev condition.
- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does A satisfy M?
- Lies in EXPTIME.
- Conjecture: For any *M*, this problem is in *P*.

- Let *M* be a fixed strong Maltsev condition.
- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does A satisfy M?
- Lies in EXPTIME.
- Conjecture: For any M, this problem is in P.

- Let *M* be a fixed strong Maltsev condition.
- Input: Idempotent algebra A given by tables of basic operations.
- Output: Does A satisfy M?
- Lies in EXPTIME.
- Conjecture: For any M, this problem is in P.

• How to decide if A has

 $m(x, x, y) \approx y$ $m(y, x, x) \approx y?$

• It is enough to verify that for every choice of $a, b, c, d \in A$ we have m_{abcd} such that

$$m_{abcd}(a, a, b) = b$$

 $m_{abcd}(c, d, d) = c.$

Local to global

• How to decide if A has

$$m(x, x, y) \approx y$$

 $m(y, x, x) \approx y$?

• It is enough to verify that for every choice of $a, b, c, d \in A$ we have m_{abcd} such that

$$m_{abcd}(a, a, b) = b$$

 $m_{abcd}(c, d, d) = c.$

• How to decide if A has

$$m(x, x, y) \approx y$$

 $m(y, x, x) \approx y$?

• It is enough to verify that for every choice of $a, b, c, d \in A$ we have m_{abcd} such that

$$m_{abcd}(a, a, b) = b$$

 $m_{abcd}(c, d, d) = c.$

• How to decide if A has

$$m(x, x, y) \approx y$$

 $m(y, x, x) \approx y?$

• It is enough to verify that for every choice of $a, b, c, d \in A$ we have m_{abcd} such that

$$m_{abcd}(a, a, b) = b$$

 $m_{abcd}(c, d, d) = c.$

$$n(x, x, y) \approx n(x, y, x) \approx n(y, x, x) \approx y.$$

- Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.
- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in *NP*.
- Open problem: Improve this.

$n(x,x,y) \approx n(x,y,x) \approx n(y,x,x) \approx y.$

• Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.

- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in NP.
- Open problem: Improve this.

$$n(x,x,y) \approx n(x,y,x) \approx n(y,x,x) \approx y.$$

• Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.

- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in *NP*.
- Open problem: Improve this.

$$n(x,x,y) \approx n(x,y,x) \approx n(y,x,x) \approx y.$$

- Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.
- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in NP.
- Open problem: Improve this.

$$n(x, x, y) \approx n(x, y, x) \approx n(y, x, x) \approx y.$$

- Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.
- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in NP.
- Open problem: Improve this.

$$n(x, x, y) \approx n(x, y, x) \approx n(y, x, x) \approx y.$$

- Dmitriy Zhuk: There are algebras that have *n* locally, but not globally.
- How hard is it to decide if a given A has minority?
- Can check that we have a Maltsev operation, then use Peter Mayr's algorithm for subpower membership ⇒ the problem is in NP.
- Open problem: Improve this.

- The proof of "local to global" fails for reasons that are hard to generalize.
- Is there a natural reason for the failure?
- Conjecture: Minority is join-irreducible in the lattice of interpretability of linear Maltsev conditions.
- This is not true.

- The proof of "local to global" fails for reasons that are hard to generalize.
- Is there a natural reason for the failure?
- Conjecture: Minority is join-irreducible in the lattice of interpretability of linear Maltsev conditions.
- This is not true.

- The proof of "local to global" fails for reasons that are hard to generalize.
- Is there a natural reason for the failure?
- Conjecture: Minority is join-irreducible in the lattice of interpretability of linear Maltsev conditions.
- This is not true.

- The proof of "local to global" fails for reasons that are hard to generalize.
- Is there a natural reason for the failure?
- Conjecture: Minority is join-irreducible in the lattice of interpretability of linear Maltsev conditions.

• This is not true.

- The proof of "local to global" fails for reasons that are hard to generalize.
- Is there a natural reason for the failure?
- Conjecture: Minority is join-irreducible in the lattice of interpretability of linear Maltsev conditions.
- This is not true.

• N₁

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$
$$m(x, x, y) \approx y$$
$$m(y, x, x) \approx y.$$

• N₂

 $t(y, x, x, z, y, y, z) \approx y$ $t(x, y, x, y, z, y, z) \approx y$ $t(x, x, y, y, y, z, z) \approx y.$

• To get t from a generic minority, let $t(x_1, ..., x_7) := n(n(x_1, x_2, x_3), n(x_4, x_5, x_6), x_7).$

AK MM JO MV (IST Austria, Mac, TUD)

• N₁

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

• N₂

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, z, z) \approx y.$$

• To get t from a generic minority, let $t(x_1, ..., x_7) := n(n(x_1, x_2, x_3), n(x_4, x_5, x_6), x_7).$

AK MM JO MV (IST Austria, Mac, TUD)

• N₁

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

N₂

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, z, z) \approx y.$$

• To get t from a generic minority, let $t(x_1, ..., x_7) := n(n(x_1, x_2, x_3), n(x_4, x_5, x_6), x_7).$

AK MM JO MV (IST Austria, Mac, TUD)

• N₁

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

N₂

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, z, z) \approx y.$$

• To get t from a generic minority, let $t(x_1,...,x_7) := n(n(x_1,x_2,x_3), n(x_4,x_5,x_6),x_7).$

AK MM JO MV (IST Austria, Mac, TUD)

э

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

- This condition is satisfied in (Z₄, +) by w(x, y, z) = −x − y − z and m(x, y, z) = x − y + z.
- There is no minority in $(\mathbb{Z}_4, +)$.

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

• This condition is satisfied in $(\mathbb{Z}_4, +)$ by w(x, y, z) = -x - y - z and m(x, y, z) = x - y + z.

• There is no minority in $(\mathbb{Z}_4, +)$.

$$w(x, x, y) \approx w(x, y, x) \approx w(y, x, x) \approx m(x, y, x)$$

 $m(x, x, y) \approx y$
 $m(y, x, x) \approx y.$

- This condition is satisfied in $(\mathbb{Z}_4, +)$ by w(x, y, z) = -x y z and m(x, y, z) = x y + z.
- There is no minority in $(\mathbb{Z}_4, +)$.

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, y, z, z) \approx y.$$

- This condition is satisfied in $(\mathbb{Z}_6, +)$ by $t(x_1, \ldots, x_7) := 3x_1 + 3x_2 + 3x_3 + 2x_4 + 2x_5 + 2x_6 + 4x_7.$
- Again, no minority in $(\mathbb{Z}_6, +)$.

___ ▶

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, y, z, z) \approx y.$$

This condition is satisfied in (Z₆, +) by t(x₁,...,x₇) := 3x₁ + 3x₂ + 3x₃ + 2x₄ + 2x₅ + 2x₆ + 4x₇.
Again, no minority in (Z₆, +).

$$t(y, x, x, z, y, y, z) \approx y$$

$$t(x, y, x, y, z, y, z) \approx y$$

$$t(x, x, y, y, y, y, z, z) \approx y.$$

- This condition is satisfied in $(\mathbb{Z}_6, +)$ by $t(x_1, \ldots, x_7) := 3x_1 + 3x_2 + 3x_3 + 2x_4 + 2x_5 + 2x_6 + 4x_7.$
- Again, no minority in $(\mathbb{Z}_6, +)$.

n(x, y, z) := t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z))
 An example minority equality:

- We used $t(x, x, y, y, y, z, z) \approx y$.
- Since free algebra with just minority satisfies both N_1 and N_2 , we don't get any additional operations in $N_1 \vee N_2$.

n(x, y, z) := t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z)) An example minority equality:

 $\begin{aligned} n(x, x, y) &\approx t(x, x, y, m(y, x, x), m(x, x, y), m(x, y, x), w(x, x, y)) \\ &\approx t(x, x, y, y, y, w(x, x, y), w(x, x, y)) &\approx y \end{aligned}$

- We used $t(x, x, y, y, y, z, z) \approx y$.
- Since free algebra with just minority satisfies both N_1 and N_2 , we don't get any additional operations in $N_1 \vee N_2$.

- n(x, y, z) := t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z))
- An example minority equality:

- We used $t(x, x, y, y, y, z, z) \approx y$.
- Since free algebra with just minority satisfies both N_1 and N_2 , we don't get any additional operations in $N_1 \vee N_2$.

- n(x, y, z) := t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z))
- An example minority equality:

- We used $t(x, x, y, y, y, z, z) \approx y$.
- Since free algebra with just minority satisfies both N_1 and N_2 , we don't get any additional operations in $N_1 \vee N_2$.

- n(x, y, z) := t(x, y, z, m(z, x, y), m(x, y, z), m(y, z, x), w(x, y, z))
- An example minority equality:

- We used $t(x, x, y, y, y, z, z) \approx y$.
- Since free algebra with just minority satisfies both N_1 and N_2 , we don't get any additional operations in $N_1 \vee N_2$.

- We now have one more troublesome Maltsev condition: N₂. This can help us understand what is really going on.
- Generalize Dmitriy's counterexamples?
- Work on Subpower Membership Problem: A polynomial time algorithm for Maltsev SMP would get minority into P.
- A. Bulatov, A. Szendrei, P. Mayr: SMP is in P if **A** has a cube term and lies in a residually small variety.

- We now have one more troublesome Maltsev condition: N_2 . This can help us understand what is really going on.
- Generalize Dmitriy's counterexamples?
- Work on Subpower Membership Problem: A polynomial time algorithm for Maltsev SMP would get minority into P.
- A. Bulatov, A. Szendrei, P. Mayr: SMP is in P if **A** has a cube term and lies in a residually small variety.

- We now have one more troublesome Maltsev condition: N₂. This can help us understand what is really going on.
- Generalize Dmitriy's counterexamples?
- Work on Subpower Membership Problem: A polynomial time algorithm for Maltsev SMP would get minority into P.
- A. Bulatov, A. Szendrei, P. Mayr: SMP is in P if **A** has a cube term and lies in a residually small variety.

- We now have one more troublesome Maltsev condition: N_2 . This can help us understand what is really going on.
- Generalize Dmitriy's counterexamples?
- Work on Subpower Membership Problem: A polynomial time algorithm for Maltsev SMP would get minority into P.
- A. Bulatov, A. Szendrei, P. Mayr: SMP is in P if **A** has a cube term and lies in a residually small variety.

- We now have one more troublesome Maltsev condition: N_2 . This can help us understand what is really going on.
- Generalize Dmitriy's counterexamples?
- Work on Subpower Membership Problem: A polynomial time algorithm for Maltsev SMP would get minority into P.
- A. Bulatov, A. Szendrei, P. Mayr: SMP is in P if **A** has a cube term and lies in a residually small variety.