Algorithms that decide absorption

Alexandr Kazda (joint work with Libor Barto)

Department of Mathematics Vanderbilt University

May 21, 2014

Definition (Libor Barto, Marcin Kozik)

Let $\mathbf{B} \leq \mathbf{A}$ be algebras. We say that \mathbf{B} absorbs \mathbf{A} if there exists a term t in \mathbf{A} such that for any $b_1, \ldots, b_n \in B, a \in A$ we have:

$$t(a, a, a, ..., a) = a$$

 $t(a, b_2, b_3, ..., b_{n-1}, b_n) \in B$
 $t(b_1, a, b_3, ..., b_{n-1}, b_n) \in B$
 \vdots
 $t(b_1, b_2, b_3, ..., b_{n-1}, a) \in B$

Notation for absorption: $\mathbf{B} \trianglelefteq \mathbf{A}$.

- If 0 is the minimal element of a semilattice (L, ∧), then {0} absorbs L; absorption term is t(x₁, x₂) = x₁ ∧ x₂.
- If **A** is an algebra with a majority term *m*, then every singleton is an absorbing subalgebra; absorption term is *m*.
- $\mathbf{A} \trianglelefteq \mathbf{A}$ always.
- A has an NU term iff $\{a\} \trianglelefteq A$ for every $a \in A$.
- If A is an abelian group, then A has no proper absorbing subalgebra.

A "connected" and $\mathbf{B} \leq \mathbf{A} \Rightarrow \mathbf{B}$ "connected". Major recent results using absorption:

- CSP(A) is solvable by local consistency checking iff A is SD(∧) (Barto, Kozik).
- If **A** is finitely related and CD, then **A** has an NU operation. (Barto and Zhuk independently)
- If **A** is finitely related and CM, then **A** has a cube term. (Barto)
- If **A** has an NU operation, then CSP(A) has bounded pathwidth duality and lies in NL (Barto, Kozik, Willard).
- A new proof of: A finite + solvable + Taylor ⇒ A has a Maltsev term (Stanovský).

- Problem: Given $\mathbf{B} \leq \mathbf{A}$, can we decide if $\mathbf{B} \leq \mathbf{A}$?
- Libor Barto, Jakub Bulín: Yes, if **A** is given by a finite set of relations.
- What about if A is given by a finitely many operations instead?
- Miklós Maróti: We can decide whether a finite algebra $\mathbf{A} = (A, f_1, \dots, f_n)$ has an NU term.

- Weaker notion of absorption inspired by Kozik's terms for congruence distributivity.
- Let $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{J} \mathbf{A}$ if there exist idempotent terms d_0, d_1, \ldots, d_n such that:

$$\forall i = 1, \dots, n, \ d_i(B, A, B) \subset B$$
$$d_1(x, x, y) = x$$
$$d_i(x, y, y) = d_{i+1}(x, x, y)$$
$$d_n(x, y, y) = y.$$

• If **A** is finitely related, then $\mathbf{B} \leq \mathbf{J} \mathbf{A}$ implies $\mathbf{B} \leq \mathbf{A}$ (Barto, Bulín).

- Look at ($\{0,1\},\rightarrow$).
- $\{0\} \trianglelefteq_J \{0,1\}$ as witnessed by the Jónsson absorbing terms:

$$d_1(x, y, z) = (y \rightarrow (z \rightarrow x)) \rightarrow x,$$

 $d_2(x, y, z) = (x \rightarrow (y \rightarrow z)) \rightarrow z,$

- However, $\{0\}$ does not absorb $\{0,1\}$.
- How to see that: Look at relations $\{0,1\}^n \setminus \{0\}^n$.

- We call (C, D) a **B**-blocker if
 - $\emptyset \neq C \leq D \leq A$,
 - $D \cap B \neq \emptyset$,
 - $C \cap B = \emptyset$,
 - $\{(x_1,\ldots,x_n)\in D^n:\exists i, x_i\in C\}\leq \mathbf{A}^n \text{ for every } n\in\mathbb{N}.$
- If $\mathbf{B} \trianglelefteq \mathbf{A}$, then there is no \mathbf{B} -blocker.

- Given idempotent **A** with finitely many operations, we can test if there are no **B**-blockers.
- However, we can have no blockers and no absorption: Consider $\mathbf{A} = (\mathbb{Z}_2, m)$, where $m(x, y, z) = x + y + z \pmod{2}$.

Theorem

Let **A** be a finite idempotent algebra, $\mathbf{B} \leq \mathbf{A}$. Then $\mathbf{B} \leq \mathbf{A}$ iff there is no **B**-blocker and $\mathbf{B} \leq \mathbf{J} \mathbf{A}$.

Corollary

We can decide $\mathbf{B} \trianglelefteq \mathbf{A}$ algorithmically.

- Decision problems come in two basic flavors: **A** can be given by tables of its basic operations, or by a set of invariant relations.
- The complexity of deciding something for \boldsymbol{A} and for $\mathbb A$ can be different!
- If we have basic operations, we can generate subalgebras quickly, but have trouble deciding if a given operation belongs into the clone of **A**.
- If we have relations, it is the other way around.

- Given A by basic operations, we can decide if B ≤ J A in polynomial time.
- For deciding *B*-blockers, we have one algorithm running in time $O(|\mathbf{A}|3^{|\mathcal{A}|})$ and another running in time $O(|\mathbf{A}|\prod_i s_i)$ where s_i is the arity of the *i*-th basic operation of \mathbf{A} .
- Given B ≤ A, deciding existence of a B-blocker is NP-complete. (reduction from 3-SAT).
- Good news: Deciding if a given **A** has some blocker for some **B** can be done in polynomial time.

- If **A** is given by a relational structure, all we need is to decide $\mathbf{B} \leq_J \mathbf{A}$.
- Best known general algorithm: Time roughly $|\mathbb{A}||\mathcal{A}|^{|\mathcal{A}|^3}$.
- The issue: How to get 3-generated subalgebras of A³ quickly.
- Special cases can be much easier:
- If we can solve $CSP(\mathbb{A})$ in P then deciding \trianglelefteq_J is in P, too.
- Note: Deciding NU for relational structures is in P.

- If A is not idempotent, we would also like to decide absorption.
- Problem with taking the idempotent reduct: We might lose the generators of the clone of **A**.
- Imitating some of Dmitriy Zhuk's ideas gives us an algorithm anyway.
- Deciding B ≤ J A can be done in time O(|A|^{|A|+3}), deciding existence of a B-blocker is (roughly) doubly exponential in this way.

Thank you for your attention.